Search results for: learning model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 22116

Search results for: learning model

21606 Mobile Phones and Language Learning: A Qualitative Meta-Analysis of Studies Published between 2008 and 2012 in the Proceedings of the International Conference on Mobile Learning

Authors: Lucia Silveira Alda

Abstract:

This research aims to analyze critically a set of studies published in the Proceedings of the International Conference on Mobile Learning of IADIS, from 2008 until 2012, which addresses the issue of foreign language learning mediated by mobile phones. The theoretical review of this study is based on the Vygotskian assumptions about tools and mediated learning and the concepts of mobile learning, CALL and MALL. In addition, the diffusion rates of the mobile phone and especially its potential are considered. Through systematic review and meta-analysis, this research intended to identify similarities and differences between the identified characteristics in the studies on the subject of language learning and mobile phone. From the analysis of the results, this study verifies that the mobile phone stands out for its mobility and portability. Furthermore, this device presented positive aspects towards student motivation in language learning. The studies were favorable to mobile phone use for learning. It was also found that the challenges in using this tool are not technical, but didactic and methodological, including the need to reflect on practical proposals. The findings of this study may direct further research in the area of language learning mediated by mobile phones.

Keywords: language learning, mobile learning, mobile phones, technology

Procedia PDF Downloads 283
21605 The Effect of Classroom Atmospherics on Second Language Learning

Authors: Sresha Yadav, Ishwar Kumar

Abstract:

Second language learning is an important area of research in the language and linguistic domains. Literature suggests that several factors impact second language learning, including age, motivation, objectives, teacher, instructional material, classroom interaction, intelligence and previous background, previous linguistic experience, other student characteristics. Previous researchers have also highlighted that classroom atmospherics has a significant impact on learning as well as on the performance of students. However, the impact of classroom atmospherics on second language learning is still not known in the existing literature. Therefore, the purpose of the present study is to explore whether classroom atmospherics has an impact on second language learning or not? And if it does, it would be worthwhile to explore the nature of such relationship. The present study aims to explore the impact of classroom atmospherics on second language learning by dwelling into the existing literature to explore factors which impact second language learning, classroom atmospherics which impact language learning and the metrics through which such learning impacts could be measured. Based on the findings of literature review, the researchers have adopted a clustering approach for categorization and positioning of various measures of second language learning. Based on the clustering approach, the researchers have approach for measuring the impact of classroom atmospherics on second language learning by drawing a student sample consisting of 80 respondents. The results of the study uncover various basic premises of second language learning, especially with regard to classroom atmospherics. The present study is important not only from the point of view of language learning but implications could be drawn with regard to the design of classroom atmospherics, environmental psychology, anthropometrics, etc as well.

Keywords: classroom atmospherics, cluster analysis, linguistics, second language learning

Procedia PDF Downloads 456
21604 Document-level Sentiment Analysis: An Exploratory Case Study of Low-resource Language Urdu

Authors: Ammarah Irum, Muhammad Ali Tahir

Abstract:

Document-level sentiment analysis in Urdu is a challenging Natural Language Processing (NLP) task due to the difficulty of working with lengthy texts in a language with constrained resources. Deep learning models, which are complex neural network architectures, are well-suited to text-based applications in addition to data formats like audio, image, and video. To investigate the potential of deep learning for Urdu sentiment analysis, we implemented five different deep learning models, including Bidirectional Long Short Term Memory (BiLSTM), Convolutional Neural Network (CNN), Convolutional Neural Network with Bidirectional Long Short Term Memory (CNN-BiLSTM), and Bidirectional Encoder Representation from Transformer (BERT). In this study, we developed a hybrid deep learning model called BiLSTM-Single Layer Multi Filter Convolutional Neural Network (BiLSTM-SLMFCNN) by fusing BiLSTM and CNN architecture. The proposed and baseline techniques are applied on Urdu Customer Support data set and IMDB Urdu movie review data set by using pre-trained Urdu word embedding that are suitable for sentiment analysis at the document level. Results of these techniques are evaluated and our proposed model outperforms all other deep learning techniques for Urdu sentiment analysis. BiLSTM-SLMFCNN outperformed the baseline deep learning models and achieved 83%, 79%, 83% and 94% accuracy on small, medium and large sized IMDB Urdu movie review data set and Urdu Customer Support data set respectively.

Keywords: urdu sentiment analysis, deep learning, natural language processing, opinion mining, low-resource language

Procedia PDF Downloads 72
21603 Evolving Knowledge Extraction from Online Resources

Authors: Zhibo Xiao, Tharini Nayanika de Silva, Kezhi Mao

Abstract:

In this paper, we present an evolving knowledge extraction system named AKEOS (Automatic Knowledge Extraction from Online Sources). AKEOS consists of two modules, including a one-time learning module and an evolving learning module. The one-time learning module takes in user input query, and automatically harvests knowledge from online unstructured resources in an unsupervised way. The output of the one-time learning is a structured vector representing the harvested knowledge. The evolving learning module automatically schedules and performs repeated one-time learning to extract the newest information and track the development of an event. In addition, the evolving learning module summarizes the knowledge learned at different time points to produce a final knowledge vector about the event. With the evolving learning, we are able to visualize the key information of the event, discover the trends, and track the development of an event.

