Search results for: empire formation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3417

Search results for: empire formation

2907 Formation of in-situ Ceramic Phase in N220 Nano Carbon Containing Low Carbon Mgo-C Refractory

Authors: Satyananda Behera, Ritwik Sarkar

Abstract:

In iron and steel industries, MgO–C refractories are widely used in basic oxygen furnaces, electric arc furnaces and steel ladles due to their excellent corrosion resistance, thermal shock resistance, and other excellent hot properties. Conventionally magnesia carbon refractories contain about 8-20 wt% of carbon but the use of carbon is also associate with disadvantages like oxidation, low fracture strength, high heat loss and higher carbon pick up in steel. So, MgO-C refractory having low carbon content without compromising the beneficial properties is the challenge. Nano carbon, having finer particles, can mix and distribute within the entire matrix uniformly and can result in improved mechanical, thermo-mechanical, corrosion and other refractory properties. Previous experiences with the use of nano carbon in low carbon MgO-C refractory have indicated an optimum range of use of nano carbon around 1 wt%. This optimum nano carbon content was used in MgO-C compositions with flaky graphite followed by aluminum and silicon metal powder as an anti-oxidant. These low carbon MgO-C refractory compositions were prepared by conventional manufacturing techniques. At the same time 16 wt. % flaky graphite containing conventional MgO-C refractory was also prepared parallel under similar conditions. The developed products were characterized for various refractory related properties. Nano carbon containing compositions showed better mechanical, thermo-mechanical properties, and oxidation resistance compared to that of conventional composition. Improvement in the properties is associated with the formation of in-situ ceramic phase-like aluminum carbide, silicon carbide, and magnesium aluminum spinel. Higher surface area and higher reactivity of N220 nano carbon black resulted in greater formation in-situ ceramic phases, even at a much lower amount. Nano carbon containing compositions were found to have improved properties in MgO-C refractories compared to that of the conventional ones at much lower total carbon content.

Keywords: N220nano carbon black, refractory properties, conventionally manufacturing techniques, conventional magnesia carbon refractories

Procedia PDF Downloads 367
2906 Detecting Memory-Related Gene Modules in sc/snRNA-seq Data by Deep-Learning

Authors: Yong Chen

Abstract:

To understand the detailed molecular mechanisms of memory formation in engram cells is one of the most fundamental questions in neuroscience. Recent single-cell RNA-seq (scRNA-seq) and single-nucleus RNA-seq (snRNA-seq) techniques have allowed us to explore the sparsely activated engram ensembles, enabling access to the molecular mechanisms that underlie experience-dependent memory formation and consolidation. However, the absence of specific and powerful computational methods to detect memory-related genes (modules) and their regulatory relationships in the sc/snRNA-seq datasets has strictly limited the analysis of underlying mechanisms and memory coding principles in mammalian brains. Here, we present a deep-learning method named SCENTBOX, to detect memory-related gene modules and causal regulatory relationships among themfromsc/snRNA-seq datasets. SCENTBOX first constructs codifferential expression gene network (CEGN) from case versus control sc/snRNA-seq datasets. It then detects the highly correlated modules of differential expression genes (DEGs) in CEGN. The deep network embedding and attention-based convolutional neural network strategies are employed to precisely detect regulatory relationships among DEG genes in a module. We applied them on scRNA-seq datasets of TRAP; Ai14 mouse neurons with fear memory and detected not only known memory-related genes, but also the modules and potential causal regulations. Our results provided novel regulations within an interesting module, including Arc, Bdnf, Creb, Dusp1, Rgs4, and Btg2. Overall, our methods provide a general computational tool for processing sc/snRNA-seq data from case versus control studie and a systematic investigation of fear-memory-related gene modules.

Keywords: sc/snRNA-seq, memory formation, deep learning, gene module, causal inference

Procedia PDF Downloads 120
2905 Evaluation of Compatibility between Produced and Injected Waters and Identification of the Causes of Well Plugging in a Southern Tunisian Oilfield

Authors: Sonia Barbouchi, Meriem Samcha

Abstract:

Scale deposition during water injection into aquifer of oil reservoirs is a serious problem experienced in the oil production industry. One of the primary causes of scale formation and injection well plugging is mixing two waters which are incompatible. Considered individually, the waters may be quite stable at system conditions and present no scale problems. However, once they are mixed, reactions between ions dissolved in the individual waters may form insoluble products. The purpose of this study is to identify the causes of well plugging in a southern Tunisian oilfield, where fresh water has been injected into the producing wells to counteract the salinity of the formation waters and inhibit the deposition of halite. X-ray diffraction (XRD) mineralogical analysis has been carried out on scale samples collected from the blocked well. Two samples collected from both formation water and injected water were analysed using inductively coupled plasma atomic emission spectroscopy, ion chromatography and other standard laboratory techniques. The results of complete waters analysis were the typical input parameters, to determine scaling tendency. Saturation indices values related to CaCO3, CaSO4, BaSO4 and SrSO4 scales were calculated for the water mixtures at different share, under various conditions of temperature, using a computerized scale prediction model. The compatibility study results showed that mixing the two waters tends to increase the probability of barite deposition. XRD analysis confirmed the compatibility study results, since it proved that the analysed deposits consisted predominantly of barite with minor galena. At the studied temperatures conditions, the tendency for barite scale is significantly increasing with the increase of fresh water share in the mixture. The future scale inhibition and removal strategies to be implemented in the concerned oilfield are being derived in a large part from the results of the present study.

Keywords: compatibility study, produced water, scaling, water injection

Procedia PDF Downloads 166
2904 Towards a Rigorous Analysis for a Supercritical Particulate Process

Authors: Yousef Bakhbakhi

Abstract:

Crystallization with supercritical fluids (SCFs), as a developed technology to produce particles of micron and sub-micron size with narrow size distribution, has found appreciable importance as an environmentally friendly technology. Particle synthesis using SCFs can be achieved employing a number of special processes involving solvent and antisolvent mechanisms. In this study, the compressed antisolvent (PCA) process is utilized as a model to analyze the theoretical complexity of crystallization with supercritical fluids. The population balance approach has proven to be an effectual technique to simulate and predict the particle size and size distribution. The nucleation and growth mechanisms of the particles formation in the PCA process is investigated using the population balance equation, which describes the evolution of the particle through coalescence and breakup levels with time. The employed mathematical population balance model contains a set of the partial differential equation with algebraic constraints, which demands a rigorous numerical approach. The combined Collocation and Galerkin finite element method are proposed as a high-resolution technique to solve the dynamics of the PCA process.

