Search results for: ontology based retrieval
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 28455

Search results for: ontology based retrieval

27945 Research on Community-Based Engineering Learning and Undergraduate Students’ Creativity in China: The Moderate Effect of Engineering Identity

Authors: Liang Wang, Wei Zhang

Abstract:

There have been some existing researches on design-based engineering learning (DBEL) and project-based or problem-based engineering learning (PBEL). Those findings have greatly promoted the reform of engineering education in China. However, the engineering with a big E means that more and more engineering activities are designed and operated by communities of practice (CoPs), namely community-based engineering learning. However, whether community-based engineering learning can promote students' innovation has not been verified in published articles. This study fills this gap by investigating the relationship between community-based learning approach and students’ creativity, using engineering identity as an intermediary variable. The goal of this study is to discover the core features of community-based engineering learning, and make the features more beneficial for students’ creativity. The study created and adapted open survey items from previously published studies and a scale on learning community, students’ creativity and engineering identity. Firstly, qualitative content analysis methods by MAXQDA were used to analyze 32 open-ended questionnaires. Then the authors collected data (n=322) from undergraduate students in engineering competition teams and engineering laboratories in Zhejiang University, and structural equation modelling (SEM) was used to understand the relationship between different factors. The study finds: (a) community-based engineering learning has four main elements like real-task context, self-inquiry learning, deeply-consulted cooperation and circularly-iterated design, (b) community-based engineering learning can significantly enhance the engineering undergraduate students’ creativity, and (c) engineering identity partially moderated the relationship between community-based engineering learning and undergraduate students' creativity. The findings further illustrate the value of community-based engineering learning for undergraduate students. In the future research, the authors should further clarify the core mechanism of community-based engineering learning, and pay attention to the cultivation of undergraduate students’ engineer identity in learning community.

Keywords: community-based engineering learning, students' creativity, engineering identity, moderate effect

Procedia PDF Downloads 145
27944 Effect of Chemical Additive on Fixed Abrasive Polishing of LBO Crystal with Non-Water Based Slurry

Authors: Jun Li, Wenze Wang, Zhanggui Hu, Yongwei Zhu, Dunwen Zuo

Abstract:

Non-water based fixed abrasive polishing was adopted to manufacture LBO crystal for nano precision surface quality because of its deliquescent. Ethyl alcohol was selected as the non-water based slurry solvent and ethanediamine, lactic acid, hydrogen peroxide were add in the slurry as a chemical additive, respectively. Effect of different additives with non-water based slurry on material removal rate, surface topography, microscopic appearances and surface roughness were investigated in fixed abrasive polishing of LBO crystal. The results show the best surface quality of LBO crystal with surface roughness Sa 8.2 nm and small damages was obtained by non-water based slurry with lactic acid. Non-water based fixed abrasive polishing can achieve nano precision surface quality of LBO crystal with high material removal.

Keywords: non-water based slurry, LBO crystal, fixed abrasive polishing, surface roughness

Procedia PDF Downloads 473
27943 GIS-Based Topographical Network for Minimum “Exertion” Routing

Authors: Katherine Carl Payne, Moshe Dror

Abstract:

The problem of minimum cost routing has been extensively explored in a variety of contexts. While there is a prevalence of routing applications based on least distance, time, and related attributes, exertion-based routing has remained relatively unexplored. In particular, the network structures traditionally used to construct minimum cost paths are not suited to representing exertion or finding paths of least exertion based on road gradient. In this paper, we introduce a topographical network or “topograph” that enables minimum cost routing based on the exertion metric on each arc in a given road network as it is related to changes in road gradient. We describe an algorithm for topograph construction and present the implementation of the topograph on a road network of the state of California with ~22 million nodes.

Keywords: topograph, RPE, routing, GIS

Procedia PDF Downloads 546
27942 A Study on Marble Based Geopolymer Mortar / Concrete

Authors: Wei-Hao Lee, Ta-Wui Cheng, Yung-Chin Ding, Tai-Tien Wang

Abstract:

The purpose of this study is trying to use marble wastes as the raw material to fabricate geopolymer green mortar / concrete. Experiment results show that using marble to make geopolymer mortar and concrete, the compressive strength after 28 days curing can reach 35 MPa and 25 MPa, respectively. The characteristics of marble-based geopolymer green mortar and concrete will keep testing for a long term in order to understand the effect parameters. The study is based on resource recovery and recycling. Its basic characteristics are low consumption, low carbon dioxide emission and high efficiency that meet the international tendency 'Circular Economy.' By comparing with Portland cement mortar and concrete, production 1 ton of marble-based geopolymer mortar and concrete, they can be saved around 50.3% and 49.6% carbon dioxide emission, respectively. Production 1 m3 of marble-based geopolymer concrete costs about 62 USD that cheaper than that of traditional Portland concrete. It is proved that the marble-based geopolymer concrete has great potential for further engineering development.

