Search results for: performance prism model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 25956

Search results for: performance prism model

20646 Information Technology and Business Alignments among Different Divisions: A Comparative Analysis of Japan and South Korea

Authors: Michiko Miyamoto

Abstract:

This paper empirically investigates whether information technology (IT) strategies, business strategies, and divisions are aligned to meet overall business goals for Korean Small and medium-sized enterprises (SMEs), based on structure based Strategic Alignment Model, and make comparison with those of Japanese SMEs. Using 2,869 valid responses of Korean Human Capital Corporate Panel survey, a result of this study suggests that Korean human resources (HR) departments have a major influence over IT strategy, which is the same as Japanese SMEs, even though their management styles are quite different. As for IT strategy, it is not related to other departments at all for Korean SMEs. The Korean management seems to possess a great power over each division, such as Sales/Service, Research and Development/Technical Experts, HR, and Production.

Keywords: IT-business alignment, structured based strategic alignment model, structural equation model, human resources department

Procedia PDF Downloads 256
20645 MGAUM—Towards a Mobile Government Adoption and Utilization Model: The Case of Saudi Arabia

Authors: Mohammed Alonazi, Natalia Beloff, Martin White

Abstract:

This paper presents a proposal for a mobile government adoption and utilization model (MGAUM), which is a framework designed to increase the adoption rate of m-government services in Saudi Arabia. Recent advances in mobile technologies such are Mobile compatibilities, The development of wireless communication, mobile applications and devices are enabling governments to deliver services in new ways to citizens more efficiently and economically. In the last decade, many governments around the globe are utilizing these advances effectively to develop their next generation of e-government services. However, a low adoption rate of m-government services by citizens is a common problem in Arabian countries, including Saudi Arabia. Yet, to our knowledge, very little research has been conducted focused on understanding the factors that influence citizen adoption of these m-government services in this part of the world. A set of social, cultural and technological factors have been identified in the literature, which has led to the formulation of associated research questions and hypotheses. These hypotheses will be tested on Saudi citizens using questionnaires and interview methods based around the technology acceptance model. A key objective of the MGAUM framework is to investigate and understand Saudi citizens perception towards adoption and utilization of m-government services.

Keywords: e-government, m-government, citizen services quality, technology acceptance model, Saudi Arabia, adoption framework.

Procedia PDF Downloads 296
20644 Combining ASTER Thermal Data and Spatial-Based Insolation Model for Identification of Geothermal Active Areas

Authors: Khalid Hussein, Waleed Abdalati, Pakorn Petchprayoon, Khaula Alkaabi

Abstract:

In this study, we integrated ASTER thermal data with an area-based spatial insolation model to identify and delineate geothermally active areas in Yellowstone National Park (YNP). Two pairs of L1B ASTER day- and nighttime scenes were used to calculate land surface temperature. We employed the Emissivity Normalization Algorithm which separates temperature from emissivity to calculate surface temperature. We calculated the incoming solar radiation for the area covered by each of the four ASTER scenes using an insolation model and used this information to compute temperature due to solar radiation. We then identified the statistical thermal anomalies using land surface temperature and the residuals calculated from modeled temperatures and ASTER-derived surface temperatures. Areas that had temperatures or temperature residuals greater than 2σ and between 1σ and 2σ were considered ASTER-modeled thermal anomalies. The areas identified as thermal anomalies were in strong agreement with the thermal areas obtained from the YNP GIS database. Also the YNP hot springs and geysers were located within areas identified as anomalous thermal areas. The consistency between our results and known geothermally active areas indicate that thermal remote sensing data, integrated with a spatial-based insolation model, provides an effective means for identifying and locating areas of geothermal activities over large areas and rough terrain.

Keywords: thermal remote sensing, insolation model, land surface temperature, geothermal anomalies

Procedia PDF Downloads 354
20643 Deep Learning for Qualitative and Quantitative Grain Quality Analysis Using Hyperspectral Imaging

Authors: Ole-Christian Galbo Engstrøm, Erik Schou Dreier, Birthe Møller Jespersen, Kim Steenstrup Pedersen

Abstract:

Grain quality analysis is a multi-parameterized problem that includes a variety of qualitative and quantitative parameters such as grain type classification, damage type classification, and nutrient regression. Currently, these parameters require human inspection, a multitude of instruments employing a variety of sensor technologies, and predictive model types or destructive and slow chemical analysis. This paper investigates the feasibility of applying near-infrared hyperspectral imaging (NIR-HSI) to grain quality analysis. For this study two datasets of NIR hyperspectral images in the wavelength range of 900 nm - 1700 nm have been used. Both datasets contain images of sparsely and densely packed grain kernels. The first dataset contains ~87,000 image crops of bulk wheat samples from 63 harvests where protein value has been determined by the FOSS Infratec NOVA which is the golden industry standard for protein content estimation in bulk samples of cereal grain. The second dataset consists of ~28,000 image crops of bulk grain kernels from seven different wheat varieties and a single rye variety. In the first dataset, protein regression analysis is the problem to solve while variety classification analysis is the problem to solve in the second dataset. Deep convolutional neural networks (CNNs) have the potential to utilize spatio-spectral correlations within a hyperspectral image to simultaneously estimate the qualitative and quantitative parameters. CNNs can autonomously derive meaningful representations of the input data reducing the need for advanced preprocessing techniques required for classical chemometric model types such as artificial neural networks (ANNs) and partial least-squares regression (PLS-R). A comparison between different CNN architectures utilizing 2D and 3D convolution is conducted. These results are compared to the performance of ANNs and PLS-R. Additionally, a variety of preprocessing techniques from image analysis and chemometrics are tested. These include centering, scaling, standard normal variate (SNV), Savitzky-Golay (SG) filtering, and detrending. The results indicate that the combination of NIR-HSI and CNNs has the potential to be the foundation for an automatic system unifying qualitative and quantitative grain quality analysis within a single sensor technology and predictive model type.

