Search results for: modified simplex algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5895

Search results for: modified simplex algorithm

645 Using Time Series NDVI to Model Land Cover Change: A Case Study in the Berg River Catchment Area, Western Cape, South Africa

Authors: Adesuyi Ayodeji Steve, Zahn Munch

Abstract:

This study investigates the use of MODIS NDVI to identify agricultural land cover change areas on an annual time step (2007 - 2012) and characterize the trend in the study area. An ISODATA classification was performed on the MODIS imagery to select only the agricultural class producing 3 class groups namely: agriculture, agriculture/semi-natural, and semi-natural. NDVI signatures were created for the time series to identify areas dominated by cereals and vineyards with the aid of ancillary, pictometry and field sample data. The NDVI signature curve and training samples aided in creating a decision tree model in WEKA 3.6.9. From the training samples two classification models were built in WEKA using decision tree classifier (J48) algorithm; Model 1 included ISODATA classification and Model 2 without, both having accuracies of 90.7% and 88.3% respectively. The two models were used to classify the whole study area, thus producing two land cover maps with Model 1 and 2 having classification accuracies of 77% and 80% respectively. Model 2 was used to create change detection maps for all the other years. Subtle changes and areas of consistency (unchanged) were observed in the agricultural classes and crop practices over the years as predicted by the land cover classification. 41% of the catchment comprises of cereals with 35% possibly following a crop rotation system. Vineyard largely remained constant over the years, with some conversion to vineyard (1%) from other land cover classes. Some of the changes might be as a result of misclassification and crop rotation system.

Keywords: change detection, land cover, modis, NDVI

Procedia PDF Downloads 403
644 Applying Big Data Analysis to Efficiently Exploit the Vast Unconventional Tight Oil Reserves

Authors: Shengnan Chen, Shuhua Wang

Abstract:

Successful production of hydrocarbon from unconventional tight oil reserves has changed the energy landscape in North America. The oil contained within these reservoirs typically will not flow to the wellbore at economic rates without assistance from advanced horizontal well and multi-stage hydraulic fracturing. Efficient and economic development of these reserves is a priority of society, government, and industry, especially under the current low oil prices. Meanwhile, society needs technological and process innovations to enhance oil recovery while concurrently reducing environmental impacts. Recently, big data analysis and artificial intelligence become very popular, developing data-driven insights for better designs and decisions in various engineering disciplines. However, the application of data mining in petroleum engineering is still in its infancy. The objective of this research aims to apply intelligent data analysis and data-driven models to exploit unconventional oil reserves both efficiently and economically. More specifically, a comprehensive database including the reservoir geological data, reservoir geophysical data, well completion data and production data for thousands of wells is firstly established to discover the valuable insights and knowledge related to tight oil reserves development. Several data analysis methods are introduced to analysis such a huge dataset. For example, K-means clustering is used to partition all observations into clusters; principle component analysis is applied to emphasize the variation and bring out strong patterns in the dataset, making the big data easy to explore and visualize; exploratory factor analysis (EFA) is used to identify the complex interrelationships between well completion data and well production data. Different data mining techniques, such as artificial neural network, fuzzy logic, and machine learning technique are then summarized, and appropriate ones are selected to analyze the database based on the prediction accuracy, model robustness, and reproducibility. Advanced knowledge and patterned are finally recognized and integrated into a modified self-adaptive differential evolution optimization workflow to enhance the oil recovery and maximize the net present value (NPV) of the unconventional oil resources. This research will advance the knowledge in the development of unconventional oil reserves and bridge the gap between the big data and performance optimizations in these formations. The newly developed data-driven optimization workflow is a powerful approach to guide field operation, which leads to better designs, higher oil recovery and economic return of future wells in the unconventional oil reserves.

Keywords: big data, artificial intelligence, enhance oil recovery, unconventional oil reserves

Procedia PDF Downloads 285
643 Faculty Use of Geospatial Tools for Deep Learning in Science and Engineering Courses

Authors: Laura Rodriguez Amaya

Abstract:

Advances in science, technology, engineering, and mathematics (STEM) are viewed as important to countries’ national economies and their capacities to be competitive in the global economy. However, many countries experience low numbers of students entering these disciplines. To strengthen the professional STEM pipelines, it is important that students are retained in these disciplines at universities. Scholars agree that to retain students in universities’ STEM degrees, it is necessary that STEM course content shows the relevance of these academic fields to their daily lives. By increasing students’ understanding on the importance of these degrees and careers, students’ motivation to remain in these academic programs can also increase. An effective way to make STEM content relevant to students’ lives is the use of geospatial technologies and geovisualization in the classroom. The Geospatial Revolution, and the science and technology associated with it, has provided scientists and engineers with an incredible amount of data about Earth and Earth systems. This data can be used in the classroom to support instruction and make content relevant to all students. The purpose of this study was to find out the prevalence use of geospatial technologies and geovisualization as teaching practices in a USA university. The Teaching Practices Inventory survey, which is a modified version of the Carl Wieman Science Education Initiative Teaching Practices Inventory, was selected for the study. Faculty in the STEM disciplines that participated in a summer learning institute at a 4-year university in the USA constituted the population selected for the study. One of the summer learning institute’s main purpose was to have an impact on the teaching of STEM courses, particularly the teaching of gateway courses taken by many STEM majors. The sample population for the study is 97.5 of the total number of summer learning institute participants. Basic descriptive statistics through the Statistical Package for the Social Sciences (SPSS) were performed to find out: 1) The percentage of faculty using geospatial technologies and geovisualization; 2) Did the faculty associated department impact their use of geospatial tools?; and 3) Did the number of years in a teaching capacity impact their use of geospatial tools? Findings indicate that only 10 percent of respondents had used geospatial technologies, and 18 percent had used geospatial visualization. In addition, the use of geovisualization among faculty of different disciplines was broader than the use of geospatial technologies. The use of geospatial technologies concentrated in the engineering departments. Data seems to indicate the lack of incorporation of geospatial tools in STEM education. The use of geospatial tools is an effective way to engage students in deep STEM learning. Future research should look at the effect on student learning and retention in science and engineering programs when geospatial tools are used.

Keywords: engineering education, geospatial technology, geovisualization, STEM

Procedia PDF Downloads 253
642 Determinants of Budget Performance in an Oil-Based Economy

Authors: Adeola Adenikinju, Olusanya E. Olubusoye, Lateef O. Akinpelu, Dilinna L. Nwobi

Abstract:

Since the enactment of the Fiscal Responsibility Act (2007), the Federal Government of Nigeria (FGN) has made public its fiscal budget and the subsequent implementation report. A critical review of these documents shows significant variations in the five macroeconomic variables which are inputs in each Presidential budget; oil Production target (mbpd), oil price ($), Foreign exchange rate(N/$), and Gross Domestic Product growth rate (%) and inflation rate (%). This results in underperformance of the Federal budget expected output in terms of non-oil and oil revenue aggregates. This paper evaluates first the existing variance between budgeted and actuals, then the relationship and causality between the determinants of Federal fiscal budget assumptions, and finally the determinants of FGN’s Gross Oil Revenue. The paper employed the use of descriptive statistics, the Autoregressive distributed lag (ARDL) model, and a Profit oil probabilistic model to achieve these objectives. This model permits for both the static and dynamic effect(s) of the independent variable(s) on the dependent variable, unlike a static model that accounts for static or fixed effect(s) only. It offers a technique for checking the existence of a long-run relationship between variables, unlike other tests of cointegration, such as the Engle-Granger and Johansen tests, which consider only non-stationary series that are integrated of the same order. Finally, even with small sample size, the ARDL model is known to generate a valid result, for it is the dependent variable and is the explanatory variable. The results showed that there is a long-run relationship between oil revenue as a proxy for budget performance and its determinants; oil price, produced oil quantity, and foreign exchange rate. There is a short-run relationship between oil revenue and its determinants; oil price, produced oil quantity, and foreign exchange rate. There is a long-run relationship between non-oil revenue and its determinants; inflation rate, GDP growth rate, and foreign exchange rate. The grangers’ causality test results show that there is a mono-directional causality between oil revenue and its determinants. The Federal budget assumptions only explain 68% of oil revenue and 62% of non-oil revenue. There is a mono-directional causality between non-oil revenue and its determinants. The Profit oil Model describes production sharing contracts, joint ventures, and modified carrying arrangements as the greatest contributors to FGN’s gross oil revenue. This provides empirical justification for the selected macroeconomic variables used in the Federal budget design and performance evaluation. The research recommends other variables, debt and money supply, be included in the Federal budget design to explain the Federal budget revenue performance further.

