Search results for: maximum force
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6155

Search results for: maximum force

5645 Free Vibration Analysis of Pinned-Pinned and Clamped-Clamped Equal Strength Columns under Self-Weight and Tip Force Using Differential Quadrature Method

Authors: F. Waffo Tchuimmo, G. S. Kwandio Dongoua, C. U. Yves Mbono Samba, O. Dafounansou, L. Nana

Abstract:

The strength criterion is an important condition of great interest to guarantee the stability of the structural elements. The present work is based on the study of the free vibration of Euler’s Bernoulli column of equal strength in compression while considering its own weight and the axial load in compression and tension subjected to symmetrical boundary conditions. We use the differential quadrature method to investigate the first fifth naturals frequencies parameters of the column according to the different forms of geometrical sections. The results of this work give help in making a judicious choice of type of cross-section and a better boundary condition to guarantee good stability of this type of column in civil constructions.

Keywords: free vibration, equal strength, self-weight, tip force, differential quadrature method

Procedia PDF Downloads 135
5644 Optimum Design of Helical Gear System on Basis of Maximum Power Transmission Capability

Authors: Yasaman Esfandiari

Abstract:

Mechanical engineering has always dealt with amplification of the input power in power trains. One of the ways to achieve this goal is to use gears to change the amplitude and direction of the torque and the speed. However, the gears should be optimally designed to best achieve these objectives. In this study, helical gear systems are optimized to achieve maximum power. Material selection, space restriction, available facilities for manufacturing, the probability of tooth breakage, and tooth wear are taken into account and governing equations are derived. Finally, a Matlab code was generated to solve the optimization problem and the results are verified.

Keywords: design, gears, Matlab, optimization

Procedia PDF Downloads 240
5643 A Flagship Framework with Feet of Clay: Operational and Structural Challenges of the African Peace and Security Architecture

Authors: Wiriranai Brilliant Masara

Abstract:

The African Peace and Security Architecture is widely celebrated and revered as a paragon of the will to address peace and security challenges in Africa. However, like any other institution, it is embedded with operational and institutional challenges that prevent it from effectively carrying out its mandate and turning goals into achieved results. The article examines the fundamental flaws and weaknesses of the African Peace and Security Architecture by focusing on its institutions, norms, instruments, and its relationship to Africa’s Regional Economic Communities. Therefore, the article reviews the flaws of the five elements of the African Peace and Security Architecture which are the Peace and Security Council, Panel of the Wise, Continental Early Warning System, African Standby Force, and Peace Fund.

Keywords: African Union, African Peace and Security Architecture, peace and security council, continental early warning system, African Standby Force, Panel of the Wise, Peace Fund

Procedia PDF Downloads 140
5642 Tracking Maximum Power Point Utilizing Artificial Immunity System

Authors: Marwa Ahmed Abd El Hamied

Abstract:

In this paper In this paper, a new technique based on Artificial Immunity System (AIS) technique has been developed to track Maximum Power Point (MPP). AIS system is implemented in a photovoltaic system that is subjected to variable temperature and insulation condition. The proposed novel is simulated using Mat Lab program. The results of simulation have been compared to those who are generated from Observation Controller. The proposed model shows promising results as it provide better accuracy comparing to classical model.

Keywords: component, artificial immunity technique, solar energy, perturbation and observation, power based methods

Procedia PDF Downloads 427
5641 Design Study on a Contactless Material Feeding Device for Electro Conductive Workpieces

Authors: Oliver Commichau, Richard Krimm, Bernd-Arno Behrens

Abstract:

A growing demand on the production rate of modern presses leads to higher stroke rates. Commonly used material feeding devices for presses like grippers and roll-feeding systems can only achieve high stroke rates along with high gripper forces, to avoid stick-slip. These forces are limited by the sensibility of the surfaces of the workpieces. Stick-slip leads to scratches on the surface and false positioning of the workpiece. In this paper, a new contactless feeding device is presented, which develops higher feeding force without damaging the surface of the workpiece through gripping forces. It is based on the principle of the linear induction motor. A primary part creates a magnetic field and induces eddy currents in the electrically conductive material. A Lorentz-Force applies to the workpiece in feeding direction as a mutual reaction between the eddy-currents and the magnetic induction. In this study, the FEA model of this approach is shown. The calculation of this model was used to identify the influence of various design parameters on the performance of the feeder and thus showing the promising capabilities and limits of this technology. In order to validate the study, a prototype of the feeding device has been built. An experimental setup was used to measure pulling forces and placement accuracy of the experimental feeder in order to give an outlook of a potential industrial application of this approach.

Keywords: conductive material, contactless feeding, linear induction, Lorentz-Force

Procedia PDF Downloads 179
5640 Designing and Analyzing Sensor and Actuator of a Nano/Micro-System for Fatigue and Fracture Characterization of Nanomaterials

Authors: Mohammad Reza Zamani Kouhpanji

Abstract:

This paper presents a MEMS/NEMS device for fatigue and fracture characterization of nanomaterials. This device can apply static loads, cyclic loads, and their combinations in nanomechanical experiments. It is based on the electromagnetic force induced between paired parallel wires carrying electrical currents. Using this concept, the actuator and sensor parts of the device were designed and analyzed while considering the practical limitations. Since the PWCC device only uses two wires for actuation part and sensing part, its fabrication process is extremely easier than the available MEMS/NEMS devices. The total gain and phase shift of the MEMS/NEMS device were calculated and investigated. Furthermore, the maximum gain and sensitivity of the MEMS/NEMS device were studied to demonstrate the capability and usability of the device for wide range of nanomaterials samples. This device can be readily integrated into SEM/TEM instruments to provide real time study of the mechanical behaviors of nanomaterials as well as their fatigue and fracture properties, softening or hardening behaviors, and initiation and propagation of nanocracks.