Keywords: deep learning, grain analysis, hyperspectral imaging, preprocessing techniques

Procedia PDF Downloads 82
20642 An Analytical Study of the Quality of Educational Administration and Management At Secondary School Level in Punjab, Pakistan

Authors: Shamim Akhtar

Abstract:

The purpose of the present research was to analyse the performance level of district administrators and school heads teachers at secondary school level. The sample of the study was head teachers and teachers of secondary schools. In survey three scales were used, two scales were for the head teachers, one five point scale was for analysing the working efficiency of educational administrators and other seven points scale was for head teachers for analysing their own performance and one another seven point rating scale similar to head teacher was for the teachers for analysing the working performance of their head teachers. The results of the head teachers’ responses revealed that the performance of their District Educational Administrators was average and for the performance efficiency of the head teachers, researcher constructed the rating scales on seven parameters of management likely academic management, personnel management, financial management, infra-structure management, linkage and interface, student’s services, and managerial excellence. Results of percentages, means, and graphical presentation on different parameters of management showed that there was an obvious difference in head teachers and teachers’ responses and head teachers probably were overestimating their efficiency; but teachers evaluated that they were performing averagely on majority statements. Results of t-test showed that there was no significance difference in the responses of rural and urban teachers but significant difference in male and female teachers’ responses showed that female head teachers were performing their responsibilities better than male head teachers in public sector schools. When efficiency of the head teachers on different parameters of management were analysed it was concluded that their efficiency on academic and personnel management was average and on financial management and on managerial excellence was highly above of average level but on others parameters like infra-structure management, linkage and interface and on students services was above of average level on most statements but highly above of average on some statements. Hence there is need to improve the working efficiency in academic management and personnel management.

Keywords: educational administration, educational management, parameters of management, education

Procedia PDF Downloads 320
20641 Kinetic Model to Interpret Whistler Waves in Multicomponent Non-Maxwellian Space Plasmas

Authors: Warda Nasir, M. N. S. Qureshi

Abstract:

Whistler waves are right handed circularly polarized waves and are frequently observed in space plasmas. The Low frequency branch of the Whistler waves having frequencies nearly around 100 Hz, known as Lion roars, are frequently observed in magnetosheath. Another feature of the magnetosheath is the observations of flat top electron distributions with single as well as two electron populations. In the past, lion roars were studied by employing kinetic model using classical bi-Maxwellian distribution function, however, could not be justified both on quantitatively as well as qualitatively grounds. We studied Whistler waves by employing kinetic model using non-Maxwellian distribution function such as the generalized (r,q) distribution function which is the generalized form of kappa and Maxwellian distribution functions by employing kinetic theory with single or two electron populations. We compare our results with the Cluster observations and found good quantitative and qualitative agreement between them. At times when lion roars are observed (not observed) in the data and bi-Maxwellian could not provide the sufficient growth (damping) rates, we showed that when generalized (r,q) distribution function is employed, the resulted growth (damping) rates exactly match the observations.

Keywords: kinetic model, whistler waves, non-maxwellian distribution function, space plasmas

Procedia PDF Downloads 295
20640 A Prediction Model of Adopting IPTV

Authors: Jeonghwan Jeon

Abstract:

With the advent of IPTV in the fierce competition with existing broadcasting system, it is emerged as an important issue to predict how much the adoption of IPTV service will be. This paper aims to suggest a prediction model for adopting IPTV using classification and Ranking Belief Simplex (CaRBS). A simplex plot method of representing data allows a clear visual representation to the degree of interaction of the support from the variables to the prediction of the objects. CaRBS is applied to the survey data on the IPTV adoption.

Keywords: prediction, adoption, IPTV, CaRBS

Procedia PDF Downloads 398
20639 Education and Learning in Indonesia to Refer to the Democratic and Humanistic Learning System in Finland

Authors: Nur Sofi Hidayah, Ratih Tri Purwatiningsih

Abstract:

Learning is a process attempts person to obtain a new behavior changes as a whole, as a result of his own experience in the interaction with the environment. Learning involves our brain to think, while the ability of the brain to each student's performance is different. To obtain optimal learning results then need time to learn the exact hour that the brain's performance is not too heavy. Referring to the learning system in Finland which apply 45 minutes to learn and a 15-minute break is expected to be the brain work better, with the rest of the brain, the brain will be more focused and lessons can be absorbed well. It can be concluded that learning in this way students learn with brain always fresh and the best possible use of the time, but it can make students not saturated in a lesson.

Keywords: learning, working hours brain, time efficient learning, working hours in the brain receive stimulus.