Keywords: marble, geopolymer, geopolymer concrete, CO₂ emission

Procedia PDF Downloads 440
27941 MCERTL: Mutation-Based Correction Engine for Register-Transfer Level Designs

Authors: Khaled Salah

Abstract:

In this paper, we present MCERTL (mutation-based correction engine for RTL designs) as an automatic error correction technique based on mutation analysis. A mutation-based correction methodology is proposed to automatically fix the erroneous RTL designs. The proposed strategy combines the processes of mutation and assertion-based localization. The erroneous statements are mutated to produce possible fixes for the failed RTL code. A concurrent mutation engine is proposed to mitigate the computational cost of running sequential mutants operators. The proposed methodology is evaluated against some benchmarks. The experimental results demonstrate that our proposed method enables us to automatically locate and correct multiple bugs at reasonable time.

Keywords: bug localization, error correction, mutation, mutants

Procedia PDF Downloads 280
27940 Point-of-Interest Recommender Systems for Location-Based Social Network Services

Authors: Hoyeon Park, Yunhwan Keon, Kyoung-Jae Kim

Abstract:

Location Based Social Network services (LBSNs) is a new term that combines location based service and social network service (SNS). Unlike traditional SNS, LBSNs emphasizes empirical elements in the user's actual physical location. Point-of-Interest (POI) is the most important factor to implement LBSNs recommendation system. POI information is the most popular spot in the area. In this study, we would like to recommend POI to users in a specific area through recommendation system using collaborative filtering. The process is as follows: first, we will use different data sets based on Seoul and New York to find interesting results on human behavior. Secondly, based on the location-based activity information obtained from the personalized LBSNs, we have devised a new rating that defines the user's preference for the area. Finally, we have developed an automated rating algorithm from massive raw data using distributed systems to reduce advertising costs of LBSNs.

Keywords: location-based social network services, point-of-interest, recommender systems, business analytics

Procedia PDF Downloads 229
27939 The Impact of Web Based Education on Cancer Patients’ Clinical Outcomes

Authors: F. Arıkan, Z. Karakus

Abstract:

Cancer is a widespread disease in the world and is the third reason of deaths among the chronic diseases. Educating patients and caregivers has a vital role for empowering them in managing disease and treatment's symptoms. Informing of the patients about their disease and treatment process decreases patient's distress and decisional conflicts, improves wellbeing of them, increase success of the treatment and survival. In this era, technological education methods are used for patients that have different chronic disease. Many studies indicated that especially web based patient education such as chronic obstructive lung disease; heart failure is more effective than printed materials. Web based education provide easiness to patients while they are reaching health services. It also has more advantages because of it decreases health cost and requirement of staff. It is thought that web based education may be beneficial method for cancer patient's empowerment in coping with the disease's symptoms. The aim of the study is evaluate the effectiveness of web based education for cancer patients' clinical outcomes.

Keywords: cancer patients, e-learning, nursing, web based education

Procedia PDF Downloads 430
27938 IoT Based Information Processing and Computing

Authors: Mannan Ahmad Rasheed, Sawera Kanwal, Mansoor Ahmad Rasheed

Abstract:

The Internet of Things (IoT) has revolutionized the way we collect and process information, making it possible to gather data from a wide range of connected devices and sensors. This has led to the development of IoT-based information processing and computing systems that are capable of handling large amounts of data in real time. This paper provides a comprehensive overview of the current state of IoT-based information processing and computing, as well as the key challenges and gaps that need to be addressed. This paper discusses the potential benefits of IoT-based information processing and computing, such as improved efficiency, enhanced decision-making, and cost savings. Despite the numerous benefits of IoT-based information processing and computing, several challenges need to be addressed to realize the full potential of these systems. These challenges include security and privacy concerns, interoperability issues, scalability and reliability of IoT devices, and the need for standardization and regulation of IoT technologies. Moreover, this paper identifies several gaps in the current research related to IoT-based information processing and computing. One major gap is the lack of a comprehensive framework for designing and implementing IoT-based information processing and computing systems.

Keywords: IoT, computing, information processing, Iot computing

Procedia PDF Downloads 188
27937 The Effects of Quality of Web-Based Applications on Competitive Advantage: An Empirical Study in Commercial Banks in Jordan

Authors: Faisal Asad Aburub

Abstract:

Many organizations are investing in web applications and technologies in order to be competitive, some of them could not achieve its goals. The quality of web-based applications could play an important role for organizations to be competitive. So the aim of this study is to investigate the impact of quality of web-based applications to achieve a competitive advantage. A new model has been developed. An empirical investigation was performed on a banking sector in Jordan to test the new model. The results show that impact of web-based applications on competitive advantage is significant. Finally, further work is planned to validate and evaluate the proposed model using several domains.

