Search results for: collaborative work
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14369

Search results for: collaborative work

9089 The Language of COVID-19: Psychological Effects of the Label 'Essential Worker' on Spanish-Speaking Adults

Authors: Natalia Alvarado, Myldred Hernandez-Gonzalez, Mary Laird, Madeline Phillips, Elizabeth Miller, Luis Mendez, Teresa Satterfield Linares

Abstract:

Objectives: Focusing on the reported levels of depressive symptoms from Hispanic individuals in the U.S. during the ongoing COVID-19 pandemic, we analyze the psychological effects of being labeled an ‘essential worker/trabajador(a) esencial.’ We situate this attribute within the complex context of how an individual’s mental health is linked to work status and his/her community’s attitude toward such a status. Method: 336 Spanish-speaking adults (Mage = 34.90; SD = 11.00; 46% female) living in the U.S. participated in a mixed-method study. Participants completed a self-report Spanish-language survey consisting of COVID-19 prompts (e.g., Soy un trabajador esencial durante la pandemia. I am an ‘essential worker’ during the pandemic), civic engagement scale (CES) attitudes (e.g., Me siento responsable de mi comunidad. I feel responsible for my community) and behaviors (e.g., Ayudo a los miembros de mi comunidad. I help members of my community), and the Center for Epidemiological Studies Depression Scale (e.g., Me sentía deprimido/a. I felt depressed). The survey was conducted several months into the pandemic and before the vaccine distribution. Results: Regression analyses show that being labeled an essential worker was correlated to CES attitudes (b= .28, p < .001) and higher CES behaviors (b= .32, p < .001). Essential worker status also reported higher levels of depressive symptoms (b= .17, p < .05). In addition, we found that CES attitudes and CES behaviors were related to higher levels of depressive symptoms (b= .11, p <.05, b = .22, p < .001, respectively). These findings suggest that those who are on the frontlines during the COVID-19 pandemic suffer higher levels of depressive symptoms, despite their affirming community attitudes and behaviors. Discussion: Hispanics/Latinxs make up 53% of the high-proximity employees who must work in person and in close contact with others; this is the highest rate of any racial or ethnic category. Moreover, 31% of Hispanics are classified as essential workers. Our outcomes show that those labeled as trabajadores esenciales convey attitudes of remaining strong and resilient for COVID-19 victims. They also express community attitudes and behaviors reflecting a sense of responsibility to continue working to help others during these unprecedented times. However, we also find that the pressure of maintaining basic needs for others exacerbates mental health challenges and stressors, as many essential workers are anxious and stressed about their physical and economic security. As a result, community attitudes do not protect from depressive symptoms as Hispanic essential workers are failing to balance everyone’s needs, including their own (e.g., physical exhaustion and psychological distress). We conclude with a discussion on alternatives to the phrase ‘essential worker’ and of incremental steps that can be taken to address pandemic-related mental health issues targeting US Hispanic workers.

Keywords: COVID-19, essential worker, mental health, race and ethnicity

Procedia PDF Downloads 133
9088 Timing and Noise Data Mining Algorithm and Software Tool in Very Large Scale Integration (VLSI) Design

Authors: Qing K. Zhu

Abstract:

Very Large Scale Integration (VLSI) design becomes very complex due to the continuous integration of millions of gates in one chip based on Moore’s law. Designers have encountered numerous report files during design iterations using timing and noise analysis tools. This paper presented our work using data mining techniques combined with HTML tables to extract and represent critical timing/noise data. When we apply this data-mining tool in real applications, the running speed is important. The software employs table look-up techniques in the programming for the reasonable running speed based on performance testing results. We added several advanced features for the application in one industry chip design.

Keywords: VLSI design, data mining, big data, HTML forms, web, VLSI, EDA, timing, noise

Procedia PDF Downloads 255
9087 Using Scilab® as New Introductory Method in Numerical Calculations and Programming for Computational Fluid Dynamics (CFD)

Authors: Nicoly Coelho, Eduardo Vieira Vilas Boas, Paulo Orestes Formigoni

Abstract:

Faced with the remarkable developments in the various segments of modern engineering, provided by the increasing technological development, professionals of all educational areas need to overcome the difficulties generated due to the good understanding of those who are starting their academic journey. Aiming to overcome these difficulties, this article aims at an introduction to the basic study of numerical methods applied to fluid mechanics and thermodynamics, demonstrating the modeling and simulations with its substance, and a detailed explanation of the fundamental numerical solution for the use of finite difference method, using SCILAB, a free software easily accessible as it is free and can be used for any research center or university, anywhere, both in developed and developing countries. It is known that the Computational Fluid Dynamics (CFD) is a necessary tool for engineers and professionals who study fluid mechanics, however, the teaching of this area of knowledge in undergraduate programs faced some difficulties due to software costs and the degree of difficulty of mathematical problems involved in this way the matter is treated only in postgraduate courses. This work aims to bring the use of DFC low cost in teaching Transport Phenomena for graduation analyzing a small classic case of fundamental thermodynamics with Scilab® program. The study starts from the basic theory involving the equation the partial differential equation governing heat transfer problem, implies the need for mastery of students, discretization processes that include the basic principles of series expansion Taylor responsible for generating a system capable of convergence check equations using the concepts of Sassenfeld, finally coming to be solved by Gauss-Seidel method. In this work we demonstrated processes involving both simple problems solved manually, as well as the complex problems that required computer implementation, for which we use a small algorithm with less than 200 lines in Scilab® in heat transfer study of a heated plate in rectangular shape on four sides with different temperatures on either side, producing a two-dimensional transport with colored graphic simulation. With the spread of computer technology, numerous programs have emerged requiring great researcher programming skills. Thinking that this ability to program DFC is the main problem to be overcome, both by students and by researchers, we present in this article a hint of use of programs with less complex interface, thus enabling less difficulty in producing graphical modeling and simulation for DFC with an extension of the programming area of experience for undergraduates.