Keywords: ARDL, budget performance, oil price, oil quantity, oil revenue

Procedia PDF Downloads 177
641 Expert System: Debugging Using MD5 Process Firewall

Authors: C. U. Om Kumar, S. Kishore, A. Geetha

Abstract:

An Operating system (OS) is software that manages computer hardware and software resources by providing services to computer programs. One of the important user expectations of the operating system is to provide the practice of defending information from unauthorized access, disclosure, modification, inspection, recording or destruction. Operating system is always vulnerable to the attacks of malwares such as computer virus, worm, Trojan horse, backdoors, ransomware, spyware, adware, scareware and more. And so the anti-virus software were created for ensuring security against the prominent computer viruses by applying a dictionary based approach. The anti-virus programs are not always guaranteed to provide security against the new viruses proliferating every day. To clarify this issue and to secure the computer system, our proposed expert system concentrates on authorizing the processes as wanted and unwanted by the administrator for execution. The Expert system maintains a database which consists of hash code of the processes which are to be allowed. These hash codes are generated using MD5 message-digest algorithm which is a widely used cryptographic hash function. The administrator approves the wanted processes that are to be executed in the client in a Local Area Network by implementing Client-Server architecture and only the processes that match with the processes in the database table will be executed by which many malicious processes are restricted from infecting the operating system. The add-on advantage of this proposed Expert system is that it limits CPU usage and minimizes resource utilization. Thus data and information security is ensured by our system along with increased performance of the operating system.

Keywords: virus, worm, Trojan horse, back doors, Ransomware, Spyware, Adware, Scareware, sticky software, process table, MD5, CPU usage and resource utilization

Procedia PDF Downloads 428
640 Triangular Hesitant Fuzzy TOPSIS Approach in Investment Projects Management

Authors: Irina Khutsishvili

Abstract:

The presented study develops a decision support methodology for multi-criteria group decision-making problem. The proposed methodology is based on the TOPSIS (Technique for Order Performance by Similarity to Ideal Solution) approach in the hesitant fuzzy environment. The main idea of decision-making problem is a selection of one best alternative or several ranking alternatives among a set of feasible alternatives. Typically, the process of decision-making is based on an evaluation of certain criteria. In many MCDM problems (such as medical diagnosis, project management, business and financial management, etc.), the process of decision-making involves experts' assessments. These assessments frequently are expressed in fuzzy numbers, confidence intervals, intuitionistic fuzzy values, hesitant fuzzy elements and so on. However, a more realistic approach is using linguistic expert assessments (linguistic variables). In the proposed methodology both the values and weights of the criteria take the form of linguistic variables, given by all decision makers. Then, these assessments are expressed in triangular fuzzy numbers. Consequently, proposed approach is based on triangular hesitant fuzzy TOPSIS decision-making model. Following the TOPSIS algorithm, first, the fuzzy positive ideal solution (FPIS) and the fuzzy negative-ideal solution (FNIS) are defined. Then the ranking of alternatives is performed in accordance with the proximity of their distances to the both FPIS and FNIS. Based on proposed approach the software package has been developed, which was used to rank investment projects in the real investment decision-making problem. The application and testing of the software were carried out based on the data provided by the ‘Bank of Georgia’.

Keywords: fuzzy TOPSIS approach, investment project, linguistic variable, multi-criteria decision making, triangular hesitant fuzzy set

Procedia PDF Downloads 430
639 Electrical Machine Winding Temperature Estimation Using Stateful Long Short-Term Memory Networks (LSTM) and Truncated Backpropagation Through Time (TBPTT)

Authors: Yujiang Wu

Abstract:

As electrical machine (e-machine) power density re-querulents become more stringent in vehicle electrification, mounting a temperature sensor for e-machine stator windings becomes increasingly difficult. This can lead to higher manufacturing costs, complicated harnesses, and reduced reliability. In this paper, we propose a deep-learning method for predicting electric machine winding temperature, which can either replace the sensor entirely or serve as a backup to the existing sensor. We compare the performance of our method, the stateful long short-term memory networks (LSTM) with truncated backpropagation through time (TBTT), with that of linear regression, as well as stateless LSTM with/without residual connection. Our results demonstrate the strength of combining stateful LSTM and TBTT in tackling nonlinear time series prediction problems with long sequence lengths. Additionally, in industrial applications, high-temperature region prediction accuracy is more important because winding temperature sensing is typically used for derating machine power when the temperature is high. To evaluate the performance of our algorithm, we developed a temperature-stratified MSE. We propose a simple but effective data preprocessing trick to improve the high-temperature region prediction accuracy. Our experimental results demonstrate the effectiveness of our proposed method in accurately predicting winding temperature, particularly in high-temperature regions, while also reducing manufacturing costs and improving reliability.

Keywords: deep learning, electrical machine, functional safety, long short-term memory networks (LSTM), thermal management, time series prediction

Procedia PDF Downloads 103
638 Attention States in the Sustained Attention to Response Task: Effects of Trial Duration, Mind-Wandering and Focus

Authors: Aisling Davies, Ciara Greene

Abstract:

Over the past decade the phenomenon of mind-wandering in cognitive tasks has attracted widespread scientific attention. Research indicates that mind-wandering occurrences can be detected through behavioural responses in the Sustained Attention to Response Task (SART) and several studies have attributed a specific pattern of responding around an error in this task to an observable effect of a mind-wandering state. SART behavioural responses are also widely accepted as indices of sustained attention and of general attention lapses. However, evidence suggests that these same patterns of responding may be attributable to other factors associated with more focused states and that it may also be possible to distinguish the two states within the same task. To use behavioural responses in the SART to study mind-wandering, it is essential to establish both the SART parameters that would increase the likelihood of errors due to mind-wandering, and exactly what type of responses are indicative of mind-wandering, neither of which have yet been determined. The aims of this study were to compare different versions of the SART to establish which task would induce the most mind-wandering episodes and to determine whether mind-wandering related errors can be distinguished from errors during periods of focus, by behavioural responses in the SART. To achieve these objectives, 25 Participants completed four modified versions of the SART that differed from the classic paradigm in several ways so to capture more instances of mind-wandering. The duration that trials were presented for was increased proportionately across each of the four versions of the task; Standard, Medium Slow, Slow, and Very Slow and participants intermittently responded to thought probes assessing their level of focus and degree of mind-wandering throughout. Error rates, reaction times and variability in reaction times decreased in proportion to the decrease in trial duration rate and the proportion of mind-wandering related errors increased, until the Very Slow condition where the extra decrease in duration no longer had an effect. Distinct reaction time patterns around an error, dependent on level of focus (high/low) and level of mind-wandering (high/low) were also observed indicating four separate attention states occurring within the SART. This study establishes the optimal duration of trial presentation for inducing mind-wandering in the SART, provides evidence supporting the idea that different attention states can be observed within the SART and highlights the importance of addressing other factors contributing to behavioural responses when studying mind-wandering during this task. A notable finding in relation to the standard SART, was that while more errors were observed in this version of the task, most of these errors were during periods of focus, raising significant questions about our current understanding of mind-wandering and associated failures of attention.