Keywords: particle formation, particle size and size distribution, PCA, supercritical carbon dioxide

Procedia PDF Downloads 197
2903 The Influence of Ni Elements on Mechanical Properties and Microstructure of Twinning Induced Plasticity (TWIP)

Authors: Yuksel Akinay, Fatih Hayat

Abstract:

The influence of Ni elements on mechanical properties and microstructure of twinning induced plasticity (TWIP) steels were investigated in this study. TWIP 1 (0,6C, 24Mn) and TWIP 2 (0,6C, 24Mn, 1Ni) high Mn TWIP (Twinning Induced Plasticity) steels were fabricated, and were annealed at 700°C, 800°C and 900°C for 150 minute and then air-cooled. The microstructures and mechanical properties of specimens were analysed to investigate influence of Ni element on TWIP steel. The carbide precipitations have seen in microstructure of TWIP 1 and TWIP 2 specimen annealed at 700 °C. However, the microstructures of TWIP 1 annealed at 800°C and 900°C are fully austenite and some grains are including annealing twins. However twining did not occur at TWIP 2 specimens annealed at 700 °C, 800 °C and 900 °C. TWIP 2 steel contains also Ni element differently from TWIP 1 steel. It can conclude that, Nickel (Ni) was restrained formation of twinning. The reversion of the tensile strength occurred between 700°C and 800°C because of the carbide precipitation hardening. Beside that, hardness value has decreased between 800 °C and 900 °C, which show a good agreement with the equilibrium dissolution temperature of M3C carbides. However, the results show that, carbide precipitations also are as strong barriers for the formation of twining. For this reason, twinning was not obtained at 700 °C.

Keywords: high manganese, heat treatment, SEM, TWIP steel, cold rolling, nickel

Procedia PDF Downloads 357
2902 Effects of Insulin on Osseointegration around Implant in Type 2 Diabetic and Non-Diabetic Rats

Authors: Xing Wang, Lin Feng, Lingling E., Hongchen Liu

Abstract:

In patients with type 2 diabetes mellitus (DM) there is poorer quality osseointegration than in non-diabetic (n-DM) patients, and the success of dental implants is less. Recent studies have demonstrated that insulin could stimulate bone cells to produce and accelerate implant osseointegration in DM patients.This raised the question whether insulin could provide local bone anabolic effects in non-diabetic patients. In this study,48 SD rats were divided into four groups randomly: DM group, DM+insulin group, n-DM group, n-DM + insulin group. All rats were implanted the titanium implant near the epiphyseal end of tibia, then the DM + insulin and n-DM + insulin group received twice-daily subcutaneous injections of insulin (10U/day).Two,four and eight weeks after implantation, rats were killed in batches. Histomorphometry and immunohistochemistry were used to evaluate bone formation and osseointegration. The amount of newly formed bone, Implant–bone contact and the expression of OCN,RUNX2 in the DM+insulin, n-DM and n-DM+insulin group were significantly more than in the DM group (p<0.05). Compared with the n-DM group,the Implant–bone contact and expression of OCN,RUNX2 were significantly increased in n-DM+insulin group (p< 0.05). Taken together,these observations provide evidence that insulin has the potential to increase bone formation and osseointegration around implant not only in diabetic subjects but also in non-diabetic subject.

Keywords: insulin, diabetes mellitus, osseointegration, dental implants

Procedia PDF Downloads 463
2901 Monitoring the Thin Film Formation of Carrageenan and PNIPAm Microgels

Authors: Selim Kara, Ertan Arda, Fahrettin Dolastir, Önder Pekcan

Abstract:

Biomaterials and thin film coatings play a fundamental role in medical, food and pharmaceutical industries. Carrageenan is a linear sulfated polysaccharide extracted from algae and seaweeds. To date, such biomaterials have been used in many smart drug delivery systems due to their biocompatibility and antimicrobial activity properties. Poly (N-isopropylacrylamide) (PNIPAm) gels and copolymers have also been used in medical applications. PNIPAm shows lower critical solution temperature (LCST) property at about 32-34 °C which is very close to the human body temperature. Below and above the LCST point, PNIPAm gels exhibit distinct phase transitions between swollen and collapsed states. A special class of gels are microgels which can react to environmental changes significantly faster than microgels due to their small sizes. Quartz crystal microbalance (QCM) measurement technique is one of the attractive techniques which has been used for monitoring the thin-film formation process. A sensitive QCM system was designed as to detect 0.1 Hz difference in resonance frequency and 10-7 change in energy dissipation values, which are the measures of the deposited mass and the film rigidity, respectively. PNIPAm microgels with the diameter around few hundred nanometers in water were produced via precipitation polymerization process. 5 MHz quartz crystals with functionalized gold surfaces were used for the deposition of the carrageenan molecules and microgels in the solutions which were slowly pumped through a flow cell. Interactions between charged carrageenan and microgel particles were monitored during the formation of the film layers, and the Sauerbrey masses of the deposited films were calculated. The critical phase transition temperatures around the LCST were detected during the heating and cooling cycles. It was shown that it is possible to monitor the interactions between PNIPAm microgels and biopolymer molecules, and it is also possible to specify the critical phase transition temperatures by using a QCM system.

Keywords: carrageenan, phase transitions, PNIPAm microgels, quartz crystal microbalance (QCM)

Procedia PDF Downloads 231
2900 Estimation of Emanation Properties of Kimberlites and Host Rocks of Lomonosov Diamond Deposit in Russia

Authors: E. Yu. Yakovlev, A. V. Puchkov

Abstract:

The study is devoted to experimental work on the assessment of emanation properties of kimberlites and host rocks of the Lomonosov diamond deposit of the Arkhangelsk diamondiferous province. The aim of the study is estimation the factors influencing on formation of the radon field over kimberlite pipes. For various types of rocks composing the kimberlite pipe and near-pipe space, the following parameters were measured: porosity, density, radium-226 activity, activity of free radon and emanation coefficient. The research results showed that the largest amount of free radon is produced by rocks of near-pipe space, which are the Vendian host deposits and are characterized by high values of the emanation coefficient, radium activity and porosity. The lowest values of these parameters are characteristic of vent-facies kimberlites, which limit the formation of activity of free radon in body of the pipe. The results of experimental work confirm the prospects of using emanation methods for prospecting of kimberlite pipes.