Keywords: numerical methods, finite difference method, heat transfer, Scilab

Procedia PDF Downloads 390
9086 Radiation Dosimetry Using Sintered Pellets of Yellow Beryl (Heliodor) Crystals

Authors: Lucas Sátiro Do Carmo, Betzabel Noemi Silva Carrera, Shigueo Watanabe, J. F. D. Chubaci

Abstract:

Beryl is a silicate with chemical formula Be₃Al₂(SiO₃)₆ commonly found in Brazil. It has a few colored variations used as jewelry, like Aquamarine (blueish), Emerald (green) and Heliodor (yellow). The color of each variation depends on the dopant that is naturally present in the crystal lattice. In this work, Heliodor pellets of 5 mm diameter and 1 mm thickness have been produced and investigated using thermoluminescence (TL) to evaluate its potential for use as gamma ray’s dosimeter. The results show that the pellets exhibited a prominent TL peak at 205 °C that grows linearly with dose when irradiated from 1 Gy to 1000 Gy. A comparison has been made between powdered and sintered dosimeters. The results show that sintered pellets have higher sensitivity than powder dosimeter. The TL response of this mineral is satisfactory for radiation dosimetry applications in the studied dose range.

Keywords: dosimetry, beryl, gamma rays, sintered pellets, new material

Procedia PDF Downloads 101
9085 Compass Bar: A Visualization Technique for Out-of-View-Objects in Head-Mounted Displays

Authors: Alessandro Evangelista, Vito M. Manghisi, Michele Gattullo, Enricoandrea Laviola

Abstract:

In this work, we propose a custom visualization technique for Out-Of-View-Objects in Virtual and Augmented Reality applications using Head Mounted Displays. In the last two decades, Augmented Reality (AR) and Virtual Reality (VR) technologies experienced a remarkable growth of applications for navigation, interaction, and collaboration in different types of environments, real or virtual. Both environments can be potentially very complex, as they can include many virtual objects located in different places. Given the natural limitation of the human Field of View (about 210° horizontal and 150° vertical), humans cannot perceive objects outside this angular range. Moreover, despite recent technological advances in AR e VR Head-Mounted Displays (HMDs), these devices still suffer from a limited Field of View, especially regarding Optical See-Through displays, thus greatly amplifying the challenge of visualizing out-of-view objects. This problem is not negligible when the user needs to be aware of the number and the position of the out-of-view objects in the environment. For instance, during a maintenance operation on a construction site where virtual objects serve to improve the dangers' awareness. Providing such information can enhance the comprehension of the scene, enable fast navigation and focused search, and improve users' safety. In our research, we investigated how to represent out-of-view-objects in HMD User Interfaces (UI). Inspired by commercial video games such as Call of Duty Modern Warfare, we designed a customized Compass. By exploiting the Unity 3D graphics engine, we implemented our custom solution that can be used both in AR and VR environments. The Compass Bar consists of a graduated bar (in degrees) at the top center of the UI. The values of the bar range from -180 (far left) to +180 (far right), the zero is placed in front of the user. Two vertical lines on the bar show the amplitude of the user's field of view. Every virtual object within the scene is represented onto the compass bar as a specific color-coded proxy icon (a circular ring with a colored dot at its center). To provide the user with information about the distance, we implemented a specific algorithm that increases the size of the inner dot as the user approaches the virtual object (i.e., when the user reaches the object, the dot fills the ring). This visualization technique for out-of-view objects has some advantages. It allows users to be quickly aware of the number and the position of the virtual objects in the environment. For instance, if the compass bar displays the proxy icon at about +90, users will immediately know that the virtual object is to their right and so on. Furthermore, by having qualitative information about the distance, users can optimize their speed, thus gaining effectiveness in their work. Given the small size and position of the Compass Bar, our solution also helps lessening the occlusion problem thus increasing user acceptance and engagement. As soon as the lockdown measures will allow, we will carry out user-tests comparing this solution with other state-of-the-art existing ones such as 3D Radar, SidebARs and EyeSee360.

Keywords: augmented reality, situation awareness, virtual reality, visualization design

Procedia PDF Downloads 133
9084 Some Characteristics and Identification of Fungi Contaminated by Alkomos Cement Factory

Authors: Abdulmajeed Bashir Mlitan, Ethan Hack

Abstract:

Soil samples were collected from and around Alkomos cement factory, Alkomos town, Libya. Soil physiochemical properties were determined. In addition, olive leaves were scanned for their fungal content. This work can conclude that the results obtained for the examined physiochemical characteristics of soil in the area studied prove that cement dust from the Alkomos cement factory in Libya has had a significant impact on the soil. The affected soil properties are pH and total calcium content. These characteristics were found to be higher than those in similar soils from the same area. The increment of soil pH in the same area may be a result of precipitation of cement dust over the years. Different responses were found in each season and each site. For instance, the dominance of fungi of soil and leaves was lowest at 100 m from the factory and the evenness and diversity increased at this site compared to the control area and 250 m from the factory.

