Search results for: computer virus classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5001

Search results for: computer virus classification

4491 One-Class Classification Approach Using Fukunaga-Koontz Transform and Selective Multiple Kernel Learning

Authors: Abdullah Bal

Abstract:

This paper presents a one-class classification (OCC) technique based on Fukunaga-Koontz Transform (FKT) for binary classification problems. The FKT is originally a powerful tool to feature selection and ordering for two-class problems. To utilize the standard FKT for data domain description problem (i.e., one-class classification), in this paper, a set of non-class samples which exist outside of positive class (target class) describing boundary formed with limited training data has been constructed synthetically. The tunnel-like decision boundary around upper and lower border of target class samples has been designed using statistical properties of feature vectors belonging to the training data. To capture higher order of statistics of data and increase discrimination ability, the proposed method, termed one-class FKT (OC-FKT), has been extended to its nonlinear version via kernel machines and referred as OC-KFKT for short. Multiple kernel learning (MKL) is a favorable family of machine learning such that tries to find an optimal combination of a set of sub-kernels to achieve a better result. However, the discriminative ability of some of the base kernels may be low and the OC-KFKT designed by this type of kernels leads to unsatisfactory classification performance. To address this problem, the quality of sub-kernels should be evaluated, and the weak kernels must be discarded before the final decision making process. MKL/OC-FKT and selective MKL/OC-FKT frameworks have been designed stimulated by ensemble learning (EL) to weight and then select the sub-classifiers using the discriminability and diversities measured by eigenvalue ratios. The eigenvalue ratios have been assessed based on their regions on the FKT subspaces. The comparative experiments, performed on various low and high dimensional data, against state-of-the-art algorithms confirm the effectiveness of our techniques, especially in case of small sample size (SSS) conditions.

Keywords: ensemble methods, fukunaga-koontz transform, kernel-based methods, multiple kernel learning, one-class classification

Procedia PDF Downloads 19
4490 Online Handwritten Character Recognition for South Indian Scripts Using Support Vector Machines

Authors: Steffy Maria Joseph, Abdu Rahiman V, Abdul Hameed K. M.

Abstract:

Online handwritten character recognition is a challenging field in Artificial Intelligence. The classification success rate of current techniques decreases when the dataset involves similarity and complexity in stroke styles, number of strokes and stroke characteristics variations. Malayalam is a complex south indian language spoken by about 35 million people especially in Kerala and Lakshadweep islands. In this paper, we consider the significant feature extraction for the similar stroke styles of Malayalam. This extracted feature set are suitable for the recognition of other handwritten south indian languages like Tamil, Telugu and Kannada. A classification scheme based on support vector machines (SVM) is proposed to improve the accuracy in classification and recognition of online malayalam handwritten characters. SVM Classifiers are the best for real world applications. The contribution of various features towards the accuracy in recognition is analysed. Performance for different kernels of SVM are also studied. A graphical user interface has developed for reading and displaying the character. Different writing styles are taken for each of the 44 alphabets. Various features are extracted and used for classification after the preprocessing of input data samples. Highest recognition accuracy of 97% is obtained experimentally at the best feature combination with polynomial kernel in SVM.

Keywords: SVM, matlab, malayalam, South Indian scripts, onlinehandwritten character recognition

Procedia PDF Downloads 574
4489 Computer Aide Discrimination of Benign and Malignant Thyroid Nodules by Ultrasound Imaging

Authors: Akbar Gharbali, Ali Abbasian Ardekani, Afshin Mohammadi

Abstract:

Introduction: Thyroid nodules have an incidence of 33-68% in the general population. More than 5-15% of these nodules are malignant. Early detection and treatment of thyroid nodules increase the cure rate and provide optimal treatment. Between the medical imaging methods, Ultrasound is the chosen imaging technique for assessment of thyroid nodules. The confirming of the diagnosis usually demands repeated fine-needle aspiration biopsy (FNAB). So, current management has morbidity and non-zero mortality. Objective: To explore diagnostic potential of automatic texture analysis (TA) methods in differentiation benign and malignant thyroid nodules by ultrasound imaging in order to help for reliable diagnosis and monitoring of the thyroid nodules in their early stages with no need biopsy. Material and Methods: The thyroid US image database consists of 70 patients (26 benign and 44 malignant) which were reported by Radiologist and proven by the biopsy. Two slices per patient were loaded in Mazda Software version 4.6 for automatic texture analysis. Regions of interests (ROIs) were defined within the abnormal part of the thyroid nodules ultrasound images. Gray levels within an ROI normalized according to three normalization schemes: N1: default or original gray levels, N2: +/- 3 Sigma or dynamic intensity limited to µ+/- 3σ, and N3: present intensity limited to 1% - 99%. Up to 270 multiscale texture features parameters per ROIs per each normalization schemes were computed from well-known statistical methods employed in Mazda software. From the statistical point of view, all calculated texture features parameters are not useful for texture analysis. So, the features based on maximum Fisher coefficient and the minimum probability of classification error and average correlation coefficients (POE+ACC) eliminated to 10 best and most effective features per normalization schemes. We analyze this feature under two standardization states (standard (S) and non-standard (NS)) with Principle Component Analysis (PCA), Linear Discriminant Analysis (LDA) and Non-Linear Discriminant Analysis (NDA). The 1NN classifier was performed to distinguish between benign and malignant tumors. The confusion matrix and Receiver operating characteristic (ROC) curve analysis were used for the formulation of more reliable criteria of the performance of employed texture analysis methods. Results: The results demonstrated the influence of the normalization schemes and reduction methods on the effectiveness of the obtained features as a descriptor on discrimination power and classification results. The selected subset features under 1%-99% normalization, POE+ACC reduction and NDA texture analysis yielded a high discrimination performance with the area under the ROC curve (Az) of 0.9722, in distinguishing Benign from Malignant Thyroid Nodules which correspond to sensitivity of 94.45%, specificity of 100%, and accuracy of 97.14%. Conclusions: Our results indicate computer-aided diagnosis is a reliable method, and can provide useful information to help radiologists in the detection and classification of benign and malignant thyroid nodules.

