Search results for: net-zero energy schools
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10039

Search results for: net-zero energy schools

4729 Exploring the Efficacy of School-Based Approach in Preventing Domestic and Sexual Violence: A Case Study of the Lagos State DSV Kings and Queens Club Amongst Teens in Nigeria

Authors: Lola Vivour-Adeniyi, Oluwatoyosi Abikoye

Abstract:

Domestic and sexual violence inflicts profound trauma on individuals, with particularly distressing consequences for young people when experienced in familiar settings such as homes, schools, religious institutions, or with trusted individuals. Research conducted at the Lagos State Domestic and Sexual Violence Agency (DSVA) from 2015 to 2023 reveals a disconcerting trend where young people often misconstrue abusive actions as tolerable, partially acceptable, or merely morally wrong due to a lack of awareness about their rights as guaranteed under the Lagos State Child’s Right Law. This paper delves into the grassroots initiatives of the Lagos State DSVA, specifically the Kings and Queens Club, designed to combat domestic and sexual violence (DSV) among teens. The club focuses on raising awareness and ensuring access to support services. The paper provides a concise analysis of the club's impact, contextualizing Lagos State's efforts to eradicate DSV for future generations. Additionally, it comprehensively examines the legal rights of children and young persons as outlined in the Lagos State Child’s Right Law 2007, Protection Against Domestic Violence Law 2007, Criminal Law 2011, and Domestic and Sexual Violence Agency Law 2021. In conclusion, this paper aims to inform policy and community development initiatives, emphasizing the effectiveness of school-based approaches in creating a sustainably equitable society for children and young persons.

Keywords: school-based approach, domestic and sexual violence, Lagos state child’s rights law, Lagos state DSVA

Procedia PDF Downloads 50
4728 Processing of Flexible Dielectric Nanocomposites Using Nanocellulose and Recycled Alum Sludge for Wearable Technology Applications

Authors: D. Sun, L. Saw, A. Onyianta, D. O’Rourke, Z. Lu, C. See, C. Wilson, C. Popescu, M. Dorris

Abstract:

With the rapid development of wearable technology (e.g., smartwatch, activity trackers and health monitor devices), flexible dielectric materials with environmental-friendly, low-cost and high-energy efficiency characteristics are in increasing demand. In this work, a flexible dielectric nanocomposite was processed by incorporating two components: cellulose nanofibrils and alum sludge in a polymer matrix. The two components were used in the reinforcement phase as well as for enhancing the dielectric properties; they were processed using waste materials that would otherwise be disposed to landfills. Alum sludge is a by-product of the water treatment process in which aluminum sulfate is prevalently used as the primary coagulant. According to the data from a project partner-Scottish Water: there are approximately 10k tons of alum sludge generated as a waste from the water treatment work to be landfilled every year in Scotland. The industry has been facing escalating financial and environmental pressure to develop more sustainable strategies to deal with alum sludge wastes. In the available literature, some work on reusing alum sludge has been reported (e.g., aluminum recovery or agriculture and land reclamation). However, little work can be found in applying it to processing energy materials (e.g., dielectrics) for enhanced energy density and efficiency. The alum sludge was collected directly from a water treatment plant of Scottish Water and heat-treated and refined before being used in preparing composites. Cellulose nanofibrils were derived from water hyacinth, an invasive aquatic weed that causes significant ecological issues in tropical regions. The harvested water hyacinth was dried and processed using a cost-effective method, including a chemical extraction followed by a homogenization process in order to extract cellulose nanofibrils. Biodegradable elastomer polydimethylsiloxane (PDMS) was used as the polymer matrix and the nanocomposites were processed by casting raw materials in Petri dishes. The processed composites were characterized using various methods, including scanning electron microscopy (SEM), rheological analysis, thermogravimetric and X-ray diffraction analysis. The SEM result showed that cellulose nanofibrils of approximately 20nm in diameter and 100nm in length were obtained and the alum sludge particles were of approximately 200um in diameters. The TGA/DSC analysis result showed that a weight loss of up to 48% can be seen in the raw material of alum sludge and its crystallization process has been started at approximately 800°C. This observation coincides with the XRD result. Other experiments also showed that the composites exhibit comprehensive mechanical and dielectric performances. This work depicts that it is a sustainable practice of reusing such waste materials in preparing flexible, lightweight and miniature dielectric materials for wearable technology applications.

Keywords: cellulose, biodegradable, sustainable, alum sludge, nanocomposite, wearable technology, dielectric

Procedia PDF Downloads 73
4727 U Slot Loaded Wearable Textile Antenna

Authors: Varsha Kheradiya, Ganga Prasad Pandey

Abstract:

The use of wearable antennas is rising because wireless devices become small. The wearable antenna is part of clothes used in communication applications, including energy harvesting, medical application, navigation, and tracking. In current years, Antennas embroidered on clothes, conducting antennas based on fabric, polymer embedded antennas, and inkjet-printed antennas are all attractive ways. Also shows the analysis required for wearable antennas, such as wearable antennae interacting with the human body. The primary requirements for the antenna are small size, low profile minimizing radiation absorption by the human body, high efficiency, structural integrity to survive worst situations, and good gain. Therefore, research in energy harvesting, biomedicine, and military application design is increasingly favoring flexible wearable antennas. Textile materials that are effectively used for designing and developing wearable antennas for body area networks. The wireless body area network is primarily concerned with creating effective antenna systems. The antenna should reduce their size, be lightweight, and be adaptable when integrated into clothes. When antennas integrate into clothes, it provides a convenient alternative to those fabricated using rigid substrates. This paper presents a study of U slot loaded wearable textile antenna. U slot patch antenna design is illustrated for wideband from 1GHz to 6 GHz using textile material jeans as substrate and pure copper polyester taffeta fabric as conducting material. This antenna design exhibits dual band results for WLAN at 2.4 GHz and 3.6 GHz frequencies. Also, study U slot position horizontal and vertical shifting. Shifting the horizontal positive X-axis position of the U slot produces the third band at 5.8 GHz.