Keywords: pollution, soil microbial, alkomos, Libya

Procedia PDF Downloads 620
9083 Overview of Wireless Body Area Networks

Authors: Rashi Jain

Abstract:

The Wireless Body Area Networks (WBANs) is an emerging interdisciplinary area where small sensors are placed on/within the human body. These sensors monitor the physiological activities and vital statistics of the body. The data from these sensors is aggregated and communicated to a remote doctor for immediate attention or to a database for records. On 6 Feb 2012, the IEEE 802.15.6 task group approved the standard for Body Area Network (BAN) technologies. The standard proposes the physical and MAC layer for the WBANs. The work provides an introduction to WBANs and overview of the physical and MAC layers of the standard. The physical layer specifications have been covered. A comparison of different protocols used at MAC layer is drawn. An introduction to the network layer and security aspects of the WBANs is made. The WBANs suffer certain limitations such as regulation of frequency bands, minimizing the effect of transmission and reception of electromagnetic signals on the human body, maintaining the energy efficiency among others. This has slowed down their implementation.

Keywords: vehicular networks, sensors, MicroController 8085, LTE

Procedia PDF Downloads 265
9082 The Modality of Multivariate Skew Normal Mixture

Authors: Bader Alruwaili, Surajit Ray

Abstract:

Finite mixtures are a flexible and powerful tool that can be used for univariate and multivariate distributions, and a wide range of research analysis has been conducted based on the multivariate normal mixture and multivariate of a t-mixture. Determining the number of modes is an important activity that, in turn, allows one to determine the number of homogeneous groups in a population. Our work currently being carried out relates to the study of the modality of the skew normal distribution in the univariate and multivariate cases. For the skew normal distribution, the aims are associated with studying the modality of the skew normal distribution and providing the ridgeline, the ridgeline elevation function, the $\Pi$ function, and the curvature function, and this will be conducive to an exploration of the number and location of mode when mixing the two components of skew normal distribution. The subsequent objective is to apply these results to the application of real world data sets, such as flow cytometry data.

Keywords: mode, modality, multivariate skew normal, finite mixture, number of mode

Procedia PDF Downloads 492
9081 Sensor and Sensor System Design, Selection and Data Fusion Using Non-Deterministic Multi-Attribute Tradespace Exploration

Authors: Matthew Yeager, Christopher Willy, John Bischoff

Abstract:

The conceptualization and design phases of a system lifecycle consume a significant amount of the lifecycle budget in the form of direct tasking and capital, as well as the implicit costs associated with unforeseeable design errors that are only realized during downstream phases. Ad hoc or iterative approaches to generating system requirements oftentimes fail to consider the full array of feasible systems or product designs for a variety of reasons, including, but not limited to: initial conceptualization that oftentimes incorporates a priori or legacy features; the inability to capture, communicate and accommodate stakeholder preferences; inadequate technical designs and/or feasibility studies; and locally-, but not globally-, optimized subsystems and components. These design pitfalls can beget unanticipated developmental or system alterations with added costs, risks and support activities, heightening the risk for suboptimal system performance, premature obsolescence or forgone development. Supported by rapid advances in learning algorithms and hardware technology, sensors and sensor systems have become commonplace in both commercial and industrial products. The evolving array of hardware components (i.e. sensors, CPUs, modular / auxiliary access, etc…) as well as recognition, data fusion and communication protocols have all become increasingly complex and critical for design engineers during both concpetualization and implementation. This work seeks to develop and utilize a non-deterministic approach for sensor system design within the multi-attribute tradespace exploration (MATE) paradigm, a technique that incorporates decision theory into model-based techniques in order to explore complex design environments and discover better system designs. Developed to address the inherent design constraints in complex aerospace systems, MATE techniques enable project engineers to examine all viable system designs, assess attribute utility and system performance, and better align with stakeholder requirements. Whereas such previous work has been focused on aerospace systems and conducted in a deterministic fashion, this study addresses a wider array of system design elements by incorporating both traditional tradespace elements (e.g. hardware components) as well as popular multi-sensor data fusion models and techniques. Furthermore, statistical performance features to this model-based MATE approach will enable non-deterministic techniques for various commercial systems that range in application, complexity and system behavior, demonstrating a significant utility within the realm of formal systems decision-making.