Keywords: sensors and actuators, MEMS/NEMS devices, fatigue and fracture nanomechanical testing device, static and cyclic nanomechanical testing device

Procedia PDF Downloads 297
5639 Double Wishbone Pushrod Suspension Systems Co-Simulation for Racing Applications

Authors: Suleyman Ogul Ertugrul, Mustafa Turgut, Serkan Inandı, Mustafa Gorkem Coban, Mustafa Kıgılı, Ali Mert, Oguzhan Kesmez, Murat Ozancı, Caglar Uyulan

Abstract:

In high-performance automotive engineering, the realistic simulation of suspension systems is crucial for enhancing vehicle dynamics and handling. This study focuses on the double wishbone suspension system, prevalent in racing vehicles due to its superior control and stability characteristics. Utilizing MATLAB and Adams Car simulation software, we conduct a comprehensive analysis of displacement behaviors and damper sizing under various dynamic conditions. The initial phase involves using MATLAB to simulate the entire suspension system, allowing for the preliminary determination of damper size based on the system's response under simulated conditions. Following this, manual calculations of wheel loads are performed to assess the forces acting on the front and rear suspensions during scenarios such as braking, cornering, maximum vertical loads, and acceleration. Further dynamic force analysis is carried out using MATLAB Simulink, focusing on the interactions between suspension components during key movements such as bumps and rebounds. This simulation helps in formulating precise force equations and in calculating the stiffness of the suspension springs. To enhance the accuracy of our findings, we focus on a detailed kinematic and dynamic analysis. This includes the creation of kinematic loops, derivation of relevant equations, and computation of Jacobian matrices to accurately determine damper travel and compression metrics. The calculated spring stiffness is crucial in selecting appropriate springs to ensure optimal suspension performance. To validate and refine our results, we replicate the analyses using the Adams Car software, renowned for its detailed handling of vehicular dynamics. The goal is to achieve a robust, reliable suspension setup that maximizes performance under the extreme conditions encountered in racing scenarios. This study exemplifies the integration of theoretical mechanics with advanced simulation tools to achieve a high-performance suspension setup that can significantly improve race car performance, providing a methodology that can be adapted for different types of racing vehicles.

Keywords: FSAE, suspension system, Adams Car, kinematic

Procedia PDF Downloads 51
5638 Iron Removal from Aqueous Solutions by Fabricated Calcite Ooids

Authors: Al-Sayed A. Bakr, W. A. Makled

Abstract:

The precipitated low magnesium calcite ooids in assembled softening unit from natural Mediterranean seawater samples were used as adsorbent media in a comparative study with granular activated carbon media in a two separated single-media filtration vessels (operating in parallel) for removal of iron from aqueous solutions. In each vessel, the maximum bed capacity, which required to be filled, was 13.2 l and the bed filled in the vessels of ooids and GAC were 8.6, and 6.6 l, respectively. The operating conditions applied to the semi-pilot filtration unit were constant pH (7.5), different temperatures (293, 303 and 313 k), different flow rates (20, 30, 40, 50 and 60 l/min), different initial Fe(II) concentrations (15–105 mg/ l) and the calculated adsorbent masses were 34.1 and 123 g/l for GAC and calcite ooids, respectively. At higher temperature (313 k) and higher flow rate (60 l/min), the maximum adsorption capacities for ferrous ions by GAC and calcite ooids filters were 3.87 and 1.29 mg/g and at lower flow rate (20 l/min), the maximum adsorption capacities were 2.21 and 3.95 mg/g, respectively. From the experimental data, Freundlich and Langmuir adsorption isotherms were used to verify the adsorption performance. Therefore, the calcite ooids could act as new highly effective materials in iron removal from aqueous solutions.

Keywords: water treatment, calcite ooids, activated carbon, Fe(II) removal, filtration

Procedia PDF Downloads 152
5637 The Use of Superplastic Tin-Lead Alloy as A solid Lubricant in Free Upsetting of Aluminum and Brass

Authors: Adnan I. O. Zaid, Hebah B. Melhem, Ahmad Qandil

Abstract:

The main function of a lubricant in any forming process is to reduce friction between the work piece and the die set, hence reducing the force and energy requirement for forming process and to achieve homogeneous deformation. The free upsetting test is an important open forging test. In this paper, super plastic tin-lead alloy is used as solid lubricant in the free upsetting test of non-ferrous metals and compared with eight different lubricants using the following three criteria: one comparing the value of the reduction in height percentages, i.e. the engineering strain, in identical specimens of the same material under the effect of the same compressive force. The second is comparing the amount of barreling produced in each of the identical specimens, at each lubricant. The third criterion is using the specific energy, i.e. the energy per unit volume consumed in forming each material, using the different lubricants to produce the same reduction in height percentage of identical specimens from each of the two materials, namely: aluminum and brass. It was found that the super plastic tin-lead alloy lubricant has produced higher values of reductions in height percentage and less barreling in the two non-ferrous materials, used in this work namely: aluminum and brass. It was found that the super plastic tin-lead alloy lubricant has produced higher values of reductions in height percentage and less barreling in the two non-ferrous materials, used in this work, under the same compression force among the different used lubricants.