Keywords: microstrip patch antenna, textile material, U slot wearable antenna, wireless body area network

Procedia PDF Downloads 71
4726 The Prospects of Optimized KOH/Cellulose 'Papers' as Hierarchically Porous Electrode Materials for Supercapacitor Devices

Authors: Dina Ibrahim Abouelamaiem, Ana Jorge Sobrido, Magdalena Titirici, Paul R. Shearing, Daniel J. L. Brett

Abstract:

Global warming and scarcity of fossil fuels have had a radical impact on the world economy and ecosystem. The urgent need for alternative energy sources has hence elicited an extensive research for exploiting efficient and sustainable means of energy conversion and storage. Among various electrochemical systems, supercapacitors attracted significant attention in the last decade due to their high power supply, long cycle life compared to batteries and simple mechanism. Recently, the performance of these devices has drastically improved, as tuning of nanomaterials provided efficient charge and storage mechanisms. Carbon materials, in various forms, are believed to pioneer the next generation of supercapacitors due to their attractive properties that include high electronic conductivities, high surface areas and easy processing and functionalization. Cellulose has eco-friendly attributes that are feasible to replace man-made fibers. The carbonization of cellulose yields carbons, including activated carbon and graphite fibers. Activated carbons successively are the most exploited candidates for supercapacitor electrode materials that can be complemented with pseudocapacitive materials to achieve high energy and power densities. In this work, the optimum functionalization conditions of cellulose have been investigated for supercapacitor electrode materials. The precursor was treated with potassium hydroxide (KOH) at different KOH/cellulose ratios prior to the carbonization process in an inert nitrogen atmosphere at 850 °C. The chalky products were washed, dried and characterized with different techniques including transmission electron microscopy (TEM), x-ray tomography and nitrogen adsorption-desorption isotherms. The morphological characteristics and their effect on the electrochemical performances were investigated in two and three-electrode systems. The KOH/cellulose ratios of 0.5:1 and 1:1 exhibited the highest performances with their unique hierarchal porous network structure, high surface areas and low cell resistances. Both samples acquired the best results in three-electrode systems and coin cells with specific gravimetric capacitances as high as 187 F g-1 and 20 F g-1 at a current density of 1 A g-1 and retention rates of 72% and 70%, respectively. This is attributed to the morphology of the samples that constituted of a well-balanced micro-, meso- and macro-porosity network structure. This study reveals that the electrochemical performance doesn’t solely depend on high surface areas but also an optimum pore size distribution, specifically at low current densities. The micro- and meso-pore contribution to the final pore structure was found to dominate at low KOH loadings, reaching ‘equilibrium’ with macropores at the optimum KOH loading, after which macropores dictate the porous network. The wide range of pore sizes is detrimental for the mobility and penetration of electrolyte ions in the porous structures. These findings highlight the influence of various morphological factors on the double-layer capacitances and high performance rates. In addition, they open a platform for the investigation of the optimized conditions for double-layer capacitance that can be coupled with pseudocapacitive materials to yield higher energy densities and capacities.

Keywords: carbon, electrochemical performance, electrodes, KOH/cellulose optimized ratio, morphology, supercapacitor

Procedia PDF Downloads 206
4725 Comparison of Tribological and Mechanical Properties of White Metal Produced by Laser Cladding and Conventional Methods

Authors: Jae-Il Jeong, Hoon-Jae Park, Jung-Woo Cho, Yang-Gon Kim, Jin-Young Park, Joo-Young Oh, Si-Geun Choi, Seock-Sam Kim, Young Tae Cho, Chan Gyu Kim, Jong-Hyoung Kim

Abstract:

Bearing component has strongly required to decrease vibration and wear to achieve high durability and life time. In the industry field, bearing durability is improved by surface treatment on the bearing surface by centrifugal casting or gravity casting production method. However, this manufacturing method has caused problems such as long processing time, defect rate, and health harmful effect. To solve this problem, there is a laser cladding deposition treatment, which provides fast processing and food adhesion. Therefore, optimum conditions of white metal laser deposition should be studied to minimize bearing contact axis wear using laser cladding techniques. In this study, we deposit a soft white metal layer on SCM440, which is mainly used for shaft and bolt. On laser deposition process, the laser power and powder feed rate and laser head speed factors are controlled to find out the optimal conditions. We also measure hardness using micro Vickers, analyze FE-SEM (Field Emission Scanning Electron Microscope) and EDS (Energy Dispersive Spectroscopy) to study the mechanical properties and surface characteristics with various parameters change. Furthermore, this paper suggests the optimum condition of laser cladding deposition to apply in industrial fields. This work was supported by the Industrial Innovation Project of the Korea Evaluation Institute of Industrial Technology (KEIT) granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea (Research no. 10051653).

Keywords: laser deposition, bearing, white metal, mechanical properties

Procedia PDF Downloads 249
4724 Rationalizing the Utilization of Interactive Engagement Strategies in Teaching Specialized Science Courses of STEM and GA Strands in the Academic Track of Philippine Senior High School Curriculum

Authors: Raul G. Angeles

Abstract:

The Philippine government instituted major reforms in its educational system. The Department of Education pushes the K to 12 program that makes kindergarten mandatory and adds two years of senior high school to the country's basic education. In essence, the students’ stay in basic education particularly those who are supposedly going to college is extended. The majority of the students expressed that they will be taking the Academic Track of the Senior High School curriculum specifically the Science, Technology, Engineering and Mathematics (STEM) and General Academic (GA) strands. Almost certainly, instruction should match the students' styles and thus through this descriptive study a city survey was conducted to explore the teaching strategies preferences of junior high school students and teachers who will be promoted to senior high school during the Academic Year 2016-2017. This study was conducted in selected public and private secondary schools in Metro Manila. Questionnaires were distributed to students and teachers; and series of follow-up interviews were also carried out to generate additional information. Preferences of students are centered on employing innovations such as technology, cooperative and problem-based learning. While the students will still be covered by basic education their interests in science are sparking to a point where the usual teaching styles may no longer work to them and for that cause, altering the teaching methods is recommended to create a teacher-student style matching. Other effective strategies must likewise be implemented.