Keywords: multi-attribute tradespace exploration, data fusion, sensors, systems engineering, system design

Procedia PDF Downloads 191
9080 Influence of Iron Content in Carbon Nanotubes on the Intensity of Hyperthermia in the Cancer Treatment

Authors: S. Wiak, L. Szymanski, Z. Kolacinski, G. Raniszewski, L. Pietrzak, Z. Staniszewska

Abstract:

The term ‘cancer’ is given to a collection of related diseases that may affect any part of the human body. It is a pathological behaviour of cells with the potential to undergo abnormal breakdown in the processes that control cell proliferation, differentiation, and death of particular cells. Although cancer is commonly considered as modern disease, there are beliefs that drastically growing number of new cases can be linked to the extensively prolonged life expectancy and enhanced techniques for cancer diagnosis. Magnetic hyperthermia therapy is a novel approach to cancer treatment, which may greatly contribute to higher efficiency of the therapy. Employing carbon nanotubes as nanocarriers for magnetic particles, it is possible to decrease toxicity and invasiveness of the treatment by surface functionalisation. Despite appearing in recent years, magnetic particle hyperthermia has already become of the highest interest in the scientific and medical environment. The reason why hyperthermia therapy brings so much hope for future treatment of cancer lays in the effect that it produces in malignant cells. Subjecting them to thermal shock results in activation of numerous degradation processes inside and outside the cell. The heating process initiates mechanisms of DNA destruction, protein denaturation and induction of cell apoptosis, which may lead to tumour shrinkage, and in some cases, it may even cause complete disappearance of cancer. The factors which have the major impact on the final efficiency of the treatment include temperatures generated inside the tissues, time of exposure to the heating process, and the character of an individual cancer cell type. The vast majority of cancer cells is characterised by lower pH, persistent hypoxia and lack of nutrients, which can be associated to abnormal microvasculature. Since in healthy tissues we cannot observe presence of these conditions, they should not be seriously affected by elevation of the temperature. The aim of this work is to investigate the influence of iron content in iron filled Carbon Nanotubes on the desired nanoparticles for cancer therapy. In the article, the development and demonstration of the method and the model device for hyperthermic selective destruction of cancer cells are presented. This method was based on the synthesis and functionalization of carbon nanotubes serving as ferromagnetic material nanocontainers. The methodology of the production carbon- ferromagnetic nanocontainers (FNCs) includes the synthesis of carbon nanotubes, chemical, and physical characterization, increasing the content of a ferromagnetic material and biochemical functionalization involving the attachment of the key addresses. The ferromagnetic nanocontainers were synthesised in CVD and microwave plasma system. The research work has been financed from the budget of science as a research project No. PBS2/A5/31/2013.

Keywords: hyperthermia, carbon nanotubes, cancer colon cells, radio frequency field

Procedia PDF Downloads 127
9079 Experimental Study of Sahara Climat Effect in Photovoltaic Solar Module

Authors: A. Benatiallah, A. Hadjadj, D. Benatiallah, F. Abaidi, A. Harrouz

Abstract:

Photovoltaic system is established as a reliable and economical source of electricity in rural and Sahara areas, especially in developing countries where the population is dispersed, has low consumption of energy and the grid power is not extended to these areas due to viability and financial problems. The production of energy by the photovoltaic system is very fluctuates and depend of meteorological conditions. Wind is a very important and often neglected parameter in the behavior of the solar module. The electric performances of a solar module to the silicon are very appreciable to the blows; in the present work we have studies the behavior of multi-crystal solar module according to the density of dust, and the principals electric feature of the solar module. An evaluation permits to affirm that a solar module under the effect of sand will collect a lower flux to the normal conditions.

Keywords: photovoltaic, multi-crystal module, experimental, effect of dust, performances

Procedia PDF Downloads 310
9078 Design, Development by Functional Analysis in UML and Static Test of a Multimedia Voice and Video Communication Platform on IP for a Use Adapted to the Context of Local Businesses in Lubumbashi

Authors: Blaise Fyama, Elie Museng, Grace Mukoma

Abstract:

In this article we present a java implementation of video telephony using the SIP protocol (Session Initiation Protocol). After a functional analysis of the SIP protocol, we relied on the work of Italian researchers of University of Parma-Italy to acquire adequate libraries for the development of our own communication tool. In order to optimize the code and improve the prototype, we used, in an incremental approach, test techniques based on a static analysis based on the evaluation of the complexity of the software with the application of metrics and the number cyclomatic of Mccabe. The objective is to promote the emergence of local start-ups producing IP video in a well understood local context. We have arrived at the creation of a video telephony tool whose code is optimized.

Keywords: static analysis, coding complexity metric mccabe, Sip, uml

Procedia PDF Downloads 122
9077 Gamification: A Guideline to Design an Effective E-Learning

Authors: Rattama Rattanawongsa

Abstract:

As technologies continue to develop and evolve, online learning has become one of the most popular ways of gaining access to learning. Worldwide, many students are engaging in both online and blended courses in growing numbers through e-learning. However, online learning is a form of teaching that has many benefits for learners but still has some limitations. The high attrition rates of students tend to be due to lack of motivation to succeed. Gamification is the use of game design techniques, game thinking and game mechanics in non-game context, such as learning. The gamifying method can motivate students to learn with fun and inspire them to continue learning. This paper aims to describe how the gamification work in the context of learning. The first part of this paper present the concept of gamification. The second part is described the psychological perspectives of gamification, especially motivation and flow theory for gamifying design. The result from this study will be described into the guidelines for effective learning design using a gamification concept.