Keywords: evolving learning, knowledge extraction, knowledge graph, text mining

Procedia PDF Downloads 458
21602 Creating Gameful Experience as an Innovative Approach in the Digital Era: A Double-Mediation Model of Instructional Support, Group Engagement and Flow

Authors: Mona Hoyng

Abstract:

In times of digitalization nowadays, the use of games became a crucial new way for digital game-based learning (DGBL) in higher education. In this regard, the development of a gameful experience (GE) among students is decisive when examining DGBL as the GE is a necessary precondition determining the effectiveness of games. In this regard, the purpose of this study is to provide deeper insights into the GE and to empirically investigate whether and how these meaningful learning experiences within games, i.e., GE, among students are created. Based on the theory of experience and flow theory, a double-mediation model was developed considering instructional support, group engagement, and flow as determinants of students’ GE. Based on data of 337 students taking part in a business simulation game at two different universities in Germany, regression-based statistical mediation analysis revealed that instructional support promoted students’ GE. This relationship was further sequentially double mediated by group engagement and flow. Consequently, in the context of DGBL, meaningful learning experiences within games in terms of GE are created and promoted through appropriate instructional support, as well as high levels of group engagement and flow among students.

Keywords: gameful experience, instructional support, group engagement, flow, education, learning

Procedia PDF Downloads 136
21601 Incorporating Lexical-Semantic Knowledge into Convolutional Neural Network Framework for Pediatric Disease Diagnosis

Authors: Xiaocong Liu, Huazhen Wang, Ting He, Xiaozheng Li, Weihan Zhang, Jian Chen

Abstract:

The utilization of electronic medical record (EMR) data to establish the disease diagnosis model has become an important research content of biomedical informatics. Deep learning can automatically extract features from the massive data, which brings about breakthroughs in the study of EMR data. The challenge is that deep learning lacks semantic knowledge, which leads to impracticability in medical science. This research proposes a method of incorporating lexical-semantic knowledge from abundant entities into a convolutional neural network (CNN) framework for pediatric disease diagnosis. Firstly, medical terms are vectorized into Lexical Semantic Vectors (LSV), which are concatenated with the embedded word vectors of word2vec to enrich the feature representation. Secondly, the semantic distribution of medical terms serves as Semantic Decision Guide (SDG) for the optimization of deep learning models. The study evaluate the performance of LSV-SDG-CNN model on four kinds of Chinese EMR datasets. Additionally, CNN, LSV-CNN, and SDG-CNN are designed as baseline models for comparison. The experimental results show that LSV-SDG-CNN model outperforms baseline models on four kinds of Chinese EMR datasets. The best configuration of the model yielded an F1 score of 86.20%. The results clearly demonstrate that CNN has been effectively guided and optimized by lexical-semantic knowledge, and LSV-SDG-CNN model improves the disease classification accuracy with a clear margin.

Keywords: convolutional neural network, electronic medical record, feature representation, lexical semantics, semantic decision

Procedia PDF Downloads 124
21600 A Reinforcement Learning Based Method for Heating, Ventilation, and Air Conditioning Demand Response Optimization Considering Few-Shot Personalized Thermal Comfort

Authors: Xiaohua Zou, Yongxin Su

Abstract:

The reasonable operation of heating, ventilation, and air conditioning (HVAC) is of great significance in improving the security, stability, and economy of power system operation. However, the uncertainty of the operating environment, thermal comfort varies by users and rapid decision-making pose challenges for HVAC demand response optimization. In this regard, this paper proposes a reinforcement learning-based method for HVAC demand response optimization considering few-shot personalized thermal comfort (PTC). First, an HVAC DR optimization framework based on few-shot PTC model and DRL is designed, in which the output of few-shot PTC model is regarded as the input of DRL. Then, a few-shot PTC model that distinguishes between awake and asleep states is established, which has excellent engineering usability. Next, based on soft actor criticism, an HVAC DR optimization algorithm considering the user’s PTC is designed to deal with uncertainty and make decisions rapidly. Experiment results show that the proposed method can efficiently obtain use’s PTC temperature, reduce energy cost while ensuring user’s PTC, and achieve rapid decision-making under uncertainty.