Keywords: ultrasound imaging, thyroid nodules, computer aided diagnosis, texture analysis, PCA, LDA, NDA

Procedia PDF Downloads 277
4488 A t-SNE and UMAP Based Neural Network Image Classification Algorithm

Authors: Shelby Simpson, William Stanley, Namir Naba, Xiaodi Wang

Abstract:

Both t-SNE and UMAP are brand new state of art tools to predominantly preserve the local structure that is to group neighboring data points together, which indeed provides a very informative visualization of heterogeneity in our data. In this research, we develop a t-SNE and UMAP base neural network image classification algorithm to embed the original dataset to a corresponding low dimensional dataset as a preprocessing step, then use this embedded database as input to our specially designed neural network classifier for image classification. We use the fashion MNIST data set, which is a labeled data set of images of clothing objects in our experiments. t-SNE and UMAP are used for dimensionality reduction of the data set and thus produce low dimensional embeddings. Furthermore, we use the embeddings from t-SNE and UMAP to feed into two neural networks. The accuracy of the models from the two neural networks is then compared to a dense neural network that does not use embedding as an input to show which model can classify the images of clothing objects more accurately.

Keywords: t-SNE, UMAP, fashion MNIST, neural networks

Procedia PDF Downloads 197
4487 Floodnet: Classification for Post Flood Scene with a High-Resolution Aerial Imaginary Dataset

Authors: Molakala Mourya Vardhan Reddy, Kandimala Revanth, Koduru Sumanth, Beena B. M.

Abstract:

Emergency response and recovery operations are severely hampered by natural catastrophes, especially floods. Understanding post-flood scenarios is essential to disaster management because it facilitates quick evaluation and decision-making. To this end, we introduce FloodNet, a brand-new high-resolution aerial picture collection created especially for comprehending post-flood scenes. A varied collection of excellent aerial photos taken during and after flood occurrences make up FloodNet, which offers comprehensive representations of flooded landscapes, damaged infrastructure, and changed topographies. The dataset provides a thorough resource for training and assessing computer vision models designed to handle the complexity of post-flood scenarios, including a variety of environmental conditions and geographic regions. Pixel-level semantic segmentation masks are used to label the pictures in FloodNet, allowing for a more detailed examination of flood-related characteristics, including debris, water bodies, and damaged structures. Furthermore, temporal and positional metadata improve the dataset's usefulness for longitudinal research and spatiotemporal analysis. For activities like flood extent mapping, damage assessment, and infrastructure recovery projection, we provide baseline standards and evaluation metrics to promote research and development in the field of post-flood scene comprehension. By integrating FloodNet into machine learning pipelines, it will be easier to create reliable algorithms that will help politicians, urban planners, and first responders make choices both before and after floods. The goal of the FloodNet dataset is to support advances in computer vision, remote sensing, and disaster response technologies by providing a useful resource for researchers. FloodNet helps to create creative solutions for boosting communities' resilience in the face of natural catastrophes by tackling the particular problems presented by post-flood situations.

Keywords: image classification, segmentation, computer vision, nature disaster, unmanned arial vehicle(UAV), machine learning.

Procedia PDF Downloads 76
4486 Towards Real-Time Classification of Finger Movement Direction Using Encephalography Independent Components

Authors: Mohamed Mounir Tellache, Hiroyuki Kambara, Yasuharu Koike, Makoto Miyakoshi, Natsue Yoshimura

Abstract:

This study explores the practicality of using electroencephalographic (EEG) independent components to predict eight-direction finger movements in pseudo-real-time. Six healthy participants with individual-head MRI images performed finger movements in eight directions with two different arm configurations. The analysis was performed in two stages. The first stage consisted of using independent component analysis (ICA) to separate the signals representing brain activity from non-brain activity signals and to obtain the unmixing matrix. The resulting independent components (ICs) were checked, and those reflecting brain-activity were selected. Finally, the time series of the selected ICs were used to predict eight finger-movement directions using Sparse Logistic Regression (SLR). The second stage consisted of using the previously obtained unmixing matrix, the selected ICs, and the model obtained by applying SLR to classify a different EEG dataset. This method was applied to two different settings, namely the single-participant level and the group-level. For the single-participant level, the EEG dataset used in the first stage and the EEG dataset used in the second stage originated from the same participant. For the group-level, the EEG datasets used in the first stage were constructed by temporally concatenating each combination without repetition of the EEG datasets of five participants out of six, whereas the EEG dataset used in the second stage originated from the remaining participants. The average test classification results across datasets (mean ± S.D.) were 38.62 ± 8.36% for the single-participant, which was significantly higher than the chance level (12.50 ± 0.01%), and 27.26 ± 4.39% for the group-level which was also significantly higher than the chance level (12.49% ± 0.01%). The classification accuracy within [–45°, 45°] of the true direction is 70.03 ± 8.14% for single-participant and 62.63 ± 6.07% for group-level which may be promising for some real-life applications. Clustering and contribution analyses further revealed the brain regions involved in finger movement and the temporal aspect of their contribution to the classification. These results showed the possibility of using the ICA-based method in combination with other methods to build a real-time system to control prostheses.