Keywords: aluminum, brass, different lubricants, free upsetting, solid lubricants, superplastic tin-lead alloy

Procedia PDF Downloads 464
5636 Exponentiated Transmuted Weibull Distribution: A Generalization of the Weibull Probability Distribution

Authors: Abd El Hady N. Ebraheim

Abstract:

This paper introduces a new generalization of the two parameter Weibull distribution. To this end, the quadratic rank transmutation map has been used. This new distribution is named exponentiated transmuted Weibull (ETW) distribution. The ETW distribution has the advantage of being capable of modeling various shapes of aging and failure criteria. Furthermore, eleven lifetime distributions such as the Weibull, exponentiated Weibull, Rayleigh and exponential distributions, among others follow as special cases. The properties of the new model are discussed and the maximum likelihood estimation is used to estimate the parameters. Explicit expressions are derived for the quantiles. The moments of the distribution are derived, and the order statistics are examined.

Keywords: exponentiated, inversion method, maximum likelihood estimation, transmutation map

Procedia PDF Downloads 565
5635 The Beta-Fisher Snedecor Distribution with Applications to Cancer Remission Data

Authors: K. A. Adepoju, O. I. Shittu, A. U. Chukwu

Abstract:

In this paper, a new four-parameter generalized version of the Fisher Snedecor distribution called Beta- F distribution is introduced. The comprehensive account of the statistical properties of the new distributions was considered. Formal expressions for the cumulative density function, moments, moment generating function and maximum likelihood estimation, as well as its Fisher information, were obtained. The flexibility of this distribution as well as its robustness using cancer remission time data was demonstrated. The new distribution can be used in most applications where the assumption underlying the use of other lifetime distributions is violated.

Keywords: fisher-snedecor distribution, beta-f distribution, outlier, maximum likelihood method

Procedia PDF Downloads 347
5634 Dynamic Response Analyses for Human-Induced Lateral Vibration on Congested Pedestrian Bridges

Authors: M. Yoneda

Abstract:

In this paper, a lateral walking design force per person is proposed and compared with Imperial College test results. Numerical simulations considering the proposed walking design force which is incorporated into the neural-oscillator model are carried out placing much emphasis on the synchronization (the lock-in phenomenon) for a pedestrian bridge model with the span length of 50 m. Numerical analyses are also conducted for an existing pedestrian suspension bridge. As compared with full scale measurements for this suspension bridge, it is confirmed that the analytical method based on the neural-oscillator model might be one of the useful ways to explain the synchronization (the lock-in phenomenon) of pedestrians being on the bridge.

Keywords: pedestrian bridge, human-induced lateral vibration, neural-oscillator, full scale measurement, dynamic response analysis

Procedia PDF Downloads 201
5633 Study on the Neurotransmitters and Digestion of Amino Acids Affecting Psychological Chemical Imbalance

Authors: Yoonah Lee, Richard Kyung

Abstract:

With technological advances in the computational biomedical field, the ability to measure neurotransmitters’ chemical imbalances that affect depression and anxiety has been established. By comparing the thermodynamics stability of amino acid supplements, such as glutamine, tyrosine, phe-nylalanine, and methionine, this research analyzes mood-regulating neurotransmitters, amino acid supplements, and antipsychotic substances (ie. Reserpine molecule and CRF complexes) in relation to depression and anxiety and suggests alternative complexes that are low in energy to act as more efficient treatments for mood disorders. To determine a molecule’s thermodynamic stability, this research examines the molecular energy using Avogadro, a software for building virtual molecules and calculating optimized geometry using GAFF (General Amber Force Field) and UFF (Universal Force Field). The molecules, built using Avogadro, is analyzed using their theoretical values and atomic properties.

Keywords: amino acids, anxiety, depression, neurotransmitters

Procedia PDF Downloads 162
5632 Plantlet Regeneration from Zygotic Embryos of Securidaca longepedunculata Fresen

Authors: Uche C. Okafor, Nwanneka M. Okpokwu, Felix Nwafor, Carl E. A. Okezie

Abstract:

Securidaca longepedunculata Fresen (Violet tree) belongs to the family Polygalaceae characterised by papillionaceous purplish flowers. This medicinally valued plant disappears at an alarming rate due to intensified anthropopressure particularly the unregulated manner of subterranean plant parts' collection from natural stands. Some indiscriminately harvested plants bear seeds containing both mature and immature zygotic embryos that are often discarded. Here, such seeds are collected for this experiment. Seeds were collected, washed, de-coated, and dipped in 70 % (v/v) ethanol for 30 s followed by rising in 5 % solution sodium hypochlorite, containing two drops of tween 20, for another 25 min. Mature zygotic embryos (MZEs) were excised from seeds and cultured in two basal media (MS and B5), three carbon sources (sucrose, glucose and fructose) at five concentrations (0-40 g/L) while immature zygotic embryos (iMZEs) were composed on similar basal media and carbon source supplemented with 0-2 mg/L Benzylaminopurine (BAP) and 0-2 mg/L Indole acetic acid (IAA). MZEs cultured on MS + 30g/L sucrose differed significantly from other treatments at p≤0.05 with maximum percent sprouting (85.24± 5.67 %) and shoot length (7.53±0.67 cm). MZEs culture had the maximum percent sprouting (85.24± 5.67 %) and shoot length (7.53±0.67 cm) in medium containing MS+ 30g L-1 sucrose. iMZEs on the other hand had maximum growth on MS + 40g/L sucrose supplemented with 1.5 mg/L IAA+ 1.0 mg/L BAP. This study is a geared towards creating an alternative path for the maximum production of plants in vitro, thereby, preventing the plants from disappearing.