Keywords: attention, mind-wandering, trial duration rate, Sustained Attention to Response Task (SART)

Procedia PDF Downloads 183
637 Gas-Phase Nondestructive and Environmentally Friendly Covalent Functionalization of Graphene Oxide Paper with Amines

Authors: Natalia Alzate-Carvajal, Diego A. Acevedo-Guzman, Victor Meza-Laguna, Mario H. Farias, Luis A. Perez-Rey, Edgar Abarca-Morales, Victor A. Garcia-Ramirez, Vladimir A. Basiuk, Elena V. Basiuk

Abstract:

Direct covalent functionalization of prefabricated free-standing graphene oxide paper (GOP) is considered as the only approach suitable for systematic tuning of thermal, mechanical and electronic characteristics of this important class of carbon nanomaterials. At the same time, the traditional liquid-phase functionalization protocols can compromise physical integrity of the paper-like material up to its total disintegration. To avoid such undesirable effects, we explored the possibility of employing an alternative, solvent-free strategy for facile and nondestructive functionalization of GOP with two representative aliphatic amines, 1-octadecylamine (ODA) and 1,12-diaminododecane (DAD), as well as with two aromatic amines, 1-aminopyrene (AP) and 1,5-diaminonaphthalene (DAN). The functionalization was performed under moderate heating at 150-180 °C in vacuum. Under such conditions, it proceeds through both amidation and epoxy ring opening reactions. Comparative characterization of pristine and amine-functionalized GOP mats was carried out by using Fourier-transform infrared, Raman, and X-ray photoelectron spectroscopy (XPS), thermogravimetric (TGA) and differential thermal analysis, scanning electron and atomic force microscopy (SEM and AFM, respectively). Besides that, we compared the stability in water, wettability, electrical conductivity and elastic (Young's) modulus of GOP mats before and after amine functionalization. The highest content of organic species was obtained in the case of GOP-ODA, followed by GOP-DAD, GOP-AP and GOP-DAN samples. The covalent functionalization increased mechanical and thermal stability of GOP, as well as its electrical conductivity. The magnitude of each effect depends on the particular chemical structure of amine employed, which allows for tuning a given GOP property. Morphological characterization by using SEM showed that, compared to pristine graphene oxide paper, amine-modified GOP mats become relatively ordered layered assemblies, in which individual GO sheets are organized in a near-parallel pattern. Financial support from the National Autonomous University of Mexico (grants DGAPA-IN101118 and IN200516) and from the National Council of Science and Technology of Mexico (CONACYT, grant 250655) is greatly appreciated. The authors also thank David A. Domínguez (CNyN of UNAM) for XPS measurements and Dr. Edgar Alvarez-Zauco (Faculty of Science of UNAM) for the opportunity to use TGA equipment.

Keywords: amines, covalent functionalization, gas-phase, graphene oxide paper

Procedia PDF Downloads 182
636 The Inherent Flaw in the NBA Playoff Structure

Authors: Larry Turkish

Abstract:

Introduction: The NBA is an example of mediocrity and this will be evident in the following paper. The study examines and evaluates the characteristics of the NBA champions. As divisions and playoff teams increase, there is an increase in the probability that the champion originates from the mediocre category. Since it’s inception in 1947, the league has been mediocre and continues to this day. Why does a professional league allow any team with a less than 50% winning percentage into the playoffs? As long as the finances flow into the league, owners will not change the current algorithm. The objective of this paper is to determine if the regular season has meaning in finding an NBA champion. Statistical Analysis: The data originates from the NBA website. The following variables are part of the statistical analysis: Rank, the rank of a team relative to other teams in the league based on the regular season win-loss record; Winning Percentage of a team based on the regular season; Divisions, the number of divisions within the league and Playoff Teams, the number of playoff teams relative to a particular season. The following statistical applications are applied to the data: Pearson Product-Moment Correlation, Analysis of Variance, Factor and Regression analysis. Conclusion: The results indicate that the divisional structure and number of playoff teams results in a negative effect on the winning percentage of playoff teams. It also prevents teams with higher winning percentages from accessing the playoffs. Recommendations: 1. Teams that have a winning percentage greater than 1 standard deviation from the mean from the regular season will have access to playoffs. (Eliminates mediocre teams.) 2. Eliminate Divisions (Eliminates weaker teams from access to playoffs.) 3. Eliminate Conferences (Eliminates weaker teams from access to the playoffs.) 4. Have a balanced regular season schedule, (Reduces the number of regular season games, creates equilibrium, reduces bias) that will reduce the need for load management.

Keywords: alignment, mediocrity, regression, z-score

Procedia PDF Downloads 130
635 Quality Analysis of Vegetables Through Image Processing

Authors: Abdul Khalique Baloch, Ali Okatan

Abstract:

The quality analysis of food and vegetable from image is hot topic now a day, where researchers make them better then pervious findings through different technique and methods. In this research we have review the literature, and find gape from them, and suggest better proposed approach, design the algorithm, developed a software to measure the quality from images, where accuracy of image show better results, and compare the results with Perouse work done so for. The Application we uses an open-source dataset and python language with tensor flow lite framework. In this research we focus to sort food and vegetable from image, in the images, the application can sorts and make them grading after process the images, it could create less errors them human base sorting errors by manual grading. Digital pictures datasets were created. The collected images arranged by classes. The classification accuracy of the system was about 94%. As fruits and vegetables play main role in day-to-day life, the quality of fruits and vegetables is necessary in evaluating agricultural produce, the customer always buy good quality fruits and vegetables. This document is about quality detection of fruit and vegetables using images. Most of customers suffering due to unhealthy foods and vegetables by suppliers, so there is no proper quality measurement level followed by hotel managements. it have developed software to measure the quality of the fruits and vegetables by using images, it will tell you how is your fruits and vegetables are fresh or rotten. Some algorithms reviewed in this thesis including digital images, ResNet, VGG16, CNN and Transfer Learning grading feature extraction. This application used an open source dataset of images and language used python, and designs a framework of system.

Keywords: deep learning, computer vision, image processing, rotten fruit detection, fruits quality criteria, vegetables quality criteria

Procedia PDF Downloads 70
634 Development of a Regression Based Model to Predict Subjective Perception of Squeak and Rattle Noise

Authors: Ramkumar R., Gaurav Shinde, Pratik Shroff, Sachin Kumar Jain, Nagesh Walke

Abstract:

Advancements in electric vehicles have significantly reduced the powertrain noise and moving components of vehicles. As a result, in-cab noises have become more noticeable to passengers inside the car. To ensure a comfortable ride for drivers and other passengers, it has become crucial to eliminate undesirable component noises during the development phase. Standard practices are followed to identify the severity of noises based on subjective ratings, but it can be a tedious process to identify the severity of each development sample and make changes to reduce it. Additionally, the severity rating can vary from jury to jury, making it challenging to arrive at a definitive conclusion. To address this, an automotive component was identified to evaluate squeak and rattle noise issue. Physical tests were carried out for random and sine excitation profiles. Aim was to subjectively assess the noise using jury rating method and objectively evaluate the same by measuring the noise. Suitable jury evaluation method was selected for the said activity, and recorded sounds were replayed for jury rating. Objective data sound quality metrics viz., loudness, sharpness, roughness, fluctuation strength and overall Sound Pressure Level (SPL) were measured. Based on this, correlation co-efficients was established to identify the most relevant sound quality metrics that are contributing to particular identified noise issue. Regression analysis was then performed to establish the correlation between subjective and objective data. Mathematical model was prepared using artificial intelligence and machine learning algorithm. The developed model was able to predict the subjective rating with good accuracy.