Keywords: HVAC, few-shot personalized thermal comfort, deep reinforcement learning, demand response

Procedia PDF Downloads 85
21599 A Triad Pedagogy for Increased Digital Competence of Human Resource Management Students: Reflecting on Human Resource Information Systems at a South African University

Authors: Esther Pearl Palmer

Abstract:

Driven by the increased pressure on Higher Education Institutions (HEIs) to produce work-ready graduates for the modern world of work, this study reflects on triad teaching and learning practices to increase student engagement and employability. In the South African higher education context, the employability of graduates is imperative in strengthening the country’s economy and in increasing competitiveness. Within this context, the field of Human Resource Management (HRM) calls for innovative methods and approaches to teaching and learning and assessing the skills and competencies of graduates to render them employable. Digital competency in Human Resource Information Systems (HRIS) is an important component and prerequisite for employment in HRM. The purpose of this research is to reflect on the subject HRIS developed by lecturers at the Central University of Technology, Free State (CUT), with the intention to actively engage students in real-world learning activities and increase their employability. The Enrichment Triad Model (ETM) was used as theoretical framework to develop the subject as it supports a triad teaching and learning approach to education. It is, furthermore, an inter-structured model that supports collaboration between industry, academics and students. The study follows a mixed-method approach to reflect on the learning experiences of the industry, academics and students in the subject field over the past three years. This paper is a work in progress and seeks to broaden the scope of extant studies about student engagement in work-related learning to increase employability. Based on the ETM as theoretical framework and pedagogical practice, this paper proposes that following a triad teaching and learning approach will increase work-related skills of students. Findings from the study show that students, academics and industry alike regard educational opportunities that incorporate active learning experiences with the world of work enhances student engagement in learning and renders them more employable.

Keywords: digital competence, enriched triad model, human resource information systems, student engagement, triad pedagogy.

Procedia PDF Downloads 91
21598 Exploring Smartphone Applications for Enhancing Second Language Vocabulary Learning

Authors: Abdulmajeed Almansour

Abstract:

Learning a foreign language with the assistant of technological tools has become an interest of learners and educators. Increased use of smartphones among undergraduate students has made them popular for not only social communication but also for entertainment and educational purposes. Smartphones have provided remarkable advantages in language learning process. Learning vocabulary is an important part of learning a language. The use of smartphone applications for English vocabulary learning provides an opportunity for learners to improve vocabulary knowledge beyond the classroom wall anytime anywhere. Recently, various smartphone applications were created specifically for vocabulary learning. This paper aims to explore the use of smartphone application Memrise designed for vocabulary learning to enhance academic vocabulary among undergraduate students. It examines whether the use of a Memrise smartphone application designed course enhances the academic vocabulary learning among ESL learners. The research paradigm used in this paper followed a mixed research model combining quantitative and qualitative research. The study included two hundred undergraduate students randomly assigned to the experimental and controlled group during the first academic year at the Faculty of English Language, Imam University. The research instruments included an attitudinal questionnaire and an English vocabulary pre-test administered to students at the beginning of the semester whereas post-test and semi-structured interviews administered at the end of the semester. The findings of the attitudinal questionnaire revealed a positive attitude towards using smartphones in learning vocabulary. The post-test scores showed a significant difference in the experimental group performance. The results from the semi-structure interviews showed that there were positive attitudes towards Memrise smartphone application. The students found the application enjoyable, convenient and efficient learning tool. From the study, the use of the Memrise application is seen to have long-term and motivational benefits to students. For this reason, there is a need for further research to identify the long-term optimal effects of learning a language using smartphone applications.

Keywords: second language vocabulary learning, academic vocabulary, mobile learning technologies, smartphone applications

Procedia PDF Downloads 160
21597 Integrating Student Engagement Activities into the Learning Process

Authors: Yingjin Cui, Xue Bai, Serena Reese

Abstract:

Student engagement and student interest during class instruction are important conditions for active learning. Engagement, which has an important relationship with learning motivation, influences students' levels of persistence in overcoming challenges. Lack of student engagement and absence from face-to-face lectures and tutorials, in turn, can lead to poor academic performance. However, keeping students motivated and engaged in the learning process in different instructional modes poses a significant challenge; students can easily become discouraged from attending lectures and tutorials across both online and face-to-face settings. Many factors impact students’ engagement in the learning process. If you want to keep students focused on learning, you have to invite them into the process of helping themselves by providing an active learning environment. Active learning is an excellent technique for enhancing student engagement and participation in the learning process because it provides means to motivate the student to engage themselves in the learning process through reflection, analyzing, applying, and synthesizing the material they learn during class. In this study, we discussed how to create an active learning class (both face-to-face and synchronous online) through engagement activities, including reflection, collaboration, screen messages, open poll, tournament, and transferring editing roles. These activities will provide an uncommon interactive learning environment that can result in improved learning outcomes. To evaluate the effectiveness of those engagement activities in the learning process, an experimental group and a control group will be explored in the study.