Keywords: curriculum development, effective teaching strategies, problem-based learning, senior high school, science education, technology

Procedia PDF Downloads 245
4723 Creativity and Expressive Interpretation of Musical Drama in Children with Special Needs (Down Syndrome) in Special Schools Yayasan Pendidikan Anak Cacat, Medan, North Sumatera

Authors: Junita Batubara

Abstract:

Children with special needs, especially those with disability in mental, physical or social/emotional interactions, are marginalized. Many people still view them as troublesome, inconvenience, having learning difficulties, unproductive and burdensome to society. This study intends to investigate; how musical drama can develop the ability to control the coordination of mental functions; how musical dramas can assist children to work together; how musical dramas can assist to maintain the child's emotional and physical health; how musical dramas can improve children creativity. The objectives of the research are: To know whether musical drama can control the coordination of mental function of children; to know whether musical drama can improve communication ability and expression of children; to know whether musical drama can help children work with people around them; to find out if musical dramas can develop the child's emotional and physical health; to find out if musical drama can improve children's creativity. The study employed a qualitative research approach. Data was collecting by listening, observing in depth through public hearings that select the key informants who were teachers and principals, parents and children. The data obtained from each public hearing was then processed (reduced), conclusion drawing/verification, presentation of data (data display). Furthermore, the model obtained was implementing for musical performance, where the benefits of the show are: musical drama can improve language skills; musical dramas are capable of developing memory and storage of information; developing communication skills and express themselves; helping children work together; assisting emotional and physical health; enhancing creativity.

Keywords: children Down syndrome, music, drama script, performance

Procedia PDF Downloads 213
4722 A Method Development for Improving the Efficiency of Solid Waste Collection System Using Network Analyst

Authors: Dhvanidevi N. Jadeja, Daya S. Kaul, Anurag A. Kandya

Abstract:

Municipal Solid Waste (MSW) collection in a city is performed in less effective manner which results in the poor management of the environment and natural resources. Municipal corporation does not possess efficient waste management and recycling programs because of the complex task involving many factors. Solid waste collection system depends upon various factors such as manpower, number and size of vehicles, transfer station size, dustbin size and weight, on-road traffic, and many others. These factors affect the collection cost, energy and overall municipal tax for the city. Generally, different types of waste are scattered throughout the city in a heterogeneous way that poses changes for efficient collection of solid waste. Efficient waste collection and transportation strategy must be effectively undertaken which will include optimization of routes, volume of waste, and manpower. Being these optimized, the overall cost can be reduced as the fuel and energy requirements would be less and also the municipal waste taxes levied will be less. To carry out the optimization study of collection system various data needs to be collected from the Ahmedabad municipal corporation such as amount of waste generated per day, number of workers, collection schedule, road maps, number of transfer station, location of transfer station, number of equipment (tractors, machineries), number of zones, route of collection etc. The ArcGis Network Analyst is introduced for the best routing identification applied in municipal waste collection. The simulation consists of scenarios of visiting loading spots in the municipality of Ahmedabad, considering dynamic factors like network traffic changes, closed roads due to natural or technical causes. Different routes were selected in a particular area of Ahmedabad city, and present routes were optimized to reduce the length of the routes, by using ArcGis Network Analyst. The result indicates up to 35% length minimization in the routes.

Keywords: collection routes, efficiency, municipal solid waste, optimization

Procedia PDF Downloads 122
4721 Low-Cost Wireless Power Transfer System for Smart Recycling Containers

Authors: Juan Luis Leal, Rafael Maestre, Ovidio López

Abstract:

As innovation progresses, more possibilities are made available to increase the efficiency and reach of solutions for Smart Cities, most of which require the data provided by the Internet of Things (IoT) devices and may even have higher power requirements such as motors or actuators. A reliable power supply with the lowest maintenance is a requirement for the success of these solutions in the long term. Energy harvesting, mainly solar, becomes the solution of choice in most cases, but only if there is enough power to be harvested, which may depend on the device location (e.g., outdoors vs. indoor). This is the case of Smart Waste Containers with compaction systems, which have moderately high-power requirements, and may be installed in places with little sunlight for solar generation. It should be noted that waste is unloaded from the containers with cranes, so sudden and irregular movements may happen, making wired power unviable. In these cases, a wireless power supply may be a great alternative. This paper proposes a cost-effective two coil resonant wireless power transfer (WPT) system and describes its implementation, which has been carried out within an R&D project and validated in real settings with smart containers. Experimental results prove that the developed system achieves wireless power transmission up to 35W in the range of 5 cm to 1 m with a peak efficiency of 78%. The circuit is operated at relatively low resonant frequencies, which combined with enough wire-to-wire separation between the coil windings, reduce the losses caused by the proximity effect and, therefore, allow the use of common stranded wire instead of Litz wire, this without reducing the efficiency significantly. All these design considerations led to a final system that achieves a high efficiency for the desired charging range, simplifying the energy supply for Smart Containers as well as other devices that may benefit from a cost-effective wireless charging system.

Keywords: electromagnetic coupling, resonant wireless charging, smart recycling containers, wireless power transfer

Procedia PDF Downloads 79
4720 Magneto-Transport of Single Molecular Transistor Using Anderson-Holstein-Caldeira-Leggett Model

Authors: Manasa Kalla, Narasimha Raju Chebrolu, Ashok Chatterjee

Abstract:

We have studied the quantum transport properties of a single molecular transistor in the presence of an external magnetic field using the Keldysh Green function technique. We also used the Anderson-Holstein-Caldeira-Leggett Model to describe the single molecular transistor that consists of a molecular quantum dot (QD) coupled to two metallic leads and placed on a substrate that acts as a heat bath. The phonons are eliminated by the Lang-Firsov transformation and the effective Hamiltonian is used to study the effect of an external magnetic field on the spectral density function, Tunneling Current, Differential Conductance and Spin polarization. A peak in the spectral function corresponds to a possible excitation. In the presence of a magnetic field, the spin-up and spin-down states are degenerate and this degeneracy is lifted by the magnetic field leading to the splitting of the central peak of the spectral function. The tunneling current decreases with increasing magnetic field. We have observed that even the differential conductance peak in the zero magnetic field curve is split in the presence electron-phonon interaction. As the magnetic field is increased, each peak splits into two peaks. And each peak indicates the existence of an energy level. Thus the number of energy levels for transport in the bias window increases with the magnetic field. In the presence of the electron-phonon interaction, Differential Conductance in general gets reduced and decreases faster with the magnetic field. As magnetic field strength increases, the spin polarization of the current is increasing. Our results show that a strongly interacting QD coupled to metallic leads in the presence of external magnetic field parallel to the plane of QD acts as a spin filter at zero temperature.

