Search results for: porous plates
687 Morphology Study of Inverted Planar Heterojunction Perovskite Solar Cells in Sequential Deposition
Authors: Asmat Nawaz, Ali Koray Erdinc, Burak Gultekin, Muhammad Tayyib, Ceylan Zafer, Kaiying Wang, M. Nadeem Akram
Abstract:
In this study, a sequential deposition process is used for the fabrication of PEDOT: PSS based inverted planar perovskite solar cell. A small amount of additive deionized water (DI-H2O) was added into PbI2 + Dimethyl formamide (DMF) precursor solution in order to increase the solubility of PbI2 in DMF, and finally to manipulate the surface morphology of the perovskite films. A morphology transition from needle like structure to hexagonal plates, and then needle-like again has been observed as the DI-H2O was added continuously (0.0 wt% to 3.0wt%). The latter one leads to full surface coverage of the perovskite, which is essential for high performance solar cell.Keywords: charge carrier diffusion lengths, Methylamonium lead iodide, precursor composition, perovskite solar cell, sequential deposition
Procedia PDF Downloads 459686 The Collapse of a Crane on Site: A Case Study
Authors: T. Teruzzi, S. Antonietti, C. Mosca, C. Paglia
Abstract:
This paper discusses the causes of the structural failure in a tower crane. The structural collapse occurred at the upper joints of the extension element used to increase the height of the crane. The extension element consists of a steel lattice structure made with angular profiles and plates joined to the tower element by arc welding. Macroscopic inspection of the sections showed that the break was always observed on the angular profiles at the weld bead edge. The case study shows how, using mechanical characterization, chemical analysis of the steel and macroscopic and microscopic metallographic examinations, it was possible to obtain significant evidence that identified the mechanism causing the breakage. The analyses identified the causes of the structural failure as the use of materials that were not suitable for welding and poor performance in the welding joints.Keywords: failure, metals, weld, microstructure
Procedia PDF Downloads 126685 The Solution of Nonlinear Partial Differential Equation for The Phenomenon of Instability in Homogeneous Porous Media by Homotopy Analysis Method
Authors: Kajal K. Patel, M. N. Mehta, T. R. Singh
Abstract:
When water is injected in oil formatted area in secondary oil recovery process the instability occurs near common interface due to viscosity difference of injected water and native oil. The governing equation gives rise to the non-linear partial differential equation and its solution has been obtained by Homotopy analysis method with appropriate guess value of the solution together with some conditions and standard relations. The solution gives the average cross-sectional area occupied by the schematic fingers during the occurs of instability phenomenon. The numerical and graphical presentation has developed by using Maple software.Keywords: capillary pressure, homotopy analysis method, instability phenomenon, viscosity
Procedia PDF Downloads 496684 Friction Stir Welding of Al-Mg-Mn Aluminum Alloy Plates: A Review
Authors: K. Subbaiah, C. V. Jayakumar
Abstract:
Friction stir welding is a solid state welding process. Friction stir welding process eliminates the defects found in fusion welding processes. It is environmentally friend process. 5000 and 6000 series aluminum alloys are widely used in the transportation industries. The Al-Mg-Mn (5000) and Al-Mg-Si (6000) alloys are preferably offer best combination of use in Marine construction. The medium strength and high corrosion resistant 5000 series alloys are the aluminum alloys, which are found maximum utility in the world. In this review, the tool pin profile, process parameters such as hardness, yield strength and tensile strength, and microstructural evolution of friction stir welding of Al-Mg-Mn alloys (5000 Series) have been discussed.Keywords: Al-Mg-Mn alloys, friction stir welding, tool pin profile, microstructure and mechanical properties
Procedia PDF Downloads 441683 Aerodynamic Sound from a Sawtooth Plate with Different Thickness
Authors: Siti Ruhliah Lizarose Samion, Mohamed Sukri Mat Ali
Abstract:
The effect of sawtooth plate thickness on the aerodynamic noise generated in flow at a Reynolds number of 150 is numerically investigated. Two types of plate thickness (hthick=0.2D and hthin=0.02D) are proposed. Flow simulations are carried out using Direct Numerical Simulation, whereas the calculation of aerodynamic noise radiated from the flow is solved using Curle’s equation. It is found that the flow behavior of thin sawtooth plate, consisting counter-rotating-vortices, is more complex than that of the thick plate. This then explains well the generated sound in both plates cases. Sound generated from thin plat is approximately 0.5 dB lower than the thick plate. Findings from current study provide better understanding of the flow and noise behavior in edge serrations via understanding the case of a sawtooth plate.Keywords: aerodynamic sound, bluff body, sawtooth plate, Curle analogy
Procedia PDF Downloads 436682 The Strength and Metallography of a Bimetallic Friction Stir Bonded Joint between AA6061 and High Hardness Steel
Authors: Richard E. Miller
Abstract:
12.7-mm thick plates of 6061-T6511 aluminum alloy and high hardness steel (528 HV) were successfully joined by a friction stir bonding process using a tungsten-rhenium stir tool. Process parameter variation experiments, which included tool design geometry, plunge and traverse rates, tool offset, spindle tilt, and rotation speed, were conducted to develop a parameter set which yielded a defect free joint. Laboratory tensile tests exhibited yield stresses which exceed the strengths of comparable AA6061-to-AA6061 fusion and friction stir weld joints. Scanning electron microscopy and energy dispersive X-ray spectroscopy analysis also show atomic diffusion at the material interface region.Keywords: dissimilar materials, friction stir, welding, materials science
Procedia PDF Downloads 269681 Theoretical Study of Gas Adsorption in Zirconium Clusters
Authors: Rasha Al-Saedi, Anthony Meijer
Abstract:
The progress of new porous materials has increased rapidly over the past decade for use in applications such as catalysis, gas storage and removal of environmentally unfriendly species due to their high surface area and high thermal stability. In this work, a theoretical study of the zirconium-based metal organic framework (MOFs) were examined in order to determine their potential for gas adsorption of various guest molecules: CO2, N2, CH4 and H2. The zirconium cluster consists of an inner Zr6O4(OH)4 core in which the triangular faces of the Zr6- octahedron are alternatively capped by O and OH groups which bound to nine formate groups and three benzoate groups linkers. General formula is [Zr(μ-O)4(μ-OH)4(HCOO)9((phyO2C)3X))] where X= CH2OH, CH2NH2, CH2CONH2, n(NH2); (n = 1-3). Three types of adsorption sites on the Zr metal center have been studied, named according to capped chemical groups as the ‘−O site’; the H of (μ-OH) site removed and added to (μ-O) site, ‘–OH site’; (μ-OH) site removed, the ‘void site’ where H2O molecule removed; (μ-OH) from one site and H from other (μ-OH) site, in addition to no defect versions. A series of investigations have been performed aiming to address this important issue. First, density functional theory DFT-B3LYP method with 6-311G(d,p) basis set was employed using Gaussian 09 package in order to evaluate the gas adsorption performance of missing-linker defects in zirconium cluster. Next, study the gas adsorption behaviour on different functionalised zirconium clusters. Those functional groups as mentioned above include: amines, alcohol, amide, in comparison with non-substitution clusters. Then, dispersion-corrected density functional theory (DFT-D) calculations were performed to further understand the enhanced gas binding on zirconium clusters. Finally, study the water effect on CO2 and N2 adsorption. The small functionalized Zr clusters were found to result in good CO2 adsorption over N2, CH4, and H2 due to the quadrupole moment of CO2 while N2, CH4 and H2 weakly polar or non-polar. The adsorption efficiency was determined using the dispersion method where the adsorption binding improved as most of the interactions, for example, van der Waals interactions are missing with the conventional DFT method. The calculated gas binding strengths on the no defect site are higher than those on the −O site, −OH site and the void site, this difference is especially notable for CO2. It has been stated that the enhanced affinity of CO2 of no defect versions is most likely due to the electrostatic interactions between the negatively charged O of CO2 and the positively charged H of (μ-OH) metal site. The uptake of the gas molecule does not enhance in presence of water as the latter binds to Zr clusters more strongly than gas species which attributed to the competition on adsorption sites.Keywords: density functional theory, gas adsorption, metal- organic frameworks, molecular simulation, porous materials, theoretical chemistry
Procedia PDF Downloads 184680 An Exploitation of Electrical Sensors in Monitoring Pool Chlorination
Authors: Fahad Alamoudi, Yaser Miaji
Abstract:
The growing popularity of swimming pools and other activities in the water for sport, fitness, therapy or just enjoyable relaxation have led to the increased use of swimming pools and the establishment of a variety of specific-use pools such as spa pools, water slides, and more recently, hydrotherapy and wave pools. In this research, a few simple equipment is used for test, detect and alert for detection of water cleanness and pollution. YSI Photometer Systems, TDSTestr High model, Rio 12HF and Electrode A1. The researchers used electrolysis as a method of separating bonded elements and compounds by passing an electric current through them. The results which use 41 experiments show the higher the salt concentration, the more efficient the electrode and the smaller the gap between the plates, the lower the electrode voltage. Furthermore, it is proved that the larger the surface area, the lower the cell voltage and the higher current used the more chlorine produced.Keywords: photometer, electrode, electrolysis, swimming pool chlorination
Procedia PDF Downloads 363679 Mathematical Modeling of the Water Bridge Formation in Porous Media: PEMFC Microchannels
Authors: N. Ibrahim-Rassoul, A. Kessi, E. K. Si-Ahmed, N. Djilali, J. Legrand
Abstract:
The static and dynamic formation of liquid water bridges is analyzed using a combination of visualization experiments in a microchannel with a mathematical model. This paper presents experimental and theoretical findings of water plug/capillary bridge formation in a 250 μm squared microchannel. The approach combines mathematical and numerical modeling with experimental visualization and measurements. The generality of the model is also illustrated for flow conditions encountered in manipulation of polymeric materials and formation of liquid bridges between patterned surfaces. The predictions of the model agree favorably the observations as well as with the experimental recordings.Keywords: green energy, mathematical modeling, fuel cell, water plug, gas diffusion layer, surface of revolution
Procedia PDF Downloads 530678 Effect of Zinc Oxide on Characteristics of Active Flux TIG Welds of 1050 Aluminum Plates
Authors: H. Fazlinejad, A. Halvaee
Abstract:
In this study, characteristics of ATIG welds using ZnO flux on aluminum was investigated and compared with TIG welds. Autogenously AC-ATIG bead on plate welding was applied on Al1050 plate with a coating of ZnO as the flux. Different levels of welding current and flux layer thickness was considered to study the effect of heat input and flux quantity on ATIG welds and was compared with those of TIG welds. Geometrical investigation of the weld cross sections revealed that penetration depth of the ATIG welds with ZnO flux, was increased up to 2 times in some samples compared to the TIG welds. Optical metallographic and Scanning Electron Microscopy (SEM) observations revealed similar microstructures in TIG and ATIG welds. Composition of the ATIG welds slag was also analyzed using X-ray diffraction. In both TIG and ATIG samples, the lowest values of microhardness were observed in the HAZ.Keywords: ATIG, active flux, weld penetration, Al 1050, ZnO