Keywords: BSR, noise, correlation, regression

Procedia PDF Downloads 80
633 Direct Approach in Modeling Particle Breakage Using Discrete Element Method

Authors: Ebrahim Ghasemi Ardi, Ai Bing Yu, Run Yu Yang

Abstract:

Current study is aimed to develop an available in-house discrete element method (DEM) code and link it with direct breakage event. So, it became possible to determine the particle breakage and then its fragments size distribution, simultaneous with DEM simulation. It directly applies the particle breakage inside the DEM computation algorithm and if any breakage happens the original particle is replaced with daughters. In this way, the calculation will be followed based on a new updated particles list which is very similar to the real grinding environment. To validate developed model, a grinding ball impacting an unconfined particle bed was simulated. Since considering an entire ball mill would be too computationally demanding, this method provided a simplified environment to test the model. Accordingly, a representative volume of the ball mill was simulated inside a box, which could emulate media (ball)–powder bed impacts in a ball mill and during particle bed impact tests. Mono, binary and ternary particle beds were simulated to determine the effects of granular composition on breakage kinetics. The results obtained from the DEM simulations showed a reduction in the specific breakage rate for coarse particles in binary mixtures. The origin of this phenomenon, commonly known as cushioning or decelerated breakage in dry milling processes, was explained by the DEM simulations. Fine particles in a particle bed increase mechanical energy loss, and reduce and distribute interparticle forces thereby inhibiting the breakage of the coarse component. On the other hand, the specific breakage rate of fine particles increased due to contacts associated with coarse particles. Such phenomenon, known as acceleration, was shown to be less significant, but should be considered in future attempts to accurately quantify non-linear breakage kinetics in the modeling of dry milling processes.

Keywords: particle bed, breakage models, breakage kinetic, discrete element method

Procedia PDF Downloads 199
632 Land Use Dynamics of Ikere Forest Reserve, Nigeria Using Geographic Information System

Authors: Akintunde Alo

Abstract:

The incessant encroachments into the forest ecosystem by the farmers and local contractors constitute a major threat to the conservation of genetic resources and biodiversity in Nigeria. To propose a viable monitoring system, this study employed Geographic Information System (GIS) technology to assess the changes that occurred for a period of five years (between 2011 and 2016) in Ikere forest reserve. Landsat imagery of the forest reserve was obtained. For the purpose of geo-referencing the acquired satellite imagery, ground-truth coordinates of some benchmark places within the forest reserve was relied on. Supervised classification algorithm, image processing, vectorization and map production were realized using ArcGIS. Various land use systems within the forest ecosystem were digitized into polygons of different types and colours for 2011 and 2016, roads were represented with lines of different thickness and colours. Of the six land-use delineated, the grassland increased from 26.50 % in 2011 to 45.53% in 2016 of the total land area with a percentage change of 71.81 %. Plantations of Gmelina arborea and Tectona grandis on the other hand reduced from 62.16 % in 2011 to 27.41% in 2016. The farmland and degraded land recorded percentage change of about 176.80 % and 8.70 % respectively from 2011 to 2016. Overall, the rate of deforestation in the study area is on the increase and becoming severe. About 72.59% of the total land area has been converted to non-forestry uses while the remnant 27.41% is occupied by plantations of Gmelina arborea and Tectona grandis. Interestingly, over 55 % of the plantation area in 2011 has changed to grassland, or converted to farmland and degraded land in 2016. The rate of change over time was about 9.79 % annually. Based on the results, rapid actions to prevail on the encroachers to stop deforestation and encouraged re-afforestation in the study area are recommended.

Keywords: land use change, forest reserve, satellite imagery, geographical information system

Procedia PDF Downloads 357
631 An Energy Integration Study While Utilizing Heat of Flue Gas: Sponge Iron Process

Authors: Venkata Ramanaiah, Shabina Khanam

Abstract:

Enormous potential for saving energy is available in coal-based sponge iron plants as these are associated with the high percentage of energy wastage per unit sponge iron production. An energy integration option is proposed, in the present paper, to a coal based sponge iron plant of 100 tonnes per day production capacity, being operated in India using SL/RN (Stelco-Lurgi/Republic Steel-National Lead) process. It consists of the rotary kiln, rotary cooler, dust settling chamber, after burning chamber, evaporating cooler, electrostatic precipitator (ESP), wet scrapper and chimney as important equipment. Principles of process integration are used in the proposed option. It accounts for preheating kiln inlet streams like kiln feed and slinger coal up to 170ᴼC using waste gas exiting ESP. Further, kiln outlet stream is cooled from 1020ᴼC to 110ᴼC using kiln air. The working areas in the plant where energy is being lost and can be conserved are identified. Detailed material and energy balances are carried out around the sponge iron plant, and a modified model is developed, to find coal requirement of proposed option, based on hot utility, heat of reactions, kiln feed and air preheating, radiation losses, dolomite decomposition, the heat required to vaporize the coal volatiles, etc. As coal is used as utility and process stream, an iterative approach is used in solution methodology to compute coal consumption. Further, water consumption, operating cost, capital investment, waste gas generation, profit, and payback period of the modification are computed. Along with these, operational aspects of the proposed design are also discussed. To recover and integrate waste heat available in the plant, three gas-solid heat exchangers and four insulated ducts with one FD fan for each are installed additionally. Thus, the proposed option requires total capital investment of $0.84 million. Preheating of kiln feed, slinger coal and kiln air streams reduce coal consumption by 24.63% which in turn reduces waste gas generation by 25.2% in comparison to the existing process. Moreover, 96% reduction in water is also observed, which is the added advantage of the modification. Consequently, total profit is found as $2.06 million/year with payback period of 4.97 months only. The energy efficient factor (EEF), which is the % of the maximum energy that can be saved through design, is found to be 56.7%. Results of the proposed option are also compared with literature and found in good agreement.

Keywords: coal consumption, energy conservation, process integration, sponge iron plant

Procedia PDF Downloads 144
630 Thermoregulatory Responses of Holstein Cows Exposed to Intense Heat Stress

Authors: Rodrigo De A. Ferrazza, Henry D. M. Garcia, Viviana H. V. Aristizabal, Camilla De S. Nogueira, Cecilia J. Verissimo, Jose Roberto Sartori, Roberto Sartori, Joao Carlos P. Ferreira

Abstract:

Environmental factors adversely influence sustainability in livestock production system. Dairy herds are the most affected by heat stress among livestock industries. This clearly implies in development of new strategies for mitigating heat, which should be based on physiological and metabolic adaptations of the animal. In this study, we incorporated the effect of climate variables and heat exposure time on the thermoregulatory responses in order to clarify the adaptive mechanisms for bovine heat dissipation under intense thermal stress induced experimentally in climate chamber. Non-lactating Holstein cows were contemporaneously and randomly assigned to thermoneutral (TN; n=12) or heat stress (HS; n=12) treatments during 16 days. Vaginal temperature (VT) was measured every 15 min with a microprocessor-controlled data logger (HOBO®, Onset Computer Corporation, Bourne, MA, USA) attached to a modified vaginal controlled internal drug release insert (Sincrogest®, Ourofino, Brazil). Rectal temperature (RT), respiratory rate (RR) and heart rate (HR) were measured twice a day (0700 and 1500h) and dry matter intake (DMI) was estimated daily. The ambient temperature and air relative humidity were 25.9±0.2°C and 73.0±0.8%, respectively for TN, and 36.3± 0.3°C and 60.9±0.9%, respectively for HS. Respiratory rate of HS cows increased immediately after exposure to heat and was higher (76.02±1.70bpm; P<0.001) than TN (39.70±0.71bpm), followed by rising of RT (39.87°C±0.07 for HS versus 38.56±0.03°C for TN; P<0.001) and VT (39.82±0.10°C for HS versus 38.26±0.03°C for TN; P<0.001). A diurnal pattern was detected, with higher (P<0.01) afternoon temperatures than morning and this effect was aggravated for HS cows. There was decrease (P<0.05) of HR for HS cows (62.13±0.99bpm) compared to TN (66.23±0.79bpm), but the magnitude of the differences was not the same over time. From the third day, there was a decrease of DMI for HS in attempt to maintain homeothermy, while TN cows increased DMI (8.27kg±0.33kg d-1 for HS versus 14.03±0.29kg d-1 for TN; P<0.001). By regression analysis, RT and RR better reflected the response of cows to changes in the Temperature Humidity Index and the effect of climate variables from the previous day to influence the physiological parameters and DMI was more important than the current day, with ambient temperature the most important factor. Comparison between acute (0 to 3 days) and chronic (13 to 16 days) exposure to heat stress showed decreasing of the slope of the regression equations for RR and DMI, suggesting an adaptive adjustment, however with no change for RT. In conclusion, intense heat stress exerted strong influence on the thermoregulatory mechanisms, but the acclimation process was only partial.

Keywords: acclimation, bovine, climate chamber, hyperthermia, thermoregulation

Procedia PDF Downloads 218
629 Efficacy and Safety of Computerized Cognitive Training Combined with SSRIs for Treating Cognitive Impairment Among Patients with Late-Life Depression: A 12-Week, Randomized Controlled Study

Authors: Xiao Wang, Qinge Zhang

Abstract:

Background: This randomized, open-label study examined the therapeutic effects of computerized cognitive training (CCT) combined with selective serotonin reuptake inhibitors (SSRIs) on cognitive impairment among patients with late-life depression (LLD). Method: Study data were collected from May 5, 2021, to April 21, 2023. Outpatients who met diagnostic criteria for major depressive disorder according to the fifth revision of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5) criteria (i.e., a total score on the 17-item Hamilton Depression Rating Scale (HAMD-17) ≥ 18 and a total score on the Montreal Cognitive Assessment scale (MOCA) <26) were randomly assigned to receive up to 12 weeks of CCT and SSRIs treatment (n=57) or SSRIs and Control treatment (n=61). The primary outcome was the change in Alzheimer's Disease Assessment Scale-Cognitive Subscale (ADAS-Cog) scores from baseline to week 12 between the two groups. The secondary outcomes included changes in the HAMD-17 score, Hamilton Anxiety Scale (HAMA) score and Neuropsychiatric Inventory (NPI) score. Mixed model repeated measures (MMRM) analysis was performed on modified intention-to-treat (mITT) and completer populations. Results: The full analysis set (FAS) included 118 patients (CCT and SSRIs group, n=57; SSRIs and Control group, n =61). Over the 12-week study period, the reduction in the ADAS-cog total score was significant (P < 0.001) in both groups, while MMRM analysis revealed a significantly greater reduction in cognitive function (ADAS-cog total scores) from baseline to posttreatment in the CCT and SSRIs group than in the SSRI and Control group [(F (1,115) =13.65, least-squares mean difference [95% CI]: −2.77 [−3.73, −1.81], p<0.001)]. There were significantly greater improvements in depression symptoms (measured by the HAMD-17) in the CCT and SSRIs group than in the control group [MMRM, estimated mean difference (SE) between groups −3.59 [−5.02, −2.15], p < 0.001]. The least-squares mean changes in the HAMA scores and NPI scores between baseline and week 8 were greater in the CCT and SSRIs group than in the control group (all P < 0.05). There was no significant difference between groups on response rates and remission rates by using the last-observation-carried-forward (LOCF) method (all P > 0.05). The most frequent adverse events (AEs) in both groups were dry mouth, somnolence, and constipation. There was no significant difference in the incidence of adverse events between the two groups. Conclusions: CCT combined with SSRIs was efficacious and well tolerated in LLD patients with cognitive impairment.

Keywords: late-life depression, cognitive function, computerized cognitive training, SSRIs

Procedia PDF Downloads 55
628 Comparati̇ve Study of Pi̇xel and Object-Based Image Classificati̇on Techni̇ques for Extracti̇on of Land Use/Land Cover Informati̇on

Authors: Mahesh Kumar Jat, Manisha Choudhary

Abstract:

Rapid population and economic growth resulted in changes in large-scale land use land cover (LULC) changes. Changes in the biophysical properties of the Earth's surface and its impact on climate are of primary concern nowadays. Different approaches, ranging from location-based relationships or modelling earth surface - atmospheric interaction through modelling techniques like surface energy balance (SEB) have been used in the recent past to examine the relationship between changes in Earth surface land cover and climatic characteristics like temperature and precipitation. A remote sensing-based model i.e., Surface Energy Balance Algorithm for Land (SEBAL), has been used to estimate the surface heat fluxes over Mahi Bajaj Sagar catchment (India) from 2001 to 2020. Landsat ETM and OLI satellite data are used to model the SEB of the area. Changes in observed precipitation and temperature, obtained from India Meteorological Department (IMD) have been correlated with changes in surface heat fluxes to understand the relative contributions of LULC change in changing these climatic variables. Results indicate a noticeable impact of LULC changes on climatic variables, which are aligned with respective changes in SEB components. Results suggest that precipitation increases at a rate of 20 mm/year. The maximum and minimum temperature decreases and increases at 0.007 ℃ /year and 0.02 ℃ /year, respectively. The average temperature increases at 0.009 ℃ /year. Changes in latent heat flux and sensible heat flux positively correlate with precipitation and temperature, respectively. Variation in surface heat fluxes influences the climate parameters and is an adequate reason for climate change. So, SEB modelling is helpful to understand the LULC change and its impact on climate.

Keywords: remote sensing, GIS, object based, classification

Procedia PDF Downloads 133
627 Day Ahead and Intraday Electricity Demand Forecasting in Himachal Region using Machine Learning

Authors: Milan Joshi, Harsh Agrawal, Pallaw Mishra, Sanand Sule

Abstract:

Predicting electricity usage is a crucial aspect of organizing and controlling sustainable energy systems. The task of forecasting electricity load is intricate and requires a lot of effort due to the combined impact of social, economic, technical, environmental, and cultural factors on power consumption in communities. As a result, it is important to create strong models that can handle the significant non-linear and complex nature of the task. The objective of this study is to create and compare three machine learning techniques for predicting electricity load for both the day ahead and intraday, taking into account various factors such as meteorological data and social events including holidays and festivals. The proposed methods include a LightGBM, FBProphet, combination of FBProphet and LightGBM for day ahead and Motifs( Stumpy) based on Mueens algorithm for similarity search for intraday. We utilize these techniques to predict electricity usage during normal days and social events in the Himachal Region. We then assess their performance by measuring the MSE, RMSE, and MAPE values. The outcomes demonstrate that the combination of FBProphet and LightGBM method is the most accurate for day ahead and Motifs for intraday forecasting of electricity usage, surpassing other models in terms of MAPE, RMSE, and MSE. Moreover, the FBProphet - LightGBM approach proves to be highly effective in forecasting electricity load during social events, exhibiting precise day ahead predictions. In summary, our proposed electricity forecasting techniques display excellent performance in predicting electricity usage during normal days and special events in the Himachal Region.