Keywords: emanation coefficient, kimberlites, porosity, radon volumetric activity

Procedia PDF Downloads 139
2899 Topochemical Synthesis of Epitaxial Silicon Carbide on Silicon

Authors: Andrey V. Osipov, Sergey A. Kukushkin, Andrey V. Luk’yanov

Abstract:

A method is developed for the solid-phase synthesis of epitaxial layers when the substrate itself is involved into a topochemical reaction and the reaction product grows in the interior of substrate layer. It opens up new possibilities for the relaxation of the elastic energy due to the attraction of point defects formed during the topochemical reaction in anisotropic media. The presented method of silicon carbide (SiC) formation employs a topochemical reaction between the single-crystalline silicon (Si) substrate and gaseous carbon monoxide (CO). The corresponding theory of interaction of point dilatation centers in anisotropic crystals is developed. It is eliminated that the most advantageous location of the point defects is the direction (111) in crystals with cubic symmetry. The single-crystal SiC films with the thickness up to 200 nm have been grown on Si (111) substrates owing to the topochemical reaction with CO. Grown high-quality single-crystal SiC films do not contain misfit dislocations despite the huge lattice mismatch value of ~20%. Also the possibility of growing of thick wide-gap semiconductor films on these templates SiC/Si(111) and, accordingly, its integration into Si electronics, is demonstrated. Finally, the ab initio theory of SiC formation due to the topochemical reaction has been developed.

Keywords: epitaxy, silicon carbide, topochemical reaction, wide-bandgap semiconductors

Procedia PDF Downloads 458
2898 Structural and Microstructural Investigation into Causes of Rail Squat Defects and Their Correlation with White Etching Layers

Authors: A. Al-Juboori, D. Wexler, H. Li, H. Zhu, C. Lu, A. McCusker, J. McLeod, S. Pannila, Z. Wang

Abstract:

Squats are a type railhead defect related to rolling contact fatigue (RCF) damage and are considered serious problem affecting a wide range of railway networks across the world. Squats can lead to partial or complete rail failure. Formation mechanics of squats on the surface of rail steel is still a matter of debate. In this work, structural and microstructural observations from ex-service damaged rail both confirms the phases present in white etching layer (WEL) regions and relationship between cracking in WEL and squat defect formation. XRD synchrotron results obtained from the top surfaces of rail regions containing both WEL and squat defects reveal that these regions contain both martensite and retained austenite. Microstructural analysis of these regions revealed the occurrence cracks extending from WEL down into the rail through the squat region. These findings obtained from field rail specimen support the view that WEL contains regions of austenite and martensitic transformation product, and that cracks in this brittle surface layer propagate deeper into the rail as squats originate and grow.

Keywords: squat, white etching layer, rolling contact fatigue, synchrotron diffraction

Procedia PDF Downloads 330
2897 Mechanism of Formation, Mineralogy and Geochemistry of Iron Mineralization in M'Taguinarou North Tebessa, Algeria

Authors: Fakher Eddine Messaoudi

Abstract:

The M'Taguinarou North iron occurrence contains Iron and polymetallic mineralization (Fe-Zn-Cu), hosted in Turonian limestone. It manifests in metric clusters of goethite and hematite and in centimetre veins of smithsonite, malachite, and azurite. The genesis of this mineralization is clearly polyphased and results from the supergene processes superposed on hydrothermal phases where the Triassic diapirs probably generated the circulation of hydrothermal fluids through the sedimentary series, and the alteration of the Turonian limestone gave the formation of the hydrothermal primary ore composed of iron carbonates (siderite). Several uplift episodes affected the mineralization and the host rocks, generating the genesis of a polymetallic supergene assembly (goethite, malachite, azurite, quartz, and calcite). In M’taguinarou North, iron oxy-hydroxides are mainly observed in the form of fibrous stalactites, stalagmites, and Botroydale structures, where hematite precipitated first, followed immediately by goethite, limonite, and smithsonite. Siderite is completely absent. Subsequently, malachite, azurite, and calcite formed in the form of small veins intersecting the surrounding limestone.

Keywords: mineralization, genetic model, hydrothermal iron, supergene, Tebessa, Algeria

Procedia PDF Downloads 211
2896 The Effect of Framework Structure on N2O Formation over Cu-Based Zeolites during NH3-SCR Reactions

Authors: Ghodsieh Isapour Toutizad, Aiyong Wang, Joonsoo Han, Derek Creaser, Louise Olsson, Magnus Skoglundh, Hanna HaRelind

Abstract:

Nitrous oxide (N2O), which is generally formed as a byproduct of industrial chemical processes and fossil fuel combustion, has attracted considerable attention due to its destructive role in global warming and ozone layer depletion. From various developed technologies used for lean NOx reduction, the selective catalytic reduction (SCR) of NOx with ammonia is presently the most applied method. Therefore, the development of catalysts for efficient lean NOx reduction without forming N2O in the process, or only forming it to a very small extent from the exhaust gases is of crucial significance. One type of catalysts that nowadays are used for this aim are zeolite-based catalysts. It is owing to their remarkable catalytic performance under practical reaction conditions such as high thermal stability and high N2 selectivity. Among all zeolites, copper ion-exchanged zeolites, with CHA, MFI, and BEA framework structure (like SSZ-13, ZSM-5 and Beta, respectively), represent higher hydrothermal stability, high activity and N2 selectivity. This work aims at investigating the effect of the zeolite framework structure on the formation of N2O during NH3-SCR reaction conditions over three Cu-based zeolites ranging from small-pore to large-pore framework structure. In the zeolite framework, Cu exists in two cationic forms, that can catalyze the SCR reaction by activating NO to form NO+ and/or surface nitrate species. The nitrate species can thereafter react with NH3 to form another intermediate, ammonium nitrate, which seems to be one source for N2O formation at low temperatures. The results from in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) indicate that during the NO oxidation step, mainly NO+ and nitrate species are formed on the surface of the catalysts. The intensity of the absorption peak attributed to NO+ species is higher for the Cu-CHA sample compared to the other two samples, indicating a higher stability of this species in small cages. Furthermore, upon the addition of NH3, through the standard SCR reaction conditions, absorption peaks assigned to N-H stretching and bending vibrations are building up. At the same time, negative peaks are evolving in the O-H stretching region, indicating blocking/replacement of surface OH-groups by NH3 and NH4+. By removing NH3 and adding NO2 to the inlet gas composition, the peaks in the N-H stretching and bending vibration regions show a decreasing trend in intensity, with the decrease being more pronounced for increasing pore size. It can probably be owing to the higher accumulation of ammonia species in the small-pore size zeolite compared to the other two samples. Furthermore, it is worth noting that the ammonia surface species are strongly bonded to the CHA zeolite structure, which makes it more difficult to react with NO2. To conclude, the framework structure of the zeolite seems to play an important role in the formation and reactivity of surface species relevant for the SCR process. Here we intend to discuss the connection between the zeolite structure, the surface species, and the formation of N2O during ammonia-SCR.