Keywords: Gamborg's medium, Murashige and Skoog medium, Securidaca longepedunculata, zygotic embryos

Procedia PDF Downloads 156
5631 Quality Management in Construction Project

Authors: Harsh Panchal, Saurabh Amrutkar

Abstract:

Quality management is an essential part of any project that has directly related to the performance of a project. Quality management is depended on multiple factors at different stages in a project, right from time management to construction logistics. A project is a mixture of various components that include iternary management, health and safety, crew productivity, and many more. From the survey conducted, we came to the conclusion that advancement in technology and indigenous approach to any project will result in maximum quality standards and better project performance. In this paper, we discuss various components of the factors above that lead to compromise the quality of a project and how it can be controlled in order to achieve maximum quality assurance using quality planning and total quality management. The paper also focuses on limitations and problems faced in each factor responsible for quality management and to tackle them using techniques and processes based on activities and identifying the sequence, approaching critical path, and duration. The project management concept that deals with the sequence of scope cost time give us an overview regarding the ongoing quality management, in a nutshell, giving us hints to regulate the current procedure for maximum achievable quality. It also deals with the problems faced by engineers that make the mundane work process slow, reducing the quality outcome drastically.

Keywords: management, performance, project, quality

Procedia PDF Downloads 165
5630 Magnetic Navigation of Nanoparticles inside a 3D Carotid Model

Authors: E. G. Karvelas, C. Liosis, A. Theodorakakos, T. E. Karakasidis

Abstract:

Magnetic navigation of the drug inside the human vessels is a very important concept since the drug is delivered to the desired area. Consequently, the quantity of the drug required to reach therapeutic levels is being reduced while the drug concentration at targeted sites is increased. Magnetic navigation of drug agents can be achieved with the use of magnetic nanoparticles where anti-tumor agents are loaded on the surface of the nanoparticles. The magnetic field that is required to navigate the particles inside the human arteries is produced by a magnetic resonance imaging (MRI) device. The main factors which influence the efficiency of the usage of magnetic nanoparticles for biomedical applications in magnetic driving are the size and the magnetization of the biocompatible nanoparticles. In this study, a computational platform for the simulation of the optimal gradient magnetic fields for the navigation of magnetic nanoparticles inside a carotid artery is presented. For the propulsion model of the particles, seven major forces are considered, i.e., the magnetic force from MRIs main magnet static field as well as the magnetic field gradient force from the special propulsion gradient coils. The static field is responsible for the aggregation of nanoparticles, while the magnetic gradient contributes to the navigation of the agglomerates that are formed. Moreover, the contact forces among the aggregated nanoparticles and the wall and the Stokes drag force for each particle are considered, while only spherical particles are used in this study. In addition, gravitational forces due to gravity and the force due to buoyancy are included. Finally, Van der Walls force and Brownian motion are taken into account in the simulation. The OpenFoam platform is used for the calculation of the flow field and the uncoupled equations of particles' motion. To verify the optimal gradient magnetic fields, a covariance matrix adaptation evolution strategy (CMAES) is used in order to navigate the particles into the desired area. A desired trajectory is inserted into the computational geometry, which the particles are going to be navigated in. Initially, the CMAES optimization strategy provides the OpenFOAM program with random values of the gradient magnetic field. At the end of each simulation, the computational platform evaluates the distance between the particles and the desired trajectory. The present model can simulate the motion of particles when they are navigated by the magnetic field that is produced by the MRI device. Under the influence of fluid flow, the model investigates the effect of different gradient magnetic fields in order to minimize the distance of particles from the desired trajectory. In addition, the platform can navigate the particles into the desired trajectory with an efficiency between 80-90%. On the other hand, a small number of particles are stuck to the walls and remains there for the rest of the simulation.

Keywords: artery, drug, nanoparticles, navigation

Procedia PDF Downloads 107
5629 Field-Programmable Gate Array-Based Baseband Signals Generator of X-Band Transmitter for Micro Satellite/CubeSat

Authors: Shih-Ming Wang, Chun-Kai Yeh, Ming-Hwang Shie, Tai-Wei Lin, Chieh-Fu Chang

Abstract:

This paper introduces a FPGA-based baseband signals generator (BSG) of X-band transmitter developed by National Space Organization (NSPO), Taiwan, for earth observation. In order to gain more flexibility for various applications, a number of modulation schemes, QPSK, DeQPSK and 8PSK 4D-TCM are included. For micro satellite scenario, the maximum symbol rate is up to 150Mbsps, and the EVM is as low as 1.9%. For CubeSat scenario, the maximum symbol rate is up to 60Mbsps, and the EVM is less than 1.7%. The maximum data rates are 412.5Mbps and 165Mbps, respectively. Besides, triple modular redundancy (TMR) scheme is implemented in order to reduce single event effect (SEE) induced by radiation. Finally, the theoretical error performance is provided based on comprehensive analysis, especially when BER is lower and much lower than 10⁻⁶ due to low error bit requirement of modern high-resolution earth remote-sensing instruments.

Keywords: X-band transmitter, FPGA (Field-Programmable Gate Array), CubeSat, micro satellite

Procedia PDF Downloads 295
5628 Research on Space Discharge Flying Saucers Cruising Between Planets

Authors: Jiang Hua Zhou

Abstract:

According to the article "New Theoretical System of Physics in the 21st Century" published by the author, it is proposed to use the "scientific principle" of the "balanced distance" between "gravity" and "repulsion" between "planets" to "research" - "space flying saucer", and The formula for the law of universal repulsion between substances is proposed. Under the guidance of the new theoretical system, according to the principle of "planet" gravitational and repulsive force, the research and development idea of developing discharge-type "space flying saucer" is put forward. This paper expounds the reasons why flying saucers have the following characteristics: Flying Saucers can fly at high speed, change direction immediately, hover at any height on the earth, and there is no sound when flying. With the birth of the theoretical system of physics in the 21st century advocated by the author, a era of interstellar "space flying saucer" research will be created.