Procedia PDF Downloads 165677 A Comprehensive Study on the Porosity Effect of Ti-20Zr Alloy Produced by Powder Metallurgy as a Biomaterial
Authors: Eyyup Murat Karakurt, Yan Huang, Mehmet Kaya, Huseyin Demirtas
Abstract:
In this study, the effect of the porosity effect of Ti-20Zr alloy produced by powder metallurgy as a biomaterial was investigated experimentally. The Ti based alloys (Ti-20%Zr (at.) were produced under 300 MPa, for 6 h at 1200 °C. Afterward, the microstructure of the Ti-based alloys was analyzed by optical analysis, scanning electron microscopy, energy dispersive spectrometry. Moreover, compression tests were applied to determine the mechanical behaviour of samples. As a result, highly porous Ti-20Zr alloys exhibited an elastic modulus close to human bone. The results later were compared theoretically and experimentally.Keywords: porosity effect, Ti based alloys, elastic modulus, compression test
Procedia PDF Downloads 230676 Influence of Confinement on Phase Behavior in Unconventional Gas Condensate Reservoirs
Authors: Szymon Kuczynski
Abstract:
Poland is characterized by the presence of numerous sedimentary basins and hydrocarbon provinces. Since 2006 exploration for hydrocarbons in Poland become gradually more focus on new unconventional targets, particularly on the shale gas potential of the Upper Ordovician and Lower Silurian in the Baltic-Podlasie-Lublin Basin. The first forecast prepared by US Energy Information Administration in 2011 indicated to 5.3 Tcm of natural gas. In 2012, Polish Geological Institute presented its own forecast which estimated maximum reserves on 1.92 Tcm. The difference in the estimates was caused by problems with calculations of the initial amount of adsorbed, as well as free, gas trapped in shale rocks (GIIP - Gas Initially in Place). This value is dependent from sorption capacity, gas saturation and mutual interactions between gas, water, and rock. Determination of the reservoir type in the initial exploration phase brings essential knowledge, which has an impact on decisions related to the production. The study of porosity impact for phase envelope shift eliminates errors and improves production profitability. Confinement phenomenon affects flow characteristics, fluid properties, and phase equilibrium. The thermodynamic behavior of confined fluids in porous media is subject to the basic considerations for industrial applications such as hydrocarbons production. In particular the knowledge of the phase equilibrium and the critical properties of the contained fluid is essential for the design and optimization of such process. In pores with a small diameter (nanopores), the effect of the wall interaction with the fluid particles becomes significant and occurs in shale formations. Nano pore size is similar to the fluid particles’ diameter and the area of particles which flow without interaction with pore wall is almost equal to the area where this phenomenon occurs. The molecular simulation studies have shown an effect of confinement to the pseudo critical properties. Therefore, the critical parameters pressure and temperature and the flow characteristics of hydrocarbons in terms of nano-scale are under the strong influence of fluid particles with the pore wall. It can be concluded that the impact of a single pore size is crucial when it comes to the nanoscale because there is possible the above-described effect. Nano- porosity makes it difficult to predict the flow of reservoir fluid. Research are conducted to explain the mechanisms of fluid flow in the nanopores and gas extraction from porous media by desorption.Keywords: adsorption, capillary condensation, phase envelope, nanopores, unconventional natural gas
Procedia PDF Downloads 337675 Stress Intensity Factor for Dynamic Cracking of Composite Material by X-FEM Method
Authors: S. Lecheb, A. Nour, A. Chellil, H. Mechakra, N. Hamad, H. Kebir
Abstract:
The work involves develops attended by a numerical execution of the eXtend Finite Element Method premises a measurement by the fracture process cracked so many cracked plates an application will be processed for the calculation of the stress intensity factor SIF. In the first we give in statically part the distribution of stress, displacement field and strain of composite plate in two cases uncrack/edge crack, also in dynamical part the first six modes shape. Secondly, we calculate Stress Intensity Factor SIF for different orientation angle θ of central crack with length (2a=0.4mm) in plan strain condition, KI and KII are obtained for mode I and mode II respectively using X-FEM method. Finally from crack inclined involving mixed modes results, the comparison we chose dangerous inclination and the best crack angle when K is minimal.Keywords: stress intensity factor (SIF), crack orientation, glass/epoxy, natural frequencies, X-FEM
Procedia PDF Downloads 515674 Thermoplastic Composites with Reduced Discoloration and Enhanced Fire-Retardant Property
Authors: Peng Cheng, Liqing Wei, Hongyu Chen, Ruomiao Wang
Abstract:
This paper discusses a light-weight reinforced thermoplastic (LWRT) composite with superior fire retardancy. This porous LWRT composite is manufactured using polyolefin, fiberglass, and fire retardant additives via a wet-lay process. However, discoloration of the LWRT can be induced by various mechanisms, which may be a concern in the building and construction industry. It is commonly understood that discoloration is strongly associated with the presence of phenolic antioxidant(s) and NOx. The over-oxidation of phenolic antioxidant(s) is probably the root-cause of the discoloration (pinking/yellowing). Hanwha Azdel, Inc. developed a LWRT with fire-retardant property of ASTM E84-Class A specification, as well as negligible discoloration even under harsh conditions. In addition, this thermoplastic material is suitable for secondary processing (e.g. compression molding) if necessary.Keywords: discoloration, fire-retardant, thermoplastic composites, wet-lay process
Procedia PDF Downloads 125673 Carbon Capture and Storage Using Porous-Based Aerogel Materials
Authors: Rima Alfaraj, Abeer Alarawi, Murtadha AlTammar
Abstract:
The global energy landscape heavily relies on the oil and gas industry, which faces the critical challenge of reducing its carbon footprint. To address this issue, the integration of advanced materials like aerogels has emerged as a promising solution to enhance sustainability and environmental performance within the industry. This study thoroughly examines the application of aerogel-based technologies in the oil and gas sector, focusing particularly on their role in carbon capture and storage (CCS) initiatives. Aerogels, known for their exceptional properties, such as high surface area, low density, and customizable pore structure, have garnered attention for their potential in various CCS strategies. The review delves into various fabrication techniques utilized in producing aerogel materials, including sol-gel, supercritical drying, and freeze-drying methods, to assess their suitability for specific industry applications. Beyond fabrication, the practicality of aerogel materials in critical areas such as flow assurance, enhanced oil recovery, and thermal insulation is explored. The analysis spans a wide range of applications, from potential use in pipelines and equipment to subsea installations, offering valuable insights into the real-world implementation of aerogels in the oil and gas sector. The paper also investigates the adsorption and storage capabilities of aerogel-based sorbents, showcasing their effectiveness in capturing and storing carbon dioxide (CO₂) molecules. Optimization of pore size distribution and surface chemistry is examined to enhance the affinity and selectivity of aerogels towards CO₂, thereby improving the efficiency and capacity of CCS systems. Additionally, the study explores the potential of aerogel-based membranes for separating and purifying CO₂ from oil and gas streams, emphasizing their role in the carbon capture and utilization (CCU) value chain in the industry. Emerging trends and future perspectives in integrating aerogel-based technologies within the oil and gas sector are also discussed, including the development of hybrid aerogel composites and advanced functional components to further enhance material performance and versatility. By synthesizing the latest advancements and future directions in aerogel used for CCS applications in the oil and gas industry, this review offers a comprehensive understanding of how these innovative materials can aid in transitioning towards a more sustainable and environmentally conscious energy landscape. The insights provided can assist in strategic decision-making, drive technology development, and foster collaborations among academia, industry, and policymakers to promote the widespread adoption of aerogel-based solutions in the oil and gas sector.Keywords: CCS, porous, carbon capture, oil and gas, sustainability
Procedia PDF Downloads 41672 Using of Cavitational Disperser for Porous Ceramic and Concrete Material Preparation
Authors: Andrei Shishkin, Aleksandrs Korjakins, Viktors Mironovs
Abstract:
Present paper describes method of obtaining clay ceramic foam (CCF) and foam concrete (FC), by direct foaming with high speed mixer-disperser (HSMD). Three foaming agents (FA) are compared for the FC and CCF production: SCHÄUMUNGSMITTEL W 53 FLÜSSIG (Zschimmer & Schwarz Gmbh, Germany), SCF-1245 (Sika, test sample, Latvia) and FAB-12 (Elade, Latvija). CCF were obtained at 950, 1000°C, 1150°C and 1150°C firing temperature and have mechanical compressive strength 1.2, 2.55, and 4.3 MPa and porosity 79.4, 75.1, 71.6%, respectively. Obtained FC has 6-14 MPa compressive strength and porosity 44-55%. The goal of this work was the development of a sustainable and durable ceramic cellular structures using HSMD.Keywords: ceramic foam, foam concrete, clay foam, open cell, close cell, direct foaming
Procedia PDF Downloads 808671 Combining Nitrocarburisation and Dry Lubrication for Improving Component Lifetime
Authors: Kaushik Vaideeswaran, Jean Gobet, Patrick Margraf, Olha Sereda
Abstract:
Nitrocarburisation is a surface hardening technique often applied to improve the wear resistance of steel surfaces. It is considered to be a promising solution in comparison with other processes such as flame spraying, owing to the formation of a diffusion layer which provides mechanical integrity, as well as its cost-effectiveness. To improve other tribological properties of the surface such as the coefficient of friction (COF), dry lubricants are utilized. Currently, the lifetime of steel components in many applications using either of these techniques individually are faced with the limitations of the two: high COF for nitrocarburized surfaces and low wear resistance of dry lubricant coatings. To this end, the current study involves the creation of a hybrid surface using the impregnation of a dry lubricant on to a nitrocarburized surface. The mechanical strength and hardness of Gerster SA’s nitrocarburized surfaces accompanied by the impregnation of the porous outermost layer with a solid lubricant will create a hybrid surface possessing both outstanding wear resistance and a low friction coefficient and with high adherence to the substrate. Gerster SA has the state-of-the-art technology for the surface hardening of various steels. Through their expertise in the field, the nitrocarburizing process parameters (atmosphere, temperature, dwelling time) were optimized to obtain samples that have a distinct porous structure (in terms of size, shape, and density) as observed by metallographic and microscopic analyses. The porosity thus obtained is suitable for the impregnation of a dry lubricant. A commercially available dry lubricant with a thermoplastic matrix was employed for the impregnation process, which was optimized to obtain a void-free interface with the surface of the nitrocarburized layer (henceforth called hybrid surface). In parallel, metallic samples without nitrocarburisation were also impregnated with the same dry lubricant as a reference (henceforth called reference surface). The reference and the nitrocarburized surfaces, with and without the dry lubricant were tested for their tribological behavior by sliding against a quenched steel ball using a nanotribometer. Without any lubricant, the nitrocarburized surface showed a wear rate 5x lower than the reference metal. In the presence of a thin film of dry lubricant ( < 2 micrometers) and under the application of high loads (500 mN or ~800 MPa), while the COF for the reference surface increased from ~0.1 to > 0.3 within 120 m, the hybrid surface retained a COF < 0.2 for over 400m of sliding. In addition, while the steel ball sliding against the reference surface showed heavy wear, the corresponding ball sliding against the hybrid surface showed very limited wear. Observations of the sliding tracks in the hybrid surface using Electron Microscopy show the presence of the nitrocarburized nodules as well as the lubricant, whereas no traces of the lubricant were found in the sliding track on the reference surface. In this manner, the clear advantage of combining nitrocarburisation with the impregnation of a dry lubricant towards forming a hybrid surface has been demonstrated.Keywords: dry lubrication, hybrid surfaces, improved wear resistance, nitrocarburisation, steels