Keywords: Anderson-Holstein model, Caldeira-Leggett model, spin-polarization, quantum dots

Procedia PDF Downloads 163
4719 Optimal Perturbation in an Impulsively Blocked Channel Flow

Authors: Avinash Nayak, Debopam Das

Abstract:

The current work implements the variational principle to find the optimum initial perturbation that provides maximum growth in an impulsively blocked channel flow. The conventional method for studying temporal stability has always been through modal analysis. In most of the transient flows, this modal analysis is still followed with the quasi-steady assumption, i.e. change in base flow is much slower compared to perturbation growth rate. There are other studies where transient analysis on time dependent flows is done by formulating the growth of perturbation as an initial value problem. But the perturbation growth is sensitive to the initial condition. This study intends to find the initial perturbation that provides the maximum growth at a later time. Here, the expression of base flow for blocked channel is derived and the formulation is based on the two dimensional perturbation with stream function representing the perturbation quantity. Hence, the governing equation becomes the Orr-Sommerfeld equation. In the current context, the cost functional is defined as the ratio of disturbance energy at a terminal time 'T' to the initial energy, i.e. G(T) = ||q(T)||2/||q(0)||2 where q is the perturbation and ||.|| defines the norm chosen. The above cost functional needs to be maximized against the initial perturbation distribution. It is achieved with the constraint that perturbation follows the basic governing equation, i.e. Orr-Sommerfeld equation. The corresponding adjoint equation is derived and is solved along with the basic governing equation in an iterative manner to provide the initial spatial shape of the perturbation that provides the maximum growth G (T). The growth rate is plotted against time showing the development of perturbation which achieves an asymptotic shape. The effects of various parameters, e.g. Reynolds number, are studied in the process. Thus, the study emphasizes on the usage of optimal perturbation and its growth to understand the stability characteristics of time dependent flows. The assumption of quasi-steady analysis can be verified against these results for the transient flows like impulsive blocked channel flow.

Keywords: blocked channel flow, calculus of variation, hydrodynamic stability, optimal perturbation

Procedia PDF Downloads 410
4718 Nutriscience Project: A Web-Based Intervention to Improve Nutritional Literacy among Families and Educators of Pre-School Children

Authors: R. Barros, J. Azevedo, P. Padrão, M. Gregório, I. Pádua, C. Almeida, C. Rodrigues, P. Fontes, A. Coelho

Abstract:

Recent evidence shows a positive association between nutritional literacy and healthy eating. Traditional nutrition education strategies for childhood obesity prevention have shown weak effect. The Nutriscience project aims to create and evaluate an innovative and multidisciplinary strategy for promoting effective and accessible nutritional information to children, their families, and educators. Nutriscience is a one-year prospective follow-up evaluation study including pre-school children (3-5 y), who attend national schools’ network (29). The project is structured around a web-based intervention, using an on-line interactive platform, and focus on increasing fruit and vegetable consumption, and reducing sugar and salt intake. The platform acts as a social network where educational materials, games, and nutritional challenges are proposed in a gamification approach that promotes family and community social ties. A nutrition Massive Online Open Course is developed for educators, and a national healthy culinary contest will be promoted on TV channel. A parental self-reported questionnaire assessing sociodemographic and nutritional literacy (knowledge, attitudes, skills) is administered (baseline and end of the intervention). We expect that results on nutritional literacy from the presented strategy intervention will give us important information about the best practices for health intervention with kindergarten families. This intervention program using a digital interactive platform could be an educational tool easily adapted and disseminated for childhood obesity prevention.

Keywords: childhood obesity, educational tool, nutritional literacy, web-based intervention

Procedia PDF Downloads 325
4717 English Language Teachers' Perceptions of Educational Research

Authors: Pinar Sali, Esim Gursoy, Ebru Atak Damar

Abstract:

Teachers’ awareness of and involvement in educational research (ER) is regarded as an indispensable aspect of professional growth and development. It is also believed to be a catalyst for effective teaching and learning. This strong emphasis on the significance of teacher research engagement has sparked inquiry into how teachers construe ER and whether or not they practice it. However, there seems to exist a few researches on teachers’ perceptions of and experience with ER in the field of English Language Teaching (ELT). The present study thus attempts to fill this gap in the ELT literature and aims to unearth English language teachers’ perceptions of ER. Understanding these perceptions would undoubtedly aid in the development of strategies to promote teacher interest and involvement in research. The participants of the present study are 70 English language teachers in public and private schools in Turkey. A mixed-method approach has been used in the study. Both qualitative and quantitative data have been gathered by means of a questionnaire consisting of two parts. The first part of the questionnaire consists of 20 close-ended items of Teachers’ Attitude Scale Towards Educational Research (TASTER). The second part of the questionnaire has been developed by the researchers via an extensive literature review and consists of a mixture of close- and open-ended questions. In addition, 15 language teachers have been interviewed for an in-depth understanding of the results. Descriptive statistics and dual comparisons have been employed for the quantitative data, and the qualitative data have been analyzed by means of content analysis. The present study provides intriguing information as to the English language teachers’ perceptions of the usefulness and practicality of ER as well as the value they attain to it. The findings are discussed in relation to language teacher education. The research has implications for the teacher education process, teacher trainers and policy makers.

Keywords: attitudes toward educational research, educational research, language teachers, teacher research

Procedia PDF Downloads 240
4716 Exploring Valproic Acid (VPA) Analogues Interactions with HDAC8 Involved in VPA Mediated Teratogenicity: A Toxicoinformatics Analysis

Authors: Sakshi Piplani, Ajit Kumar

Abstract:

Valproic acid (VPA) is the first synthetic therapeutic agent used to treat epileptic disorders, which account for affecting nearly 1% world population. Teratogenicity caused by VPA has prompted the search for next generation drug with better efficacy and lower side effects. Recent studies have posed HDAC8 as direct target of VPA that causes the teratogenic effect in foetus. We have employed molecular dynamics (MD) and docking simulations to understand the binding mode of VPA and their analogues onto HDAC8. A total of twenty 3D-structures of human HDAC8 isoforms were selected using BLAST-P search against PDB. Multiple sequence alignment was carried out using ClustalW and PDB-3F07 having least missing and mutated regions was selected for study. The missing residues of loop region were constructed using MODELLER and energy was minimized. A set of 216 structural analogues (>90% identity) of VPA were obtained from Pubchem and ZINC database and their energy was optimized with Chemsketch software using 3-D CHARMM-type force field. Four major neurotransmitters (GABAt, SSADH, α-KGDH, GAD) involved in anticonvulsant activity were docked with VPA and its analogues. Out of 216 analogues, 75 were selected on the basis of lower binding energy and inhibition constant as compared to VPA, thus predicted to have anti-convulsant activity. Selected hHDAC8 structure was then subjected to MD Simulation using licenced version YASARA with AMBER99SB force field. The structure was solvated in rectangular box of TIP3P. The simulation was carried out with periodic boundary conditions and electrostatic interactions and treated with Particle mesh Ewald algorithm. pH of system was set to 7.4, temperature 323K and pressure 1atm respectively. Simulation snapshots were stored every 25ps. The MD simulation was carried out for 20ns and pdb file of HDAC8 structure was saved every 2ns. The structures were analysed using castP and UCSF Chimera and most stabilized structure (20ns) was used for docking study. Molecular docking of 75 selected VPA-analogues with PDB-3F07 was performed using AUTODOCK4.2.6. Lamarckian Genetic Algorithm was used to generate conformations of docked ligand and structure. The docking study revealed that VPA and its analogues have more affinity towards ‘hydrophobic active site channel’, due to its hydrophobic properties and allows VPA and their analogues to take part in van der Waal interactions with TYR24, HIS42, VAL41, TYR20, SER138, TRP137 while TRP137 and SER138 showed hydrogen bonding interaction with VPA-analogues. 14 analogues showed better binding affinity than VPA. ADMET SAR server was used to predict the ADMET properties of selected VPA analogues for predicting their druggability. On the basis of ADMET screening, 09 molecules were selected and are being used for in-vivo evaluation using Danio rerio model.