Keywords: feature engineering, FBProphet, LightGBM, MASS, Motifs, MAPE

Procedia PDF Downloads 72
626 Implementation of Research Papers and Industry Related Experiments by Undergraduate Students in the Field of Automation

Authors: Veena N. Hegde, S. R. Desai

Abstract:

Motivating a heterogeneous group of students towards engagement in research related activities is a challenging task in engineering education. An effort is being made at the Department of Electronics and Instrumentation Engineering, where two courses are taken up on a pilot basis to kindle research interests in students at the undergraduate level. The courses, namely algorithm and system design (ASD) and automation in process control (APC), are selected for experimentation purposes. The task is being accomplished by providing scope for implementation of research papers and proposing solutions for the current industrial problems by the student teams. The course instructors have proposed an alternative assessment tool to evaluate the undergraduate students that involve activities beyond the curriculum. The method was tested for the aforementioned two courses in a particular academic year, and as per the observations, there is a considerable improvement in the number of student engagement towards research in the subsequent years of their undergraduate course. The student groups from the third-year engineering were made to read, implement the research papers, and they were also instructed to develop simulation modules for certain processes aiming towards automation. The target audience being students, were common for both the courses and the students' strength was 30. Around 50% of successful students were given the continued tasks in the subsequent two semesters, and out of 15 students who continued from sixth semesters were able to follow the research methodology well in the seventh and eighth semesters. Further, around 30% of the students out of 15 ended up carrying out project work with a research component involved and were successful in producing four conference papers. The methodology adopted is justified using a sample data set, and the outcomes are highlighted. The quantitative and qualitative results obtained through this study prove that such practices will enhance learning experiences substantially at the undergraduate level.

Keywords: industrial problems, learning experiences, research related activities, student engagement

Procedia PDF Downloads 165
625 Pneumoperitoneum Creation Assisted with Optical Coherence Tomography and Automatic Identification

Authors: Eric Yi-Hsiu Huang, Meng-Chun Kao, Wen-Chuan Kuo

Abstract:

For every laparoscopic surgery, a safe pneumoperitoneumcreation (gaining access to the peritoneal cavity) is the first and essential step. However, closed pneumoperitoneum is usually obtained by blind insertion of a Veress needle into the peritoneal cavity, which may carry potential risks suchas bowel and vascular injury.Until now, there remains no definite measure to visually confirm the position of the needle tip inside the peritoneal cavity. Therefore, this study established an image-guided Veress needle method by combining a fiber probe with optical coherence tomography (OCT). An algorithm was also proposed for determining the exact location of the needle tip through the acquisition of OCT images. Our method not only generates a series of “live” two-dimensional (2D) images during the needle puncture toward the peritoneal cavity but also can eliminate operator variation in image judgment, thus improving peritoneal access safety. This study was approved by the Ethics Committee of Taipei Veterans General Hospital (Taipei VGH IACUC 2020-144). A total of 2400 in vivo OCT images, independent of each other, were acquired from experiments of forty peritoneal punctures on two piglets. Characteristic OCT image patterns could be observed during the puncturing process. The ROC curve demonstrates the discrimination capability of these quantitative image features of the classifier, showing the accuracy of the classifier for determining the inside vs. outside of the peritoneal was 98% (AUC=0.98). In summary, the present study demonstrates the ability of the combination of our proposed automatic identification method and OCT imaging for automatically and objectively identifying the location of the needle tip. OCT images translate the blind closed technique of peritoneal access into a visualized procedure, thus improving peritoneal access safety.

Keywords: pneumoperitoneum, optical coherence tomography, automatic identification, veress needle

Procedia PDF Downloads 134
624 Study of Ion Density Distribution and Sheath Thickness in Warm Electronegative Plasma

Authors: Rajat Dhawan, Hitendra K. Malik

Abstract:

Electronegative plasmas comprising electrons, positive ions, and negative ions are advantageous for their expanding applications in industries. In plasma cleaning, plasma etching, and plasma deposition process, electronegative plasmas are preferred because of relatively less potential developed on the surface of the material under investigation. Also, the presence of negative ions avoid the irregularity in etching shapes and also enhance the material working during the fabrication process. The interaction of metallic conducting surface with plasma becomes mandatory to understand these applications. A metallic conducting probe immersed in a plasma results in the formation of a thin layer of charged species around the probe called as a sheath. The density of the ions embedded on the surface of the material and the sheath thickness are the important parameters for the surface-plasma interaction. Sheath thickness will give rise to the information of affected plasma region due to conducting surface/probe. The knowledge of the density of ions in the sheath region is advantageous in plasma nitriding, and their temperature is equally important as it strongly influences the thickness of the modified layer during surface plasma interaction. In the present work, we considered a negatively biased metallic probe immersed in a warm electronegative plasma. For this system, we adopted the continuity equation and momentum transfer equation for both the positive and negative ions, whereas electrons are described by Boltzmann distribution. Finally, we use the Poisson’s equation. Here, we assumed the spherical geometry for small probe radius. Poisson’s equation reveals the behaviour of potential surrounding a conducting metallic probe along with the use of the continuity and momentum transfer equations, with the help of proper boundary conditions. In turn, it gives rise to the information about the density profile of charged species and most importantly the thickness of the sheath. By keeping in mind, the well-known Bohm-Sheath criterion, all calculations are done. We found that positive ion density decreases with an increase in positive ion temperature, whereas it increases with the higher temperature of the negative ions. Positive ion density decreases as we move away from the center of the probe and is found to show a discontinuity at a particular distance from the center of the probe. The distance where discontinuity occurs is designated as sheath edge, i.e., the point where sheath ends. These results are beneficial for industrial applications, as the density of ions embedded on material surface is strongly affected by the temperature of plasma species. It has a drastic influence on the surface properties, i.e., the hardness, corrosion resistance, etc. of the materials.

Keywords: electronegative plasmas, plasma surface interaction positive ion density, sheath thickness

Procedia PDF Downloads 134
623 Improving 99mTc-tetrofosmin Myocardial Perfusion Images by Time Subtraction Technique

Authors: Yasuyuki Takahashi, Hayato Ishimura, Masao Miyagawa, Teruhito Mochizuki

Abstract:

Quantitative measurement of myocardium perfusion is possible with single photon emission computed tomography (SPECT) using a semiconductor detector. However, accumulation of 99mTc-tetrofosmin in the liver may make it difficult to assess that accurately in the inferior myocardium. Our idea is to reduce the high accumulation in the liver by using dynamic SPECT imaging and a technique called time subtraction. We evaluated the performance of a new SPECT system with a cadmium-zinc-telluride solid-state semi- conductor detector (Discovery NM 530c; GE Healthcare). Our system acquired list-mode raw data over 10 minutes for a typical patient. From the data, ten SPECT images were reconstructed, one for every minute of acquired data. Reconstruction with the semiconductor detector was based on an implementation of a 3-D iterative Bayesian reconstruction algorithm. We studied 20 patients with coronary artery disease (mean age 75.4 ± 12.1 years; range 42-86; 16 males and 4 females). In each subject, 259 MBq of 99mTc-tetrofosmin was injected intravenously. We performed both a phantom and a clinical study using dynamic SPECT. An approximation to a liver-only image is obtained by reconstructing an image from the early projections during which time the liver accumulation dominates (0.5~2.5 minutes SPECT image-5~10 minutes SPECT image). The extracted liver-only image is then subtracted from a later SPECT image that shows both the liver and the myocardial uptake (5~10 minutes SPECT image-liver-only image). The time subtraction of liver was possible in both a phantom and the clinical study. The visualization of the inferior myocardium was improved. In past reports, higher accumulation in the myocardium due to the overlap of the liver is un-diagnosable. Using our time subtraction method, the image quality of the 99mTc-tetorofosmin myocardial SPECT image is considerably improved.