Procedia PDF Downloads 388
20638 Identification of Vessel Class with Long Short-Term Memory Using Kinematic Features in Maritime Traffic Control

Authors: Davide Fuscà, Kanan Rahimli, Roberto Leuzzi

Abstract:

Preventing abuse and illegal activities in a given area of the sea is a very difficult and expensive task. Artificial intelligence offers the possibility to implement new methods to identify the vessel class type from the kinematic features of the vessel itself. The task strictly depends on the quality of the data. This paper explores the application of a deep, long short-term memory model by using AIS flow only with a relatively low quality. The proposed model reaches high accuracy on detecting nine vessel classes representing the most common vessel types in the Ionian-Adriatic Sea. The model has been applied during the Adriatic-Ionian trial period of the international EU ANDROMEDA H2020 project to identify vessels performing behaviors far from the expected one depending on the declared type.

Keywords: maritime surveillance, artificial intelligence, behavior analysis, LSTM

Procedia PDF Downloads 216
20637 Modeling in the Middle School: Eighth-Grade Students’ Construction of the Summer Job Problem

Authors: Neslihan Sahin Celik, Ali Eraslan

Abstract:

Mathematical model and modeling are one of the topics that have been intensively discussed in recent years. In line with the results of the PISA studies, researchers in many countries have begun to question how much students in school-education system are prepared to solve the real-world problems they encounter in their future professional lives. As a result, many mathematics educators have begun to emphasize the importance of new skills and understanding such as constructing, Hypothesizing, Describing, manipulating, predicting, working together for complex and multifaceted problems for success in beyond the school. When students increasingly face this kind of situations in their daily life, it is important to make sure that students have enough experience to work together and interpret mathematical situations that enable them to think in different ways and share their ideas with their peers. Thus, model eliciting activities are one of main tools that help students to gain experiences and the new skills required. This research study was carried on the town center of a big city located in the Black Sea region in Turkey. The participants were eighth-grade students in a middle school. After a six-week preliminary study, three students in an eighth-grade classroom were selected using criterion sampling technique and placed in a focus group. The focus group of three students was videotaped as they worked on a model eliciting activity, the Summer Job Problem. The conversation of the group was transcribed, examined with students’ written work and then qualitatively analyzed through the lens of Blum’s (1996) modeling processing cycle. The study results showed that eighth grade students can successfully work with the model eliciting, develop a model based on the two parameters and review the whole process. On the other hand, they had difficulties to relate parameters to each other and take all parameters into account to establish the model.

Keywords: middle school, modeling, mathematical modeling, summer job problem

Procedia PDF Downloads 325
20636 Enhancement of the Performance of Al-Qatraneh 33-kV Transmission Line Using STATCOM: A Case Study

Authors: Ali Hamad, Ibrahim Al-Drous, Saleh Al-Jufout

Abstract:

This paper presents a case study of using STATCOM to enhance the performance of Al-Qatraneh 33-kV transmission line. The location of the STATCOM was identified maintaining minimum voltage drops at the 110 load nodes. The transmission line and the 110 load nodes have been modeled by MATLAB/Simulink. The suggested STATCOM and its location will increase the transmission capability of this transmission line and overcome the overload expected in the year 2020. The annual percentage loading rise has been considered as 14%. A graphical representation of the line voltages and the voltage drops at different load nodes has been illustrated.

Keywords: FACTS, MATLAB, STATCOM, transmission line, voltage drop

Procedia PDF Downloads 422
20635 An Energy and Economic Comparison of Solar Thermal Collectors for Domestic Hot Water Applications

Authors: F. Ghani, T. S. O’Donovan

Abstract:

Today, the global solar thermal market is dominated by two collector types; the flat plate and evacuated tube collector. With regards to the number of installations worldwide, the evacuated tube collector is the dominant variant primarily due to the Chinese market but the flat plate collector dominates both the Australian and European markets. The market share of the evacuated tube collector is, however, growing in Australia due to a common belief that this collector type is ‘more efficient’ and, therefore, the better choice for hot water applications. In this study, we investigate this issue further to assess the validity of this statement. This was achieved by methodically comparing the performance and economics of several solar thermal systems comprising of; a low-performance flat plate collector, a high-performance flat collector, and an evacuated tube collector coupled with a storage tank and pump. All systems were simulated using the commercial software package Polysun for four climate zones in Australia to take into account different weather profiles in the study and subjected to a thermal load equivalent to a household comprising of four people. Our study revealed that the energy savings and payback periods varied significantly for systems operating under specific environmental conditions. Solar fractions ranged between 58 and 100 per cent, while payback periods range between 3.8 and 10.1 years. Although the evacuated tube collector was found to operate with a marginally higher thermal efficiency over the selective surface flat plate collector due to reduced ambient heat loss, the high-performance flat plate collector outperformed the evacuated tube collector on thermal yield. This result was obtained as the flat plate collector possesses a significantly higher absorber to gross collector area ratio over the evacuated tube collector. Furthermore, it was found for Australian regions operating with a high average solar radiation intensity and ambient temperature, the lower performance collector is the preferred choice due to favorable economics and reduced stagnation temperature. Our study has provided additional insight into the thermal performance and economics of the two prevalent solar thermal collectors currently available. A computational investigation has been carried out specifically for the Australian climate due to its geographic size and significant variation in weather. For domestic hot water applications were fluid temperatures between 50 and 60 degrees Celsius are sought, the flat plate collector is both technically and economically favorable over the evacuated tube collector. This research will be useful to system design engineers, solar thermal manufacturers, and those involved in policy to encourage the implementation of solar thermal systems into the hot water market.