Keywords: active learning, academic performance, engagement activities, learning motivation

Procedia PDF Downloads 149
21596 Heightening Pre-Service Teachers’ Attitude towards Learning and Metacognitive Learning through Information and Communication Technology: Pre-Service Science Teachers’ Perspective

Authors: Abiodun Ezekiel Adesina, Ijeoma Ginikanwa Akubugwo

Abstract:

Information and Communication Technology, ICT can heighten pre-service teachers’ attitudes toward learning and metacognitive learning; however, there is a dearth of literature on the perception of the pre-service teachers on heightening their attitude toward learning and metacognitive learning. Thus, this study investigates the perception of pre-service science teachers on heightening their attitude towards learning and metacognitive learning through ICT. Two research questions and four hypotheses guided the research. A mixed methods research was adopted for the study in concurrent triangulation type of integrating qualitative and quantitative approaches to the study. The cluster random sampling technique was adopted to select 250 pre-service science teachers in Oyo township. Two self-constructed instruments: Heightening Pre-service Science Teachers’ Attitude towards Learning and Metacognitive Learning through Information and Communication Technology Scale (HPALMIS, r=.73), and an unstructured interview were used for data collection. Thematic analysis, frequency counts and percentages, t-tests, and analysis of variance were used for data analysis. The perception level of the pre-service science teachers on heightening their attitude towards learning and metacognitive learning through ICT is above average, with the majority perceiving that ICT can enhance their thinking about their learning. The perception was significant (mean=92.68, SD=10.86, df=249, t=134.91, p<.05). The perception was significantly differentiated by gender (t=2.10, df= 248, p<.05) in favour of the female pre-service teachers and based on the first time of ICTs use (F(5,244)= 9.586, p<.05). Lecturers of science and science related courses should therefore imbibe the use of ICTs in heightening pre-service teachers’ attitude towards learning and metacognitive learning. Government should organize workshops, seminars, lectures, and symposia along with professional bodies for the science education lecturers to keep abreast of the trending ICT.

Keywords: pre-service teachers’ attitude towards learning, metacognitive learning, ICT, pre-service teachers’ perspectives

Procedia PDF Downloads 100
21595 A Machine Learning-Based Approach to Capture Extreme Rainfall Events

Authors: Willy Mbenza, Sho Kenjiro

Abstract:

Increasing efforts are directed towards a better understanding and foreknowledge of extreme precipitation likelihood, given the adverse effects associated with their occurrence. This knowledge plays a crucial role in long-term planning and the formulation of effective emergency response. However, predicting extreme events reliably presents a challenge to conventional empirical/statistics due to the involvement of numerous variables spanning different time and space scales. In the recent time, Machine Learning has emerged as a promising tool for predicting the dynamics of extreme precipitation. ML techniques enables the consideration of both local and regional physical variables that have a strong influence on the likelihood of extreme precipitation. These variables encompasses factors such as air temperature, soil moisture, specific humidity, aerosol concentration, among others. In this study, we develop an ML model that incorporates both local and regional variables while establishing a robust relationship between physical variables and precipitation during the downscaling process. Furthermore, the model provides valuable information on the frequency and duration of a given intensity of precipitation.

Keywords: machine learning (ML), predictions, rainfall events, regional variables

Procedia PDF Downloads 87
21594 Fostering Enriched Teaching and Learning Experience Using Effective Cyber-Physical Learning Environment

Authors: Shubhakar K., Nachamma S., Judy T., Jacob S. C., Melvin Lee, Kenneth Lo

Abstract:

In recent years, technological advancements have ushered in a new era of education characterized by the integration of technology-enabled devices and online tools. The cyber-physical learning environment (CPLE) is a prime example of this evolution, merging remote cyber participants with in-class learners through immersive technology, interactive digital whiteboards, and online communication platforms like Zoom and MS Teams. This approach transforms the teaching and learning experience into a more seamless, immersive, and inclusive one. This paper outlines the design principles and key features of CPLE that support both teaching and group-based activities. We also explore the key characteristics and potential impact of such environments on educational practices. By analyzing user feedback, we evaluate how technology enhances teaching and learning in a cyber-physical setting, its impact on learning outcomes, user-friendliness, and areas for further enhancement to optimize the teaching and learning environment.

Keywords: cyber-physical class, hybrid teaching, online learning, remote learning, technology enabled learning

Procedia PDF Downloads 36
21593 Preservice EFL Teachers in a Blended Professional Development Program: Learning to Teach Speech Acts

Authors: Mei-Hui Liu

Abstract:

This study examines the effectiveness of a blended professional development program on preservice EFL (English as a foreign language) teachers’ learning to teach speech acts with the advent of Information and Communication Technology, researchers and scholars underscore the significance of integrating online and face-to-face learning opportunities in the teacher education field. Yet, a paucity of evidence has been documented to investigate the extent to which such a blended professional learning model may impact real classroom practice and student learning outcome. This yearlong project involves various stakeholders, including 25 preservice teachers, 5 English professionals, and 45 secondary school students. Multiple data sources collected are surveys, interviews, reflection journals, online discussion messages, artifacts, and discourse completion tests. Relying on the theoretical lenses of Community of Inquiry, data analysis depicts the nature and process of preservice teachers’ professional development in this blended learning community, which triggers and fosters both face-to-face and synchronous/asynchronous online interactions among preservice teachers and English professionals (i.e., university faculty and in-service teachers). Also included is the student learning outcome after preservice teachers put what they learn from the support community into instructional practice. Pedagogical implications and research suggestions are further provided based on the research findings and limitations.