Keywords: competitive advantage, web-based applications, empirical investigation, commercial banks in Jordan

Procedia PDF Downloads 341
27936 Conceptual Design of a Wi-Fi and GPS Based Robotic Library Using an Intelligent System

Authors: M. S. Sreejith, Steffy Joy, Abhishesh Pal, Beom-Sahng Ryuh, V. R. Sanal Kumar

Abstract:

In this paper an attempt has been made for the design of a robotic library using an intelligent system. The robot works on the ARM microprocessor, motor driver circuit with 5 degrees of freedom with Wi-Fi and GPS based communication protocol. The authenticity of the library books is controlled by RFID. The proposed robotic library system is facilitated with embedded system and ARM. In this library issuance system the previous potential readers’ authentic review reports have been taken into consideration for recommending suitable books to the deserving new users and the issuance of books or periodicals is based on the users’ decision. We have conjectured that the Wi-Fi based robotic library management system would allow fast transaction of books issuance and it also produces quality readers.

Keywords: GPS bsed based Robotic library, library management system, robotic library, Wi-Fi library

Procedia PDF Downloads 307
27935 State of the Science: Digital Therapies in Pediatric Mental Health

Authors: Billy Zou

Abstract:

Statement of the Problem: The burden of mental illness and problem behaviors in adolescence has risen worldwide. While less than 50% of teens have access to traditional mental health care, more than 73% have smartphones. Internet-based interventions offer advantages such as cost-effectiveness, availability, and flexibility. Methodology & Theoretical Orientation: A literature review was done using a PubMed search with the words mental health app yielding 2113 results. 103 articles that met inclusion criteria were reviewed, and findings were then described and synthesized. Findings: 1. Computer-based CBT was found to be effective for OCD, depression, social phobia, and panic disorder. 2. Web-based psychoeducation reduced problem behavior and improved parental well-being. 3. There is limited evidence for mobile-phone-based apps, but preliminary results suggest computer-based interventions are transferrable to mobile apps. 4. Adherence to app-based treatment was correlated with impressions about the user interface Conclusion & Significance: There is evidence for the effectiveness of computer-based programs in filling the significant gaps that currently exist in mental health delivery in the United States and internationally. There is also potential and theoretical validity for mobile-based apps to do the same, though more data is needed.

Keywords: children's mental health, mental health app, child and adolecent psychiatry, digital therapy

Procedia PDF Downloads 70
27934 Thermodynamic Optimization of an R744 Based Transcritical Refrigeration System with Dedicated Mechanical Subcooling Cycle

Authors: Mihir Mouchum Hazarika, Maddali Ramgopal, Souvik Bhattacharyya

Abstract:

The thermodynamic analysis shows that the performance of the R744 based transcritical refrigeration cycle drops drastically for higher ambient temperatures. This is due to the peculiar s-shape of the isotherm in the supercritical region. However, subcooling of the refrigerant at the gas cooler exit enhances the performance of the R744 based system. The present study is carried out to analyze the R744 based transcritical system with dedicated mechanical subcooling cycle. Based on this proposed cycle, the thermodynamic analysis is performed, and optimum operating parameters are determined. The amount of subcooling and the pressure ratio in the subcooling cycle are the parameters which are needed to be optimized to extract the maximum COP from this proposed cycle. It is expected that this study will be helpful in implementing the dedicated subcooling cycle with R744 based transcritical system to improve the performance.

Keywords: optimization, R744, subcooling, transcritical

Procedia PDF Downloads 306
27933 Efficacy of Task Based Language Teaching in a Second Language Classroom Context

Authors: Wajiha Fatima

Abstract:

Various approaches and methods for second language classroom teaching have been proposed since the nineteenth century. Task Based Language Teaching has been prevailing approach in a second language classroom context. It is an approach which immerses students in a naturalistic setting. Tasks are the core unit of planning and instruction. This paper aims at expounding the concept of Task Based Language Teaching and how it has been evolved. In this study, researcher will highlight the usefulness of TBLT and the role it played as a powerful tool for learning and teaching in a second language setting. The article will reflect the implementation of various tasks based activities as well as the roles played by learners and teachers and the problems faced by them. In the end, researcher will discuss how TBLT can be implemented in second language classroom pedagogy.

Keywords: implementation, second language classroom, tasks, task based language teaching

Procedia PDF Downloads 352
27932 Artificial Neural Networks Based Calibration Approach for Six-Port Receiver

Authors: Nadia Chagtmi, Nejla Rejab, Noureddine Boulejfen

Abstract:

This paper presents a calibration approach based on artificial neural networks (ANN) to determine the envelop signal (I+jQ) of a six-port based receiver (SPR). The memory effects called also dynamic behavior and the nonlinearity brought by diode based power detector have been taken into consideration by the ANN. Experimental set-up has been performed to validate the efficiency of this method. The efficiency of this approach has been confirmed by the obtained results in terms of waveforms. Moreover, the obtained error vector magnitude (EVM) and the mean absolute error (MAE) have been calculated in order to confirm and to test the ANN’s performance to achieve I/Q recovery using the output voltage detected by the power based detector. The baseband signal has been recovered using ANN with EVMs no higher than 1 % and an MAE no higher than 17, 26 for the SPR excited different type of signals such QAM (quadrature amplitude modulation) and LTE (Long Term Evolution).