Keywords: HDAC8, docking, molecular dynamics simulation, valproic acid

Procedia PDF Downloads 229
4715 Effects of COVID-19 Confinement on Physical Activity and Screen Time in Spanish Children

Authors: Maria Medrano, Cristina Cadenas-Sanchez, Maddi Oses, Lide Arenaza, Maria Amasene, Idoia Labayen

Abstract:

The COVID-19 outbreak began in December 2019 in China and was rapidly expanded globally. Emergency measures, such as social distance or home confinement, were adopted by many country governments to prevent its transmission. In Spain, one of the most affected countries, the schools were closed, and one of the most severe mandatory home confinement was established for children from 14th March to 26th April 2020. The hypothesis of this study was that the measures adopted during the COVID-19 pandemic may have negatively affected physical activity and screen time of children. However, few studies have examined the effects of COVID-19 pandemic on lifestyle behaviours. Thus, the aim of the current work was to analyse the effects of the COVID-19 confinement on physical activity and screen time in Spanish children. For the current purpose, a total of 113 children and adolescents (12.0 ± 2.6 yr., 51.3% boys, 24.0% with overweight/obesity according to the World Obesity Federation) of the MUGI project were included in the analyses. Physical activity and screen time were longitudinally assessed by 'The Youth Activity Profile' questionnaire (YAP). Differences in physical activity and screen time before and during the confinement were assessed by dependent t-test. Before the confinement, 60% did not meet physical activity recommendations ( ≥ 60/min/day of moderate to vigorous physical activity), and 61% used screens ≥ 2 h/day. During the COVID-19 confinement, children decreased their physical activity levels (-91 ± 55 min/day, p < 0.001) and increased screen time ( ± 2.6 h/day, p < 0.001). The prevalence of children that worsened physical activity and screen time during the COVID-19 confinement were 95.2% and 69.8%, respectively. The current study evidence the negative effects of the COVID-19 confinement on physical activity and screen time in Spanish children. These findings should be taken into account to develop and implement future public health strategies for preserving children's lifestyle behaviours and health during and after the COVID-19 pandemic.

Keywords: COVID-19, lifestyle changes, paediatric, physical activity, screen time

Procedia PDF Downloads 114
4714 An Evaluation of Education Provision for Students with Autism Spectrum Disorder in Ireland: The Role of the Special Needs Assistant

Authors: Claire P. Griffin

Abstract:

The education provision for students with special educational needs, including students with Autism Spectrum Disorder (ASD), has undergone significant national and international changes in recent years. In particular, an increase in resource-based provision has occurred across educational settings in an effort to support inclusive practices. This paper seeks to explore the role of the Special Needs Assistant (SNA) in supporting children with ASD in Irish schools. This research stems from the second national evaluation of ‘Education Provision for Students with Autism Spectrum Disorder in Ireland’ (NCSE, 2016). This research was commissioned by the National Council for Special Education (NCSE) in Ireland and conducted by a team of researchers from Mary Immaculate College, Limerick from February to July 2014. This study involved a multiple case study research strategy across 24 educational sites, as selected through a stratified sampling process. Research strategies included semi-structured interviews, classroom observations, documentary review and child conversations. Data analysis was conducted electronically using Nvivo software, with use of an additional quantitative recording mechanism based on scaled weighting criteria for collected data. Based on such information, key findings from the NCSE national evaluation will be presented and critically reviewed, with particular reference to the role of the SNA in supporting pupils with ASD. Examples of positive practice inherent within the SNA role will be outlined and contrasted with discrete areas for development. Based on such findings, recommendations for the evolving role of the SNA will be presented, with the aim of informing both policy and best practice within the field.

Keywords: autism spectrum disorder, inclusive education , paraprofessional, special needs assistant

Procedia PDF Downloads 264
4713 Physico-Chemical Parameters and Economic Evaluation of Bio-Ethanol Produced from Waste of Starting Dates in South Algeria

Authors: Insaf Mehani, Bachir Bouchekima

Abstract:

The fight against climate change and the replacement of fossil energies nearing exhaustion gradually emerge as major societal and economic challenges. It is possible to develop common dates of low commercial value, and put on the local and international market a new generation of products with high added values such as bio ethanol. Besides its use in chemical synthesis, bio ethanol can be blended with gasoline to produce a clean fuel while improving the octane.