Keywords: blended professional development, preservice EFL teachers, speech act instruction, student learning outcome

Procedia PDF Downloads 225
21592 The Effect of the Andalus Knowledge Phases and Times Model of Learning on the Development of Students’ Academic Performance and Emotional Quotient

Authors: Sobhy Fathy A. Hashesh

Abstract:

This study aimed at investigating the effect of Andalus Knowledge Phases and Times (ANPT) model of learning and the effect of 'Intel Education Contribution in ANPT' on the development of students’ academic performance and emotional quotient. The society of the study composed of Andalus Private Schools, elementary school students (N=700), while the sample of the study composed of four randomly assigned groups (N=80) with one experimental group and one control group to study "ANPT" effect and the "Intel Contribution in ANPT" effect respectively. The study followed the quantitative and qualitative approaches in collecting and analyzing data to answer the study questions. Results of the study revealed that there were significant statistical differences between students’ academic performances and emotional quotients for the favor of the experimental groups. The study recommended applying this model on different educational variables and on other age groups to generate more data leading to more educational results for the favor of students’ learning outcomes.

Keywords: Al Andalus, emotional quotient, students, academic performance development

Procedia PDF Downloads 238
21591 Avatar Creation for E-Learning

Authors: M. Najib Osman, Hanafizan Hussain, Sri Kusuma Wati Mohd Daud

Abstract:

Avatar was used as user’s symbol of identity in online communications such as Facebook, Twitter, online game, and portal community between unknown people. The development of this symbol is the use of animated character or avatar, which can engage learners in a way that draws them into the e-Learning experience. Immersive learning is one of the most effective learning techniques, and animated characters can help create an immersive environment. E-learning is an ideal learning environment using modern means of information technology, through the effective integration of information technology and the curriculum to achieve, a new learning style which can fully reflect the main role of the students to reform the traditional teaching structure thoroughly. Essential in any e-learning is the degree of interactivity for the learner, and whether the learner is able to study at any time, or whether there is a need for the learner to be online or in a classroom with other learners at the same time (synchronous learning). Ideally, e-learning should engage the learners, allowing them to interact with the course materials, obtaining feedback on their progress and assistance whenever it is required. However, the degree of interactivity in e-learning depends on how the course has been developed and is dependent on the software used for its development, and the way the material is delivered to the learner. Therefore, users’ accessibility that allows access to information at any time and places and their positive attitude towards e-learning such as having interacting with a good teacher and the creation of a more natural and friendly environment for e-learning should be enhanced. This is to motivate their learning enthusiasm and it has been the responsibility of educators to incorporate new technology into their ways of teaching.

Keywords: avatar, e-learning, higher education, students' perception

Procedia PDF Downloads 410
21590 Machine Learning Approach for Yield Prediction in Semiconductor Production

Authors: Heramb Somthankar, Anujoy Chakraborty

Abstract:

This paper presents a classification study on yield prediction in semiconductor production using machine learning approaches. A complicated semiconductor production process is generally monitored continuously by signals acquired from sensors and measurement sites. A monitoring system contains a variety of signals, all of which contain useful information, irrelevant information, and noise. In the case of each signal being considered a feature, "Feature Selection" is used to find the most relevant signals. The open-source UCI SECOM Dataset provides 1567 such samples, out of which 104 fail in quality assurance. Feature extraction and selection are performed on the dataset, and useful signals were considered for further study. Afterward, common machine learning algorithms were employed to predict whether the signal yields pass or fail. The most relevant algorithm is selected for prediction based on the accuracy and loss of the ML model.

Keywords: deep learning, feature extraction, feature selection, machine learning classification algorithms, semiconductor production monitoring, signal processing, time-series analysis

Procedia PDF Downloads 109
21589 Adaptive E-Learning System Using Fuzzy Logic and Concept Map

Authors: Mesfer Al Duhayyim, Paul Newbury

Abstract:

This paper proposes an effective adaptive e-learning system that uses a coloured concept map to show the learner's knowledge level for each concept in the chosen subject area. A Fuzzy logic system is used to evaluate the learner's knowledge level for each concept in the domain, and produce a ranked concept list of learning materials to address weaknesses in the learner’s understanding. This system obtains information on the learner's understanding of concepts by an initial pre-test before the system is used for learning and a post-test after using the learning system. A Fuzzy logic system is used to produce a weighted concept map during the learning process. The aim of this research is to prove that such a proposed novel adapted e-learning system will enhance learner's performance and understanding. In addition, this research aims to increase participants' overall understanding of their learning level by providing a coloured concept map of understanding followed by a ranked concepts list of learning materials.

Keywords: adaptive e-learning system, coloured concept map, fuzzy logic, ranked concept list

Procedia PDF Downloads 292
21588 The Effectiveness of Lesson Study via Learning Communities in Increasing Instructional Self-Efficacy of Beginning Special Educators

Authors: David D. Hampton

Abstract:

Lesson study is used as an instructional technique to promote both student and faculty learning. However, little is known about the usefulness of learning communities in supporting results of lesson study on the self-efficacy and development for tenure-track faculty. This study investigated the impact of participation in a lesson study learning community on 34 new faculty members at a mid-size Midwestern University, specifically regarding implementing lesson study evaluations by new faculty on their reported self-efficacy. Results indicate that participation in a lesson study learning community significantly increased faculty members’ lesson study self-efficacy as well as grant and manuscript production over one academic year. Suggestions for future lesson study around faculty learning communities are discussed.