Keywords: brain-computer interface, electroencephalography, finger motion decoding, independent component analysis, pseudo real-time motion decoding

Procedia PDF Downloads 137
4485 CRISPR/Cas9 Based Gene Stacking in Plants for Virus Resistance Using Site-Specific Recombinases

Authors: Sabin Aslam, Sultan Habibullah Khan, James G. Thomson, Abhaya M. Dandekar

Abstract:

Losses due to viral diseases are posing a serious threat to crop production. A quick breakdown of resistance to viruses like Cotton Leaf Curl Virus (CLCuV) demands the application of a proficient technology to engineer durable resistance. Gene stacking has recently emerged as a potential approach for integrating multiple genes in crop plants. In the present study, recombinase technology has been used for site-specific gene stacking. A target vector (pG-Rec) was designed for engineering a predetermined specific site in the plant genome whereby genes can be stacked repeatedly. Using Agrobacterium-mediated transformation, the pG-Rec was transformed into Coker-312 along with Nicotiana tabacum L. cv. Xanthi and Nicotiana benthamiana. The transgene analysis of target lines was conducted through junction PCR. The transgene positive target lines were used for further transformations to site-specifically stack two genes of interest using Bxb1 and PhiC31 recombinases. In the first instance, Cas9 driven by multiplex gRNAs (for Rep gene of CLCuV) was site-specifically integrated into the target lines and determined by the junction PCR and real-time PCR. The resulting plants were subsequently used to stack the second gene of interest (AVP3 gene from Arabidopsis for enhancing cotton plant growth). The addition of the genes is simultaneously achieved with the removal of marker genes for recycling with the next round of gene stacking. Consequently, transgenic marker-free plants were produced with two genes stacked at the specific site. These transgenic plants can be potential germplasm to introduce resistance against various strains of cotton leaf curl virus (CLCuV) and abiotic stresses. The results of the research demonstrate gene stacking in crop plants, a technology that can be used to introduce multiple genes sequentially at predefined genomic sites. The current climate change scenario highlights the use of such technologies so that gigantic environmental issues can be tackled by several traits in a single step. After evaluating virus resistance in the resulting plants, the lines can be a primer to initiate stacking of further genes in Cotton for other traits as well as molecular breeding with elite cotton lines.

Keywords: cotton, CRISPR/Cas9, gene stacking, genome editing, recombinases

Procedia PDF Downloads 154
4484 The Magnitude and Associated Factors of Immune Hemolytic Anemia among Human Immuno Deficiency Virus Infected Adults Attending University of Gondar Comprehensive Specialized Hospital North West Ethiopia 2021 GC, Cross Sectional Study Design

Authors: Samul Sahile Kebede

Abstract:

Back ground: -Immune hemolytic anemia commonly affects human immune deficiency, infected individuals. Among anemic HIV patients in Africa, the burden of IHA due to autoantibody was ranged from 2.34 to 3.06 due to the drug was 43.4%. IHA due to autoimmune is potentially a fatal complication of HIV, which accompanies the greatest percent from acquired hemolytic anemia. Objective: -The main aim of this study was to determine the magnitude and associated factors of immune hemolytic anemia among human immuno deficiency virus infected adults at the university of Gondar comprehensive specialized hospital north west Ethiopia from March to April 2021. Methods: - An institution-based cross-sectional study was conducted on 358 human immunodeficiency virus-infected adults selected by systematic random sampling at the University of Gondar comprehensive specialized hospital from March to April 2021. Data for socio-demography, dietary and clinical data were collected by structured pretested questionnaire. Five ml of venous blood was drawn from each participant and analyzed by Unicel DHX 800 hematology analyzer, blood film examination, and antihuman globulin test were performed to the diagnosis of immune hemolytic anemia. Data was entered into Epidata version 4.6 and analyzed by STATA version 14. Descriptive statistics were computed and firth penalized logistic regression was used to identify predictors. P value less than 0.005 interpreted as significant. Result; - The overall prevalence of immune hemolytic anemia was 2.8 % (10 of 358 participants). Of these, 5 were males, and 7 were in the 31 to 50 year age group. Among individuals with immune hemolytic anemia, 40 % mild and 60 % moderate anemia. The factors that showed association were family history of anemia (AOR 8.30 at 95% CI 1.56, 44.12), not eating meat (AOR 7.39 at 95% CI 1.25, 45.0), and high viral load 6.94 at 95% CI (1.13, 42.6). Conclusion and recommendation; Immune hemolytic anemia is less frequent condition in human immunodeficiency virus infected adults, and moderate anemia was common in this population. The prevalence was increased with a high viral load, a family history of anemia, and not eating meat. In these patients, early detection and treatment of immune hemolytic anemia is necessary.

Keywords: anemia, hemolytic, immune, auto immune, HIV/AIDS

Procedia PDF Downloads 104
4483 Real-Time Classification of Hemodynamic Response by Functional Near-Infrared Spectroscopy Using an Adaptive Estimation of General Linear Model Coefficients

Authors: Sahar Jahani, Meryem Ayse Yucel, David Boas, Seyed Kamaledin Setarehdan

Abstract:

Near-infrared spectroscopy allows monitoring of oxy- and deoxy-hemoglobin concentration changes associated with hemodynamic response function (HRF). HRF is usually affected by natural physiological hemodynamic (systemic interferences) which occur in all body tissues including brain tissue. This makes HRF extraction a very challenging task. In this study, we used Kalman filter based on a general linear model (GLM) of brain activity to define the proportion of systemic interference in the brain hemodynamic. The performance of the proposed algorithm is evaluated in terms of the peak to peak error (Ep), mean square error (MSE), and Pearson’s correlation coefficient (R2) criteria between the estimated and the simulated hemodynamic responses. This technique also has the ability of real time estimation of single trial functional activations as it was applied to classify finger tapping versus resting state. The average real-time classification accuracy of 74% over 11 subjects demonstrates the feasibility of developing an effective functional near infrared spectroscopy for brain computer interface purposes (fNIRS-BCI).

Keywords: hemodynamic response function, functional near-infrared spectroscopy, adaptive filter, Kalman filter

Procedia PDF Downloads 160
4482 Autonomous Vehicle Detection and Classification in High Resolution Satellite Imagery

Authors: Ali J. Ghandour, Houssam A. Krayem, Abedelkarim A. Jezzini

Abstract:

High-resolution satellite images and remote sensing can provide global information in a fast way compared to traditional methods of data collection. Under such high resolution, a road is not a thin line anymore. Objects such as cars and trees are easily identifiable. Automatic vehicles enumeration can be considered one of the most important applications in traffic management. In this paper, autonomous vehicle detection and classification approach in highway environment is proposed. This approach consists mainly of three stages: (i) first, a set of preprocessing operations are applied including soil, vegetation, water suppression. (ii) Then, road networks detection and delineation is implemented using built-up area index, followed by several morphological operations. This step plays an important role in increasing the overall detection accuracy since vehicles candidates are objects contained within the road networks only. (iii) Multi-level Otsu segmentation is implemented in the last stage, resulting in vehicle detection and classification, where detected vehicles are classified into cars and trucks. Accuracy assessment analysis is conducted over different study areas to show the great efficiency of the proposed method, especially in highway environment.