Keywords: fast SCR, nitrous oxide, NOx, standard SCR, zeolites

Procedia PDF Downloads 235
2895 DEM Simulation of the Formation of Seed Granules in Twin-Screw Granulation Process

Authors: Tony Bediako Arthur, Nejat Rahmanian, Nana Gyan Sekyi

Abstract:

The possibility of producing seeded granules from fine and course powders is a major challenge as the control parameters that affect its producibility is still under investigation. The seeded granulation is a novel form of producing granules where the granule is made up of larger particles at the core, which are surrounded by fine particles. The possibility of managing granulation through course particle feed rate control makes seeded granulation in continuous granulation useful in terms of process control. Twin screw granulation is now a major process of choice for the wet continuous granulation process in the industry. It is, therefore, imperative to investigate the process control parameters that influence the formation of seeded granules in twin screw granulation. In this paper, the effect of the twin screws rotating speed on the production of seeded granules has been examined. Pictorial and quantitative analysis indicates a high number of seeded granules forming at low screw rotating speeds. It is also instructive to say that higher tensile stress occurs at the kneading section of the screws; thus, higher rotating speed courses the fines for breaking off from the seed particle.

Keywords: DEM, twin-screw, Seeded granules, Simulation

Procedia PDF Downloads 88
2894 Geophysical Mapping of Anomalies Associated with Sediments of Gwandu Formation Around Argungu and Its Environs NW, Nigeria

Authors: Adamu Abubakar, Abdulganiyu Yunusa, Likkason Othniel Kamfani, Abdulrahman Idris Augie

Abstract:

This research study is being carried out in accordance with the Gwandu formation's potential exploratory activities in the inland basin of northwest Nigeria.The present research aims to identify and characterize subsurface anomalies within Gwandu formation using electrical resistivity tomography (ERT) and magnetic surveys, providing valuable insights for mineral exploration. The study utilizes various data enhancement techniques like derivatives, upward continuation, and spectral analysis alongside 2D modeling of electrical imaging profiles to analyze subsurface structures and anomalies. Data was collected through ERT and magnetic surveys, with subsequent processing including derivatives, spectral analysis, and 2D modeling. The results indicate significant subsurface structures such as faults, folds, and sedimentary layers. The study area's geoelectric and magnetic sections illustrate the depth and distribution of sedimentary formations, enhancing understanding of the geological framework. Thus, showed that the entire formations of Eocene sediment of Gwandu are overprinted by the study area's Tertiary strata. The NE to SW and E to W cross-profile for the pseudo geoelectric sections beneath the study area were generated using a two-dimensional (2D) electrical resistivity imaging. 2D magnetic modelling, upward continuation, and derivative analysis are used to delineate the signatures of subsurface magnetic anomalies. The results also revealed The sediment thickness by surface depth ranges from ∼4.06 km and ∼23.31 km. The Moho interface, the lower and upper mantle crusts boundary, and magnetic crust are all located at depths of around ∼10.23 km. The vertical distance between the local models of the foundation rocks to the north and south of the Sokoto Group was approximately ∼6 to ∼8 km and ∼4.5 km, respectively.

Keywords: high-resolution aeromagnetic data, electrical resistivity imaging, subsurface anomalies, 2d dorward modeling

Procedia PDF Downloads 13
2893 High Temperature Behavior of a 75Cr3C2–25NiCr Coated T91 Boiler Steel in an Actual Industrial Environment of a Coal Fired Boiler

Authors: Buta Singh Sidhu, Sukhpal Singh Chatha, Hazoor Singh Sidhu

Abstract:

In the present investigation, 75Cr3C2-25NiCr coating was deposited on T91 boiler tube steel substrate by high velocity oxy-fuel (HVOF) process to enhance high-temperature corrosion resistance. High-temperature performance of bare, as well as HVOF-coated steel specimens was evaluated for 1500 h under cyclic conditions in the platen superheater zone coal-fired boiler, where the temperature was around 900 °C. Experiments were carried out for 15 cycles each of 100 h duration followed by 1 h cooling at ambient temperature. The performance of the bare and coated specimens was assessed via metal thickness loss corresponding to the corrosion scale formation and the depth of internal corrosion attack. 75Cr3C2-25NiCr coating deposited on T91 steel imparted better hot corrosion resistance than the uncoated steel. Inferior resistance of bare T91 steel is attributed to the formation of pores and loosely bounded oxide scale rich in Fe2O3.

Keywords: 75Cr3C2-25NiCr, HVOF process, boiler steel, coal fired boilers

Procedia PDF Downloads 608
2892 Biosynthesis and Metabolism of Anthraquinone Derivatives

Authors: Dmitry Yu. Korulkin, Raissa A. Muzychkina

Abstract:

In review the generalized data about biosynthetic routs formation anthraquinone molecules in natural cells. The basic possibilities of various ways of biosynthesis of different quinoid substances are shown.