Keywords: lesson study, learning community, lesson study self-efficacy, new faculty

Procedia PDF Downloads 150
21587 The AI Arena: A Framework for Distributed Multi-Agent Reinforcement Learning

Authors: Edward W. Staley, Corban G. Rivera, Ashley J. Llorens

Abstract:

Advances in reinforcement learning (RL) have resulted in recent breakthroughs in the application of artificial intelligence (AI) across many different domains. An emerging landscape of development environments is making powerful RL techniques more accessible for a growing community of researchers. However, most existing frameworks do not directly address the problem of learning in complex operating environments, such as dense urban settings or defense-related scenarios, that incorporate distributed, heterogeneous teams of agents. To help enable AI research for this important class of applications, we introduce the AI Arena: a scalable framework with flexible abstractions for distributed multi-agent reinforcement learning. The AI Arena extends the OpenAI Gym interface to allow greater flexibility in learning control policies across multiple agents with heterogeneous learning strategies and localized views of the environment. To illustrate the utility of our framework, we present experimental results that demonstrate performance gains due to a distributed multi-agent learning approach over commonly-used RL techniques in several different learning environments.

Keywords: reinforcement learning, multi-agent, deep learning, artificial intelligence

Procedia PDF Downloads 157
21586 An Integrated Architecture of E-Learning System to Digitize the Learning Method

Authors: M. Touhidul Islam Sarker, Mohammod Abul Kashem

Abstract:

The purpose of this paper is to improve the e-learning system and digitize the learning method in the educational sector. The learner will login into e-learning platform and easily access the digital content, the content can be downloaded and take an assessment for evaluation. Learner can get access to these digital resources by using tablet, computer, and smart phone also. E-learning system can be defined as teaching and learning with the help of multimedia technologies and the internet by access to digital content. E-learning replacing the traditional education system through information and communication technology-based learning. This paper has designed and implemented integrated e-learning system architecture with University Management System. Moodle (Modular Object-Oriented Dynamic Learning Environment) is the best e-learning system, but the problem of Moodle has no school or university management system. In this research, we have not considered the school’s student because they are out of internet facilities. That’s why we considered the university students because they have the internet access and used technologies. The University Management System has different types of activities such as student registration, account management, teacher information, semester registration, staff information, etc. If we integrated these types of activity or module with Moodle, then we can overcome the problem of Moodle, and it will enhance the e-learning system architecture which makes effective use of technology. This architecture will give the learner to easily access the resources of e-learning platform anytime or anywhere which digitizes the learning method.

Keywords: database, e-learning, LMS, Moodle

Procedia PDF Downloads 187
21585 The Effects of Integrating Knowledge Management and e-Learning: Productive Work and Learning Coverage

Authors: Ashraf Ibrahim Awad

Abstract:

It is important to formulate suitable learning environments ca-pable to be customized according to value perceptions of the university. In this paper, light is shed on the concepts of integration between knowledge management (KM), and e-learning (EL) in the higher education sector of the economy in Abu Dhabi Emirate, United Arab Emirates (UAE). A discussion on and how KM and EL can be integrated and leveraged for effective education and training is presented. The results are derived from the literature and interviews with 16 of the academics in eight universities in the Emirate. The conclusion is that KM and EL have much to offer each other, but this is not yet reflected at the implementation level, and their boundaries are not always clear. Interviews have shown that both concepts perceived to be closely related and, responsibilities for these initiatives are practiced by different departments or units.

Keywords: knowledge management, e-learning, learning integration, universities, UAE

Procedia PDF Downloads 507
21584 Learning Preference in Nursing Students at Boromarajonani College of Nursing Chon Buri

Authors: B. Wattanakul, G. Ngamwongwan, S. Ngamkham

Abstract:

Exposure to different learning experiences contributes to changing in learning style. Addressing students’ learning preference could help teachers provide different learning activities that encourage the student to learn effectively. Purpose: The purpose of this descriptive study was to describe learning styles of nursing students at Boromarajonani College of Nursing Chon Buri. Sample: The purposive sample was 463 nursing students who were enrolled in a nursing program at different academic levels. The 16-item VARK questionnaire with 4 multiple choices was administered at one time data collection. Choices have consisted with modalities of Visual, Aural, Read/write, and Kinesthetic measured by VARK. Results: Majority of learning preference of students at different levels was visual and read/write learning preference. Almost 67% of students have a multimodal preference, which is visual learning preference associated with read/write or kinesthetic preference. At different academic levels, multimodalities are greater than single preference. Over 30% of students have one dominant learning preference, including visual preference, read/write preference and kinesthetic preference. Analysis of Variance (ANOVA) with Bonferroni adjustment revealed a significant difference between students based on their academic level (p < 0.001). Learning style of the first-grade nursing students differed from the second-grade nursing students (p < 0.001). While learning style of nursing students in the second-grade has significantly varied from the 1st, 3rd, and 4th grade (p < 0.001), learning preference of the 3rd grade has significantly differed from the 4th grade of nursing students (p > 0.05). Conclusions: Nursing students have varied learning styles based on their different academic levels. Learning preference is not fixed attributes. This should help nursing teachers assess the types of changes in students’ learning preferences while developing teaching plans to optimize students’ learning environment and achieve the needs of the courses and help students develop learning preference to meet the need of the course.