Keywords: gamification, e-learning, motivation, flow theory

Procedia PDF Downloads 529
9076 Automatic Speech Recognition Systems Performance Evaluation Using Word Error Rate Method

Authors: João Rato, Nuno Costa

Abstract:

The human verbal communication is a two-way process which requires a mutual understanding that will result in some considerations. This kind of communication, also called dialogue, besides the supposed human agents it can also be performed between human agents and machines. The interaction between Men and Machines, by means of a natural language, has an important role concerning the improvement of the communication between each other. Aiming at knowing the performance of some speech recognition systems, this document shows the results of the accomplished tests according to the Word Error Rate evaluation method. Besides that, it is also given a set of information linked to the systems of Man-Machine communication. After this work has been made, conclusions were drawn regarding the Speech Recognition Systems, among which it can be mentioned their poor performance concerning the voice interpretation in noisy environments.

Keywords: automatic speech recognition, man-machine conversation, speech recognition, spoken dialogue systems, word error rate

Procedia PDF Downloads 325
9075 Zinc Oxide Thin Films Deposition by Spray Pyrolysis

Authors: Bourfaa Fouzia, Meryem Lamri Zeggar, Adjimi Amel, Mohammed Salah Aida, Nadir Attaf

Abstract:

Semiconductor photocatalysts such as ZnO has attracted much attention in recent years due to their various applications for the degradation of organic pollutants in water, air and in dye sensitized photovoltaic solar cell. In the present work, ZnO thin films were prepared by ultrasonic spray pyrolysis by using different precursors namely: Acetate, chloride and zinc nitrate in order to investigate their influence on ZnO photocatalytic activity. The films crystalline structure was studied by mean of X-ray diffraction measurements (XRD) and the films surface morphology by Scanning Electron Microscopy (SEM). The films optical properties were studied by mean of UV–visible spectroscopy. The prepared films were tested for the degradation of the red reactive dye largely used in textile industry. As a result, we found that the zinc nitrate is the best precursor to prepare ZnO thin films suitable for a good photocatalytic activity.

Keywords: precursor, thins films, spray pyrolysis, zinc oxide

Procedia PDF Downloads 332
9074 Design of a Sliding Mode Control Using Nonlinear Sliding Surface and Nonlinear Observer Applied to the Trirotor Mini-Aircraft

Authors: Samir Zeghlache, Abderrahmen Bouguerra, Kamel Kara, Djamel Saigaa

Abstract:

The control of the trirotor helicopter includes nonlinearities, uncertainties and external perturbations that should be considered in the design of control laws. This paper presents a control strategy for an underactuated six degrees of freedom (6 DOF) trirotor helicopter, based on the coupling of the fuzzy logic control and sliding mode control (SMC). The main purpose of this work is to eliminate the chattering phenomenon. To achieve our purpose we have used a fuzzy logic control to generate the hitting control signal, also the non linear observer is then synthesized in order to estimate the unmeasured states. Finally simulation results are included to indicate the trirotor UAV with the proposed controller can greatly alleviate the chattering effect and remain robust to the external disturbances.

Keywords: fuzzy sliding mode control, trirotor helicopter, dynamic modelling, underactuated systems

Procedia PDF Downloads 538
9073 Reinforcement Learning for Classification of Low-Resolution Satellite Images

Authors: Khadija Bouzaachane, El Mahdi El Guarmah

Abstract:

The classification of low-resolution satellite images has been a worthwhile and fertile field that attracts plenty of researchers due to its importance in monitoring geographical areas. It could be used for several purposes such as disaster management, military surveillance, agricultural monitoring. The main objective of this work is to classify efficiently and accurately low-resolution satellite images by using novel technics of deep learning and reinforcement learning. The images include roads, residential areas, industrial areas, rivers, sea lakes, and vegetation. To achieve that goal, we carried out experiments on the sentinel-2 images considering both high accuracy and efficiency classification. Our proposed model achieved a 91% accuracy on the testing dataset besides a good classification for land cover. Focus on the parameter precision; we have obtained 93% for the river, 92% for residential, 97% for residential, 96% for the forest, 87% for annual crop, 84% for herbaceous vegetation, 85% for pasture, 78% highway and 100% for Sea Lake.

Keywords: classification, deep learning, reinforcement learning, satellite imagery

Procedia PDF Downloads 217
9072 Trabecular Bone Radiograph Characterization Using Fractal, Multifractal Analysis and SVM Classifier

Authors: I. Slim, H. Akkari, A. Ben Abdallah, I. Bhouri, M. Hedi Bedoui

Abstract:

Osteoporosis is a common disease characterized by low bone mass and deterioration of micro-architectural bone tissue, which provokes an increased risk of fracture. This work treats the texture characterization of trabecular bone radiographs. The aim was to analyze according to clinical research a group of 174 subjects: 87 osteoporotic patients (OP) with various bone fracture types and 87 control cases (CC). To characterize osteoporosis, Fractal and MultiFractal (MF) methods were applied to images for features (attributes) extraction. In order to improve the results, a new method of MF spectrum based on the q-stucture function calculation was proposed and a combination of Fractal and MF attributes was used. The Support Vector Machines (SVM) was applied as a classifier to distinguish between OP patients and CC subjects. The features fusion (fractal and MF) allowed a good discrimination between the two groups with an accuracy rate of 96.22%.