Keywords: solar thermal, energy analysis, flat plate, evacuated tube, collector performance

Procedia PDF Downloads 203
20634 Electrochemical Layer by Layer Assembly

Authors: Mao Li, Yuguang Ma, Katsuhiko Ariga

Abstract:

The performance of functional materials is governed by their ability to interact with surrounding environments in a well-defined and controlled manner. Layer-by-Layer (LbL) assembly is one of the most widely used technologies for coating both planar and particulate substrates in a diverse range of fields, including optics, energy, catalysis, separations, and biomedicine. Herein, we introduce electrochemical-coupling layer-by-layer assembly as a novel fabrication methodology for preparing layered thin films. This assembly method not only determines the process properties (such as the time, scalability, and manual intervention) but also directly control the physicochemical properties of the films (such as the thickness, homogeneity, and inter- and intra-layer film organization), with both sets of properties linked to application-specific performance.

Keywords: layer by layer assembly, electropolymerization, carbazole, optical thin film, electronics

Procedia PDF Downloads 362
20633 Telomere Length Genetics: Biomarker of Early Age Metabolic Activities and Oxidative Impact in Broiler Chicken (Gallus gallus domesticus)

Authors: Kazeem Ajasa Badmus, Zulkifli Idrus, Goh Yong Meng, Kamalludin Mamat-Hamidi

Abstract:

This study was aimed at evaluating the roles played by early age in performance, organs weights, meat quality traits, and telomere length integrity. One hundred male Cobb 500® broiler chickens were grouped into ten replicates of ten chickens each. Growth performance, measurement of telomere length, weights of organs, and meat quality traits were determined on days 14, 28, and 42 of the experiment. There were significant (p < 0.05) differences obtained in the chicken growth performance across ages. Telomere length of blood, muscle, liver, and heart on day 14 were significantly (p < 0.05) shorter than telomere length obtained on days 28 and 42 of the age. Weights of organs on day 14 were significantly (p < 0.05) higher than those obtained on days 28 and 42. In this study, birds slaughtered on day 14 presented the highest (p < 0.05) pH, drip loss, redness, and yellowness. They, however, showed lower (p < 0.05) cooking loss, shear force, and lightness. There was a significant association between age, telomere length, and meat quality traits. It is therefore concluded that telomere length attrition is associated with early age metabolic activities and could be used to measure chicks' welfare.

Keywords: age, telomere length, organ weights, meat quality

Procedia PDF Downloads 79
20632 The Effectiveness of Extracorporeal Shockwave Therapy on Pain and Motor Function in Subjects with Knee Osteoarthritis A Systematic Review and Meta-Analysis of Randomized Clinical Trial

Authors: Vu Hoang Thu Huong

Abstract:

Background and Purpose: The effects of Extracorporeal Shockwave Therapy (ESWT) in the participants with knee osteoarthritis (KOA) were unclear on physical performance although its effects on pain had been investiagted. This study aims to explore the effects of ESWT on pain relief and physical performance on KOA. Methods: The studies with the randomized controlled design to investigate the effects of ESWT on KOA were systematically searched using inclusion and exclusion criteria through seven electronic databases including Pubmed etc. between 1990 and Dec 2022. To summarize those data, visual analog scale (VAS) or pain scores were determined for measure of pain intensity. Range of knee motion, or the scores of physical activities including Lequesne index (LI), Knee Injury and Osteoarthritis Outcome Score (KOOS), and Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) were determined for measure of physical performances. The first evaluate after treatment period was define as the effect of post-treatment period or immediately effect; and the last evaluate was defined as the effect of following period or the end effect in our study. Data analysis was performed using RevMan 5.4.1 software. A significant level was set at p<0.05. Results: Eight studies (number of participant= 499) reporting the ESWT effects on mild-to-moderate severity (Grades I to III Kellgren–Lawrence) of KOA were qualified for meta-analysis. Compared with sham or placebo group, the ESWT group had a significant decrease of VAS rest score (0.90[0.12~1.67] as mean difference [95% confidence interval]) and pain score WOMAC (2.49[1.22~3.76]), and a significant improvement of physical performance with a decrease of the scores of WOMAC activities (8.18[3.97~12.39]), LI (3.47[1.68~5.26]), and KOOS (5.87[1.73~ 10.00]) in the post-treatment period. There were also a significant decrease of WOMAC pain score (2.83[2.12~3.53]) and a significant decrease of the scores of WOMAC activities (9.47[7.65~11.28]) and LI (4.12[2.34 to 5.89]) in the following period. Besides, compared with other treatment groups, ESWT also displayed the improvement in pain and physical performance, but it is not significant. Conclusions: The ESWT was effective and valuable method in pain relief as well as in improving physical activities in the participants with mild-to-moderate KOA. Clinical Relevance: There are the effects of ESWT on pain relief and the improvement of physical performance in the with KOA.