Procedia PDF Downloads 122670 Seismotectonics and Seismology the North of Algeria
Authors: Djeddi Mabrouk
Abstract:
The slow coming together between the Afro-Eurasia plates seems to be the main cause of the active deformation in the whole of North Africa which in consequence come true in Algeria with a large zone of deformation in an enough large limited band, southern through Saharan atlas and northern through tell atlas. Maghrebin and Atlassian Chain along North Africa are the consequence of this convergence. In junction zone, we have noticed a compressive regime NW-SE with a creases-faults structure and structured overthrust. From a geological point of view the north part of Algeria is younger then Saharan platform, it’s changing so unstable and constantly in movement, it’s characterized by creases openly reversed, overthrusts and reversed faults, and undergo perpetually complex movement vertically and horizontally. On structural level the north of Algeria it's a part of erogenous alpine peri-Mediterranean and essentially the tertiary age It’s spread from east to the west of Algeria over 1200 km.This oogenesis is extended from east to west on broadband of 100 km.The alpine chain is shaped by 3 domains: tell atlas in north, high plateaus in mid and Saharan atlas in the south In extreme south we find the Saharan platform which is made of Precambrian bedrock recovered by Paleozoic practically not deformed. The Algerian north and the Saharan platform are separated by an important accident along of 2000km from Agadir (Morocco) to Gabes (Tunisian). The seismic activity is localized essentially in a coastal band in the north of Algeria shaped by tell atlas, high plateaus, Saharan atlas. Earthquakes are limited in the first 20km of the earth's crust; they are caused by movements along faults of inverted orientation NE-SW or sliding tectonic plates. The center region characterizes Strong Earthquake Activity who locates mainly in the basin of Mitidja (age Neogene).The southern periphery (Atlas Blidéen) constitutes the June, more Important seism genic sources in the city of Algiers and east (Boumerdes region). The North East Region is also part of the tellian area, but it is characterized by a different strain in other parts of northern Algeria. The deformation is slow and low to moderate seismic activity. Seismic activity is related to the tectonic-slip earthquake. The most pronounced is that of 27 October 1985 (Constantine) of seismic moment magnitude Mw = 5.9. North-West region is quite active and also artificial seismic hypocenters which do not exceed 20km. The deep seismicity is concentrated mainly a narrow strip along the edge of Quaternary and Neogene basins Intra Mountains along the coast. The most violent earthquakes in this region are the earthquake of Oran in 1790 and earthquakes Orléansville (El Asnam in 1954 and 1980).Keywords: alpine chain, seismicity north Algeria, earthquakes in Algeria, geophysics, Earth
Procedia PDF Downloads 407669 A Practical Construction Technique to Enhance the Performance of Rock Bolts in Tunnels
Authors: Ojas Chaudhari, Ali Nejad Ghafar, Giedrius Zirgulis, Marjan Mousavi, Tommy Ellison, Sandra Pousette, Patrick Fontana
Abstract:
In Swedish tunnel construction, a critical issue that has been repeatedly acknowledged is corrosion and, consequently, failure of the rock bolts in rock support systems. The defective installation of rock bolts results in the formation of cavities in the cement mortar that is regularly used to fill the area under the dome plates. These voids allow for water-ingress to the rock bolt assembly, which results in corrosion of rock bolt components and eventually failure. In addition, the current installation technique consists of several manual steps with intense labor works that are usually done in uncomfortable and exhausting conditions, e.g., under the roof of the tunnels. Such intense tasks also lead to a considerable waste of materials and execution errors. Moreover, adequate quality control of the execution is hardly possible with the current technique. To overcome these issues, a non-shrinking/expansive cement-based mortar filled in the paper packaging has been developed in this study which properly fills the area under the dome plates without or with the least remaining cavities, ultimately that diminishes the potential of corrosion. This article summarizes the development process and the experimental evaluation of this technique for the installation of rock bolts. In the development process, the cementitious mortar was first developed using specific cement and shrinkage reducing/expansive additives. The mechanical and flow properties of the mortar were then evaluated using compressive strength, density, and slump flow measurement methods. In addition, isothermal calorimetry and shrinkage/expansion measurements were used to elucidate the hydration and durability attributes of the mortar. After obtaining the desired properties in both fresh and hardened conditions, the developed dry mortar was filled in specific permeable paper packaging and then submerged in water bath for specific intervals before the installation. The tests were enhanced progressively by optimizing different parameters such as shape and size of the packaging, characteristics of the paper used, immersion time in water and even some minor characteristics of the mortar. Finally, the developed prototype was tested in a lab-scale rock bolt assembly with various angles to analyze the efficiency of the method in real life scenario. The results showed that the new technique improves the performance of the rock bolts by reducing the material wastage, improving environmental performance, facilitating and accelerating the labor works, and finally enhancing the durability of the whole system. Accordingly, this approach provides an efficient alternative for the traditional way of tunnel bolt installation with considerable advantages for the Swedish tunneling industry.Keywords: corrosion, durability, mortar, rock bolt