Keywords: learning preference, VARK, learning style, nursing

Procedia PDF Downloads 359
21583 A Machine Learning Model for Predicting Students’ Academic Performance in Higher Institutions

Authors: Emmanuel Osaze Oshoiribhor, Adetokunbo MacGregor John-Otumu

Abstract:

There has been a need in recent years to predict student academic achievement prior to graduation. This is to assist them in improving their grades, especially for those who have struggled in the past. The purpose of this research is to use supervised learning techniques to create a model that predicts student academic progress. Many scholars have developed models that predict student academic achievement based on characteristics including smoking, demography, culture, social media, parent educational background, parent finances, and family background, to mention a few. This element, as well as the model used, could have misclassified the kids in terms of their academic achievement. As a prerequisite to predicting if the student will perform well in the future on related courses, this model is built using a logistic regression classifier with basic features such as the previous semester's course score, attendance to class, class participation, and the total number of course materials or resources the student is able to cover per semester. With a 96.7 percent accuracy, the model outperformed other classifiers such as Naive bayes, Support vector machine (SVM), Decision Tree, Random forest, and Adaboost. This model is offered as a desktop application with user-friendly interfaces for forecasting student academic progress for both teachers and students. As a result, both students and professors are encouraged to use this technique to predict outcomes better.

Keywords: artificial intelligence, ML, logistic regression, performance, prediction

Procedia PDF Downloads 109
21582 Introducing and Effectiveness Evaluation of Innovative Logistics System Simulation Teaching: Theoretical Integration and Verification

Authors: Tsai-Pei Liu, Zhi-Rou Zheng, Tzu-Tzu Wen

Abstract:

Innovative logistics system simulation teaching is to extract the characteristics of the system through simulation methodology. The system has randomness and interaction problems in the execution time. Therefore, the simulation model can usually deal with more complex logistics process problems, giving students different learning modes. Students have more autonomy in learning time and learning progress. System simulation has become a new educational tool, but it still needs to accept many tests to use it in the teaching field. Although many business management departments in Taiwan have started to promote, this kind of simulation system teaching is still not popular, and the prerequisite for popularization is to be supported by students. This research uses an extension of Integration Unified Theory of Acceptance and Use of Technology (UTAUT2) to explore the acceptance of students in universities of science and technology to use system simulation as a learning tool. At the same time, it is hoped that this innovation can explore the effectiveness of the logistics system simulation after the introduction of teaching. The results indicated the significant influence of performance expectancy, social influence and learning value on students’ intention towards confirmed the influence of facilitating conditions and behavioral intention. The extended UTAUT2 framework helps in understanding students’ perceived value in the innovative logistics system teaching context.

Keywords: UTAUT2, logistics system simulation, learning value, Taiwan

Procedia PDF Downloads 114
21581 Evaluating the Effectiveness of Digital Game-Based Learning on Educational Outcomes of Students with Special Needs in an Inclusive Classroom

Authors: Shafaq Rubab

Abstract:

The inclusion of special needs students in a classroom is prevailing gradually in developing countries. Digital game-based learning is one the most effective instructional methodology for special needs students. Digital game-based learning facilitates special needs students who actually face challenges and obstacles in their learning processes. This study aimed to evaluate the effectiveness of digital game-based learning on the educational progress of special needs students in developing countries. The quasi-experimental research was conducted by using purposively selected sample size of eight special needs students. Results of both experimental and control group showed that performance of the experimental group students was better than the control group students and there was a significant difference between both groups’ results. This research strongly recommended that digital game-based learning can help special needs students in an inclusive classroom. It also revealed that special needs students can learn efficiently by using pedagogically sound learning games and game-based learning helps a lot for the self-paced fast-track learning system.

Keywords: inclusive education, special needs, digital game-based learning, fast-track learning

Procedia PDF Downloads 294
21580 A Case Study on Machine Learning-Based Project Performance Forecasting for an Urban Road Reconstruction Project

Authors: Soheila Sadeghi

Abstract:

In construction projects, predicting project performance metrics accurately is essential for effective management and successful delivery. However, conventional methods often depend on fixed baseline plans, disregarding the evolving nature of project progress and external influences. To address this issue, we introduce a distinct approach based on machine learning to forecast key performance indicators, such as cost variance and earned value, for each Work Breakdown Structure (WBS) category within an urban road reconstruction project. Our proposed model leverages time series forecasting techniques, namely Autoregressive Integrated Moving Average (ARIMA) and Long Short-Term Memory (LSTM) networks, to predict future performance by analyzing historical data and project progress. Additionally, the model incorporates external factors, including weather patterns and resource availability, as features to improve forecast accuracy. By harnessing the predictive capabilities of machine learning, our performance forecasting model enables project managers to proactively identify potential deviations from the baseline plan and take timely corrective measures. To validate the effectiveness of the proposed approach, we conduct a case study on an urban road reconstruction project, comparing the model's predictions with actual project performance data. The outcomes of this research contribute to the advancement of project management practices in the construction industry by providing a data-driven solution for enhancing project performance monitoring and control.