Keywords: knee osteoarthritis, extracorporeal shockwave therapy, pain relief, physical performance, shockwave

Procedia PDF Downloads 69
20631 Investigating Interlayer Bonding in 3D Printing Pressure Vessel Applications

Authors: Cam Minh Tri Tien, Richard Fenrich, Tristan Shelley, Nam Mai-Duy, Allan Malano, Xuesen Zeng

Abstract:

Since additive manufacturing is a layer-by-layer deposition approach, good bonding quality between adjacent layers is critically important to achieve optimal mechanical performance, including applications in pressure vessels. The need to enhance the strength of printed products, especially in the build direction where layup gaps and voids exist between the printed layers, has garnered significant attention. The proposed research will focus on improving the current Fused Deposition Modelling (FDM) process to produce polymers reinforced with chopped fibers, utilizing a controlled heat zone to enhance the adhesion between printed layers. Energy will be applied to both printed and printing layers to improve the bonding strength between adjacent layers. Through the enhanced FDM process, the mechanical performance of composite parts will experience a substantial improvement, particularly in the build direction, as compared to current FDM methods. A combination of experimental, numerical, and analytical methods will be employed to demonstrate the enhanced performance of heat-controlled 3D printed parts.

Keywords: 3D Printing, pressure vessels, interlayer bonding, controlled heat

Procedia PDF Downloads 37
20630 Cultural Psychology in Sports: How Understanding Culture May Help Sports Psychologists Augment Athletic Performance

Authors: Upasana Ranjib

Abstract:

Sports psychology, as a niche area, has, since the last two decades, found for itself a space within the outer peripheries of the discipline of traditional psychology. It has aimed to understand the many variables that push athletes to enhance their performances. While sociological aspects have been duly represented in academia, little has been written about the role of culture in shaping the psyche of athletes. The impact that cultures of different communities and societies have towards specifics like gender, castes, religion and race and how that helps evolve an individual has not been fully addressed. In the case of Sport, culture has made itself felt in the form of stereotypes, traditional outlooks towards sects and its implication on the engagement with sports. Culture is an environment that an individual imbibes. It is what shapes him, physically as well as mentally. Their nurture and nature both stem from it and depend on it. To realize the linkages between their nurture, nature and sports efficiency, cultural studies must collaborate in scholarship with psychology and practical sports. Cultural sports psychology would allow sports psychologists, coaches and even athletes themselves to understand the behavioural variations that affect their performance. The variations in the performance of athletes from different cultures and countries could be attributed to their socio-political, economic and environmental differences. These cultural influences shape and impact the athlete's behaviour and might lead as a gateway to understanding their skill sets and internal motivational factors. With that knowledge in mind, this paper aims to understand and reflect on how, in the present times of heavy sporting competition, shifting cultural equations and changing world dynamics, it is mandatory to infuse Cultural Studies with Sports Psychology to understand how Sports Psychologists can help and augment the performances of athletes.

Keywords: sporting performance, Asian sports, sports psychology, cultural psychology, society

Procedia PDF Downloads 71
20629 A TiO₂-Based Memristor Reliable for Neuromorphic Computing

Authors: X. S. Wu, H. Jia, P. H. Qian, Z. Zhang, H. L. Cai, F. M. Zhang

Abstract:

A bipolar resistance switching behaviour is detected for a Ti/TiO2-x/Au memristor device, which is fabricated by a masked designed magnetic sputtering. The current dependence of voltage indicates the curve changes slowly and continuously. When voltage pulses are applied to the device, the set and reset processes maintains linearity, which is used to simulate the synapses. We argue that the conduction mechanism of the device is from the oxygen vacancy channel model, and the resistance of the device change slowly due to the reaction between the titanium electrode and the intermediate layer and the existence of a large number of oxygen vacancies in the intermediate layer. Then, Hopfield neural network is constructed to simulate the behaviour of neural network in image processing, and the accuracy rate is more than 98%. This shows that titanium dioxide memristor has a broad application prospect in high performance neural network simulation.

Keywords: memristor fabrication, neuromorphic computing, bionic synaptic application, TiO₂-based

Procedia PDF Downloads 65
20628 Analysis of Energy Flows as An Approach for The Formation of Monitoring System in the Sustainable Regional Development

Authors: Inese Trusina, Elita Jermolajeva

Abstract:

Global challenges require a transition from the existing linear economic model to a model that will consider nature as a life support system for the developmenton the way to social well-being in the frame of the ecological economics paradigm. The article presentsbasic definitions for the development of formalized description of sustainabledevelopment monitoring. It provides examples of calculating the parameters of monitoring for the Baltic Sea region countries and their primary interpretation.

Keywords: sustainability, development, power, ecological economics, regional economic, monitoring

Procedia PDF Downloads 104
20627 Identification of Switched Reluctance Motor Parameters Using Exponential Swept-Sine Signal

Authors: Abdelmalek Ouannou, Adil Brouri, Laila Kadi, Tarik

Abstract:

Switched reluctance motor (SRM) has a major interest in a large domain as in electric vehicle driving because of its wide range of speed operation, high performances, low cost, and robustness to run under degraded conditions. The purpose of the paper is to develop a new analytical approach for modeling SRM parameters. Then, an identification scheme is proposed to obtain the SRM parameters. Since the SRM is featured by a highly nonlinear behavior, modeling these devices is difficult. Then, it is convenient to develop an accurate model describing the SRM. Furthermore, it is always operated in the magnetically saturated mode to maximize the energy transfer. Accordingly, it is shown that the SRM can be accurately described by a generalized polynomial Hammerstein model, i.e., the parallel connection of several Hammerstein models having polynomial nonlinearity. Presently an analytical identification method is developed using a chirp excitation signal. Afterward, the parameters of the obtained model have been determined using Finite Element Method analysis. Finally, in order to show the effectiveness of the proposed method, a comparison between the true and estimate models has been performed. The obtained results show that the output responses are very close.