Procedia PDF Downloads 112668 Effect of Ultrasonic Vibration on the Dilution, Mechanical, and Metallurgical Properties in Cladding of 308 on Mild Steel
Authors: Sandeep Singh Sandhu, Karanvir Singh Ghuman, Parminder Singh Saini
Abstract:
The aim of the present investigation was to study the effect of ultrasonic vibration on the cladding of the AISI 308 on the mild steel plates using the shielded metal arc welding (SMAW). Ultrasonic vibrations were applied to molten austenitic stainless steel during the welding process. Due to acoustically induced cavitations and streaming there is a complete mixture of the clad metal and the base metal. It was revealed that cladding of AISI 308 over mild steel along with ultrasonic vibrations result in uniform and finer grain structures. The effect of the vibration on the dilution, mechanical properties and metallographic studies were also studied. It was found that the welding done using the ultrasonic vibration has the less dilution and CVN value for the vibrated sample was also high.Keywords: surfacing, ultrasonic vibrations, mechanical properties, shielded metal arc welding
Procedia PDF Downloads 493667 Anticancer Activity of Gnidia glauca Extracts in Human Breast Cancer Cells
Authors: Vandana Gawande, Chandani Satija
Abstract:
Gnidia glauca is a semi-woody herb of thymelaeaceae family traditionally used as fish poison in India. It is also found in Sri lanka and Africa. In the present study, potential anticancer effect of n-hexane and ethanolic extracts of Gnidia glauca in human breast cancer cells was investigated. Human breast cancer cells (MCF-7) were cultured as monolayers in RPMI 1640 medium. The cells were cultured for 48 hours to allow growth and achieve about 80% confluence in 96-well culture plates. The cells were treated with various concentrations of Gnidia glauca (0.1-100 mg/mL) for 72 hours. Percentage of viable cells after treatment was assessed using a sulforhodamine B colorimetric assay. Both n-hexane and ethanolic extract showed significant cytotoxic activity on MCF-7 cancer cells. This study supports the notion of using Gnidia glauca as a novel anticancer agent for breast cancer.Keywords: 96 well plate, anticancer activity, Gnidia glauca, MCF-7
Procedia PDF Downloads 290666 Finite Element Modeling for Clamping Stresses Developed in Hot-Driven Steel Structural Riveted Connections
Authors: Jackeline Kafie-Martinez, Peter B. Keating
Abstract:
A three-dimensional finite element model is developed to capture the stress field generated in connected plates during the installation of hot-driven rivets. Clamping stress is generated when a steel rivet heated to approximately 1000 °C comes in contact with the material to be fastened at ambient temperature. As the rivet cools, thermal contraction subjects the rivet into tensile stress, while the material being fastened is subjected to compressive stress. Model characteristics and assumptions, as well as steel properties variation with respect to temperature are discussed. The thermal stresses developed around the rivet hole are assessed and reported. Results from the analysis are utilized to detect possible regions for fatigue crack propagation under cyclic loads.Keywords: clamping stress, fatigue, finite elements, rivet, riveted railroad bridges
Procedia PDF Downloads 280665 Investigation of Astrocyte Physiology on Stiffness-Controlled Cellulose Acetate Nanofiber as a Tissue Scaffold
Authors: Sun Il Yu, Jung Hyun Joo, Hwa Sung Shin
Abstract:
Astrocytes are known as dominant cells in CNS and play a role as a supporter of CNS activity and regeneration. Recently, three-dimensional culture of astrocytes were actively applied to understand in vivo astrocyte works. Electrospun nanofibers are attractive for 3D cell culture system because they have a high surface to volume ratio and porous structure, and have already been used for 3D astrocyte cultures. In this research, the stiffness of cellulose acetate (CA) nanofiber was controlled by heat treatment. As stiffness increased, astrocyte cell viability and adhesion increased. Reactivity of astrocyte was also upregulated in stiffer CA nanofiber in terms of GFAP, an intermediate filament protein. Finally, we demonstrated that stiffness-controllable CA is attractive for astrocyte tissue engineering.Keywords: astrocyte, cellulose acetate, nanofiber, tissue scaffold
Procedia PDF Downloads 355664 Swimming Pool Water Chlorination Detection System Utilizing TDSTestr
Authors: Fahad Alamoudi, Yaser Miaji, Fawzy Jalalah
Abstract:
The growing popularity of swimming pools and other activities in the water for sport, fitness, therapy or just enjoyable relaxation have led to the increased use of swimming pools and the establishment of a variety of specific-use pools such as spa pools, Waterslides and more recently, hydrotherapy and wave pools. In this research a few simple equipments are used for test, Detect and alert for detection of water cleanness and pollution. YSI Photometer Systems, TDSTestr High model, rio 12HF, and Electrode A1. The researchers used electrolysis as a method of separating bonded elements and compounds by passing an electric current through them. The results which use 41 experiments show the higher the salt concentration, the more efficient the electrode and the smaller the gap between the plates and The lower the electrode voltage. Furthermore, it is proved that the larger the surface area, the lower the cell voltage and the higher current used the more chlorine produced.Keywords: photometer, electrode, electrolysis, swimming pool chlorination
Procedia PDF Downloads 349663 Damage to LCP by the Ratcheting Phenomenon Under Cyclic Motion in Oligocyclic Fatigue