Keywords: fractal, micro-architecture analysis, multifractal, osteoporosis, SVM

Procedia PDF Downloads 396
9071 Molecular Docking Study of Quinazoline and Quinoline Derivatives against EGFR

Authors: Asli Faiza, Khamouli Saida

Abstract:

With the development of computer tools over the past 20 years. Molecular modeling and, more precisely, molecular docking has very quickly entered field of pharmaceutical research. EGFR enzyme involved in cancer disease.Our work consists of studying the inhibition of EGFR (1M17) with deferent inhibitors derived from quinazoline and quinoline by molecular docking. The values of ligands L148 and L177 are the best ligands for inhibit the activity of 1M17 since it forms a stable complex with this enzyme by better binding to the active site. The results obtained show that the ligands L148 and L177 give weak interactions with the active site residues EGFR (1M17), which stabilize the complexes formed of this ligands, which gives a better binding at the level of the active site, and an RMSD of L148 [1,9563 Å] and of L177 [ 1,2483 Å]. [1, 9563, 1.2483] Å

Keywords: docking, EGFR, quinazoline, quinoliène, MOE

Procedia PDF Downloads 74
9070 Production of Clean Reusable Distillery Waste Water Using Activated Carbon Prepared from Waste Orange Peels

Authors: Joseph Govha, Sharon Mudutu

Abstract:

The research details the treatment of distillery waste water by making use of activated carbon prepared from orange peels as an adsorbent. Adsorption was carried out at different conditions to determine the optimum conditions that work best for the removal of color in distillery waste water using orange peel activated carbon. Adsorption was carried out at different conditions by varying contact time, adsorbent dosage, pH, testing for color intensity and Biological Oxygen Demand. A maximum percentage color removal of 88% was obtained at pH 7 at an adsorbent dosage of 1g/20ml. Maximum adsorption capacity was obtained from the Langmuir isotherm at R2=0.98.

Keywords: distillery, waste water, orange peel, activated carbon, adsorption

Procedia PDF Downloads 307
9069 Embodied Neoliberalism and the Mind as Tool to Manage the Body: A Descriptive Study Applied to Young Australian Amateur Athletes

Authors: Alicia Ettlin

Abstract:

Amid the rise of neoliberalism to the leading economic policy model in Western societies in the 1980s, people have started to internalise a neoliberal way of thinking, whereby the human body has become an entity that can and needs to be precisely managed through free yet rational decision-making processes. The neoliberal citizen has consequently become an entrepreneur of the self who is free, independent, rational, productive and responsible for themselves, their health and wellbeing as well as their appearance. The focus on individuals as entrepreneurs who manage their bodies through the rationally thinking mind has, however, become increasingly criticised for viewing the social actor as ‘disembodied’, as a detached, social actor whose powerful mind governs over the passive body. On the other hand, the discourse around embodiment seeks to connect rational decision-making processes to the dominant neoliberal discourse which creates an embodied understanding that the body, just as other areas of people’s lives, can and should be shaped, monitored and managed through cognitive and rational thinking. This perspective offers an understanding of the body regarding its connections with the social environment that reaches beyond the debates around mind-body binary thinking. Hence, following this argument, body management should not be thought of as either solely guided by embodied discourses nor as merely falling into a mind-body dualism, but rather, simultaneously and inseparably as both at once. The descriptive, qualitative analysis of semi-structured in-depth interviews conducted with young Australian amateur athletes between the age of 18 and 24 has shown that most participants are interested in measuring and managing their body to create self-knowledge and self-improvement. The participants thereby connected self-improvement to weight loss, muscle gain or simply staying fit and healthy. Self-knowledge refers to body measurements including weight, BMI or body fat percentage. Self-management and self-knowledge that are reliant on one another to take rational and well-thought-out decisions, are both characteristic values of the neoliberal doctrine. A neoliberal way of thinking and looking after the body has also by many been connected to rewarding themselves for their discipline, hard work or achievement of specific body management goals (e.g. eating chocolate for reaching the daily step count goal). A few participants, however, have shown resistance against these neoliberal values, and in particular, against the precise monitoring and management of the body with the help of self-tracking devices. Ultimately, however, it seems that most participants have internalised the dominant discourses around self-responsibility, and by association, a sense of duty to discipline their body in normative ways. Even those who have indicated their resistance against body work and body management practices that follow neoliberal thinking and measurement systems, are aware and have internalised the concept of the rational operating mind that needs or should decide how to look after the body in terms of health but also appearance ideals. The discussion around the collected data thereby shows that embodiment and the mind/body dualism constitute two connected, rather than two separate or opposing concepts.

Keywords: dualism, embodiment, mind, neoliberalism

Procedia PDF Downloads 165
9068 Synthesis of a Hybrid Material (PVA/SiO₂/TiO₂) by Sol-Gel Method

Authors: Gueridi Bachir, Dadache Derradji, Rouabah Farid

Abstract:

This work is focused on the preparation and characterization of poly (vinyl alcohol)/silica gel/Nano-TiO₂, and the study of titanium dioxide (TiO₂) nanoparticles 1% on the properties of poly (vinyl alcohol) (PVA)/silica films. Fourier transform infrared (FT-IR), water contact angle, ultraviolet-visible spectrometry (UV-VIS)) were used to characterize the hybrid films obtained. The PVA/SiO₂/Nano-TiO₂ films were successfully synthesized. Owing to the FT-IR Analysis, the chemical bonds have clearly shown that the PVA backbone is linked to the (SiO₂-TiO₂) network. UV-VIS tests indicated that the hybrid films' UV shielding properties were drastically enhanced as a result of the addition of TiO₂. The water contact angle results revealed that TiO₂ nanoparticles used as a doping compound possess an important influence on the hydrophilicity of PVA/SiO₂ as thin films.