Keywords: anthraquinones, biochemical evolution, biosynthesis, metabolism

Procedia PDF Downloads 337
2891 Customer Adoption and Attitudes in Mobile Banking in Sri Lanka

Authors: Prasansha Kumari

Abstract:

This paper intends to identify and analyze customer adoption and attitudes towards mobile banking facilities. The study uses six perceived characteristics of innovation that can be used to form a favorable or unfavorable attitude toward an innovation, namely: Relative advantage, compatibility, complexity, trailability, risk, and observability. Collected data were analyzed using Pearson Chi-Square test. The results showed that mobile bank users were predominantly males. There is a growing trend among young, educated customers towards converting to mobile banking in Sri Lanka. The research outcomes suggested that all the six factors are statistically highly significant in influencing mobile banking adoption and attitude formation towards mobile banking in Sri Lanka. The major reasons for adopting mobile banking services are the accessibility and availability of services regardless of time and place. Over the 75 percent of the respondents mentioned that savings in time and effort and low financial costs of conducting mobile banking were advantageous. Issue of security was found to be the most important factor that motivated consumer adoption and attitude formation towards mobile banking. Main barriers to mobile banking were the lack of technological skills, the traditional cash‐carry banking culture, and the lack of awareness and insufficient guidance to using mobile banking.

Keywords: compatibility, complexity, mobile banking, observability, risk

Procedia PDF Downloads 203
2890 The Biological Function and Clinical Significance of Long Non-coding RNA LINC AC008063 in Head and Neck Squamous Carcinoma

Authors: Maierhaba Mijiti

Abstract:

Objective:The aim is to understand the relationship between the expression level of the long-non-coding RNA LINC AC008063 and the clinicopathological parameters of patients with head and neck squamous cell carcinoma (HNSCC), and to clarify the biological function of LINC AC008063 in HNSCC cells. Moreover, it provides a potential biomarker for the diagnosis, treatment, and prognosis evaluation of HNSCC. Methods: The expression level of LINC AC008063 in the HNSCC was analyzed using transcriptome sequencing data from the TCGA (The cancer genome atlas) database. The expression levels of LINC AC008063 in human embryonic lung diploid cells 2BS, human immortalized keratinocytes HACAT, HNSCC cell lines CAL-27, Detroit562, AMC-HN-8, FD-LSC-1, FaDu and WSU-HN30 were determined by real-time quantitative PCR (qPCR). RNAi (RNA interference) was introduced for LINC AC008063 knockdown in HNSCC cell lines, the localization and abundance analysis of LINC AC008063 was determined by RT-qPCR, and the biological functions were examined by CCK-8, clone formation, flow cytometry, transwell invasion and migration assays, Seahorse assay. Results: LINC AC008063 was upregulated in HNSCC tissue (P<0.001), and verified b CCK-8, clone formation, flow cytometry, transwell invasion and migration assays, Seahorse assayy qPCR in HNSCC cell lines. The survival analysis revealed that the overall survival rate (OS) of patients with high LINC AC008063 expression group was significantly lower than that in the LINC AC008063 expression group, the median survival times for the two groups were 33.10 months and 61.27 months, respectively (P=0.002). The clinical correlation analysis revealed that its expression was positively correlated with the age of patients with HNSCC (P<0.001) and positively correlated with pathological state (T3+T4>T1+T2, P=0.03). The RT-qPCR results showed that LINC AC008063 was mainly enriched in cytoplasm (P=0.01). Knockdown of LINC AC008063 inhibited proliferation, colony formation, migration and invasion; the glycolytic capacity was significantly decreased in HNSCC cell lines (P<0.05). Conclusion: High level of LINC AC008063 was associated with the malignant progression of HNSCC as well as promoting the important biological functions of proliferation, colony formation, migration and invasion; in particular, the glycolytic capacity was decreased in HNSCC cells. Therefore, LINC AC008063 may serve as a potential biomarker for HNSCC and a distinct molecular target to inhibit glycolysis.

Keywords: head and neck squamous cell carcinoma, oncogene, long non-coding RNA, LINC AC008063, invasion and metastasis

Procedia PDF Downloads 10
2889 Formation and Development of Polyspecies Biofilm on the Surface of Ti-7.5Mo Nanotubes Growth

Authors: Escada A. L. A., Pereira C. A., Jorge A. O. C., Alves Claro A. P. R.

Abstract:

In the present work, a susceptibility and efficacy of the Ti–7.5Mo alloy nanotube and Ti–7.5Mo alloy to bacterial biofilm formation after surface treatment was evaluated. The Ti–7.5Mo alloy was obtained in arc furnace under an argon atmosphere. Ingots were then homogenized under vacuum at 1100 ◦C for 86.4 ks to eliminate chemical segregation and after cold worked discs were cutting. Nanotubes were processed using anodic oxidation in 0.25% NH4F electrolyte solution. Biofilms were grown in discs immersed in sterile brain heart infusion broth (BHI) containing 5% sucrose, inoculated with microbial suspension (106 cells/ml) and incubated for 5 days. Next, the discs were placed in tubes with sterile physiological solution 0.9% sodium chloride (NaCl) and sonicated for to disperse the biofilms. Tenfold serial dilutions were carried and aliquots seeded in selective agar, which were then incubated for 48 h. Then, the numbers CFU/ml (log 10) were counted and analyzed statistically. Scanning electron microscopy (SEM) on discs with biofilms groupswas performed, atomic force microscope (AFM) and contact angle. The results show that there is no difference in bacterial adhesion between Ti–7.5Mo alloy nanotube pure titanium and Ti–7.5Mo alloy.

Keywords: biofilm, titanium alloy, brain heart infusion, scanning electron microscopy

Procedia PDF Downloads 317
2888 Electrocatalytic Amino Acid Synthesis from Biomass-Derivable Keto Acids over Ball-Milled Carbon Nanotubes

Authors: Yiying Xiao, Chia Wei Lim, Jinquan Chang, Qixin Yuan, Lei Wang, Ning Yan

Abstract:

Electrocatalytic reductive amination (ERA) offers an attractive way to make organonitrogen chemicals from renewable feedstock. Here, we report carbon nanotube (CNT) as an effective catalyst for the ERA of biomass-derivable α-keto acids into amino acids using NH₃ as the nitrogen source. Through a facile ball milling (BM) treatment, the intrinsic defects in the CNTs were increased while the electrocatalytic activity of CNTs converting 2-ketoglutaric acid into glutamic acid was enhanced by approximately seven times. A high Faradaic efficiency (FE) of ~90% with a corresponding glutamic acid formation rate up to 180.9 mmol•g⁻¹𝒸ₐₜt•h⁻¹ was achieved, and ~60% molar yield of glutamic acid was obtained after 8 h of electrolysis. Electrokinetic analyses indicate that the BM-CNTs catalysed ERA exhibits first-order dependences on the substrate and NH₃, with a rate-determining step (RDS) involving the first electron transfer. Following this protocol, a number of amino acids were prepared with moderate to high FEs and formation rates. Significantly, we synthesised long carbon chain amino acids, which typically face lower yields using the existing methods.