Keywords: remote sensing, object identification, vehicle and road extraction, vehicle and road features-based classification

Procedia PDF Downloads 230
4481 COVID-19 Detection from Computed Tomography Images Using UNet Segmentation, Region Extraction, and Classification Pipeline

Authors: Kenan Morani, Esra Kaya Ayana

Abstract:

This study aimed to develop a novel pipeline for COVID-19 detection using a large and rigorously annotated database of computed tomography (CT) images. The pipeline consists of UNet-based segmentation, lung extraction, and a classification part, with the addition of optional slice removal techniques following the segmentation part. In this work, a batch normalization was added to the original UNet model to produce lighter and better localization, which is then utilized to build a full pipeline for COVID-19 diagnosis. To evaluate the effectiveness of the proposed pipeline, various segmentation methods were compared in terms of their performance and complexity. The proposed segmentation method with batch normalization outperformed traditional methods and other alternatives, resulting in a higher dice score on a publicly available dataset. Moreover, at the slice level, the proposed pipeline demonstrated high validation accuracy, indicating the efficiency of predicting 2D slices. At the patient level, the full approach exhibited higher validation accuracy and macro F1 score compared to other alternatives, surpassing the baseline. The classification component of the proposed pipeline utilizes a convolutional neural network (CNN) to make final diagnosis decisions. The COV19-CT-DB dataset, which contains a large number of CT scans with various types of slices and rigorously annotated for COVID-19 detection, was utilized for classification. The proposed pipeline outperformed many other alternatives on the dataset.

Keywords: classification, computed tomography, lung extraction, macro F1 score, UNet segmentation

Procedia PDF Downloads 129
4480 Exploring Multi-Feature Based Action Recognition Using Multi-Dimensional Dynamic Time Warping

Authors: Guoliang Lu, Changhou Lu, Xueyong Li

Abstract:

In action recognition, previous studies have demonstrated the effectiveness of using multiple features to improve the recognition performance. We focus on two practical issues: i) most studies use a direct way of concatenating/accumulating multi features to evaluate the similarity between two actions. This way could be too strong since each kind of feature can include different dimensions, quantities, etc; ii) in many studies, the employed classification methods lack of a flexible and effective mechanism to add new feature(s) into classification. In this paper, we explore an unified scheme based on recently-proposed multi-dimensional dynamic time warping (MD-DTW). Experiments demonstrated the scheme's effectiveness of combining multi-feature and the flexibility of adding new feature(s) to increase the recognition performance. In addition, the explored scheme also provides us an open architecture for using new advanced classification methods in the future to enhance action recognition.

Keywords: action recognition, multi features, dynamic time warping, feature combination

Procedia PDF Downloads 436
4479 Increasing a Computer Performance by Overclocking Central Processing Unit (CPU)

Authors: Witthaya Mekhum, Wutthikorn Malikong

Abstract:

The objective of this study is to investigate the increasing desktop computer performance after overclocking central processing unit or CPU by running a computer component at a higher clock rate (more clock cycles per second) than it was designed at the rate of 0.1 GHz for each level or 100 MHz starting at 4000 GHz-4500 GHz. The computer performance is tested for each level with 4 programs, i.e. Hyper PI ver. 0.99b, Cinebench R15, LinX ver.0.6.4 and WinRAR . After the CPU overclock, the computer performance increased. When overclocking CPU at 29% the computer performance tested by Hyper PI ver. 0.99b increased by 10.03% and when tested by Cinebench R15 the performance increased by 20.05% and when tested by LinX Program the performance increased by 16.61%. However, the performance increased only 8.14% when tested with Winrar program. The computer performance did not increase according to the overclock rate because the computer consists of many components such as Random Access Memory or RAM, Hard disk Drive, Motherboard and Display Card, etc.

Keywords: overclock, performance, central processing unit, computer

Procedia PDF Downloads 281
4478 OPEN-EmoRec-II-A Multimodal Corpus of Human-Computer Interaction

Authors: Stefanie Rukavina, Sascha Gruss, Steffen Walter, Holger Hoffmann, Harald C. Traue

Abstract:

OPEN-EmoRecII is an open multimodal corpus with experimentally induced emotions. In the first half of the experiment, emotions were induced with standardized picture material and in the second half during a human-computer interaction (HCI), realized with a wizard-of-oz design. The induced emotions are based on the dimensional theory of emotions (valence, arousal and dominance). These emotional sequences - recorded with multimodal data (mimic reactions, speech, audio and physiological reactions) during a naturalistic-like HCI-environment one can improve classification methods on a multimodal level. This database is the result of an HCI-experiment, for which 30 subjects in total agreed to a publication of their data including the video material for research purposes. The now available open corpus contains sensory signal of: video, audio, physiology (SCL, respiration, BVP, EMG Corrugator supercilii, EMG Zygomaticus Major) and mimic annotations.

Keywords: open multimodal emotion corpus, annotated labels, intelligent interaction

Procedia PDF Downloads 414
4477 Using Computer Simulations to Prepare Teachers

Authors: Roberta Gentry

Abstract:

The presentation will begin with a brief literature review of the use of computer simulation in teacher education programs. This information will be summarized. Additionally, based on the literature review, advantages and disadvantages of using computer simulation in higher education will be shared. Finally, a study in which computer simulations software was used with 50 initial licensure teacher candidates in both an introductory course and a behavior management course will be shared. Candidates reflected on their experiences with using computer simulation. The instructor of the course will also share lessons learned.