Keywords: planet, attraction, repulsive force, balance spacing, scientific principles, research, space, flying saucer

Procedia PDF Downloads 122
5627 Millimeter-Wave Silicon Power Amplifiers for 5G Wireless Communications

Authors: Kyoungwoon Kim, Cuong Huynh, Cam Nguyen

Abstract:

Exploding demands for more data, faster data transmission speed, less interference, more users, more wireless devices, and better reliable service-far exceeding those provided in the current mobile communications networks in the RF spectrum below 6 GHz-has led the wireless communication industry to focus on higher, previously unallocated spectrums. High frequencies in RF spectrum near (around 28 GHz) or within the millimeter-wave regime is the logical solution to meet these demands. This high-frequency RF spectrum is of increasingly important for wireless communications due to its large available bandwidths that facilitate various applications requiring large-data high-speed transmissions, reaching up to multi-gigabit per second, of vast information. It also resolves the traffic congestion problems of signals from many wireless devices operating in the current RF spectrum (below 6 GHz), hence handling more traffic. Consequently, the wireless communication industries are moving towards 5G (fifth generation) for next-generation communications such as mobile phones, autonomous vehicles, virtual reality, and the Internet of Things (IoT). The U.S. Federal Communications Commission (FCC) proved on 14th July 2016 three frequency bands for 5G around 28, 37 and 39 GHz. We present some silicon-based RFIC power amplifiers (PA) for possible implementation for 5G wireless communications around 28, 37 and 39 GHz. The 16.5-28 GHz PA exhibits measured gain of more than 34.5 dB and very flat output power of 19.4±1.2 dBm across 16.5-28 GHz. The 25.5/37-GHz PA exhibits gain of 21.4 and 17 dB, and maximum output power of 16 and 13 dBm at 25.5 and 37 GHz, respectively, in the single-band mode. In the dual-band mode, the maximum output power is 13 and 9.5 dBm at 25.5 and 37 GHz, respectively. The 10-19/23-29/33-40 GHz PA has maximum output powers of 15, 13.3, and 13.8 dBm at 15, 25, and 35 GHz, respectively, in the single-band mode. When this PA is operated in dual-band mode, it has maximum output powers of 11.4/8.2 dBm at 15/25 GHz, 13.3/3 dBm at 15/35 GHz, and 8.7/6.7 dBm at 25/35 GHz. In the tri-band mode, it exhibits 8.8/5.4/3.8 dBm maximum output power at 15/25/35 GHz. Acknowledgement: This paper was made possible by NPRP grant # 6-241-2-102 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors

Keywords: Microwaves, Millimeter waves, Power Amplifier, Wireless communications

Procedia PDF Downloads 187
5626 Comparison of Two Fuzzy Skyhook Control Strategies Applied to an Active Suspension

Authors: Reginaldo Cardoso, Magno Enrique Mendoza Meza

Abstract:

This work focuses on simulation and comparison of two control skyhook techniques applied to a quarter-car of the active suspension. The objective is to provide comfort to the driver. The main idea of skyhook control is to imagine a damper connected to an imaginary sky; thus, the feedback is performed with the resultant force between the imaginary and the suspension damper. The first control technique is the Mandani fuzzy skyhook and the second control technique is a Takagi-Sugeno fuzzy skyhook controller, in the both controllers the inputs are the relative velocity between the two masses and the vehicle body velocity, the output of the Mandani fuzzy skyhook is the coefficient of imaginary damper viscous-friction and the Takagi-Sugeno fuzzy skyhook is the force. Finally, we compared the techniques. The Mandani fuzzy skyhook showed a more comfortable response to the driver, followed closely by the Takagi- Sugeno fuzzy skyhook.

Keywords: active suspention, Mandani, quarter-car, skyhook, Sugeno

Procedia PDF Downloads 464
5625 The Touch Sensation: Ageing and Gender Influences

Authors: A. Abdouni, C. Thieulin, M. Djaghloul, R. Vargiolu, H. Zahouani

Abstract:

A decline in the main sensory modalities (vision, hearing, taste, and smell) is well reported to occur with advancing age, it is expected a similar change to occur with touch sensation and perception. In this study, we have focused on the touch sensations highlighting ageing and gender influences with in vivo systems. The touch process can be divided into two main phases: The first phase is the first contact between the finger and the object, during this contact, an adhesive force has been created which is the needed force to permit an initial movement of the finger. In the second phase, the finger mechanical properties with their surface topography play an important role in the obtained sensation. In order to understand the age and gender effects on the touch sense, we develop different ideas and systems for each phase. To better characterize the contact, the mechanical properties and the surface topography of human finger, in vivo studies on the pulp of 40 subjects (20 of each gender) of four age groups of 26±3, 35+-3, 45+-2 and 58±6 have been performed. To understand the first touch phase a classical indentation system has been adapted to measure the finger contact properties. The normal force load, the indentation speed, the contact time, the penetration depth and the indenter geometry have been optimized. The penetration depth of a glass indenter is recorded as a function of the applied normal force. Main assessed parameter is the adhesive force F_ad. For the second phase, first, an innovative approach is proposed to characterize the dynamic finger mechanical properties. A contactless indentation test inspired from the techniques used in ophthalmology has been used. The test principle is to blow an air blast to the finger and measure the caused deformation by a linear laser. The advantage of this test is the real observation of the skin free return without any outside influence. Main obtained parameters are the wave propagation speed and the Young's modulus E. Second, negative silicon replicas of subject’s fingerprint have been analyzed by a probe laser defocusing. A laser diode transmits a light beam on the surface to be measured, and the reflected signal is returned to a set of four photodiodes. This technology allows reconstructing three-dimensional images. In order to study the age and gender effects on the roughness properties, a multi-scale characterization of roughness has been realized by applying continuous wavelet transform. After determining the decomposition of the surface, the method consists of quantifying the arithmetic mean of surface topographic at each scale SMA. Significant differences of the main parameters are shown with ageing and gender. The comparison between men and women groups reveals that the adhesive force is higher for women. The results of mechanical properties show a Young’s modulus higher for women and also increasing with age. The roughness analysis shows a significant difference in function of age and gender.