Keywords: bio-energy, waste dates, bio ethanol, Algeria

Procedia PDF Downloads 347
4712 The Conception of Implementation of Vision for European Forensic Science 2020 in Lithuania

Authors: Eglė Bilevičiūtė, Vidmantas Egidijus Kurapka, Snieguolė Matulienė, Sigutė Stankevičiūtė

Abstract:

The Council of European Union (EU Council) has stressed on several occasions the need for a concerted, comprehensive and effective solution to delinquency problems in EU communities. In the context of establishing a European Forensic Science Area and the development of forensic science infrastructure in Europe, EU Council believes that forensic science can significantly contribute to the efficiency of law enforcement, crime prevention and combating crimes. Lithuanian scientists have consolidated to implement a project named “Conception of the vision for European Forensic Science 2020 implementation in Lithuania” (the project is funded for the period of 1 March 2014 - 31 December 2016) with the objective to create a conception of implementation of the vision for European Forensic Science 2020 in Lithuania by 1) evaluating the current status of Lithuania’s forensic system and opportunities for its improvement; 2) analysing achievements and knowledge in investigation of crimes listed in conclusions of EU Council on the vision for European Forensic Science 2020 including creation of a European Forensic Science Area and the development of forensic science infrastructure in Europe: trafficking in human beings, organised crime and terrorism; 3) analysing conceptions of criminalistics, which differ in different EU member states due to the variety of forensic schools, and finding means for their harmonization. Apart from the conception of implementation of the vision for European Forensic Science 2020 in Lithuania, the project is expected to suggest provisions that will be relevant to other EU countries as well. Consequently, the presented conception of implementation of vision for European Forensic Science 2020 in Lithuania could initiate a project for a common vision of European Forensic Science and contribute to the development of the EU as an area of freedom, security and justice. The article presents main ideas of the project of the conception of the vision for European Forensic Science 2020 of EU Council and analyses its legal background, as well as prospects of and challenges for its implementation in Lithuania and the EU.

Keywords: EUROVIFOR, standardization, vision for European Forensic Science 2020, Lithuania

Procedia PDF Downloads 392
4711 Associations between Metabolic Syndrome and Bone Mineral Density and Trabecular Bone Score in Postmenopausal Women with Non-Vertebral Fractures

Authors: Vladyslav Povoroznyuk, Larysa Martynyuk, Iryna Syzonenko, Liliya Martynyuk

Abstract:

Medical, social, and economic relevance of osteoporosis is caused by reducing quality of life, increasing disability and mortality of the patients as a result of fractures due to the low-energy trauma. This study is aimed to examine the associations of metabolic syndrome components, bone mineral density (BMD) and trabecular bone score (TBS) in menopausal women with non-vertebral fractures. 1161 menopausal women aged 50-79 year-old were examined and divided into three groups: A included 419 women with increased body weight (BMI - 25.0-29.9 kg/m2), B – 442 females with obesity (BMI >29.9 kg/m2)i and C – 300 women with metabolic syndrome (diagnosis according to IDF criteria, 2005). BMD of lumbar spine (L1-L4), femoral neck, total body and forearm was investigated with usage of dual-energy X-ray absorptiometry. The bone quality indexes were measured according to Med-Imaps installation. All analyses were performed using Statistical Package 6.0. BMD of lumbar spine (L1-L4), femoral neck, total body, and ultradistal radius was significant higher in women with obesity and metabolic syndrome compared to the pre-obese ones (p<0.001). TBS was significantly higher in women with increased body weight compared to obese and metabolic syndrome patients. Analysis showed significant positive correlation between waist circumference, triglycerides level and BMD of lumbar spine and femur. Significant negative association between serum HDL level and BMD of investigated sites was established. The TBS (L1-L4) indexes positively correlated with HDL (high-density lipoprotein) level. Despite the fact that BMD indexes were better in women with metabolic syndrome, the frequency of non-vertebral fractures was significantly higher in this group of patients.

Keywords: bone mineral density, trabecular bone score, metabolic syndrome, fracture

Procedia PDF Downloads 180
4710 Investigation of Light Transmission Characteristics and CO2 Capture Potential of Microalgae Panel Bioreactors for Building Façade Applications

Authors: E. S. Umdu, Ilker Kahraman, Nurdan Yildirim, Levent Bilir

Abstract:

Algae-culture offers new applications in sustainable architecture with its continuous productive cycle, and a potential for high carbon dioxide capture. Microalgae itself has multiple functions such as carbon dioxide fixation, biomass production, oxygen generation and waste water treatment. Incorporating microalgae cultivation processes and systems to building design to utilize this potential is promising. Microalgae cultivation systems, especially closed photo bioreactors can be implemented as components in buildings. And these systems be accommodated in the façade of a building, or in other urban infrastructure in the future. Application microalgae bio-reactors of on building’s façade has the added benefit of acting as an effective insulation system, keeping out the heat of the summer and the chill of the winter. Furthermore, microalgae can give a dynamic appearance with a liquid façade that also works as an adaptive sunshade. Recently, potential of microalgae to use as a building component to reduce net energy demand in buildings becomes a popular topic and innovative design proposals and a handful of pilot applications appeared. Yet there is only a handful of examples in application and even less information on how these systems affect building energy behavior. Further studies on microalgae mostly focused on single application approach targeting either carbon dioxide utilization through biomass production or biofuel production. The main objective of this study is to investigate effects of design parameters of microalgae panel bio-reactors on light transmission characteristics and CO2 capture potential during growth of Nannochloropsis occulata sp. A maximum reduction of 18 ppm in CO2 levels of input air during the experiments with a % light transmission of 14.10, was achieved in 6 day growth cycles. Heat transfer behavior during these cycles was also inspected for possible façade applications.

Keywords: building façade, CO2 capture, light transmittance, microalgae

Procedia PDF Downloads 172
4709 Effect of Baffles on the Cooling of Electronic Components

Authors: O. Bendermel, C. Seladji, M. Khaouani

Abstract:

In this work, we made a numerical study of the thermal and dynamic behaviour of air in a horizontal channel with electronic components. The influence to use baffles on the profiles of velocity and temperature is discussed. The finite volume method and the algorithm Simple are used for solving the equations of conservation of mass, momentum and energy. The results found show that baffles improve heat transfer between the cooling air and electronic components. The velocity will increase from 3 times per rapport of the initial velocity.

Keywords: electronic components, baffles, cooling, fluids engineering

Procedia PDF Downloads 281
4708 Nutrition Intervention for Spinal Cord Injury in Critical Care

Authors: Dina Muharib

Abstract:

Specific metabolic challenges are present following spinal cord injury. The acute stage is characterized by a reduction in metabolic activity, as well as a negative nitrogen balance that cannot be corrected, even with aggressive nutritional support. Metabolic demands need to be accurately monitored to avoid overfeeding. Enteral feeding is the optimal route following SCI. When oral feeding is not possible, nasogastric, followed by nasojejunal, then by percutaneous endoscopic gastrostomy, if necessary, is suggested.