Keywords: six-port based receiver; calibration, nonlinearity, memory effect, artificial neural network

Procedia PDF Downloads 77
27931 Design and Implementation of a Hardened Cryptographic Coprocessor with 128-bit RISC-V Core

Authors: Yashas Bedre Raghavendra, Pim Vullers

Abstract:

This study presents the design and implementation of an abstract cryptographic coprocessor, leveraging AMBA(Advanced Microcontroller Bus Architecture) protocols - APB (Advanced Peripheral Bus) and AHB (Advanced High-performance Bus), to enable seamless integration with the main CPU(Central processing unit) and enhance the coprocessor’s algorithm flexibility. The primary objective is to create a versatile coprocessor that can execute various cryptographic algorithms, including ECC(Elliptic-curve cryptography), RSA(Rivest–Shamir–Adleman), and AES (Advanced Encryption Standard) while providing a robust and secure solution for modern secure embedded systems. To achieve this goal, the coprocessor is equipped with a tightly coupled memory (TCM) for rapid data access during cryptographic operations. The TCM is placed within the coprocessor, ensuring quick retrieval of critical data and optimizing overall performance. Additionally, the program memory is positioned outside the coprocessor, allowing for easy updates and reconfiguration, which enhances adaptability to future algorithm implementations. Direct links are employed instead of DMA(Direct memory access) for data transfer, ensuring faster communication and reducing complexity. The AMBA-based communication architecture facilitates seamless interaction between the coprocessor and the main CPU, streamlining data flow and ensuring efficient utilization of system resources. The abstract nature of the coprocessor allows for easy integration of new cryptographic algorithms in the future. As the security landscape continues to evolve, the coprocessor can adapt and incorporate emerging algorithms, making it a future-proof solution for cryptographic processing. Furthermore, this study explores the addition of custom instructions into RISC-V ISE (Instruction Set Extension) to enhance cryptographic operations. By incorporating custom instructions specifically tailored for cryptographic algorithms, the coprocessor achieves higher efficiency and reduced cycles per instruction (CPI) compared to traditional instruction sets. The adoption of RISC-V 128-bit architecture significantly reduces the total number of instructions required for complex cryptographic tasks, leading to faster execution times and improved overall performance. Comparisons are made with 32-bit and 64-bit architectures, highlighting the advantages of the 128-bit architecture in terms of reduced instruction count and CPI. In conclusion, the abstract cryptographic coprocessor presented in this study offers significant advantages in terms of algorithm flexibility, security, and integration with the main CPU. By leveraging AMBA protocols and employing direct links for data transfer, the coprocessor achieves high-performance cryptographic operations without compromising system efficiency. With its TCM and external program memory, the coprocessor is capable of securely executing a wide range of cryptographic algorithms. This versatility and adaptability, coupled with the benefits of custom instructions and the 128-bit architecture, make it an invaluable asset for secure embedded systems, meeting the demands of modern cryptographic applications.

Keywords: abstract cryptographic coprocessor, AMBA protocols, ECC, RSA, AES, tightly coupled memory, secure embedded systems, RISC-V ISE, custom instructions, instruction count, cycles per instruction

Procedia PDF Downloads 70
27930 Effects of Intracerebroventricular Injection of Ghrelin and Aerobic Exercise on Passive Avoidance Memory and Anxiety in Adult Male Wistar Rats

Authors: Mohaya Farzin, Parvin Babaei, Mohammad Rostampour

Abstract:

Ghrelin plays a considerable role in important neurological effects related to food intake and energy homeostasis. As was found, regular physical activity may make available significant improvements to cognitive functions in various behavioral situations. Anxiety is one of the main concerns of the modern world, affecting millions of individuals’ health. There are contradictory results regarding ghrelin's effects on anxiety-like behavior, and the plasma level of this peptide is increased during physical activity. Here we aimed to evaluate the coincident effects of exogenous ghrelin and aerobic exercise on anxiety-like behavior and passive avoidance memory in Wistar rats. Forty-five male Wistar rats (250 ± 20 g) were divided into 9 groups (n=5) and received intra-hippocampal injections of 3.0 nmol ghrelin and performed aerobic exercise training for 8 weeks. Control groups received the same volume of saline and diazepam as negative and positive control groups, respectively. Learning and memory were estimated using a shuttle box apparatus, and anxiety-like behavior was recorded by an elevated plus-maze test (EPM). Data were analyzed by ANOVA test, and p<0.05 was considered significant. Our findings showed that the combined effect of ghrelin and aerobic exercise improves the acquisition, consolidation, and retrieval of passive avoidance memory in Wistar rats. Furthermore, it is supposed that the ghrelin receiving group spent less time in open arms and fewer open arms entries compared with the control group (p<0.05). However, exercising Wistar rats spent more time in the open arm zone in comparison with the control group (p<0.05). The exercise + Ghrelin administration established reduced anxiety (p<0.05). The results of this study demonstrate that aerobic exercise contributes to an increase in the endogenous production of ghrelin, and physical activity alleviates anxiety-related behaviors induced by intra-hippocampal injection of ghrelin. In general, exercise and ghrelin can reduce anxiety and improve memory.