Keywords: sol-gel method, hybrid materials, PVA/SIO₂/TiO₂, spectroscopical characterization

Procedia PDF Downloads 20
9067 Variable-Fidelity Surrogate Modelling with Kriging

Authors: Selvakumar Ulaganathan, Ivo Couckuyt, Francesco Ferranti, Tom Dhaene, Eric Laermans

Abstract:

Variable-fidelity surrogate modelling offers an efficient way to approximate function data available in multiple degrees of accuracy each with varying computational cost. In this paper, a Kriging-based variable-fidelity surrogate modelling approach is introduced to approximate such deterministic data. Initially, individual Kriging surrogate models, which are enhanced with gradient data of different degrees of accuracy, are constructed. Then these Gradient enhanced Kriging surrogate models are strategically coupled using a recursive CoKriging formulation to provide an accurate surrogate model for the highest fidelity data. While, intuitively, gradient data is useful to enhance the accuracy of surrogate models, the primary motivation behind this work is to investigate if it is also worthwhile incorporating gradient data of varying degrees of accuracy.

Keywords: Kriging, CoKriging, Surrogate modelling, Variable- fidelity modelling, Gradients

Procedia PDF Downloads 560
9066 Forecasting the Temperature at a Weather Station Using Deep Neural Networks

Authors: Debneil Saha Roy

Abstract:

Weather forecasting is a complex topic and is well suited for analysis by deep learning approaches. With the wide availability of weather observation data nowadays, these approaches can be utilized to identify immediate comparisons between historical weather forecasts and current observations. This work explores the application of deep learning techniques to weather forecasting in order to accurately predict the weather over a given forecast hori­zon. Three deep neural networks are used in this study, namely, Multi-Layer Perceptron (MLP), Long Short Tunn Memory Network (LSTM) and a combination of Convolutional Neural Network (CNN) and LSTM. The predictive performance of these models is compared using two evaluation metrics. The results show that forecasting accuracy increases with an increase in the complexity of deep neural networks.

Keywords: convolutional neural network, deep learning, long short term memory, multi-layer perceptron

Procedia PDF Downloads 182
9065 Impact of Obesity on Fertility in a Population of Women in the Wilaya of Batna

Authors: S. Benbia, W. Bouafia, D. Khellaf, A. Chennaf, M. Yahia

Abstract:

Our study was designed to highlight changes in certain biochemical parameters (CH, TG, HDL, GOT, GPT, LDL, and CRP), obese women infertile fertile witnesses and research potential pathophysiological link between obesity and infertility in this population of women. This practical work was focused on a population of 24 obese women infertile, compared to controls, subjects without any pathology causing disruption of parameters to be studied to determine the contribution of obesity in the etiology of infertility. The assay results revealed a highly significant difference between the two groups in serum CH, TG, HDL, TGO and TGP (P < 0.0001) and in the rate of LDL (p = 0.0017) and CRP (p = 0.02). The hormonal balance also shows a significant difference between the two groups (P < 0.0001).The present study indicates that obesity is associated with infertility, but there is no direct pathophysiological link between obesity and infertility has not been determined. Further in-depth studies are needed to determine the exact mechanism by which overweight leads to female infertility.

Keywords: obesity, fertility, infertility, biochemical, women

Procedia PDF Downloads 452
9064 A System to Detect Inappropriate Messages in Online Social Networks

Authors: Shivani Singh, Shantanu Nakhare, Kalyani Nair, Rohan Shetty

Abstract:

As social networking is growing at a rapid pace today it is vital that we work on improving its management. Research has shown that the content present in online social networks may have significant influence on impressionable minds. If such platforms are misused, it will lead to negative consequences. Detecting insults or inappropriate messages continues to be one of the most challenging aspects of Online Social Networks (OSNs) today. We address this problem through a Machine Learning Based Soft Text Classifier approach using Support Vector Machine algorithm. The proposed system acts as a screening mechanism the alerts the user about such messages. The messages are classified according to their subject matter and each comment is labeled for the presence of profanity and insults.

Keywords: machine learning, online social networks, soft text classifier, support vector machine

Procedia PDF Downloads 513
9063 Fracture Toughness Properties and FTIR Analysis of Corn Fiber Green Composites

Authors: Ahmed Hashim, Aseel Abdullah

Abstract:

In this work, the fracture toughness of new green composite based on bio-PMMA resin reinforced with randomly short corn natural fiber of constant weight fraction by 10% wt was investigated. The corn fiber surface was modified by mercerization treatment with two different concentrations of sodium hydroxide (3, and 5% NaOH) for 1.5 and 3 hours respectively. The effect of mercerization treatment on the fracture behavior of the green composites was analyzed by FTIR spectra. NaOH concentration of 3% for 1.5 hrs. That was used for corn fiber green composite should the highest improvement in terms of plane strain fracture toughness KIC which increased by 62 % compared to untreated fiber composite material. On the other hand, increased both concentrations of alkali solution to 5% NaOH and time of soaking to 3 hrs. reduced the values of KIC lower than the value of the unfilled material.