Keywords: simulations, teacher education, teacher preparation, educational research

Procedia PDF Downloads 648
4476 In vivo Estimation of Mutation Rate of the Aleutian Mink Disease Virus

Authors: P.P. Rupasinghe, A.H. Farid

Abstract:

The Aleutian mink disease virus (AMDV, Carnivore amdoparvovirus 1) causes persistent infection, plasmacytosis, and formation and deposition of immune complexes in various organs in adult mink, leading to glomerulonephritis, arteritis and sometimes death. The disease has no cure nor an effective vaccine, and identification and culling of mink positive for anti-AMDV antibodies have not been successful in controlling the infection in many countries. The failure to eradicate the virus from infected farms may be caused by keeping false-negative individuals on the farm, virus transmission from wild animals, or neighboring farms. The identification of sources of infection, which can be performed by comparing viral sequences, is important in the success of viral eradication programs. High mutation rates could cause inaccuracies when viral sequences are used to trace back an infection to its origin. There is no published information on the mutation rate of AMDV either in vivo or in vitro. The in vivo estimation is the most accurate method, but it is difficult to perform because of the inherent technical complexities, namely infecting live animals, the unknown numbers of viral generations (i.e., infection cycles), the removal of deleterious mutations over time and genetic drift. The objective of this study was to determine the mutation rate of AMDV on which no information was available. A homogenate was prepared from the spleen of one naturally infected American mink (Neovison vison) from Nova Scotia, Canada (parental template). The near full-length genome of this isolate (91.6%, 4,143 bp) was bidirectionally sequenced. A group of black mink was inoculated with this homogenate (descendant mink). Spleen sampled were collected from 10 descendant mink after 16 weeks post-inoculation (wpi) and from anther 10 mink after 176 wpi, and their near-full length genomes were bi-directionally sequenced. Sequences of these mink were compared with each other and with the sequence of the parental template. The number of nucleotide substitutions at 176 wpi was 3.1 times greater than that at 16 wpi (113 vs 36) whereas the estimates of mutation rate at 176 wpi was 3.1 times lower than that at 176 wpi (2.85×10-3 vs 9.13×10-4 substitutions/ site/ year), showing a decreasing trend in the mutation rate per unit of time. Although there is no report on in vivo estimate of the mutation rate of DNA viruses in animals using the same method which was used in the current study, these estimates are at the higher range of reported values for DNA viruses determined by various techniques. These high estimates are logical based on the wide range of diversity and pathogenicity of AMDV isolates. The results suggest that increases in the number of nucleotide substitutions over time and subsequent divergence make it difficult to accurately trace back AMDV isolates to their origin when several years elapsed between the two samplings.

Keywords: Aleutian mink disease virus, American mink, mutation rate, nucleotide substitution

Procedia PDF Downloads 123
4475 Intelligent Transport System: Classification of Traffic Signs Using Deep Neural Networks in Real Time

Authors: Anukriti Kumar, Tanmay Singh, Dinesh Kumar Vishwakarma

Abstract:

Traffic control has been one of the most common and irritating problems since the time automobiles have hit the roads. Problems like traffic congestion have led to a significant time burden around the world and one significant solution to these problems can be the proper implementation of the Intelligent Transport System (ITS). It involves the integration of various tools like smart sensors, artificial intelligence, position technologies and mobile data services to manage traffic flow, reduce congestion and enhance driver's ability to avoid accidents during adverse weather. Road and traffic signs’ recognition is an emerging field of research in ITS. Classification problem of traffic signs needs to be solved as it is a major step in our journey towards building semi-autonomous/autonomous driving systems. The purpose of this work focuses on implementing an approach to solve the problem of traffic sign classification by developing a Convolutional Neural Network (CNN) classifier using the GTSRB (German Traffic Sign Recognition Benchmark) dataset. Rather than using hand-crafted features, our model addresses the concern of exploding huge parameters and data method augmentations. Our model achieved an accuracy of around 97.6% which is comparable to various state-of-the-art architectures.

Keywords: multiclass classification, convolution neural network, OpenCV

Procedia PDF Downloads 174
4474 A Systematic Literature Review on Security and Privacy Design Patterns

Authors: Ebtehal Aljedaani, Maha Aljohani

Abstract:

Privacy and security patterns are both important for developing software that protects users' data and privacy. Privacy patterns are designed to address common privacy problems, such as unauthorized data collection and disclosure. Security patterns are designed to protect software from attack and ensure reliability and trustworthiness. Using privacy and security patterns, software engineers can implement security and privacy by design principles, which means that security and privacy are considered throughout the software development process. These patterns are available to translate "security & privacy-by-design" into practical advice for software engineering. Previous research on privacy and security patterns has typically focused on one category of patterns at a time. This paper aims to bridge this gap by merging the two categories and identifying their similarities and differences. To do this, the authors conducted a systematic literature review of 25 research papers on privacy and security patterns. The papers were analysed based on the category of the pattern, the classification of the pattern, and the security requirements that the pattern addresses. This paper presents the results of a comprehensive review of privacy and security design patterns. The review is intended to help future IT designers understand the relationship between the two types of patterns and how to use them to design secure and privacy-preserving software. The paper provides a clear classification of privacy and security design patterns, along with examples of each type. The authors found that there is only one widely accepted classification of privacy design patterns, while there are several competing classifications of security design patterns. Three types of security design patterns were found to be the most commonly used.

Keywords: design patterns, security, privacy, classification of patterns, security patterns, privacy patterns

Procedia PDF Downloads 129
4473 Digital Twin Technology: A Solution for Remote Operation and Productivity Improvement During Covid-19 Era and Future

Authors: Muhamad Sahir Bin Ahmad Shatiry, Wan Normeza Wan Zakaria, Mohamad Zaki Hassan

Abstract:

The pandemic Covid19 has significantly impacted the world; the spreading of the Covid19 virus initially from China has dramatically impacted the world's economy. Therefore, the world reacts with establishing the new way or norm in daily life. The rapid rise of the latest technology has been seen by introducing many technologies to ease human life to have a minor contract between humans and avoid spreading the virus Covid19. Digital twin technologies are one of the technologies created before the pandemic Covid19 but slow adoption in the industry. Throughout the Covid19, most of the companies in the world started to explore to use it. The digital twin technology provides the virtual platform to replicate the existing condition or setup for anything such as office, manufacturing line, factories' machine, building, and many more. This study investigates the effect on the economic perspective after the companies use the Digital Twin technology in the industry. To minimize the contact between humans and to have the ability to operate the system digitally remotely. In this study, the explanation of the digital twin technology impacts the world's microeconomic and macroeconomic.