Authors: Aboussalih Amira, Zarza Tahar, Fedaoui Kamel, Baroura Lazhar, Hammoudi Salah
Abstract:
316 L steel is a stainless steel frequently used in orthopedic surgery; in the design of implants (hip, knee, shoulder, ankle, etc.), in dental surgery, cardiology, ophthalmology. Before any use, it is essential to predict the macroscopic phenomenological behavior of the material, and to analyze its response. The behavior of 316 L steel in low cycle fatigue, under uniaxial cyclic loading of tension/compression, producing significant plastic deformations leading to material damage. This investigation allowed us to characterize the behavior of the 316L steel employed in the locking of the compression plates (LCP), of which they are generally used in orthopedics to stabilize the fractured bone parts. And to perceive the phenomenon of Ratcheting leading to the damage of LCP by an excess of plastic deformation under nonsymmetrical alternated imposed constraint in low cycle fatigue.Keywords: 316L SS, locking compression plate, low cycle fatigue, ratcheting
Procedia PDF Downloads 63662 Influence of Intra-Yarn Permeability on Mesoscale Permeability of Plain Weave and 3D Fabrics
Authors: Debabrata Adhikari, Mikhail Matveev, Louise Brown, Andy Long, Jan Kočí
Abstract:
A good understanding of mesoscale permeability of complex architectures in fibrous porous preforms is of particular interest in order to achieve efficient and cost-effective resin impregnation of liquid composite molding (LCM). Fabrics used in structural reinforcements are typically woven or stitched. However, 3D fabric reinforcement is of particular interest because of the versatility in the weaving pattern with the binder yarn and in-plain yarn arrangements to manufacture thick composite parts, overcome the limitation in delamination, improve toughness etc. To predict the permeability based on the available pore spaces between the inter yarn spaces, unit cell-based computational fluid dynamics models have been using the Stokes Darcy model. Typically, the preform consists of an arrangement of yarns with spacing in the order of mm, wherein each yarn consists of thousands of filaments with spacing in the order of μm. The fluid flow during infusion exchanges the mass between the intra and inter yarn channels, meaning there is no dead-end of flow between the mesopore in the inter yarn space and the micropore in the yarn. Several studies have employed the Brinkman equation to take into account the flow through dual-scale porosity reinforcement to estimate their permeability. Furthermore, to reduce the computational effort of dual scale flow, scale separation criteria based on the ratio between yarn permeability to the yarn spacing was also proposed to quantify the dual scale and negligible micro-scale flow regime for the prediction of mesoscale permeability. In the present work, the key parameter to identify the influence of intra yarn permeability on the mesoscale permeability has been investigated with the systematic study of weft and warp yarn spacing on the plane weave as well as the position of binder yarn and number of in-plane yarn layers on 3D weave fabric. The permeability tensor has been estimated using an OpenFOAM-based model for the various weave pattern with idealized geometry of yarn implemented using open-source software TexGen. Additionally, scale separation criterion has been established based on the various configuration of yarn permeability for the 3D fabric with both the isotropic and anisotropic yarn from Gebart’s model. It was observed that the variation of mesoscale permeability Kxx within 30% when the isotropic porous yarn is considered for a 3D fabric with binder yarn. Furthermore, the permeability model developed in this study will be used for multi-objective optimizations of the preform mesoscale geometry in terms of yarn spacing, binder pattern, and a number of layers with an aim to obtain improved permeability and reduced void content during the LCM process.Keywords: permeability, 3D fabric, dual-scale flow, liquid composite molding
Procedia PDF Downloads 96661 The Effect of Metal-Organic Framework Pore Size to Hydrogen Generation of Ammonia Borane via Nanoconfinement
Authors: Jing-Yang Chung, Chi-Wei Liao, Jing Li, Bor Kae Chang, Cheng-Yu Wang
Abstract:
Chemical hydride ammonia borane (AB, NH3BH3) draws attentions to hydrogen energy researches for its high theoretical gravimetrical capacity (19.6 wt%). Nevertheless, the elevated AB decomposition temperatures (Td) and unwanted byproducts are main hurdles in practical application. It was reported that the byproducts and Td can be reduced with nanoconfinement technique, in which AB molecules are confined in porous materials, such as porous carbon, zeolite, metal-organic frameworks (MOFs), etc. Although nanoconfinement empirically shows effectiveness on hydrogen generation temperature reduction in AB, the theoretical mechanism is debatable. Low Td was reported in AB@IRMOF-1 (Zn4O(BDC)3, BDC = benzenedicarboxylate), where Zn atoms form closed metal clusters secondary building unit (SBU) with no exposed active sites. Other than nanosized hydride, it was also observed that catalyst addition facilitates AB decomposition in the composite of Li-catalyzed carbon CMK-3, MOF JUC-32-Y with exposed Y3+, etc. It is believed that nanosized AB is critical for lowering Td, while active sites eliminate byproducts. Nonetheless, some researchers claimed that it is the catalytic sites that are the critical factor to reduce Td, instead of the hydride size. The group physically ground AB with ZIF-8 (zeolitic imidazolate frameworks, (Zn(2-methylimidazolate)2)), and found similar reduced Td phenomenon, even though AB molecules were not ‘confined’ or forming nanoparticles by physical hand grinding. It shows the catalytic reaction, not nanoconfinement, leads to AB dehydrogenation promotion. In this research, we explored the possible criteria of hydrogen production temperature from nanoconfined AB in MOFs with different pore sizes and active sites. MOFs with metal SBU such as Zn (IRMOF), Zr (UiO), and Al (MIL-53), accompanying with various organic ligands (BDC and BPDC; BPDC = biphenyldicarboxylate) were modified with AB. Excess MOFs were used for AB size constrained in micropores estimated by revisiting Horvath-Kawazoe model. AB dissolved in methanol was added to MOFs crystalline with MOF pore volume to AB ratio 4:1, and the slurry was dried under vacuum to collect AB@MOF powders. With TPD-MS (temperature programmed desorption with mass spectroscopy), we observed Td was reduced with smaller MOF pores. For example, it was reduced from 100°C to 64°C when MOF micropore ~1 nm, while ~90°C with pore size up to 5 nm. The behavior of Td as a function of AB crystalline radius obeys thermodynamics when the Gibbs free energy of AB decomposition is zero, and no obvious correlation with metal type was observed. In conclusion, we discovered Td of AB is proportional to the reciprocal of MOF pore size, possibly stronger than the effect of active sites.Keywords: ammonia borane, chemical hydride, metal-organic framework, nanoconfinement