Keywords: anxiety, ghrelin, aerobic exercise, learning, passive avoidance memory

Procedia PDF Downloads 120
27929 Web-Based Cognitive Writing Instruction (WeCWI): A Hybrid e-Framework for Instructional Design

Authors: Boon Yih Mah

Abstract:

Web-based Cognitive Writing Instruction (WeCWI) is a hybrid e-framework that consolidates instructional design and language development towards the development of a web-based instruction (WBI). WeCWI divides instructional design into macro and micro perspectives. In macro perspective, a 21st century educator is encouraged to disseminate knowledge and share ideas with in-class and global learners. By leveraging the virtue of technology, WeCWI aims to transform the educator into an aggregator, curator, publisher, social networker and finally, a web-based instructor. Since the most notable contribution of integrating technology is being a tool of teaching as well as a stimulus for learning, WeCWI focuses on the use of contemporary web tools based on the multiple roles played by the 21st century educator. The micro perspective draws attention to the pedagogical approaches focussing on three main aspects: reading, discussion, and writing. With the effective use of pedagogical approaches, technology adds new dimensions and expands the bounds of learning capacity. Lastly, WeCWI also imparts the fundamental theoretical concepts for web-based instructors’ awareness such as interactionism, e-learning interactional-based model, computer-mediated communication (CMC), cognitive theories, and learning style model.

Keywords: web-based cognitive writing instruction, WeCWI, instructional design, e-framework, web-based instructor

Procedia PDF Downloads 439
27928 Entrepreneurial Creativity in Socio-Economic Context

Authors: Anna Czarczynska

Abstract:

Creativity is taken as a requirement for a personal anti-fragile career path in the context of regional competitive advantage in the terms of socio-economics creative environment. At the personal level, the competence and value-based approach to creativity are proposed, is an elaboration of the resource-based view of the group of individuals selected from given country. Entrepreneurial creativity competence (measured by the Schein anchor questionnaire) is based on an independent way of thinking and empowerment presents one aspect of creative capability, however quickly verified by the market, that’s why we treat this as a basic exemplification of average creative attitude combine with the entrepreneurial attitude. This introductory instrument enables further scientific research based on the same group in the context of multi-cultural external creative or the non-creative environment.

Keywords: creativity, value-based approach, entrepreneurship, regional culture

Procedia PDF Downloads 201
27927 Automatic Moment-Based Texture Segmentation

Authors: Tudor Barbu

Abstract:

An automatic moment-based texture segmentation approach is proposed in this paper. First, we describe the related work in this computer vision domain. Our texture feature extraction, the first part of the texture recognition process, produces a set of moment-based feature vectors. For each image pixel, a texture feature vector is computed as a sequence of area moments. Second, an automatic pixel classification approach is proposed. The feature vectors are clustered using some unsupervised classification algorithm, the optimal number of clusters being determined using a measure based on validation indexes. From the resulted pixel classes one determines easily the desired texture regions of the image.

Keywords: image segmentation, moment-based, texture analysis, automatic classification, validation indexes

Procedia PDF Downloads 416
27926 Applying the Extreme-Based Teaching Model in Post-Secondary Online Classroom Setting: A Field Experiment

Authors: Leon Pan

Abstract:

The first programming course within post-secondary education has long been recognized as a challenging endeavor for both educators and students alike. Historically, these courses have exhibited high failure rates and a notable number of dropouts. Instructors often lament students' lack of effort in their coursework, and students often express frustration that the teaching methods employed are not effective. Drawing inspiration from the successful principles of Extreme Programming, this study introduces an approach—the Extremes-based teaching model — aimed at enhancing the teaching of introductory programming courses. To empirically determine the effectiveness of the model, a comparison was made between a section taught using the extreme-based model and another utilizing traditional teaching methods. Notably, the extreme-based teaching class required students to work collaboratively on projects while also demanding continuous assessment and performance enhancement within groups. This paper details the application of the extreme-based model within the post-secondary online classroom context and presents the compelling results that emphasize its effectiveness in advancing the teaching and learning experiences. The extreme-based model led to a significant increase of 13.46 points in the weighted total average and a commendable 10% reduction in the failure rate.