Keywords: SCI, energy, protein, nutrition assessment, eneral feeding, nitrogen balance

Procedia PDF Downloads 449
4707 An Analysis of Relation Between Soil Radon Anomalies and Geological Environment Change

Authors: Mengdi Zhang, Xufeng Liu, Zhenji Gao, Ying Li, Zhu Rao, Yi Huang

Abstract:

As an open system, the earth is constantly undergoing the transformation and release of matter and energy. Fault zones are relatively discontinuous and fragile geological structures, and the release of material and energy inside the Earth is strongest in relatively weak fault zones. Earthquake events frequently occur in fault zones and are closely related to tectonic activity in these zones. In earthquake precursor observation, monitoring the spatiotemporal changes in the release of related gases near fault zones (such as radon gas, hydrogen, carbon dioxide, helium), and analyzing earthquake precursor anomalies, can be effective means to forecast the occurrence of earthquake events. Radon gas, as an inert radioactive gas generated during the decay of uranium and thorium, is not only a indicator for monitoring tectonic and seismic activity, but also an important topic for ecological and environmental health, playing a crucial role in uranium exploration. At present, research on soil radon gas mainly focuses on the measurement of soil gas concentration and flux in fault zone profiles, while research on the correlation between spatiotemporal concentration changes in the same region and its geological background is relatively little. In this paper, Tangshan area in north China is chosen as research area. An analysis was conducted on the seismic geological background of Tangshan area firstly. Then based on quantitative analysis and comparison of measurement radon concentrations of 2023 and 2010, combined with the study of seismic activity and environmental changes during the time period, the spatiotemporal distribution characteristics and influencing factors were explored, in order to analyze the gas emission characteristics of the Tangshan fault zone and its relationship with fault activity, which aimed to be useful for the future work in earthquake monitor of Tangshan area.

Keywords: radon, Northern China, soil gas, earthquake

Procedia PDF Downloads 56
4706 Effects of Small Impoundments on Leaf Litter Decomposition and Methane Derived Carbon in the Benthic Foodweb in Streams

Authors: John Gichimu Mbaka, Jan Helmrich Martin von Baumbach, Celia Somlai, Denis Köpfer, Andreas Maeck, Andreas Lorke, Ralf Schäfer

Abstract:

Leaf litter decomposition is an important process providing energy to biotic communities. Additionally, methane gas (CH4) has been identified as an important alternative source of carbon and energy in some freshwater food webs.Flow regulation and dams can strongly alter freshwater ecosystems, but little is known about the effect of small impoundments on leaf litter decomposition and methane derived carbon in streams. In this study, we tested the effect of small water storage impoundments on leaf litter decomposition rates and methane derived carbon. Leaf litter decomposition rates were assessed by comparing treatment sites located close to nine impoundments (Rheinland Pfalz state, Germany) and reference sites located far away from the impoundments.CH4 concentrations were measured in eleven impoundments and correlated with the δ13C values of two subfamilies of chironomid larvae (i.e. Chironomini and Tanypodinae). Leaf litter break down rates were significantly lower in study sites located immediately above the impoundments, especially associated with a reduction in the abundance of shredders. Chironomini larvae had the lower mean δ13C values (‒29.2 to ‒25.5 ‰), than Tanypodinae larvae (‒26.9 to ‒25.3 ‰).No significant relationships were established between CH4 concentrations and δ13C values of chironomids (p> 0.05).Mean δ13C values of chironomid larvae (mean: ‒26.8‰, range: ‒ 29.2‰ to ‒ 25.3‰) were similar to those of sedimentary organic matter (SOM) (mean: ‒28.4‰, range: ‒ 29.3‰ to ‒ 27.1‰) and tree leaf litter (mean: ‒29.8 ‰, range: ‒ 30.5‰ to ‒ 29.1‰). In conclusion, this study demonstrates that small impoundments may have a negative effect on leaf litter decomposition in forest streams and that CH4 has limited influence on the benthic food web in stream impoundments.

Keywords: river functioning, chironomids, Alder tree, stable isotopes, methane oxidation, shredder

Procedia PDF Downloads 719
4705 Adding Protelium Gas Sensor for Smartphone to Reduce Explosion in Indonesia

Authors: Alfi Al Fahreizy

Abstract:

By using LPG (Liquid Protelium Gas), it is very difficult to detect gas leak. Consequently, there is so many incident of gas leak that makes explosion which is occurred in many regions of Indonesia. In this paper, the researcher tries to overcome with it by adding gas sensor for LPG in a smartphone. The aim is to choose the best sensor and how to use it . The methode is to choose sensor by selecting from sensor data sheet qualitatively by giving grade from 1 to 5. Flow chart is shown to make best steps notification that possible to implemented in smartphone.

Keywords: energy conversion, gas leak, smartphone, explosion, LPG

Procedia PDF Downloads 533
4704 Effect of Climate Change Rate in Indonesia against the Shrinking Dimensions of Granules and Plasticity Index of Soils

Authors: Muhammad Rasyid Angkotasan

Abstract:

The soil is a dense granules and arrangement of the pores that are related to each other, so that the water can flow from one point which has higher energy to a point that has lower energy. The flow of water through the pores of the porous ground is urgently needed in water seepage estimates in ground water pumping problems, investigate for underground construction, as well as analyzing the stability of the construction of Weirs. Climate change resulted in long-term changes in the distribution of weather patterns are statistically throughout the period start time of decades to millions of years. In other words, changes in the average weather circumstances or a change in the distribution of weather events, on average, for example, the number of extreme weather events that increasingly a lot or a little. Climate change is limited to a particular regional or can occur in all regions of the Earth. Geographical location between two continents and two oceans and is located around the equator is klimatologis factor is the cause of flooding and drought in Indonesia. This caused Indonesia' geographical position is on a hemisphere with a tropical monsoon climate is very sensitive to climatic anomaly El Nino Southern Oscillation (ENSO). ENSO causes drought occurrence in sea surface temperature conditions in the Pacific Equator warms up to the middle part of the East (El Nino). Based on the analysis of the climate of the last 30 years show that there is a tendency, the formation of a new pattern of climate causes the onset of climate change. The impact of climate change on the occurrence of the agricultural sector is the bergesernya beginning of the dry season which led to the above-mentioned pattern planting due to drought. The impact of climate change (drought) which is very extreme in Indonesia affect the shrinkage dimensions grain land and reduced the value of a percentage of the soil Plasticity Index caused by climate change.