Keywords: switched reluctance motor, swept-sine signal, generalized Hammerstein model, nonlinear system

Procedia PDF Downloads 223
20626 Quantitative and Qualitative Analysis: Predicting and Improving Students’ Summative Assessment Math Scores at the National College for Nuclear

Authors: Abdelmenen Abobghala, Mahmud Ahmed, Mohamed Alwaheshi, Anwar Fanan, Meftah Mehdawi, Ahmed Abuhatira

Abstract:

This research aims to predict academic performance and identify weak points in students to aid teachers in understanding their learning needs. Both quantitative and qualitative methods are used to identify difficult test items and the factors causing difficulties. The study uses interventions like focus group discussions, interviews, and action plans developed by the students themselves. The research questions explore the predictability of final grades based on mock exams and assignments, the student's response to action plans, and the impact on learning performance. Ethical considerations are followed, respecting student privacy and maintaining anonymity. The research aims to enhance student engagement, motivation, and responsibility for learning.

Keywords: prediction, academic performance, weak points, understanding, learning, quantitative methods, qualitative methods, formative assessments, feedback, emotional responses, intervention, focus group discussion, interview, action plan, student engagement, motivation, responsibility, ethical considerations

Procedia PDF Downloads 53
20625 A Mixed-Integer Nonlinear Program to Optimally Pace and Fuel Ultramarathons

Authors: Kristopher A. Pruitt, Justin M. Hill

Abstract:

The purpose of this research is to determine the pacing and nutrition strategies which minimize completion time and carbohydrate intake for athletes competing in ultramarathon races. The model formulation consists of a two-phase optimization. The first-phase mixed-integer nonlinear program (MINLP) determines the minimum completion time subject to the altitude, terrain, and distance of the race, as well as the mass and cardiovascular fitness of the athlete. The second-phase MINLP determines the minimum total carbohydrate intake required for the athlete to achieve the completion time prescribed by the first phase, subject to the flow of carbohydrates through the stomach, liver, and muscles. Consequently, the second phase model provides the optimal pacing and nutrition strategies for a particular athlete for each kilometer of a particular race. Validation of the model results over a wide range of athlete parameters against completion times for real competitive events suggests strong agreement. Additionally, the kilometer-by-kilometer pacing and nutrition strategies, the model prescribes for a particular athlete suggest unconventional approaches could result in lower completion times. Thus, the MINLP provides prescriptive guidance that athletes can leverage when developing pacing and nutrition strategies prior to competing in ultramarathon races. Given the highly-variable topographical characteristics common to many ultramarathon courses and the potential inexperience of many athletes with such courses, the model provides valuable insight to competitors who might otherwise fail to complete the event due to exhaustion or carbohydrate depletion.

Keywords: nutrition, optimization, pacing, ultramarathons

Procedia PDF Downloads 174
20624 Bayesian Locally Approach for Spatial Modeling of Visceral Leishmaniasis Infection in Northern and Central Tunisia

Authors: Kais Ben-Ahmed, Mhamed Ali-El-Aroui

Abstract:

This paper develops a Local Generalized Linear Spatial Model (LGLSM) to describe the spatial variation of Visceral Leishmaniasis (VL) infection risk in northern and central Tunisia. The response from each region is a number of affected children less than five years of age recorded from 1996 through 2006 from Tunisian pediatric departments and treated as a poison county level data. The model includes climatic factors, namely averages of annual rainfall, extreme values of low temperatures in winter and high temperatures in summer to characterize the climate of each region according to each continentality index, the pluviometric quotient of Emberger (Q2) to characterize bioclimatic regions and component for residual extra-poison variation. The statistical results show the progressive increase in the number of affected children in regions with high continentality index and low mean yearly rainfull. On the other hand, an increase in pluviometric quotient of Emberger contributed to a significant increase in VL incidence rate. When compared with the original GLSM, Bayesian locally modeling is improvement and gives a better approximation of the Tunisian VL risk estimation. According to the Bayesian approach inference, we use vague priors for all parameters model and Markov Chain Monte Carlo method.

Keywords: generalized linear spatial model, local model, extra-poisson variation, continentality index, visceral leishmaniasis, Tunisia

Procedia PDF Downloads 385
20623 Research on Static and Dynamic Behavior of New Combination of Aluminum Honeycomb Panel and Rod Single-Layer Latticed Shell

Authors: Xu Chen, Zhao Caiqi

Abstract:

In addition to the advantages of light weight, resistant corrosion and ease of processing, aluminum is also applied to the long-span spatial structures. However, the elastic modulus of aluminum is lower than that of the steel. This paper combines the high performance aluminum honeycomb panel with the aluminum latticed shell, forming a new panel-and-rod composite shell structure. Through comparative analysis between the static and dynamic performance, the conclusion that the structure of composite shell is noticeably superior to the structure combined before.