Keywords: project performance forecasting, machine learning, time series forecasting, cost variance, schedule variance, earned value management

Procedia PDF Downloads 39
21579 Re-identification Risk and Mitigation in Federated Learning: Human Activity Recognition Use Case

Authors: Besma Khalfoun

Abstract:

In many current Human Activity Recognition (HAR) applications, users' data is frequently shared and centrally stored by third parties, posing a significant privacy risk. This practice makes these entities attractive targets for extracting sensitive information about users, including their identity, health status, and location, thereby directly violating users' privacy. To tackle the issue of centralized data storage, a relatively recent paradigm known as federated learning has emerged. In this approach, users' raw data remains on their smartphones, where they train the HAR model locally. However, users still share updates of their local models originating from raw data. These updates are vulnerable to several attacks designed to extract sensitive information, such as determining whether a data sample is used in the training process, recovering the training data with inversion attacks, or inferring a specific attribute or property from the training data. In this paper, we first introduce PUR-Attack, a parameter-based user re-identification attack developed for HAR applications within a federated learning setting. It involves associating anonymous model updates (i.e., local models' weights or parameters) with the originating user's identity using background knowledge. PUR-Attack relies on a simple yet effective machine learning classifier and produces promising results. Specifically, we have found that by considering the weights of a given layer in a HAR model, we can uniquely re-identify users with an attack success rate of almost 100%. This result holds when considering a small attack training set and various data splitting strategies in the HAR model training. Thus, it is crucial to investigate protection methods to mitigate this privacy threat. Along this path, we propose SAFER, a privacy-preserving mechanism based on adaptive local differential privacy. Before sharing the model updates with the FL server, SAFER adds the optimal noise based on the re-identification risk assessment. Our approach can achieve a promising tradeoff between privacy, in terms of reducing re-identification risk, and utility, in terms of maintaining acceptable accuracy for the HAR model.

Keywords: federated learning, privacy risk assessment, re-identification risk, privacy preserving mechanisms, local differential privacy, human activity recognition

Procedia PDF Downloads 11
21578 Efficient Chiller Plant Control Using Modern Reinforcement Learning

Authors: Jingwei Du

Abstract:

The need of optimizing air conditioning systems for existing buildings calls for control methods designed with energy-efficiency as a primary goal. The majority of current control methods boil down to two categories: empirical and model-based. To be effective, the former heavily relies on engineering expertise and the latter requires extensive historical data. Reinforcement Learning (RL), on the other hand, is a model-free approach that explores the environment to obtain an optimal control strategy often referred to as “policy”. This research adopts Proximal Policy Optimization (PPO) to improve chiller plant control, and enable the RL agent to collaborate with experienced engineers. It exploits the fact that while the industry lacks historical data, abundant operational data is available and allows the agent to learn and evolve safely under human supervision. Thanks to the development of language models, renewed interest in RL has led to modern, online, policy-based RL algorithms such as the PPO. This research took inspiration from “alignment”, a process that utilizes human feedback to finetune the pretrained model in case of unsafe content. The methodology can be summarized into three steps. First, an initial policy model is generated based on minimal prior knowledge. Next, the prepared PPO agent is deployed so feedback from both critic model and human experts can be collected for future finetuning. Finally, the agent learns and adapts itself to the specific chiller plant, updates the policy model and is ready for the next iteration. Besides the proposed approach, this study also used traditional RL methods to optimize the same simulated chiller plants for comparison, and it turns out that the proposed method is safe and effective at the same time and needs less to no historical data to start up.

Keywords: chiller plant, control methods, energy efficiency, proximal policy optimization, reinforcement learning

Procedia PDF Downloads 28
21577 The Differences in Skill Performance Between Online and Conventional Learning Among Nursing Students

Authors: Nurul Nadrah

Abstract:

As a result of the COVID-19 pandemic, a movement control order was implemented, leading to the adoption of online learning as a substitute for conventional classroom instruction. Thus, this study aims to determine the differences in skill performance between online learning and conventional methods among nursing students. We employed a quasi-experimental design with purposive sampling, involving a total of 59 nursing students, and used online learning as the intervention. As a result, the study found there was a significant difference in student skill performance between online learning and conventional methods. As a conclusion, in times of hardship, it is necessary to implement alternative pedagogical approaches, especially in critical fields like nursing, to ensure the uninterrupted progression of educational programs. This study suggests that online learning can be effectively employed as a means of imparting knowledge to nursing students during their training.

Keywords: nursing education, online learning, skill performance, conventional learning method

Procedia PDF Downloads 46