Keywords: amino acids, carbon nanotubes, electrocatalysis, reductive amination, α-keto acids

Procedia PDF Downloads 83
2887 Effect of Fiscal Policy on Growth in India

Authors: Parma Chakravartti

Abstract:

The impact of government spending and taxation on economic growth has remained a central issue of fiscal policy analysis. There is a wide range of opinions over the strength of fiscal policy’s effect on macroeconomic variables. It can be argued that the impact of fiscal policy depends on the structure and economic condition of the economy. This study makes an attempt to examine the effect of fiscal policy shocks on growth in India using the structural vector autoregressive model (SVAR), considering data from 1950 to 2019. The study finds that government spending is an important instrument of growth in India, where the share of revenue expenditure to capital expenditure plays a key role. The optimum composition of total expenditure is important for growth and it is not necessarily true that capital expenditure multiplier is more than revenue expenditure multiplier. The study also finds that the impact of public economic activities on private economic activities for both consumption expenditure and gross capital formation of government crowds in private consumption expenditure and private gross capital formation, respectively, thus indicating that government expenditure complements private expenditure in India.

Keywords: government spending, fiscal policy, multiplier, growth

Procedia PDF Downloads 133
2886 Land Degradation Assessment through Spatial Data Integration in Eastern Chotanagpur Plateau, India

Authors: Avijit Mahala

Abstract:

Present study is primarily concerned with the physical processes and status of land degradation in a tropical plateau fringe. Chotanagpur plateau is one of the most water erosion related degraded areas of India. The granite gneiss geological formation, low to medium developed soil cover, undulating lateritic uplands, high drainage density, low to medium rainfall (100-140cm), dry tropical deciduous forest cover makes the Silabati River basin a truly representative of the tropical environment. The different physical factors have been taken for land degradation study includes- physiographic formations, hydrologic characteristics, and vegetation cover. Water erosion, vegetal degradation, soil quality decline are the major processes of land degradation in study area. Granite-gneiss geological formation is responsible for developing undulating landforms. Less developed soil profile, low organic matter, poor structure of soil causes high soil erosion. High relief and sloppy areas cause unstable environment. The dissected highland causes topographic hindrance in productivity. High drainage density and frequency in rugged upland and intense erosion in sloppy areas causes high soil erosion of the basin. Decreasing rainfall and increasing aridity (low P/PET) threats water stress condition. Green biomass cover area is also continuously declining. Through overlaying the different physical factors (geological formation, soil characteristics, geomorphological characteristics, etc.) of considerable importance in GIS environment the varying intensities of land degradation areas has been identified. Middle reaches of Silabati basin with highly eroded laterite soil cover areas are more prone to land degradation.

Keywords: land degradation, tropical environment, lateritic upland, undulating landform, aridity, GIS environment

Procedia PDF Downloads 135
2885 Influence of an Octenidine Based Wound Gel on Postoperative Wound Healing and Scarring after Abdominoplasty

Authors: Johannes Matiasek

Abstract:

Introduction and Aims: Octenidine is a common antiseptic agent in the area of surgical interventions because of its antimicrobial efficacy and outstanding biocompatibility index. We investigate the direct postoperative application of octenilin® on typical procedures in the field of plastic surgery in a prospective, randomized controlled intervention study. The aim of this study is to determine the influence of a direct postoperative application of an octenidine-containing wound gel on wound healing and scarring after abdominoplasty. Material and Methods: In this study, we enrolled 33 patients who underwent abdominoplasty because of medical indications (e.g. Cutis laxa abdominis). To ensure an intraindividual comparison, each patient received both dressings (study-group: octenilin® wound gel; control-group: Omnistrip® dry plaster) immediately after surgery. We evaluate wound-healing tendency, pain during dressing changes and scar formation after two weeks, three, six and twelve months. Regarding scar-evaluation skin-elasticity, sebum on the skin, transepidermal waterloss, skin hydration, melanin content and erythema level were determined with special probes. Furthermore the Vancouver Scar Scale (VSS) and pain level during dressing change are determined. Results: At the time of surgery the mean patient’s age was 44.1 years. On average 5.6 dressing changes were necessary. Wound healing disorders occurred more often in the control-group. In the control-group (dry plaster Omnistrip®) patients reported significantly more pain and superficial skin injuries during dressing changes occurred. Objective scar-evaluation after 3, 6 and 12 months resulted in a significant higher skin-elasticity and significant lower transepidermal water loss in the octenilin® group which is confirmed in the VSS. Conclusion: The immediate postoperative application of the octenidine-containing hydrogel octenilin® after abdominoplasty results in favoured scar formation compared to our actual standard therapy. Less hypertrophic scar formation was observed in the study-group.

Keywords: abdominoplasty, octenidine, scarring, wound healing

Procedia PDF Downloads 199
2884 Petrogenetic Model of Formation of Orthoclase Gabbro of the Dzirula Crystalline Massif, the Caucasus

Authors: David Shengelia, Tamara Tsutsunava, Manana Togonidze, Giorgi Chichinadze, Giorgi Beridze

Abstract:

Orthoclase gabbro intrusive exposes in the Eastern part of the Dzirula crystalline massif of the Central Transcaucasian microcontinent. It is intruded in the Baikal quartz-diorite gneisses as a stock-like body. The intrusive is characterized by heterogeneity of rock composition: variability of mineral content and irregular distribution of rock-forming minerals. The rocks are represented by pyroxenites, gabbro-pyroxenites and gabbros of different composition – K-feldspar, pyroxene-hornblende and biotite bearing varieties. Scientific views on the genesis and age of the orthoclase gabbro intrusive are considerably different. Based on the long-term pertogeochemical and geochronological investigations of the intrusive with such an extraordinary composition the authors came to the following conclusions. According to geological and geophysical data, it is stated that in the Saurian orogeny horizontal tectonic layering of the Earth’s crust of the Central Transcaucasian microcontinent took place. That is precisely this fact that explains the formation of the orthoclase gabbro intrusive. During the tectonic doubling of the Earth’s crust of the mentioned microcontinent thick tectonic nappes of mafic and sialic layers overlap the sialic basement (‘inversion’ layer). The initial magma of the intrusive was of high-temperature basite-ultrabasite composition, crystallization products of which are pyroxenites and gabbro-pyroxenites. Petrochemical data of the magma attest to its formation in the Upper mantle and partially in the ‘crustal astenolayer’. Then, a newly formed overheated dry magma with phenocrysts of clinopyrocxene and basic plagioclase intruded into the ‘inversion’ layer. From the new medium it was enriched by the volatile components causing the selective melting and as a result the formation of leucocratic quartz-feldspar material. At the same time in the basic magma intensive transformation of pyroxene to hornblende was going on. The basic magma partially mixed with the newly formed acid magma. These different magmas intruded first into the allochthonous basite layer without its significant transformation and then into the upper sialic layer and crystallized here at a depth of 7-10 km. By petrochemical data the newly formed leucocratic granite magma belongs to the S type granites, but the above mentioned mixed magma – to H (hybrid) type. During the final stage of magmatic processes the gabbroic rocks impregnated with high-temperature feldspar-bearing material forming anorthoclase or orthoclase. Thus, so called ‘orthoclase gabbro’ includes the rocks of various genetic groups: 1. protolith of gabbroic intrusive; 2. hybrid rock – K-feldspar gabbro and 3. leucocratic quartz-feldspar bearing rock. Petrochemical and geochemical data obtained from the hybrid gabbro and from the inrusive protolith differ from each other. For the identification of petrogenetic model of the orthoclase gabbro intrusive formation LA-ICP-MS- U-Pb zircon dating has been conducted in all three genetic types of gabbro. The zircon age of the protolith – mean 221.4±1.9 Ma and of hybrid K-feldspar gabbro – mean 221.9±2.2 Ma, records crystallization time of the intrusive, but the zircon age of quartz-feldspar bearing rocks – mean 323±2.9 Ma, as well as the inherited age (323±9, 329±8.3, 332±10 and 335±11 Ma) of hybrid K-feldspar gabbro corresponds to the formation age of Late Variscan granitoids widespread in the Dzirula crystalline massif.

Keywords: The Caucasus, isotope dating, orthoclase-bearing gabbro, petrogenetic model

Procedia PDF Downloads 343
2883 3D Seismic Acquisition Challenges in the NW Ghadames Basin Libya, an Integrated Geophysical Sedimentological and Subsurface Studies Approach as a Solution

Authors: S. Sharma, Gaballa Aqeelah, Tawfig Alghbaili, Ali Elmessmari

Abstract:

There were abrupt discontinuities in the Brute Stack in the northernmost locations during the acquisition of 2D (2007) and 3D (2021) seismic data in the northwest region of the Ghadames Basin, Libya. In both campaigns, complete fluid circulation loss was seen in these regions during up-hole drilling. Geophysics, sedimentology and shallow subsurface geology were all integrated to look into what was causing the seismic signal to disappear at shallow depths. The Upper Cretaceous Nalut Formation is the near-surface or surface formation in the studied area. It is distinguished by abnormally high resistivity in all the neighboring wells. The Nalut Formation in all the nearby wells from the present study and previous outcrop study suggests lithology of dolomite and chert/flint in nodular or layered forms. There are also reports of karstic caverns, vugs, and thick cracks, which all work together to produce the high resistivity. Four up-hole samples that were analyzed for microfacies revealed a near-coastal to tidal environment. Algal (Chara) infested deposits up to 30 feet thick and monotonous, very porous, are seen in two up-hole sediments; these deposits are interpreted to be scattered, continental algal travertine mounds. Chert/flint, dolomite, and calcite in varying amounts are confirmed by XRD analysis. Regional tracking of the high resistivity of the Nalut Formation, which is thought to be connected to the sea level drop that created the paleokarst layer, is possible. It is abruptly overlain by a blanket marine transgressive deposit caused by rapid sea level rise, which is a regional, relatively high radioactive layer of argillaceous limestone. The examined area's close proximity to the mountainous, E-W trending ridges of northern Libya made it easier for recent freshwater circulation, which later enhanced cavern development and mineralization in the paleokarst layer. Seismic signal loss at shallow depth is caused by extremely heterogeneous mineralogy of pore- filling or lack thereof. Scattering effect of shallow karstic layer on seismic signal has been well documented. Higher velocity inflection points at shallower depths in the northern part and deeper intervals in the southern part, in both cases at Nalut level, demonstrate the layer's influence on the seismic signal. During the Permian-Carboniferous, the Ghadames Basin underwent uplift and extensive erosion, which resulted in this karstic layer of the Nalut Formation uplifted to a shallow depth in the northern part of the studied area weakening the acoustic signal, whereas in the southern part of the 3D acquisition area the Nalut Formation remained at the deeper interval without affecting the seismic signal. Results from actions taken during seismic processing to deal with this signal loss are visible and have improved. This study recommends using denser spacing or dynamite to circumvent the karst layer in a comparable geographic area in order to prevent signal loss at lesser depths.

Keywords: well logging, seismic data acquisition, sesimic data processing, up-holes

Procedia PDF Downloads 85
2882 Anticataract Activity of Betulinic Acid in Chick Embryo Lens Model

Authors: Surendra Bodakhe

Abstract:

In this investigation, anticataract activity was determined using cataract formation in developing chick embryo by hydrocortisone. Lenses were evaluated firstly for the extent of opacity and secondly, for lens glutathione (GSH) levels. Betulinic acid was isolated from the chloroform fraction of the crude ethanolic extract of Bauhinia variegata bark (SBE). Fourteen days old Australorp fertilized eggs were divided into different groups of six eggs each. After 24 hrs incubation in a humidified incubator (37οC), at 15 days of age; hydrocortisone (0.25µM/0.2ml/egg) was administered to the chorioallantoic membrane of chick embryos through a small hole in the egg shell on the air sack. Ascorbic acid (standard) or Betulinic acid (test) were administered at 3, 10 and 20 hr after hydrocortisone administration at a specified dose. The puncture was sealed with a cellophane tape and eggs were incubated for 48 hrs in a humidified incubator at 37οC. After 48 hrs, the lenses were isolated for the determination of the extent of opacity and Glutathione level. The betulinic acid prevented the opacification of the chick embryo lenses induced by hydrocortisone. The betulinic acid also prevented the decline of GSH content caused by hydrocortisone. The results indicate that betulinic acid protect the cataract formation in chick embryo lenses induced by hydrocortisone.