Keywords: combination of aluminum honeycomb panel, rod latticed shell, dynamic performence, response spectrum analysis, seismic properties

Procedia PDF Downloads 458
20622 Mathematical Modelling and AI-Based Degradation Analysis of the Second-Life Lithium-Ion Battery Packs for Stationary Applications

Authors: Farhad Salek, Shahaboddin Resalati

Abstract:

The production of electric vehicles (EVs) featuring lithium-ion battery technology has substantially escalated over the past decade, demonstrating a steady and persistent upward trajectory. The imminent retirement of electric vehicle (EV) batteries after approximately eight years underscores the critical need for their redirection towards recycling, a task complicated by the current inadequacy of recycling infrastructures globally. A potential solution for such concerns involves extending the operational lifespan of electric vehicle (EV) batteries through their utilization in stationary energy storage systems during secondary applications. Such adoptions, however, require addressing the safety concerns associated with batteries’ knee points and thermal runaways. This paper develops an accurate mathematical model representative of the second-life battery packs from a cell-to-pack scale using an equivalent circuit model (ECM) methodology. Neural network algorithms are employed to forecast the degradation parameters based on the EV batteries' aging history to develop a degradation model. The degradation model is integrated with the ECM to reflect the impacts of the cycle aging mechanism on battery parameters during operation. The developed model is tested under real-life load profiles to evaluate the life span of the batteries in various operating conditions. The methodology and the algorithms introduced in this paper can be considered the basis for Battery Management System (BMS) design and techno-economic analysis of such technologies.

Keywords: second life battery, electric vehicles, degradation, neural network

Procedia PDF Downloads 41
20621 On-Ice Force-Velocity Modeling Technical Considerations

Authors: Dan Geneau, Mary Claire Geneau, Seth Lenetsky, Ming -Chang Tsai, Marc Klimstra

Abstract:

Introduction— Horizontal force-velocity profiling (HFVP) involves modeling an athletes linear sprint kinematics to estimate valuable maximum force and velocity metrics. This approach to performance modeling has been used in field-based team sports and has recently been introduced to ice-hockey as a forward skating performance assessment. While preliminary data has been collected on ice, distance constraints of the on-ice test restrict the ability of the athletes to reach their maximal velocity which result in limits of the model to effectively estimate athlete performance. This is especially true of more elite athletes. This report explores whether athletes on-ice are able to reach a velocity plateau similar to what has been seen in overground trials. Fourteen male Major Junior ice-hockey players (BW= 83.87 +/- 7.30 kg, height = 188 ± 3.4cm cm, age = 18 ± 1.2 years n = 14) were recruited. For on-ice sprints, participants completed a standardized warm-up consisting of skating and dynamic stretching and a progression of three skating efforts from 50% to 95%. Following the warm-up, participants completed three on ice 45m sprints, with three minutes of rest in between each trial. For overground sprints, participants completed a similar dynamic warm-up to that of on-ice trials. Following the warm-up participants completed three 40m overground sprint trials. For each trial (on-ice and overground), radar was used to collect instantaneous velocity (Stalker ATS II, Texas, USA) aimed at the participant’s waist. Sprint velocities were modelled using custom Python (version 3.2) script using a mono-exponential function, similar to previous work. To determine if on-ice tirals were achieving a maximum velocity (plateau), minimum acceleration values of the modeled data at the end of the sprint were compared (using paired t-test) between on-ice and overground trials. Significant differences (P<0.001) between overground and on-ice minimum accelerations were observed. It was found that on-ice trials consistently reported higher final acceleration values, indicating a maximum maintained velocity (plateau) had not been reached. Based on these preliminary findings, it is suggested that reliable HFVP metrics cannot yet be collected from all ice-hockey populations using current methods. Elite male populations were not able to achieve a velocity plateau similar to what has been seen in overground trials, indicating the absence of a maximum velocity measure. With current velocity and acceleration modeling techniques, including a dependency of a velocity plateau, these results indicate the potential for error in on-ice HFVP measures. Therefore, these findings suggest that a greater on-ice sprint distance may be required or the need for other velocity modeling techniques, where maximal velocity is not required for a complete profile.   

Keywords: ice-hockey, sprint, skating, power

Procedia PDF Downloads 88
20620 Study on the Geometric Similarity in Computational Fluid Dynamics Calculation and the Requirement of Surface Mesh Quality

Authors: Qian Yi Ooi

Abstract:

At present, airfoil parameters are still designed and optimized according to the scale of conventional aircraft, and there are still some slight deviations in terms of scale differences. However, insufficient parameters or poor surface mesh quality is likely to occur if these small deviations are embedded in a future civil aircraft with a size that is quite different from conventional aircraft, such as a blended-wing-body (BWB) aircraft with future potential, resulting in large deviations in geometric similarity in computational fluid dynamics (CFD) simulations. To avoid this situation, the study on the CFD calculation on the geometric similarity of airfoil parameters and the quality of the surface mesh is conducted to obtain the ability of different parameterization methods applied on different airfoil scales. The research objects are three airfoil scales, including the wing root and wingtip of conventional civil aircraft and the wing root of the giant hybrid wing, used by three parameterization methods to compare the calculation differences between different sizes of airfoils. In this study, the constants including NACA 0012, a Reynolds number of 10 million, an angle of attack of zero, a C-grid for meshing, and the k-epsilon (k-ε) turbulence model are used. The experimental variables include three airfoil parameterization methods: point cloud method, B-spline curve method, and class function/shape function transformation (CST) method. The airfoil dimensions are set to 3.98 meters, 17.67 meters, and 48 meters, respectively. In addition, this study also uses different numbers of edge meshing and the same bias factor in the CFD simulation. Studies have shown that with the change of airfoil scales, different parameterization methods, the number of control points, and the meshing number of divisions should be used to improve the accuracy of the aerodynamic performance of the wing. When the airfoil ratio increases, the most basic point cloud parameterization method will require more and larger data to support the accuracy of the airfoil’s aerodynamic performance, which will face the severe test of insufficient computer capacity. On the other hand, when using the B-spline curve method, average number of control points and meshing number of divisions should be set appropriately to obtain higher accuracy; however, the quantitative balance cannot be directly defined, but the decisions should be made repeatedly by adding and subtracting. Lastly, when using the CST method, it is found that limited control points are enough to accurately parameterize the larger-sized wing; a higher degree of accuracy and stability can be obtained by using a lower-performance computer.

Keywords: airfoil, computational fluid dynamics, geometric similarity, surface mesh quality

Procedia PDF Downloads 207
20619 Design of a Small and Medium Enterprise Growth Prediction Model Based on Web Mining

Authors: Yiea Funk Te, Daniel Mueller, Irena Pletikosa Cvijikj

Abstract:

Small and medium enterprises (SMEs) play an important role in the economy of many countries. When the overall world economy is considered, SMEs represent 95% of all businesses in the world, accounting for 66% of the total employment. Existing studies show that the current business environment is characterized as highly turbulent and strongly influenced by modern information and communication technologies, thus forcing SMEs to experience more severe challenges in maintaining their existence and expanding their business. To support SMEs at improving their competitiveness, researchers recently turned their focus on applying data mining techniques to build risk and growth prediction models. However, data used to assess risk and growth indicators is primarily obtained via questionnaires, which is very laborious and time-consuming, or is provided by financial institutes, thus highly sensitive to privacy issues. Recently, web mining (WM) has emerged as a new approach towards obtaining valuable insights in the business world. WM enables automatic and large scale collection and analysis of potentially valuable data from various online platforms, including companies’ websites. While WM methods have been frequently studied to anticipate growth of sales volume for e-commerce platforms, their application for assessment of SME risk and growth indicators is still scarce. Considering that a vast proportion of SMEs own a website, WM bears a great potential in revealing valuable information hidden in SME websites, which can further be used to understand SME risk and growth indicators, as well as to enhance current SME risk and growth prediction models. This study aims at developing an automated system to collect business-relevant data from the Web and predict future growth trends of SMEs by means of WM and data mining techniques. The envisioned system should serve as an 'early recognition system' for future growth opportunities. In an initial step, we examine how structured and semi-structured Web data in governmental or SME websites can be used to explain the success of SMEs. WM methods are applied to extract Web data in a form of additional input features for the growth prediction model. The data on SMEs provided by a large Swiss insurance company is used as ground truth data (i.e. growth-labeled data) to train the growth prediction model. Different machine learning classification algorithms such as the Support Vector Machine, Random Forest and Artificial Neural Network are applied and compared, with the goal to optimize the prediction performance. The results are compared to those from previous studies, in order to assess the contribution of growth indicators retrieved from the Web for increasing the predictive power of the model.

Keywords: data mining, SME growth, success factors, web mining

Procedia PDF Downloads 248
20618 Heat Source Temperature for Centered Heat Source on Isotropic Plate with Lower Surface Forced Cooling Using Neural Network and Three Different Materials

Authors: Fadwa Haraka, Ahmad Elouatouati, Mourad Taha Janan

Abstract:

In this study, we propose a neural network based method in order to calculate the heat source temperature of isotropic plate with lower surface forced cooling. To validate the proposed model, the heat source temperatures values will be compared to the analytical method -variables separation- and finite element model. The mathematical simulation is done through 3D numerical simulation by COMSOL software considering three different materials: Aluminum, Copper, and Graphite. The proposed method will lead to a formulation of the heat source temperature based on the thermal and geometric properties of the base plate.

Keywords: thermal model, thermal resistance, finite element simulation, neural network

Procedia PDF Downloads 342
20617 Modeling Activity Pattern Using XGBoost for Mining Smart Card Data

Authors: Eui-Jin Kim, Hasik Lee, Su-Jin Park, Dong-Kyu Kim

Abstract:

Smart-card data are expected to provide information on activity pattern as an alternative to conventional person trip surveys. The focus of this study is to propose a method for training the person trip surveys to supplement the smart-card data that does not contain the purpose of each trip. We selected only available features from smart card data such as spatiotemporal information on the trip and geographic information system (GIS) data near the stations to train the survey data. XGboost, which is state-of-the-art tree-based ensemble classifier, was used to train data from multiple sources. This classifier uses a more regularized model formalization to control the over-fitting and show very fast execution time with well-performance. The validation results showed that proposed method efficiently estimated the trip purpose. GIS data of station and duration of stay at the destination were significant features in modeling trip purpose.

Keywords: activity pattern, data fusion, smart-card, XGboost

Procedia PDF Downloads 227