Keywords: ageing, finger, gender, touch

Procedia PDF Downloads 265
5624 Equivalent Circuit Model for the Eddy Current Damping with Frequency-Dependence

Authors: Zhiguo Shi, Cheng Ning Loong, Jiazeng Shan, Weichao Wu

Abstract:

This study proposes an equivalent circuit model to simulate the eddy current damping force with shaking table tests and finite element modeling. The model is firstly proposed and applied to a simple eddy current damper, which is modelled in ANSYS, indicating that the proposed model can simulate the eddy current damping force under different types of excitations. Then, a non-contact and friction-free eddy current damper is designed and tested, and the proposed model can reproduce the experimental observations. The excellent agreement between the simulated results and the experimental data validates the accuracy and reliability of the equivalent circuit model. Furthermore, a more complicated model is performed in ANSYS to verify the feasibility of the equivalent circuit model in complex eddy current damper, and the higher-order fractional model and viscous model are adopted for comparison.

Keywords: equivalent circuit model, eddy current damping, finite element model, shake table test

Procedia PDF Downloads 191
5623 Ferroelectricity in Nano-Composite Films of Sodium Nitrite: Starch Prepared by Drop Cast Technique

Authors: Navneet Dabra, Baljinder Kaur, Lakhbir Singh, V. Annapu Reddy, R. Nath, Dae-Yong Jeong, Jasbir S. Hundal

Abstract:

Nano-composite films of sodium nitrite (NaNO2): Starch with different proportions of NaNO2 and Starch have been prepared by drop cast technique. The ferroelectric hysteresis loops (P-V) have been traced using modified Sawyar-Tower circuit. The films containing equal proportions of NaNO2 and Starch exhibit optimized ferroelectric properties. The stability of the remanent polarization, Pr in the optimized nano-composite films exhibit improved stability over the pure NaNO2 films. The Atomic Force Microscopy (AFM) has been employed to investigate the surface morphology. AFM images clearly reveal the nano sized particles of NaNO2 dispersed in starch with small value of surface roughness.

Keywords: ferroelectricity, nano-composite films, Atomic Force Microscopy (AFM), nano composite film

Procedia PDF Downloads 509
5622 Accelerated Expansion of a Matter-Antimatter Universe and Gravity as an Electromagnetic Force

Authors: Maarten J. Van der Burgt

Abstract:

A universe containing matter and antimatter can only exist when matter and antimatter repel each other. Such a system, where like attracts like and like repels unlike, will always expand. Calculations made for such a symmetric universe demonstrate that the expansion is consistent with Hubble’s law, the observed increase in the expansion velocity with time, the initial high acceleration and the foam structure of the universe. Conversely, these observations can be considered as proof for a symmetrical universe and for antimatter possessing a negative gravitational mass. A second proof can be found by reinterpreting the behavior of relativistic moving charged particles. Attributing their behavior to a charge defect of √(1-v2/c2) instead of to a mass defect of 1/√(1-v2/c2) makes it plausible that gravitation is an electromagnetic force, as already suggested by Feynman. This would automatically imply that antimatter has a negative gravitational mass. These proofs underpin the untenability of the Weak Equivalence Principle which states that in a gravitational field all structure less point-like particles follow the same path.

Keywords: celestial mechanics, cosmology, gravitation astrophysics, origin of structure, miscellaneous (matter and antimatter)

Procedia PDF Downloads 228
5621 Methane versus Carbon Dioxide Mitigation Prospects

Authors: Alexander J. Severinsky, Allen L. Sessoms

Abstract:

Atmospheric carbon dioxide (CO₂) has dominated the discussion about the causes of climate change. This is a reflection of the time horizon that has become the norm adopted by the IPCC as the planning horizon. Recently, it has become clear that a 100-year time horizon is much too long, and yet almost all mitigation efforts, including those in the near-term horizon of 30 years, are geared toward it. In this paper, we show that, for a 30-year time horizon, methane (CH₄) is the greenhouse gas whose radiative forcing exceeds that of CO₂. In our analysis, we used radiative forcing of greenhouse gases in the atmosphere since they directly affect the temperature rise on Earth. In 2019, the radiative forcing of methane was ~2.5 W/m² and that of carbon dioxide ~2.1 W/m². Under a business-as-usual (BAU) scenario until 2050, such forcing would be ~2.8 W/m² and ~3.1 W/m², respectively. There is a substantial spread in the data for anthropogenic and natural methane emissions as well as CH₄ leakages from production to consumption. We estimated the minimum and maximum effects of the reduction of these leakages. Such action may reduce the annual radiative forcing of all CH₄ emissions by between ~15% and ~30%. This translates into a reduction of the RF by 2050 from ~2.8 W/m² to ~2.5 W/m² in the case of the minimum effect and to ~2.15 W/m² in the case of the maximum. Under the BAU, we found that the RF of CO₂ would increase from ~2.1 W/m² nowadays to ~3.1 W/m² by 2050. We assumed a reduction of 50% of anthropogenic emission linearly over the next 30 years. That would reduce radiative forcing from ~3.1 W/m² to ~2.9 W/m². In the case of ‘net zero,’ the other 50% of reduction of only anthropogenic emissions would be limited to either from sources of emissions or directly from the atmosphere. The total reduction would be from ~3.1 to ~2.7, or ~0.4 W/m². To achieve the same radiative forcing as in the scenario of maximum reduction of methane leakages of ~2.15 W/m², then an additional reduction of radiative forcing of CO₂ would be approximately 2.7 -2.15=0.55 W/m². This is a much larger value than in expectations from ‘net zero’. In total, one needs to remove from the atmosphere ~660 GT to match the maximum reduction of current methane leakages and ~270 GT to achieve ‘net zero.’ This amounts to over 900 GT in total.

Keywords: methane leakages, methane radiative forcing, methane mitigation, methane net zero

Procedia PDF Downloads 146
5620 Multibody Constrained Dynamics of Y-Method Installation System for a Large Scale Subsea Equipment

Authors: Naeem Ullah, Menglan Duan, Mac Darlington Uche Onuoha

Abstract:

The lowering of subsea equipment into the deep waters is a challenging job due to the harsh offshore environment. Many researchers have introduced various installation systems to deploy the payload safely into the deep oceans. In general practice, dual floating vessels are not employed owing to the prevalent safety risks and hazards caused by ever-increasing dynamical effects sourced by mutual interaction between the bodies. However, while keeping in the view of the optimal grounds, such as economical one, the Y-method, the two conventional tugboats supporting the equipment by the two independent strands connected to a tri-plate above the equipment, has been employed to study multibody dynamics of the dual barge lifting operations. In this study, the two tugboats and the suspended payload (Y-method) are deployed for the lowering of subsea equipment into the deep waters as a multibody dynamic system. The two-wire ropes are used for the lifting and installation operation by this Y-method installation system. 6-dof (degree of freedom) for each body are considered to establish coupled 18-dof multibody model by embedding technique or velocity transformation technique. The fundamental and prompt advantage of this technique is that the constraint forces can be eliminated directly, and no extra computational effort is required for the elimination of the constraint forces. The inertial frame of reference is taken at the surface of the water as the time-independent frame of reference, and the floating frames of reference are introduced in each body as the time-dependent frames of reference in order to formulate the velocity transformation matrix. The local transformation of the generalized coordinates to the inertial frame of reference is executed by applying the Euler Angle approach. The spherical joints are articulated amongst the multibody as the kinematic joints. The hydrodynamic force, the two-strand forces, the hydrostatic force, and the mooring forces are taken into consideration as the external forces. The radiation force of the hydrodynamic force is obtained by employing the Cummins equation. The wave exciting part of the hydrodynamic force is obtained by using force response amplitude operators (RAOs) that are obtained by the commercial solver ‘OpenFOAM’. The strand force is obtained by considering the wire rope as an elastic spring. The nonlinear hydrostatic force is obtained by the pressure integration technique at each time step of the wave movement. The mooring forces are evaluated by using Faltinsen analytical approach. ‘The Runge Kutta Method’ of Fourth-Order is employed to evaluate the coupled equations of motion obtained for 18-dof multibody model. The results are correlated with the simulated Orcaflex Model. Moreover, the results from Orcaflex Model are compared with the MOSES Model from previous studies. The MBDS of single barge lifting operation from the former studies are compared with the MBDS of the established dual barge lifting operation. The dynamics of the dual barge lifting operation are found larger in magnitude as compared to the single barge lifting operation. It is noticed that the traction at the top connection point of the cable decreases with the increase in the length, and it becomes almost constant after passing through the splash zone.

Keywords: dual barge lifting operation, Y-method, multibody dynamics, shipbuilding, installation of subsea equipment, shipbuilding

Procedia PDF Downloads 203
5619 Enunciation on Complexities of Selected Tree Searching Algorithms

Authors: Parag Bhalchandra, S. D. Khamitkar

Abstract:

Searching trees is a most interesting application of Artificial Intelligence. Over the period of time, many innovative methods have been evolved to better search trees with respect to computational complexities. Tree searches are difficult to understand due to the exponential growth of possibilities when increasing the number of nodes or levels in the tree. Usually it is understood when we traverse down in the tree, traverse down to greater depth, in the search of a solution or a goal. However, this does not happen in reality as explicit enumeration is not a very efficient method and there are many algorithmic speedups that will find the optimal solution without the burden of evaluating all possible trees. It was a common question before all researchers where they often wonder what algorithms will yield the best and fastest result The intention of this paper is two folds, one to review selected tree search algorithms and search strategies that can be applied to a problem space and the second objective is to stimulate to implement recent developments in the complexity behavior of search strategies. The algorithms discussed here apply in general to both brute force and heuristic searches.