Keywords: green composites, fracture toughness, corn natural fiber, bio-PMMA

Procedia PDF Downloads 432
9062 Contextual Toxicity Detection with Data Augmentation

Authors: Julia Ive, Lucia Specia

Abstract:

Understanding and detecting toxicity is an important problem to support safer human interactions online. Our work focuses on the important problem of contextual toxicity detection, where automated classifiers are tasked with determining whether a short textual segment (usually a sentence) is toxic within its conversational context. We use “toxicity” as an umbrella term to denote a number of variants commonly named in the literature, including hate, abuse, offence, among others. Detecting toxicity in context is a non-trivial problem and has been addressed by very few previous studies. These previous studies have analysed the influence of conversational context in human perception of toxicity in controlled experiments and concluded that humans rarely change their judgements in the presence of context. They have also evaluated contextual detection models based on state-of-the-art Deep Learning and Natural Language Processing (NLP) techniques. Counterintuitively, they reached the general conclusion that computational models tend to suffer performance degradation in the presence of context. We challenge these empirical observations by devising better contextual predictive models that also rely on NLP data augmentation techniques to create larger and better data. In our study, we start by further analysing the human perception of toxicity in conversational data (i.e., tweets), in the absence versus presence of context, in this case, previous tweets in the same conversational thread. We observed that the conclusions of previous work on human perception are mainly due to data issues: The contextual data available does not provide sufficient evidence that context is indeed important (even for humans). The data problem is common in current toxicity datasets: cases labelled as toxic are either obviously toxic (i.e., overt toxicity with swear, racist, etc. words), and thus context does is not needed for a decision, or are ambiguous, vague or unclear even in the presence of context; in addition, the data contains labeling inconsistencies. To address this problem, we propose to automatically generate contextual samples where toxicity is not obvious (i.e., covert cases) without context or where different contexts can lead to different toxicity judgements for the same tweet. We generate toxic and non-toxic utterances conditioned on the context or on target tweets using a range of techniques for controlled text generation(e.g., Generative Adversarial Networks and steering techniques). On the contextual detection models, we posit that their poor performance is due to limitations on both of the data they are trained on (same problems stated above) and the architectures they use, which are not able to leverage context in effective ways. To improve on that, we propose text classification architectures that take the hierarchy of conversational utterances into account. In experiments benchmarking ours against previous models on existing and automatically generated data, we show that both data and architectural choices are very important. Our model achieves substantial performance improvements as compared to the baselines that are non-contextual or contextual but agnostic of the conversation structure.

Keywords: contextual toxicity detection, data augmentation, hierarchical text classification models, natural language processing

Procedia PDF Downloads 176
9061 Design and Analysis of a Rear Bumper of an Automobile with a Hybrid Polymer Composite of Oil Palm Empty Fruit Bunch Fiber/Banana Fibres

Authors: S. O. Ologe, U. P. Anaidhuno, Duru C. A.

Abstract:

This research investigated the design and analysis of a rear bumper of an automobile with a hybrid polymer composite of OPEBF/Banana fibre. OPEBF/Banana fibre hybrid polymers composite is of low cost, lightweight, as well as possesses satisfactory mechanical properties. In this research work, hybrid composites have been developed using the hand layup technique based on the percentage combination of OPEBF/Banana fibre at 10:90, 20:80, 30:70, 40:60, 50:50. 60:40, 70:30. 20:80, 90:10, 95:5. The mechanical properties in the context of compressive strength of 65MPa, a flexural strength of 20MPa, and impact strength of 3.25Joule were observed, and the simulation analysis on the induction of 500N load at the factor of safety of 3 was observed to have displayed a good strength suitable for automobile bumper with the advantages of weight reduction.

Keywords: OPEBF, Banana, fibre, hybrid

Procedia PDF Downloads 122
9060 Fatigue Behavior of Dissimilar Welded Monel400 and SS316 by Friction Stir Welding

Authors: Aboozar Aghaei, Kamran Dehghani

Abstract:

In the present work, the dissimilar Monel400 and SS316 were joined by friction stir welding (FSW). The applied rotating speed was 400 rpm, whereas the traverse speed varied between 50 and 150 mm/min. At a constant rotating speed, the sound welds were obtained at the welding speeds of 50 and 100 mm/min. However, a groove-like defect was formed when the welding speed exceeded 100 mm/min. The mechanical properties of the joints were evaluated using tensile and fatigue tests. The fatigue strength of dissimilar FSWed specimens was higher than that of both Monel400 and SS316. To study the failure behavior of FSWed specimens, the fracture surfaces were analyzed using a scanning electron microscope (SEM). The failure analysis indicates that different mechanisms may contribute to the fracture of welds. This was attributed to the dissimilar characteristics of dissimilar materials exhibiting different failure behaviors.

Keywords: frictions stir welding, stainless steel, Monel400, mechanical properties

Procedia PDF Downloads 92