Keywords: climate change, soil shrinkage, plasticity index, shrinking dimensions

Procedia PDF Downloads 224
4703 Translation Skills and Language Acquisition

Authors: Frieda Amitai

Abstract:

The field of Translation Studies includes both descriptive and applied aspects, one of which is developing curricula. Within this topic there are theories dealing with curricula aimed at translator training, and theories meant to explore teaching translation as means through which awareness to language is developed in order to enhance language knowledge. An example of the latter is a unique study program in Israeli high schools – Teaching Translation Skills Program (TTSP). This study program has been taught in Israel for more than two decades and is aimed at raising students' meta-linguistic awareness as well as their language proficiency in both source language and target language in order to enable them become better language learners. The objective of the current research was to examine whether the goals of this program are achieved – increase in students' metalinguistic awareness and language proficiency. A follow-up case study was aimed at examining the level of proficiency which would develop most by this way of teaching English. The study was conducted in two stages – before and after participating in the program. 400 subjects took part in the first stage, and 100 took part in the second. In both parts of the study, participants were given the same five tasks in both Hebrew and English in addition to a questionnaire, in which they were asked about their own knowledge of Hebrew and in comparison to that of their peers. Their teachers were asked about the success of the program and about the methodology they use in class. Findings show significant change in the level of meta-linguistic awareness of the students as well as their language proficiency. A comparison between their answers before and after the program shows that their meta-linguistic awareness increased, as did their ability to recognize linguistic mistakes. These findings serve as strong evidence for the positive effect such study program has on the development of meta-linguistic awareness and linguistic knowledge. The follow-up case study tests the change among weaker language learners.

Keywords: comparison, metalinguistic awareness, language learning, translation skills

Procedia PDF Downloads 342
4702 Moving from Computer Assisted Learning Language to Mobile Assisted Learning Language Edutainment: A Trend for Teaching and Learning

Authors: Ahmad Almohana

Abstract:

Technology has led to rapid changes in the world, and most importantly to education, particularly in the 21st century. Technology has enhanced teachers’ potential and has resulted in the provision of greater interaction and choices for learners. In addition, technology is helping to improve individuals’ learning experiences and building their capacity to read, listen, speak, search, analyse, memorise and encode languages, as well as bringing learners together and creating a sense of greater involvement. This paper has been organised in the following way: the first section provides a review of the literature related to the implementation of CALL (computer assisted learning language), and it explains CALL and its phases, as well as attempting to highlight and analyse Warschauer’s article. The second section is an attempt to describe the move from CALL to mobilised systems of edutainment, which challenge existing forms of teaching and learning. It also addresses the role of the teacher and the curriculum content, and how this is affected by the computerisation of learning that is taking place. Finally, an empirical study has been conducted to collect data from teachers in Saudi Arabia using quantitive and qualitative method tools. Connections are made between the area of study and the personal experience of the researcher carrying out the study with a methodological reflection on the challenges faced by the teachers of this same system. The major findings were that it is worth spelling out here that despite the circumstances in which students and lecturers are currently working, the participants revealed themselves to be highly intelligent and articulate individuals who were constrained from revealing this criticality and creativity by the system of learning and teaching operant in most schools.

Keywords: CALL, computer assisted learning language, EFL, English as a foreign language, ELT, English language teaching, ETL, enhanced technology learning, MALL, mobile assisted learning language

Procedia PDF Downloads 156
4701 Role of Calcination Treatment on the Structural Properties and Photocatalytic Activity of Nanorice N-Doped TiO₂ Catalyst

Authors: Totsaporn Suwannaruang, Kitirote Wantala

Abstract:

The purposes of this research were to synthesize titanium dioxide photocatalyst doped with nitrogen (N-doped TiO₂) by hydrothermal method and to test the photocatalytic degradation of paraquat under UV and visible light illumination. The effect of calcination treatment temperature on their physical and chemical properties and photocatalytic efficiencies were also investigated. The characterizations of calcined N-doped TiO₂ photocatalysts such as specific surface area, textural properties, bandgap energy, surface morphology, crystallinity, phase structure, elements and state of charges were investigated by Brunauer, Emmett, Teller (BET) and Barrett, Joyner, Halenda (BJH) equations, UV-Visible diffuse reflectance spectroscopy (UV-Vis-DRS) by using the Kubelka-Munk theory, Wide-angle X-ray scattering (WAXS), Focussed ion beam scanning electron microscopy (FIB-SEM), X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS), respectively. The results showed that the effect of calcination temperature was significant on surface morphology, crystallinity, specific surface area, pore size diameter, bandgap energy and nitrogen content level, but insignificant on phase structure and oxidation state of titanium (Ti) atom. The N-doped TiO₂ samples illustrated only anatase crystalline phase due to nitrogen dopant in TiO₂ restrained the phase transformation from anatase to rutile. The samples presented the nanorice-like morphology. The expansion on the particle was found at 650 and 700°C of calcination temperature, resulting in increased pore size diameter. The bandgap energy was determined by Kubelka-Munk theory to be in the range 3.07-3.18 eV, which appeared slightly lower than anatase standard (3.20 eV), resulting in the nitrogen dopant could modify the optical absorption edge of TiO₂ from UV to visible light region. The nitrogen content was observed at 100, 300 and 400°C only. Also, the nitrogen element disappeared at 500°C onwards. The nitrogen (N) atom can be incorporated in TiO₂ structure with the interstitial site. The uncalcined (100°C) sample displayed the highest percent paraquat degradation under UV and visible light irradiation due to this sample revealed both the highest specific surface area and nitrogen content level. Moreover, percent paraquat removal significantly decreased with increasing calcination treatment temperature. The nitrogen content level in TiO₂ accelerated the rate of reaction with combining the effect of the specific surface area that generated the electrons and holes during illuminated with light. Therefore, the specific surface area and nitrogen content level demonstrated the important roles in the photocatalytic activity of paraquat under UV and visible light illumination.

Keywords: restraining phase transformation, interstitial site, chemical charge state, photocatalysis, paraquat degradation

Procedia PDF Downloads 139
4700 Addressing Scheme for IOT Network Using IPV6

Authors: H. Zormati, J. Chebil, J. Bel Hadj Taher

Abstract:

The goal of this paper is to present an addressing scheme that allows for assigning a unique IPv6 address to each node in the Internet of Things (IoT) network. This scheme guarantees uniqueness by extracting the clock skew of each communication device and converting it into an IPv6 address. Simulation analysis confirms that the presented scheme provides reductions in terms of energy consumption, communication overhead and response time as compared to four studied addressing schemes Strong DAD, LEADS, SIPA and CLOSA.

Keywords: addressing, IoT, IPv6, network, nodes

Procedia PDF Downloads 272