Keywords: extreme-based teaching model, innovative pedagogical methods, project-based learning, team-based learning

Procedia PDF Downloads 59
27925 Early Impact Prediction and Key Factors Study of Artificial Intelligence Patents: A Method Based on LightGBM and Interpretable Machine Learning

Authors: Xingyu Gao, Qiang Wu

Abstract:

Patents play a crucial role in protecting innovation and intellectual property. Early prediction of the impact of artificial intelligence (AI) patents helps researchers and companies allocate resources and make better decisions. Understanding the key factors that influence patent impact can assist researchers in gaining a better understanding of the evolution of AI technology and innovation trends. Therefore, identifying highly impactful patents early and providing support for them holds immeasurable value in accelerating technological progress, reducing research and development costs, and mitigating market positioning risks. Despite the extensive research on AI patents, accurately predicting their early impact remains a challenge. Traditional methods often consider only single factors or simple combinations, failing to comprehensively and accurately reflect the actual impact of patents. This paper utilized the artificial intelligence patent database from the United States Patent and Trademark Office and the Len.org patent retrieval platform to obtain specific information on 35,708 AI patents. Using six machine learning models, namely Multiple Linear Regression, Random Forest Regression, XGBoost Regression, LightGBM Regression, Support Vector Machine Regression, and K-Nearest Neighbors Regression, and using early indicators of patents as features, the paper comprehensively predicted the impact of patents from three aspects: technical, social, and economic. These aspects include the technical leadership of patents, the number of citations they receive, and their shared value. The SHAP (Shapley Additive exPlanations) metric was used to explain the predictions of the best model, quantifying the contribution of each feature to the model's predictions. The experimental results on the AI patent dataset indicate that, for all three target variables, LightGBM regression shows the best predictive performance. Specifically, patent novelty has the greatest impact on predicting the technical impact of patents and has a positive effect. Additionally, the number of owners, the number of backward citations, and the number of independent claims are all crucial and have a positive influence on predicting technical impact. In predicting the social impact of patents, the number of applicants is considered the most critical input variable, but it has a negative impact on social impact. At the same time, the number of independent claims, the number of owners, and the number of backward citations are also important predictive factors, and they have a positive effect on social impact. For predicting the economic impact of patents, the number of independent claims is considered the most important factor and has a positive impact on economic impact. The number of owners, the number of sibling countries or regions, and the size of the extended patent family also have a positive influence on economic impact. The study primarily relies on data from the United States Patent and Trademark Office for artificial intelligence patents. Future research could consider more comprehensive data sources, including artificial intelligence patent data, from a global perspective. While the study takes into account various factors, there may still be other important features not considered. In the future, factors such as patent implementation and market applications may be considered as they could have an impact on the influence of patents.

Keywords: patent influence, interpretable machine learning, predictive models, SHAP

Procedia PDF Downloads 50
27924 Video Based Automatic License Plate Recognition System

Authors: Ali Ganoun, Wesam Algablawi, Wasim BenAnaif

Abstract:

Video based traffic surveillance based on License Plate Recognition (LPR) system is an essential part for any intelligent traffic management system. The LPR system utilizes computer vision and pattern recognition technologies to obtain traffic and road information by detecting and recognizing vehicles based on their license plates. Generally, the video based LPR system is a challenging area of research due to the variety of environmental conditions. The LPR systems used in a wide range of commercial applications such as collision warning systems, finding stolen cars, controlling access to car parks and automatic congestion charge systems. This paper presents an automatic LPR system of Libyan license plate. The performance of the proposed system is evaluated with three video sequences.

Keywords: license plate recognition, localization, segmentation, recognition

Procedia PDF Downloads 464
27923 Method for Improving ICESAT-2 ATL13 Altimetry Data Utility on Rivers

Authors: Yun Chen, Qihang Liu, Catherine Ticehurst, Chandrama Sarker, Fazlul Karim, Dave Penton, Ashmita Sengupta

Abstract:

The application of ICESAT-2 altimetry data in river hydrology critically depends on the accuracy of the mean water surface elevation (WSE) at a virtual station (VS) where satellite observations intersect with water. The ICESAT-2 track generates multiple VSs as it crosses the different water bodies. The difficulties are particularly pronounced in large river basins where there are many tributaries and meanders often adjacent to each other. One challenge is to split photon segments along a beam to accurately partition them to extract only the true representative water height for individual elements. As far as we can establish, there is no automated procedure to make this distinction. Earlier studies have relied on human intervention or river masks. Both approaches are unsatisfactory solutions where the number of intersections is large, and river width/extent changes over time. We describe here an automated approach called “auto-segmentation”. The accuracy of our method was assessed by comparison with river water level observations at 10 different stations on 37 different dates along the Lower Murray River, Australia. The congruence is very high and without detectable bias. In addition, we compared different outlier removal methods on the mean WSE calculation at VSs post the auto-segmentation process. All four outlier removal methods perform almost equally well with the same R2 value (0.998) and only subtle variations in RMSE (0.181–0.189m) and MAE (0.130–0.142m). Overall, the auto-segmentation method developed here is an effective and efficient approach to deriving accurate mean WSE at river VSs. It provides a much better way of facilitating the application of ICESAT-2 ATL13 altimetry to rivers compared to previously reported studies. Therefore, the findings of our study will make a significant contribution towards the retrieval of hydraulic parameters, such as water surface slope along the river, water depth at cross sections, and river channel bathymetry for calculating flow velocity and discharge from remotely sensed imagery at large spatial scales.

Keywords: lidar sensor, virtual station, cross section, mean water surface elevation, beam/track segmentation

Procedia PDF Downloads 62
27922 Identity-Based Encryption: A Comparison of Leading Classical and Post-Quantum Implementations in an Enterprise Setting

Authors: Emily Stamm, Neil Smyth, Elizabeth O'Sullivan

Abstract:

In Identity-Based Encryption (IBE), an identity, such as a username, email address, or domain name, acts as the public key. IBE consolidates the PKI by eliminating the repetitive process of requesting public keys for each message encryption. Two of the most popular schemes are Sakai-Kasahara (SAKKE), which is based on elliptic curve pairings, and the Ducas, Lyubashevsky, and Prest lattice scheme (DLP- Lattice), which is based on quantum-secure lattice cryptography. In or- der to embed the schemes in a standard enterprise setting, both schemes are implemented as shared system libraries and integrated into a REST service that functions at the enterprise level. The performance of both schemes as libraries and services is compared, and the practicalities of implementation and application are discussed. Our performance results indicate that although SAKKE has the smaller key and ciphertext sizes, DLP-Lattice is significantly faster overall and we recommend it for most enterprise use cases.

Keywords: identity-based encryption, post-quantum cryptography, lattice-based cryptography, IBE

Procedia PDF Downloads 136
27921 Urban Land Cover from GF-2 Satellite Images Using Object Based and Neural Network Classifications

Authors: Lamyaa Gamal El-Deen Taha, Ashraf Sharawi

Abstract:

China launched satellite GF-2 in 2014. This study deals with comparing nearest neighbor object-based classification and neural network classification methods for classification of the fused GF-2 image. Firstly, rectification of GF-2 image was performed. Secondly, a comparison between nearest neighbor object-based classification and neural network classification for classification of fused GF-2 was performed. Thirdly, the overall accuracy of classification and kappa index were calculated. Results indicate that nearest neighbor object-based classification is better than neural network classification for urban mapping.

Keywords: GF-2 images, feature extraction-rectification, nearest neighbour object based classification, segmentation algorithms, neural network classification, multilayer perceptron

Procedia PDF Downloads 389
27920 Phishing Detection: Comparison between Uniform Resource Locator and Content-Based Detection

Authors: Nuur Ezaini Akmar Ismail, Norbazilah Rahim, Norul Huda Md Rasdi, Maslina Daud

Abstract:

A web application is the most targeted by the attacker because the web application is accessible by the end users. It has become more advantageous to the attacker since not all the end users aware of what kind of sensitive data already leaked by them through the Internet especially via social network in shake on ‘sharing’. The attacker can use this information such as personal details, a favourite of artists, a favourite of actors or actress, music, politics, and medical records to customize phishing attack thus trick the user to click on malware-laced attachments. The Phishing attack is one of the most popular attacks for social engineering technique against web applications. There are several methods to detect phishing websites such as Blacklist/Whitelist based detection, heuristic-based, and visual similarity-based detection. This paper illustrated a comparison between the heuristic-based technique using features of a uniform resource locator (URL) and visual similarity-based detection techniques that compares the content of a suspected phishing page with the legitimate one in order to detect new phishing sites based on the paper reviewed from the past few years. The comparison focuses on three indicators which are false positive and negative, accuracy of the method, and time consumed to detect phishing website.

Keywords: heuristic-based technique, phishing detection, social engineering and visual similarity-based technique

Procedia PDF Downloads 177
27919 Evidence Based Practice for Oral Care in Children

Authors: T. Turan, Ç. Erdoğan

Abstract:

As far as is known, general nursing care practices do not include specific evidence-based practices related to oral care in children. This study aimed to evaluate the evidence based nursing practice for oral care in children. This article is planned as a review article by searching the literature in this field. According to all age groups and the oral care in various specific situations located evidence in the literature were examined. It has been determined that the methods and frequency used in oral care practices performed by nurses in clinics differ from one hospital to another. In addition, it is seen that different solutions are used in basic oral care, oral care practices to prevent ventilator-associated pneumonia and evidence-based practice in mucositis management in children. As a result, a standard should be established in oral care practices for children and education for children is recommended.