Procedia PDF Downloads 186660 Thermal-Mechanical Analysis of a Bridge Deck to Determine Residual Weld Stresses
Authors: Evy Van Puymbroeck, Wim Nagy, Ken Schotte, Heng Fang, Hans De Backer
Abstract:
The knowledge of residual stresses for welded bridge components is essential to determine the effect of the residual stresses on the fatigue life behavior. The residual stresses of an orthotropic bridge deck are determined by simulating the welding process with finite element modelling. The stiffener is placed on top of the deck plate before welding. A chained thermal-mechanical analysis is set up to determine the distribution of residual stresses for the bridge deck. First, a thermal analysis is used to determine the temperatures of the orthotropic deck for different time steps during the welding process. Twin wire submerged arc welding is used to construct the orthotropic plate. A double ellipsoidal volume heat source model is used to describe the heat flow through a material for a moving heat source. The heat input is used to determine the heat flux which is applied as a thermal load during the thermal analysis. The heat flux for each element is calculated for different time steps to simulate the passage of the welding torch with the considered welding speed. This results in a time dependent heat flux that is applied as a thermal loading. Thermal material behavior is specified by assigning the properties of the material in function of the high temperatures during welding. Isotropic hardening behavior is included in the model. The thermal analysis simulates the heat introduced in the two plates of the orthotropic deck and calculates the temperatures during the welding process. After the calculation of the temperatures introduced during the welding process in the thermal analysis, a subsequent mechanical analysis is performed. For the boundary conditions of the mechanical analysis, the actual welding conditions are considered. Before welding, the stiffener is connected to the deck plate by using tack welds. These tack welds are implemented in the model. The deck plate is allowed to expand freely in an upwards direction while it rests on a firm and flat surface. This behavior is modelled by using grounded springs. Furthermore, symmetry points and lines are used to prevent the model to move freely in other directions. In the thermal analysis, a mechanical material model is used. The calculated temperatures during the thermal analysis are introduced during the mechanical analysis as a time dependent load. The connection of the elements of the two plates in the fusion zone is realized with a glued connection which is activated when the welding temperature is reached. The mechanical analysis results in a distribution of the residual stresses. The distribution of the residual stresses of the orthotropic bridge deck is compared with results from literature. Literature proposes uniform tensile yield stresses in the weld while the finite element modelling showed tensile yield stresses at a short distance from the weld root or the weld toe. The chained thermal-mechanical analysis results in a distribution of residual weld stresses for an orthotropic bridge deck. In future research, the effect of these residual stresses on the fatigue life behavior of welded bridge components can be studied.Keywords: finite element modelling, residual stresses, thermal-mechanical analysis, welding simulation
Procedia PDF Downloads 171659 Thermal Analysis of Friction Stir Welded Dissimilar Materials with Different Preheating Conditions
Authors: Prashant S. Humnabad
Abstract:
The objective of this work is to carry out a thermal heat transfer analysis to obtain the time dependent temperature field in welding process friction stir welded dissimilar materials with different preheating temperature. A series of joints were made on four mm thick aluminum and steel plates. The temperature used was 100ºC, 150ºC and 200ºC. The welding operation was performed with different rotational speeds and traverse speed (1000, 1400 and 2000 rmp and 16, 20 and 25 mm/min..). In numerical model, the welded plate was modeled as the weld line is the symmetric line. The work-piece has dimensions of 100x100x4 mm. The obtained result was compared with experimental result, which shows good agreement and within the acceptable limit. The peak temperature at the weld zone increases significantly with respect to increase in process time.Keywords: FEA, thermal analysis, preheating, friction stir welding
Procedia PDF Downloads 189658 Preparation of Natural Polymeric Scaffold with Desired Pore Morphology for Stem Cell Differentiation
Authors: Mojdeh Mohseni
Abstract:
In the context of tissue engineering, the effect of microtopography as afforded by scaffold morphology is an important design parameter. Since the morphology of pores can effect on cell behavior, in this study, porous Chitosan (CHIT) - Gelatin (GEL)- Alginate (ALG) scaffolds with microtubule orientation structure were manufactured by unidirectional freeze-drying method and the effect of pore morphology on differentiation of Mesenchymal Stem Cells (MSCs) was investigated. This study showed that, the provided scaffold with natural polymer had good properties for cell behavior and the pores with highest orientation rate have produced appropriate substrate for the differentiation of stem cells.Keywords: Chitosan, gelatin, Alginate, pore morphology, stem cell differentiation
Procedia PDF Downloads 459