Keywords: productivity, artificially intelligence, IoT, digital twin

Procedia PDF Downloads 199
4472 An Integrated Lightweight Naïve Bayes Based Webpage Classification Service for Smartphone Browsers

Authors: Mayank Gupta, Siba Prasad Samal, Vasu Kakkirala

Abstract:

The internet world and its priorities have changed considerably in the last decade. Browsing on smart phones has increased manifold and is set to explode much more. Users spent considerable time browsing different websites, that gives a great deal of insight into user’s preferences. Instead of plain information classifying different aspects of browsing like Bookmarks, History, and Download Manager into useful categories would improve and enhance the user’s experience. Most of the classification solutions are server side that involves maintaining server and other heavy resources. It has security constraints and maybe misses on contextual data during classification. On device, classification solves many such problems, but the challenge is to achieve accuracy on classification with resource constraints. This on device classification can be much more useful in personalization, reducing dependency on cloud connectivity and better privacy/security. This approach provides more relevant results as compared to current standalone solutions because it uses content rendered by browser which is customized by the content provider based on user’s profile. This paper proposes a Naive Bayes based lightweight classification engine targeted for a resource constraint devices. Our solution integrates with Web Browser that in turn triggers classification algorithm. Whenever a user browses a webpage, this solution extracts DOM Tree data from the browser’s rendering engine. This DOM data is a dynamic, contextual and secure data that can’t be replicated. This proposal extracts different features of the webpage that runs on an algorithm to classify into multiple categories. Naive Bayes based engine is chosen in this solution for its inherent advantages in using limited resources compared to other classification algorithms like Support Vector Machine, Neural Networks, etc. Naive Bayes classification requires small memory footprint and less computation suitable for smartphone environment. This solution has a feature to partition the model into multiple chunks that in turn will facilitate less usage of memory instead of loading a complete model. Classification of the webpages done through integrated engine is faster, more relevant and energy efficient than other standalone on device solution. This classification engine has been tested on Samsung Z3 Tizen hardware. The Engine is integrated into Tizen Browser that uses Chromium Rendering Engine. For this solution, extensive dataset is sourced from dmoztools.net and cleaned. This cleaned dataset has 227.5K webpages which are divided into 8 generic categories ('education', 'games', 'health', 'entertainment', 'news', 'shopping', 'sports', 'travel'). Our browser integrated solution has resulted in 15% less memory usage (due to partition method) and 24% less power consumption in comparison with standalone solution. This solution considered 70% of the dataset for training the data model and the rest 30% dataset for testing. An average accuracy of ~96.3% is achieved across the above mentioned 8 categories. This engine can be further extended for suggesting Dynamic tags and using the classification for differential uses cases to enhance browsing experience.

Keywords: chromium, lightweight engine, mobile computing, Naive Bayes, Tizen, web browser, webpage classification

Procedia PDF Downloads 163
4471 A Ratio-Weighted Decision Tree Algorithm for Imbalance Dataset Classification

Authors: Doyin Afolabi, Phillip Adewole, Oladipupo Sennaike

Abstract:

Most well-known classifiers, including the decision tree algorithm, can make predictions on balanced datasets efficiently. However, the decision tree algorithm tends to be biased towards imbalanced datasets because of the skewness of the distribution of such datasets. To overcome this problem, this study proposes a weighted decision tree algorithm that aims to remove the bias toward the majority class and prevents the reduction of majority observations in imbalance datasets classification. The proposed weighted decision tree algorithm was tested on three imbalanced datasets- cancer dataset, german credit dataset, and banknote dataset. The specificity, sensitivity, and accuracy metrics were used to evaluate the performance of the proposed decision tree algorithm on the datasets. The evaluation results show that for some of the weights of our proposed decision tree, the specificity, sensitivity, and accuracy metrics gave better results compared to that of the ID3 decision tree and decision tree induced with minority entropy for all three datasets.

Keywords: data mining, decision tree, classification, imbalance dataset

Procedia PDF Downloads 133
4470 Evidence for Replication of an Unusual G8P[14] Human Rotavirus Strain in the Feces of an Alpine Goat: Zoonotic Transmission from Caprine Species

Authors: Amine Alaoui Sanae, Tagjdid Reda, Loutfi Chafiqa, Melloul Merouane, Laloui Aziz, Touil Nadia, El Fahim, E. Mostafa

Abstract:

Background: Rotavirus group A (RVA) strains with G8P[14] specificities are usually detected in calves and goats. However, these strains have been reported globally in humans and have often been characterized as originating from zoonotic transmissions, particularly in area where ruminants and humans live side-by-side. Whether human P[14] genotypes are two-way and can be transmitted to animal species remains to be established. Here we describe VP4 deduced amino-acid relationships of three Moroccan P[14] genotypes originating from different species and the receptiveness of an alpine goat to a human G8P[14] through an experimental infection. Material/methods: the human MA31 RVA strain was originally identified in a four years old girl presenting an acute gastroenteritis hospitalized at the pediatric care unit in Rabat Hospital in 2011. The virus was isolated and propagated in MA104 cells in the presence of trypsin. Ch_10S and 8045_S animal RVA strains were identified in fecal samples of a 2-week-old native goat and 3-week-old calf with diarrhea in 2011 in Bouaarfa and My Bousselham respectively. Genomic RNAs of all strains were subjected to a two-step RT-PCR and sequenced using the consensus primers VP4. The phylogenetic tree for MA31, Ch_10S and 8045_S VP4 and a set of published P[14] genotypes was constructed using MEGA6 software. The receptivity of MA31 strain by an eight month-old alpine goat was assayed. The animal was orally and intraperitonally inoculated with a dose of 8.5 TCID50 of virus stock at passage level 3. The shedding of the virus was tested by a real time RT-PCR assay. Results: The phylogenetic tree showed that the three Moroccan strains MA31, Ch_10S and 8045_S VP4 were highly related to each other (100% similar at the nucleotide level). They were clustered together with the B10925, Sp813, PA77 and P169 strains isolated in Belgium, Spain and Italy respectively. The Belgian strain B10925 was the most closely related to the Moroccan strains. In contrast, the 8045_S and Ch_10S strains were clustered distantly from the Tunisian calf strain B137 and the goat strain cap455 isolated in South Africa respectively. The human MA31 RVA strain was able to induce bloody diarrhea at 2 days post infection (dpi) in the alpine goat kid. RVA virus shedding started by 2 dpi (Ct value of 28) and continued until 5 dpi (Ct value of 25) with a concomitant elevation in the body temperature. Conclusions: Our study while limited to one animal, is the first study proving experimentally that a human P[14] genotype causes diarrhea and virus shedding in the goat. This result reinforce the potential role of inter- species transmission in generating novel and rare rotavirus strains such G8P[14] which infect humans.