Keywords: evidence-based practice, oral care, nursing, children

Procedia PDF Downloads 294
27918 The Istrian Istrovenetian-Croatian Bilingual Corpus

Authors: Nada Poropat Jeletic, Gordana Hrzica

Abstract:

Bilingual conversational corpora represent a meaningful and the most comprehensive data source for investigating the genuine contact phenomena in non-monitored bi-lingual speech productions. They can be particularly useful for bilingual research since some features of bilingual interaction can hardly be accessed with more traditional methodologies (e.g., elicitation tasks). The method of language sampling provides the resources for describing language interaction in a bilingual community and/or in bilingual situations (e.g. code-switching, amount of languages used, number of languages used, etc.). To capture these phenomena in genuine communication situations, such sampling should be as close as possible to spontaneous communication. Bilingual spoken corpus design is methodologically demanding. Therefore this paper aims at describing the methodological challenges that apply to the corpus design of the conversational corpus design of the Istrian Istrovenetian-Croatian Bilingual Corpus. Croatian is the first official language of the Croatian-Italian officially bilingual Istria County, while Istrovenetian is a diatopic subvariety of Venetian, a longlasting lingua franca in the Istrian peninsula, the mother tongue of the members of the Italian National Community in Istria and the primary code of informal everyday communication among the Istrian Italophone population. Within the CLARIN infrastructure, TalkBank is being used, as it provides relevant procedures for designing and analyzing bilingual corpora. Furthermore, it allows public availability allows for easy replication of studies and cumulative progress as a research community builds up around the corpus, while the tools developed within the field of corpus linguistics enable easy retrieval and analysis of information. The method of language sampling employed is kept at the level of spontaneous communication, in order to maximise the naturalness of the collected conversational data. All speakers have provided written informed consent in which they agree to be recorded at a random point within the period of one month after signing the consent. Participants are administered a background questionnaire providing information about the socioeconomic status and the exposure and language usage in the participants social networks. Recording data are being transcribed, phonologically adapted within a standard-sized orthographic form, coded and segmented (speech streams are being segmented into communication units based on syntactic criteria) and are being marked following the CHAT transcription system and its associated CLAN suite of programmes within the TalkBank toolkit. The corpus consists of transcribed sound recordings of 36 bilingual speakers, while the target is to publish the whole corpus by the end of 2020, by sampling spontaneous conversations among approximately 100 speakers from all the bilingual areas of Istria for ensuring representativeness (the participants are being recruited across three generations of native bilingual speakers in all the bilingual areas of the peninsula). Conversational corpora are still rare in TalkBank, so the Corpus will contribute to BilingBank as a highly relevant and scientifically reliable resource for an internationally established and active research community. The impact of the research of communities with societal bilingualism will contribute to the growing body of research on bilingualism and multilingualism, especially regarding topics of language dominance, language attrition and loss, interference and code-switching etc.

Keywords: conversational corpora, bilingual corpora, code-switching, language sampling, corpus design methodology

Procedia PDF Downloads 145
27917 Gender Based Violence and Women’s Health

Authors: Sangita Bharati

Abstract:

Violence against women is now well recognised as a public health problem and human rights violation of worldwide significance. It is an important risk factor for women's ill health, with far reaching consequences for both their physical and mental health. Gender based violence takes many forms and results in physical, sexual and psychological harm to the women throughout their lives. Gender based violence often manifests unequal power relation between men and women in society and the secondary status of the women because of which women have to suffer a range of health problems in silence. This paper will aim at describing a few problems related to women’s health which are directly linked to their experience as victims of gender based violence.

Keywords: violence, health, women, society

Procedia PDF Downloads 483
27916 Operating System Based Virtualization Models in Cloud Computing

Authors: Dev Ras Pandey, Bharat Mishra, S. K. Tripathi

Abstract:

Cloud computing is ready to transform the structure of businesses and learning through supplying the real-time applications and provide an immediate help for small to medium sized businesses. The ability to run a hypervisor inside a virtual machine is important feature of virtualization and it is called nested virtualization. In today’s growing field of information technology, many of the virtualization models are available, that provide a convenient approach to implement, but decision for a single model selection is difficult. This paper explains the applications of operating system based virtualization in cloud computing with an appropriate/suitable model with their different specifications and user’s requirements. In the present paper, most popular models are selected, and the selection was based on container and hypervisor based virtualization. Selected models were compared with a wide range of user’s requirements as number of CPUs, memory size, nested virtualization supports, live migration and commercial supports, etc. and we identified a most suitable model of virtualization.

Keywords: virtualization, OS based virtualization, container based virtualization, hypervisor based virtualization

Procedia PDF Downloads 329