Keywords: 99mTc-tetrofosmin, dynamic SPECT, time subtraction, semiconductor detector

Procedia PDF Downloads 336
622 The Association of Work Stress with Job Satisfaction and Occupational Burnout in Nurse Anesthetists

Authors: I. Ling Tsai, Shu Fen Wu, Chen-Fuh Lam, Chia Yu Chen, Shu Jiuan Chen, Yen Lin Liu

Abstract:

Purpose: Following the conduction of the National Health Insurance (NHI) system in Taiwan since 1995, the demand for anesthesia services continues to increase in the operating rooms and other medical units. It has been well recognized that increased work stress not only affects the clinical performance of the medical staff, long-term work load may also result in occupational burnout. Our study aimed to determine the influence of working environment, work stress and job satisfaction on the occupational burnout in nurse anesthetists. The ultimate goal of this research project is to develop a strategy in establishing a friendly, less stressful workplace for the nurse anesthetists to enhance their job satisfaction, thereby reducing occupational burnout and increasing the career life for nurse anesthetists. Methods: This was a cross-sectional, descriptive study performed in a metropolitan teaching hospital in southern Taiwan between May 2017 to July 2017. A structured self-administered questionnaire, modified from the Practice Environment Scale of the Nursing Work Index (PES-NWI), Occupational Stress Indicator 2 (OSI-2) and Maslach Burnout Inventory (MBI) manual was collected from the nurse anesthetists. The relationships between two numeric datasets were analyzed by the Pearson correlation test (SPSS 20.0). Results: A total of 66 completed questionnaires were collected from 75 nurses (response rate 88%). The average scores for the working environment, job satisfaction, and work stress were 69.6%, 61.5%, and 63.9%, respectively. The three perspectives used to assess the occupational burnout, namely emotional exhaustion, depersonalization and sense of personal accomplishment were 26.3, 13.0 and 24.5, suggesting the presence of moderate to high degrees of burnout in our nurse anesthetists. The presence of occupational burnout was closely correlated with the unsatisfactory working environment (r=-0.385, P=0.001) and reduced job satisfaction (r=-0.430, P=0.000). Junior nurse anesthetists (<1-year clinical experience) reported having higher satisfaction in working environment than the seniors (5 to 10-year clinical experience) (P=0.02). Although the average scores for work stress, job satisfaction, and occupational burnout were lower in junior nurses, the differences were not statistically different. The linear regression model, the working environment was the independent factor that predicted occupational burnout in nurse anesthetists up to 19.8%. Conclusions: High occupational burnout is more likely to develop in senior nurse anesthetists who experienced the dissatisfied working environment, work stress and lower job satisfaction. In addition to the regulation of clinical duties, the increased workload in the supervision of the junior nurse anesthetists may result in emotional stress and burnout in senior nurse anesthetists. Therefore, appropriate adjustment of clinical and teaching loading in the senior nurse anesthetists could be helpful to improve the occupational burnout and enhance the retention rate.

Keywords: nurse anesthetists, working environment, work stress, job satisfaction, occupational burnout

Procedia PDF Downloads 278
621 Currently Use Pesticides: Fate, Availability, and Effects in Soils

Authors: Lucie Bielská, Lucia Škulcová, Martina Hvězdová, Jakub Hofman, Zdeněk Šimek

Abstract:

The currently used pesticides represent a broad group of chemicals with various physicochemical and environmental properties which input has reached 2×106 tons/year and is expected to even increases. From that amount, only 1% directly interacts with the target organism while the rest represents a potential risk to the environment and human health. Despite being authorized and approved for field applications, the effects of pesticides in the environment can differ from the model scenarios due to the various pesticide-soil interactions and resulting modified fate and behavior. As such, a direct monitoring of pesticide residues and evaluation of their impact on soil biota, aquatic environment, food contamination, and human health should be performed to prevent environmental and economic damages. The present project focuses on fluvisols as they are intensively used in the agriculture but face to several environmental stressors. Fluvisols develop in the vicinity of rivers by the periodic settling of alluvial sediments and periodic interruptions to pedogenesis by flooding. As a result, fluvisols exhibit very high yields per area unit, are intensively used and loaded by pesticides. Regarding the floods, their regular contacts with surface water arise from serious concerns about the surface water contamination. In order to monitor pesticide residues and assess their environmental and biological impact within this project, 70 fluvisols were sampled over the Czech Republic and analyzed for the total and bioaccessible amounts of 40 various pesticides. For that purpose, methodologies for the pesticide extraction and analysis with liquid chromatography-mass spectrometry technique were developed and optimized. To assess the biological risks, both the earthworm bioaccumulation tests and various types of passive sampling techniques (XAD resin, Chemcatcher, and silicon rubber) were optimized and applied. These data on chemical analysis and bioavailability were combined with the results of soil analysis, including the measurement of basic physicochemical soil properties as well detailed characterization of soil organic matter with the advanced method of diffuse reflectance infrared spectrometry. The results provide unique data on the residual levels of pesticides in the Czech Republic and on the factors responsible for increased pesticide residue levels that should be included in the modeling of pesticide fate and effects.

Keywords: currently used pesticides, fluvisoils, bioavailability, Quechers, liquid-chromatography-mass spectrometry, soil properties, DRIFT analysis, pesticides

Procedia PDF Downloads 465
620 Data Mining Spatial: Unsupervised Classification of Geographic Data

Authors: Chahrazed Zouaoui

Abstract:

In recent years, the volume of geospatial information is increasing due to the evolution of communication technologies and information, this information is presented often by geographic information systems (GIS) and stored on of spatial databases (BDS). The classical data mining revealed a weakness in knowledge extraction at these enormous amounts of data due to the particularity of these spatial entities, which are characterized by the interdependence between them (1st law of geography). This gave rise to spatial data mining. Spatial data mining is a process of analyzing geographic data, which allows the extraction of knowledge and spatial relationships from geospatial data, including methods of this process we distinguish the monothematic and thematic, geo- Clustering is one of the main tasks of spatial data mining, which is registered in the part of the monothematic method. It includes geo-spatial entities similar in the same class and it affects more dissimilar to the different classes. In other words, maximize intra-class similarity and minimize inter similarity classes. Taking account of the particularity of geo-spatial data. Two approaches to geo-clustering exist, the dynamic processing of data involves applying algorithms designed for the direct treatment of spatial data, and the approach based on the spatial data pre-processing, which consists of applying clustering algorithms classic pre-processed data (by integration of spatial relationships). This approach (based on pre-treatment) is quite complex in different cases, so the search for approximate solutions involves the use of approximation algorithms, including the algorithms we are interested in dedicated approaches (clustering methods for partitioning and methods for density) and approaching bees (biomimetic approach), our study is proposed to design very significant to this problem, using different algorithms for automatically detecting geo-spatial neighborhood in order to implement the method of geo- clustering by pre-treatment, and the application of the bees algorithm to this problem for the first time in the field of geo-spatial.