Keywords: interspecies transmission, rotavirus, goat, human

Procedia PDF Downloads 289
4469 Land Cover Remote Sensing Classification Advanced Neural Networks Supervised Learning

Authors: Eiman Kattan

Abstract:

This study aims to evaluate the impact of classifying labelled remote sensing images conventional neural network (CNN) architecture, i.e., AlexNet on different land cover scenarios based on two remotely sensed datasets from different point of views such as the computational time and performance. Thus, a set of experiments were conducted to specify the effectiveness of the selected convolutional neural network using two implementing approaches, named fully trained and fine-tuned. For validation purposes, two remote sensing datasets, AID, and RSSCN7 which are publicly available and have different land covers features were used in the experiments. These datasets have a wide diversity of input data, number of classes, amount of labelled data, and texture patterns. A specifically designed interactive deep learning GPU training platform for image classification (Nvidia Digit) was employed in the experiments. It has shown efficiency in training, validation, and testing. As a result, the fully trained approach has achieved a trivial result for both of the two data sets, AID and RSSCN7 by 73.346% and 71.857% within 24 min, 1 sec and 8 min, 3 sec respectively. However, dramatic improvement of the classification performance using the fine-tuning approach has been recorded by 92.5% and 91% respectively within 24min, 44 secs and 8 min 41 sec respectively. The represented conclusion opens the opportunities for a better classification performance in various applications such as agriculture and crops remote sensing.

Keywords: conventional neural network, remote sensing, land cover, land use

Procedia PDF Downloads 369
4468 Faster, Lighter, More Accurate: A Deep Learning Ensemble for Content Moderation

Authors: Arian Hosseini, Mahmudul Hasan

Abstract:

To address the increasing need for efficient and accurate content moderation, we propose an efficient and lightweight deep classification ensemble structure. Our approach is based on a combination of simple visual features, designed for high-accuracy classification of violent content with low false positives. Our ensemble architecture utilizes a set of lightweight models with narrowed-down color features, and we apply it to both images and videos. We evaluated our approach using a large dataset of explosion and blast contents and compared its performance to popular deep learning models such as ResNet-50. Our evaluation results demonstrate significant improvements in prediction accuracy, while benefiting from 7.64x faster inference and lower computation cost. While our approach is tailored to explosion detection, it can be applied to other similar content moderation and violence detection use cases as well. Based on our experiments, we propose a "think small, think many" philosophy in classification scenarios. We argue that transforming a single, large, monolithic deep model into a verification-based step model ensemble of multiple small, simple, and lightweight models with narrowed-down visual features can possibly lead to predictions with higher accuracy.

Keywords: deep classification, content moderation, ensemble learning, explosion detection, video processing

Procedia PDF Downloads 52
4467 Improve Divers Tracking and Classification in Sonar Images Using Robust Diver Wake Detection Algorithm

Authors: Mohammad Tarek Al Muallim, Ozhan Duzenli, Ceyhun Ilguy

Abstract:

Harbor protection systems are so important. The need for automatic protection systems has increased over the last years. Diver detection active sonar has great significance. It used to detect underwater threats such as divers and autonomous underwater vehicle. To automatically detect such threats the sonar image is processed by algorithms. These algorithms used to detect, track and classify of underwater objects. In this work, divers tracking and classification algorithm is improved be proposing a robust wake detection method. To detect objects the sonar images is normalized then segmented based on fixed threshold. Next, the centroids of the segments are found and clustered based on distance metric. Then to track the objects linear Kalman filter is applied. To reduce effect of noise and creation of false tracks, the Kalman tracker is fine tuned. The tuning is done based on our active sonar specifications. After the tracks are initialed and updated they are subjected to a filtering stage to eliminate the noisy and unstable tracks. Also to eliminate object with a speed out of the diver speed range such as buoys and fast boats. Afterwards the result tracks are subjected to a classification stage to deiced the type of the object been tracked. Here the classification stage is to deice wither if the tracked object is an open circuit diver or a close circuit diver. At the classification stage, a small area around the object is extracted and a novel wake detection method is applied. The morphological features of the object with his wake is extracted. We used support vector machine to find the best classifier. The sonar training images and the test images are collected by ARMELSAN Defense Technologies Company using the portable diver detection sonar ARAS-2023. After applying the algorithm to the test sonar data, we get fine and stable tracks of the divers. The total classification accuracy achieved with the diver type is 97%.

Keywords: harbor protection, diver detection, active sonar, wake detection, diver classification

Procedia PDF Downloads 237
4466 Credit Risk Assessment Using Rule Based Classifiers: A Comparative Study

Authors: Salima Smiti, Ines Gasmi, Makram Soui

Abstract:

Credit risk is the most important issue for financial institutions. Its assessment becomes an important task used to predict defaulter customers and classify customers as good or bad payers. To this objective, numerous techniques have been applied for credit risk assessment. However, to our knowledge, several evaluation techniques are black-box models such as neural networks, SVM, etc. They generate applicants’ classes without any explanation. In this paper, we propose to assess credit risk using rules classification method. Our output is a set of rules which describe and explain the decision. To this end, we will compare seven classification algorithms (JRip, Decision Table, OneR, ZeroR, Fuzzy Rule, PART and Genetic programming (GP)) where the goal is to find the best rules satisfying many criteria: accuracy, sensitivity, and specificity. The obtained results confirm the efficiency of the GP algorithm for German and Australian datasets compared to other rule-based techniques to predict the credit risk.