Keywords: trees search, asymptotic complexity, brute force, heuristics algorithms

Procedia PDF Downloads 304
5618 Variation in pH Values and Tenderness of Meat of Cattle Fed Different Levels of Lipids

Authors: Erico Da Silva Lima, Tiago Neves Pereira Valente, Roberto De Oliveira Roça

Abstract:

Introduction: Over the last few years the market has increased its demand for high quality meat. Based on this premise some producers have continuously improved their efficiency in breeding beef cattle with the purpose to support this demand. It is well recognized that final quality of beef is intimately linked to animal’s diet. The key objective of this study is to evaluate the influence of feeding animals with cottonseed and its lipids and the final results in terms of pH and shear forces of the meat. Materials and Methods: The study was carried out in the Chapéu de Couro Farm in Aguaí/SP, Brazil. A group of 39 uncastrated Nellore cattle. Mean age of the animals was 36 months and initial mean live weight was 494.1 ± 10.1. Animals were randomly assigned to one of three treatments, based on dry matter: feed with control diet 2.50% cottonseed, feed with 11.50% cottonseed, and feed with 3.13% cottonseed added of 1.77% protected lipid. Forage:concentrate ratio was 50:50 on a dry matter basis. Sugar cane chopped was used as forage. After slaughter, carcasses were identified and divided into two halves that were kept in a cold chamber for 24 h at 2°C. Using pH meter was determined post-mortem pH in Longissimus thoracis muscle between the 12th and 13th rib of the left half carcass. After, part of each animal was removed, and divided in three samples (steaks). Steaks were 2.5 cm thick and were identified and stored individually in plastic bags under vacuum. Samples were frozen in a freezer at -18°C. The same samples cooked were refrigerated by 12 h the 4°C, and then cut into cylinders 1.10 Øcm with the support of a drill press avoiding fats and nerves. Shear force was calculated in these samples cut into cylinders through the Brookfield texture CT3 Texture Analyzer 25 k equipped with a set of blade Warner-Bratzler. Results and Discussion: No differences (P > 0.05) in pH 24 h after slaughter were observed in the meat of Nellore cattle fed different sources of fat, and mean value for this variable was 5.59. However, for the shear force differences (P < 0.05) were founded. For diet with 2,50% cottonseed the lowest value found 5.10 (kg) while for the treatment with 11.50% cottonseed the great value found was 6.30 (kg). High shear force values mean greater texture of meat that indicates less tenderness. The texture of the meat can be influenced by age, weight to the slaughter of animals. For cattle breed Nellore Bos taurus indicus more high value of shear force. Conclusions: The add the cottonseed or protected lipid in diet is not affected pH values in meat. The whole cottonseed does not contribute to the improvement of tenderness of the meat. Acknowledgments: IFGoiano, FAPEG and CNPq (Brazil).

Keywords: beef quality, cottonseed, protected fat, shear force

Procedia PDF Downloads 228
5617 Solar-Powered Adsorption Cooling System: A Case Study on the Climatic Conditions of Al Minya

Authors: El-Sadek H. Nour El-deen, K. Harby

Abstract:

Energy saving and environment friendly applications are turning out to be one of the most important topics nowadays. In this work, a simulation analysis using TRNSYS software has been carried out to study the benefit of employing a solar adsorption cooling system under the climatic conditions of Al-Minya city, Egypt. A theoretical model was carried out on a two bed adsorption cooling system employing granular activated carbon-HFC-404A as working pair. Temporal and averaged history of solar collector, adsorbent beds, evaporator and condenser has been shown. System performance in terms of daily average cooling capacity and average coefficient of performance around the year has been investigated. The results showed that maximum yearly average coefficient of performance (COP) and cooling capacity are about 0.26 and 8 kW respectively. The maximum value of the both average cooling capacity and COP cyclic is directly proportional to the maximum solar radiation. The system performance was found to be increased with the average ambient temperature. Finally, the proposed solar powered adsorption cooling systems can be used effectively under Al-Minya climatic conditions.

Keywords: adsorption, cooling, Egypt, environment, solar energy

Procedia PDF Downloads 160
5616 Causes for the Precession of the Perihelion in the Planetary Orbits

Authors: Kwan U. Kim, Jin Sim, Ryong Jin Jang, Sung Duk Kim

Abstract:

It is Leverrier that discovered the precession of the perihelion in the planetary orbits for the first time in the world, while it is Einstein that explained the astronomical phenomenom for the first time in the world. The amount of the precession of the perihelion for Einstein’s theory of gravitation has been explained by means of the inverse fourth power force(inverse third power potential) introduced totheory of gravitation through Schwarzschild metric However, the methodology has a serious shortcoming that it is impossible to explain the cause for the precession of the perihelion in the planetary orbits. According to our study, without taking the cause for the precession of the perihelion, 6 methods can explain the amount of the precession of the perihelion discovered by Leverrier. Therefore, the problem of what caused the perihelion to precess in the planetary orbits must be solved for physics because it is a profound scientific and technological problem for a basic experiment in construction of relativistic theory of gravitation. The scientific solution to the problem proved that Einstein’s explanation for the planetary orbits is a magic made by the numerical expressions obtained from fictitious gravitation introduced to theory of gravitation and wrong definition of proper time The problem of the precession of the perihelion seems solved already by means of general theory of relativity, but, in essence, the cause for the astronomical phenomenon has not been successfully explained for astronomy yet. The right solution to the problem comes from generalized theory of gravitation. Therefore, in this paper, it has been shown that by means of Schwarzschild field and the physical quantities of relativistic Lagrangian redflected in it, fictitious gravitation is not the main factor which can cause the perihelion to precess in the planetary orbits. In addition to it, it has been shown that the main factor which can cause the perihelion to precess in the planetary orbits is the inverse third power force existing really in the relativistic region in the Solar system.

Keywords: inverse third power force, precession of the perihelion, fictitious gravitation, planetary orbits

Procedia PDF Downloads 11