Keywords: betulinic acid, cataract, cloudiness, ovine

Procedia PDF Downloads 343
2881 Homology Modelling of Beta Defensin 3 of Bos taurus and Its Docking Studies with Molecules Responsible for Formation of Biofilm

Authors: Ravinder Singh, Ankita Gurao, Saroj Bandhan, Sudhir Kumar Kashyap

Abstract:

The Bos taurus Beta defensin 3 is a defensin peptide secreted by neutrophils and epithelial that exhibits anti-microbial activity. It is one of the crucial components forming an innate defense against intra mammary infections in livestock. The beta defensin 3 by virtue of its anti-microbial activity inhibits major mastitis pathogens including Staphylococcus aureus and Pseudomonas aeruginosa etc, which are also responsible for biofilm formation leading to antibiotic resistance phenomenon. Therefore, the defensin may prove as a non-conventional option to treat mastitis. In this study, computational analysis has been performed including sequence comparison among species and homology modeling of Bos taurus beta defensin 3 protein. The assessments of protein structure were done using the protein structure and model assessment tools integrated in Swiss Model server, which employs various local and global quality evaluation parameters. Further, molecular docking was also carried out between the defensin peptide and the components of biofilm to gain insight into various interactions and structural differences crucial for functionality of this protein.

Keywords: beta defensin 3, bos taurus, docking, homology modeling

Procedia PDF Downloads 290
2880 Doubled Haploid Production in Wheat Using Imperata cylindrica Mediated Chromosome Elimination Technique

Authors: Madhu Patial, Dharam Pal, Jagdish Kumar, H. K. Chaudhary

Abstract:

Doubled haploid breeding serves as a useful technique in wheat improvement by providing instant and complete homozygosity. Of the various techniques employed for haploid production chromosome elimination has a large scale practical application in wheat improvement. Barclay (1975) initiated the technique in wheat by crossing wheat variety Chinese spring with Hordeum bulbosum, but due to presence of the dominant crossability inhibitor genes Kr7 and Kr2 in many wheat varieties, the technique was however genotypic specific. The discovery of wheat X maize system of haploid production being genotype non-specific is quite successful but still maize needs to be grown in greenhouse to coincide flowering with wheat crop. Recently, wheat X Imperate cylindrica has been identified as a new chromosome mediated DH approach for efficient haploid induction. An experiment to use this technique in wheat was set up by crossing six F1s and two three way F1s with Imperata cylindrica. The data was recorded for the three component traits of haploid induction viz., seed formation, embryo formation and regeneration frequency. Variation among wheat F1s was observed and higher frequency for all the traits were recorded in cross HD 2997/2*FL-8/DONSK-POLL and KLE/BER/2*FL-8/DONSK-POLL.

Keywords: wheat, haploid, imperata cylindrica, chromosome elimination technique

Procedia PDF Downloads 424
2879 Philosophical Foundations of Education at the Kazakh Languages by Aiding Communicative Methods

Authors: Duisenova Marzhan

Abstract:

This paper considers the looking from a philosophical point of view the interactive technology and tiered developing Kazakh language teaching primary school pupils through the method of linguistic communication, content and teaching methods formed in the education system. The values determined by the formation of new practical ways that could lead to a novel qualitative level and solving the problem. In the formation of the communicative competence of elementary school students would be to pay attention to other competencies. It helps to understand the motives and needs socialization of students, the development of their cognitive abilities and participate in language relations arising from different situations. Communicative competence is the potential of its own in pupils creative language activity. In this article, the Kazakh language teaching in primary school communicative method is presented. The purpose of learning communicative method, personal development, effective psychological development of the child, himself-education, expansion and growth of language skills and vocabulary, socialization of children, the adoption of the laws of life in the social environment, analyzed the development of vocabulary richness of the language that forms the erudition to ensure continued improvement of education of the child.

Keywords: communicative, culture, training, process, method, primary, competence

Procedia PDF Downloads 339
2878 Effect of Crystallographic Characteristics on Toughness of Coarse Grain Heat Affected Zone for Different Heat Inputs

Authors: Trishita Ray, Ashok Perka, Arnab Karani, M. Shome, Saurabh Kundu

Abstract:

Line pipe steels are used for long distance transportation of crude oil and gas under extreme environmental conditions. Welding is necessary to lay large scale pipelines. Coarse Grain Heat Affected Zone (CGHAZ) of a welded joint exhibits worst toughness because of excessive grain growth and brittle microstructures like bainite and martensite, leading to early failure. Therefore, it is necessary to investigate microstructures and properties of the CGHAZ for different welding heat inputs. In the present study, CGHAZ for two heat inputs of 10 kJ/cm and 50 kJ/cm were simulated in Gleeble 3800, and the microstructures were investigated in detail by means of Scanning Electron Microscopy (SEM) and Electron Backscattered Diffraction (EBSD). Charpy Impact Tests were also done to evaluate the impact properties. High heat input was characterized with very low toughness and massive prior austenite grains. With the crystallographic information from EBSD, the area of a single prior austenite grain was traced out for both the welding conditions. Analysis of the prior austenite grains showed the formation of high angle boundaries between the crystallographic packets. Effect of these packet boundaries on secondary cleavage crack propagation was discussed. It was observed that in the low heat input condition, formation of finer packets with a criss-cross morphology inside prior austenite grains was effective in crack arrest whereas, in the high heat input condition, formation of larger packets with higher volume of low angle boundaries failed to resist crack propagation resulting in a brittle fracture. Thus, the characteristics in a crystallographic packet and impact properties are related and should be controlled to obtain optimum properties.

Keywords: coarse grain heat affected zone, crystallographic packet, toughness, line pipe steel

Procedia PDF Downloads 245