Keywords: mining, GIS, geo-clustering, neighborhood

Procedia PDF Downloads 375
619 Threading Professionalism Through Occupational Therapy Curriculum: A Framework and Resources

Authors: Ashley Hobson, Ashley Efaw

Abstract:

Professionalism is an essential skill for clinicians, particularly for Occupational Therapy Providers (OTPs). The World Federation of Occupational Therapy (WFOT) Guiding Principles for Ethical Occupational Therapy and American Occupational Therapy Association (AOTA) Code of Ethics establishes expectations for professionalism among OTPs, emphasizing its importance in the field. However, the teaching and assessment of professionalism vary across OTP programs. The flexibility provided by the country standards allows programs to determine their own approaches to meeting these standards, resulting in inconsistency. Educators in both academic and fieldwork settings face challenges in objectively assessing and providing feedback on student professionalism. Although they observe instances of unprofessional behavior, there is no standardized assessment measure to evaluate professionalism in OTP students. While most students are committed to learning and applying professionalism skills, they enter OTP programs with varying levels of proficiency in this area. Consequently, they lack a uniform understanding of professionalism and lack an objective means to self-assess their current skills and identify areas for growth. It is crucial to explicitly teach professionalism, have students to self-assess their professionalism skills, and have OTP educators assess student professionalism. This approach is necessary for fostering students' professionalism journeys. Traditionally, there has been no objective way for students to self-assess their professionalism or for educators to provide objective assessments and feedback. To establish a uniform approach to professionalism, the authors incorporated professionalism content into our curriculum. Utilizing an operational definition of professionalism, the authors integrated professionalism into didactic, fieldwork, and capstone courses. The complexity of the content and the professionalism skills expected of students increase each year to ensure students graduate with the skills to practice in accordance with the WFOT Guiding Principles for Ethical Occupational Therapy Practice and AOTA Code of Ethics. Two professionalism assessments were developed based on the expectations outlined in the both documents. The Professionalism Self-Assessment allows students to evaluate their professionalism, reflect on their performance, and set goals. The Professionalism Assessment for Educators is a modified version of the same tool designed for educators. The purpose of this workshop is to provide educators with a framework and tools for assessing student professionalism. The authors discuss how to integrate professionalism content into OTP curriculum and utilize professionalism assessments to provide constructive feedback and equitable learning opportunities for OTP students in academic, fieldwork, and capstone settings. By adopting these strategies, educators can enhance the development of professionalism among OTP students, ensuring they are well-prepared to meet the demands of the profession.

Keywords: professionalism, assessments, student learning, student preparedness, ethical practice

Procedia PDF Downloads 43
618 Effect of Starch and Plasticizer Types and Fiber Content on Properties of Polylactic Acid/Thermoplastic Starch Blend

Authors: Rangrong Yoksan, Amporn Sane, Nattaporn Khanoonkon, Chanakorn Yokesahachart, Narumol Noivoil, Khanh Minh Dang

Abstract:

Polylactic acid (PLA) is the most commercially available bio-based and biodegradable plastic at present. PLA has been used in plastic related industries including single-used containers, disposable and environmentally friendly packaging owing to its renewability, compostability, biodegradability, and safety. Although PLA demonstrates reasonably good optical, physical, mechanical, and barrier properties comparable to the existing petroleum-based plastics, its brittleness and mold shrinkage as well as its price are the points to be concerned for the production of rigid and semi-rigid packaging. Blending PLA with other bio-based polymers including thermoplastic starch (TPS) is an alternative not only to achieve a complete bio-based plastic, but also to reduce the brittleness, shrinkage during molding and production cost of the PLA-based products. TPS is a material produced mainly from starch which is cheap, renewable, biodegradable, compostable, and non-toxic. It is commonly prepared by a plasticization of starch under applying heat and shear force. Although glycerol has been reported as one of the most plasticizers used for preparing TPS, its migration caused the surface stickiness of the TPS products. In some cases, mixed plasticizers or natural fibers have been applied to impede the retrogradation of starch or reduce the migration of glycerol. The introduction of fibers into TPS-based materials could reinforce the polymer matrix as well. Therefore, the objective of the present research is to study the effect of starch type (i.e. native starch and phosphate starch), plasticizer type (i.e. glycerol and xylitol with a weight ratio of glycerol to xylitol of 100:0, 75:25, 50:50, 25:75, and 0:100), and fiber content (i.e. in the range of 1-25 % wt) on properties of PLA/TPS blend and composite. PLA/TPS blends and composites were prepared using a twin-screw extruder and then converted into dumbbell-shaped specimens using an injection molding machine. The PLA/TPS blends prepared by using phosphate starch showed higher tensile strength and stiffness than the blends prepared by using the native one. In contrast, the blends from native starch exhibited higher extensibility and heat distortion temperature (HDT) than those from the modified starch. Increasing xylitol content resulted in enhanced tensile strength, stiffness, and water resistance, but decreased extensibility and HDT of the PLA/TPS blend. Tensile properties and hydrophobicity of the blend could be improved by incorporating silane treated-jute fibers.

Keywords: polylactic acid, thermoplastic starch, Jute fiber, composite, blend

Procedia PDF Downloads 424
617 Optimal Trajectory Finding of IDP Ventilation Control with Outdoor Air Information and Indoor Health Risk Index

Authors: Minjeong Kim, Seungchul Lee, Iman Janghorban Esfahani, Jeong Tai Kim, ChangKyoo Yoo

Abstract:

A trajectory of set-point of ventilation control systems plays an important role for efficient ventilation inside subway stations since it affects the level of indoor air pollutants and ventilation energy consumption. To maintain indoor air quality (IAQ) at a comfortable range with lower ventilation energy consumption, the optimal trajectory of the ventilation control system needs to be determined. The concentration of air pollutants inside the station shows a diurnal variation in accordance with the variations in the number of passengers and subway frequency. To consider the diurnal variation of IAQ, an iterative dynamic programming (IDP) that searches for a piecewise control policy by separating whole duration into several stages is used. When outdoor air is contaminated by pollutants, it enters the subway station through the ventilation system, which results in the deteriorated IAQ and adverse effects on passenger health. In this study, to consider the influence of outdoor air quality (OAQ), a new performance index of the IDP with the passenger health risk and OAQ is proposed. This study was carried out for an underground subway station at Seoul Metro, Korea. The optimal set-points of the ventilation control system are determined every 3 hours, then, the ventilation controller adjusts the ventilation fan speed according to the optimal set-point changes. Compared to manual ventilation system which is operated irrespective of the OAQ, the IDP-based ventilation control system saves 3.7% of the energy consumption. Compared to the fixed set-point controller which is operated irrespective of the IAQ diurnal variation, the IDP-based controller shows better performance with a 2% decrease in energy consumption, maintaining the comfortable IAQ range inside the station.

Keywords: indoor air quality, iterative dynamic algorithm, outdoor air information, ventilation control system

Procedia PDF Downloads 502
616 Investigating the Energy Harvesting Potential of a Pitch-Plunge Airfoil Subjected to Fluctuating Wind

Authors: Magu Raam Prasaad R., Venkatramani Jagadish

Abstract:

Recent studies in the literature have shown that randomly fluctuating wind flows can give rise to a distinct regime of pre-flutter oscillations called intermittency. Intermittency is characterized by the presence of sporadic bursts of high amplitude oscillations interspersed amidst low-amplitude aperiodic fluctuations. The focus of this study is on investigating the energy harvesting potential of these intermittent oscillations. Available literature has by and large devoted its attention on extracting energy from flutter oscillations. The possibility of harvesting energy from pre-flutter regimes have remained largely unexplored. However, extracting energy from violent flutter oscillations can be severely detrimental to the structural integrity of airfoil structures. Consequently, investigating the relatively stable pre-flutter responses for energy extraction applications is of practical importance. The present study is devoted towards addressing these concerns. A pitch-plunge airfoil with cubic hardening nonlinearity in the plunge and pitch degree of freedom is considered. The input flow fluctuations are modelled using a sinusoidal term with randomly perturbed frequencies. An electromagnetic coupling is provided to the pitch-plunge equations, such that, energy from the wind induced vibrations of the structural response are extracted. With the mean flow speed as the bifurcation parameter, a fourth order Runge-Kutta based time marching algorithm is used to solve the governing aeroelastic equations with electro-magnetic coupling. The harnessed energy from the intermittency regime is presented and the results are discussed in comparison to that obtained from the flutter regime. The insights from this study could be useful in health monitoring of aeroelastic structures.

Keywords: aeroelasticity, energy harvesting, intermittency, randomly fluctuating flows

Procedia PDF Downloads 187