Keywords: credit risk assessment, classification algorithms, data mining, rule extraction

Procedia PDF Downloads 181
4465 Laboratory-Based Monitoring of Hepatitis B Virus Vaccination Status in North Central Nigeria

Authors: Nwadioha Samuel Iheanacho, Abah Paul, Odimayo Simidele Michael

Abstract:

Background: The World Health Assembly through the Global Health Sector Strategy on viral hepatitis calls for the elimination of viral hepatitis as a public health threat by 2030. All hands are on deck to actualize this goal through an effective and active vaccination and monitoring tool. Aim: To combine the Epidemiologic with Laboratory Hepatitis B Virus vaccination monitoring tools. Method: Laboratory results analysis of subjects recruited during the World Hepatitis week from July 2020 to July 2021 was done after obtaining their epidemiologic data on Hepatitis B virus risk factors, in the Medical Microbiology Laboratory of Benue State University Teaching Hospital, Nigeria. Result: A total of 500 subjects comprising males 60.0%(n=300/500) and females 40.0%(n=200/500) were recruited. A fifty-three percent majority was of the age range of 26 to 36 years. Serologic profiles were as follows, 15.0%(n=75/500) HBsAg; 7.0% (n=35/500) HBeAg; 8.0% (n=40/500) Anti-Hbe; 20.0% (n=100/500) Anti-HBc and 38.0% (n=190/500) Anti-HBs. Immune responses to vaccination were as follows, 47.0%(n=235/500) Immune naïve {no serologic marker + normal ALT}; 33%(n=165/500) Immunity by vaccination {Anti-HBs + normal ALT}; 5%(n=25/500) Immunity to previous infection {Anti-HBs, Anti-HBc, +/- Anti-HBe + normal ALT}; 8%(n=40/500) Carriers {HBsAg, Anti-HBc, Anti-HBe +normal ALT} and 7% (35/500) Anti-HBe serum- negative infections {HBsAg, HBeAg, Anti-HBc +elevated ALT}. Conclusion: The present 33.0% immunity by vaccination coverage in Central Nigeria was much lower than the 41.0% national peak in 2013, and a far cry from the global expectation of attainment of a Global Health Sector Strategy on the elimination of viral hepatitis as a public health threat by 2030. Therefore, more creative ideas and collective effort are needed to attain this goal of the World Health Assembly.

Keywords: Hepatitis B, vaccination status, laboratory tools, resource-limited settings

Procedia PDF Downloads 72
4464 Robust Pattern Recognition via Correntropy Generalized Orthogonal Matching Pursuit

Authors: Yulong Wang, Yuan Yan Tang, Cuiming Zou, Lina Yang

Abstract:

This paper presents a novel sparse representation method for robust pattern classification. Generalized orthogonal matching pursuit (GOMP) is a recently proposed efficient sparse representation technique. However, GOMP adopts the mean square error (MSE) criterion and assign the same weights to all measurements, including both severely and slightly corrupted ones. To reduce the limitation, we propose an information-theoretic GOMP (ITGOMP) method by exploiting the correntropy induced metric. The results show that ITGOMP can adaptively assign small weights on severely contaminated measurements and large weights on clean ones, respectively. An ITGOMP based classifier is further developed for robust pattern classification. The experiments on public real datasets demonstrate the efficacy of the proposed approach.

Keywords: correntropy induced metric, matching pursuit, pattern classification, sparse representation

Procedia PDF Downloads 355
4463 Data Mining of Students' Performance Using Artificial Neural Network: Turkish Students as a Case Study

Authors: Samuel Nii Tackie, Oyebade K. Oyedotun, Ebenezer O. Olaniyi, Adnan Khashman

Abstract:

Artificial neural networks have been used in different fields of artificial intelligence, and more specifically in machine learning. Although, other machine learning options are feasible in most situations, but the ease with which neural networks lend themselves to different problems which include pattern recognition, image compression, classification, computer vision, regression etc. has earned it a remarkable place in the machine learning field. This research exploits neural networks as a data mining tool in predicting the number of times a student repeats a course, considering some attributes relating to the course itself, the teacher, and the particular student. Neural networks were used in this work to map the relationship between some attributes related to students’ course assessment and the number of times a student will possibly repeat a course before he passes. It is the hope that the possibility to predict students’ performance from such complex relationships can help facilitate the fine-tuning of academic systems and policies implemented in learning environments. To validate the power of neural networks in data mining, Turkish students’ performance database has been used; feedforward and radial basis function networks were trained for this task; and the performances obtained from these networks evaluated in consideration of achieved recognition rates and training time.

Keywords: artificial neural network, data mining, classification, students’ evaluation

Procedia PDF Downloads 612
4462 Data Quality Enhancement with String Length Distribution

Authors: Qi Xiu, Hiromu Hota, Yohsuke Ishii, Takuya Oda

Abstract:

Recently, collectable manufacturing data are rapidly increasing. On the other hand, mega recall is getting serious as a social problem. Under such circumstances, there are increasing needs for preventing mega recalls by defect analysis such as root cause analysis and abnormal detection utilizing manufacturing data. However, the time to classify strings in manufacturing data by traditional method is too long to meet requirement of quick defect analysis. Therefore, we present String Length Distribution Classification method (SLDC) to correctly classify strings in a short time. This method learns character features, especially string length distribution from Product ID, Machine ID in BOM and asset list. By applying the proposal to strings in actual manufacturing data, we verified that the classification time of strings can be reduced by 80%. As a result, it can be estimated that the requirement of quick defect analysis can be fulfilled.

Keywords: string classification, data quality, feature selection, probability distribution, string length

Procedia PDF Downloads 316