Search results for: Spalart-Allmaras model
11670 The Effect of Adhesion on the Frictional Hysteresis Loops at a Rough Interface
Authors: M. Bazrafshan, M. B. de Rooij, D. J. Schipper
Abstract:
Frictional hysteresis is the phenomenon in which mechanical contacts are subject to small (compared to contact area) oscillating tangential displacements. In the presence of adhesion at the interface, the contact repulsive force increases leading to a higher static friction force and pre-sliding displacement. This paper proposes a boundary element model (BEM) for the adhesive frictional hysteresis contact at the interface of two contacting bodies of arbitrary geometries. In this model, adhesion is represented by means of a Dugdale approximation of the total work of adhesion at local areas with a very small gap between the two bodies. The frictional contact is divided into sticking and slipping regions in order to take into account the transition from stick to slip (pre-sliding regime). In the pre-sliding regime, the stick and slip regions are defined based on the local values of shear stress and normal pressure. In the studied cases, a fixed normal force is applied to the interface and the friction force varies in such a way to start gross sliding in one direction reciprocally. For the first case, the problem is solved at the smooth interface between a ball and a flat for different values of work of adhesion. It is shown that as the work of adhesion increases, both static friction and pre-sliding distance increase due to the increase in the contact repulsive force. For the second case, the rough interface between a glass ball against a silicon wafer and a DLC (Diamond-Like Carbon) coating is considered. The work of adhesion is assumed to be identical for both interfaces. As adhesion depends on the interface roughness, the corresponding contact repulsive force is different for these interfaces. For the smoother interface, a larger contact repulsive force and consequently, a larger static friction force and pre-sliding distance are observed.Keywords: boundary element model, frictional hysteresis, adhesion, roughness, pre-sliding
Procedia PDF Downloads 16811669 Transformative Leadership and Learning Management Systems Implementation: Leadership Practices in Instructional Design for Online Learning
Authors: Felix Brito
Abstract:
With the growth of online learning, several higher education institutions have attempted to incorporate technology in their curriculum. Successful technology implementation projects really on technology infrastructure and on the acceptance of education professionals towards innovation. This research study is aimed at illustrating the relevance of the human component in technology implementation projects in higher education by describing the Learning Management System implementation project executed by instructional designers working for a higher education institution in the southeast region of the United States. An analysis of the Transformative Leadership Theory, the Technology Acceptance Model, and the Diffusion of Innovation Process provide the support for a solid understanding of this issue and address recommendations for future technology implementation projects in higher education institutions.Keywords: diffusion of innovation process, instructional design, leadership, learning management systems, online learning, technology acceptance model, transformative leadership theory
Procedia PDF Downloads 33811668 Damage Assessment of Reinforced Concrete Slabs Subjected to Blast Loading
Authors: W. Badla
Abstract:
A numerical investigation has been carried out to examine the behaviour of reinforced concrete slabs to uniform blast loading. The aim of this work is to determine the effects of various parameters on the results. Finite element simulations were performed in the non linear dynamic range using an elasto-plastic damage model. The main parameters considered are: the negative phase of blast loading, time duration, equivalent weight of TNT, distance of the explosive and slab dimensions. Numerical modelling has been performed using ABAQUS/Explicit. The results obtained in terms of displacements and propagation of damage show that the above parameters influence considerably the nonlinear dynamic behaviour of reinforced concrete slabs under uniform blast loading.Keywords: blast loading, reinforced concrete slabs, elasto-plastic damage model, negative phase, time duration, equivalent weight of TNT, explosive distance, slab dimensions
Procedia PDF Downloads 53511667 Study on Health Status and Health Promotion Models for Prevention of Cardiovascular Disease in Asylum Seekers at Asylum Seekers Center, Kupang-Indonesia
Authors: Era Dorihi Kale, Sabina Gero, Uly Agustine
Abstract:
Asylum seekers are people who come to other countries to get asylum. In line with that, they also carry the culture and health behavior of their country, which is very different from the new country they currently live in. This situation raises problems, also in the health sector. The approach taken must also be a culturally sensitive approach, where the culture and habits of the refugee's home area are also valued so that the health services provided can be right on target. Some risk factors that already exist in this group are lack of activity, consumption of fast food, smoking, and stress levels that are quite high. Overall this condition will increase the risk of an increased incidence of cardiovascular disease. This research is a descriptive and experimental study. The purpose of this study is to identify health status and develop a culturally sensitive health promotion model, especially related to the risk of cardiovascular disease for asylum seekers in detention homes in the city of Kupang. This research was carried out in 3 stages, stage 1 was conducting a survey of health problems and the risk of asylum seeker cardiovascular disease, Stage 2 developed a health promotion model, and stage 3 conducted a testing model of health promotion carried out. There were 81 respondents involved in this study. The variables measured were: health status, risk of cardiovascular disease and, health promotion models. Method of data collection: Instruments (questionnaires) were distributed to respondents answered for anamnese health status; then, cardiovascular risk measurements were taken. After that, the preparation of information needs and the compilation of booklets on the prevention of cardiovascular disease is carried out. The compiled booklet was then translated into Farsi. After that, the booklet was tested. Respondent characteristics: average lived in Indonesia for 4.38 years, the majority were male (90.1%), and most were aged 15-34 years (90.1%). There are several diseases that are often suffered by asylum seekers, namely: gastritis, headaches, diarrhea, acute respiratory infections, skin allergies, sore throat, cough, and depression. The level of risk for asylum seekers experiencing cardiovascular problems is 4 high risk people, 6 moderate risk people, and 71 low risk people. This condition needs special attention because the number of people at risk is quite high when compared to the age group of refugees. This is very related to the level of stress experienced by the refugees. The health promotion model that can be used is the transactional stress and coping model, using Persian (oral) and English for written information. It is recommended for health practitioners who care for refugees to always pay attention to aspects of culture (especially language) as well as the psychological condition of asylum seekers to make it easier to conduct health care and promotion. As well for further research, it is recommended to conduct research, especially relating to the effect of psychological stress on the risk of cardiovascular disease in asylum seekers.Keywords: asylum seekers, health status, cardiovascular disease, health promotion
Procedia PDF Downloads 10811666 A Multi-Modal Virtual Walkthrough of the Virtual Past and Present Based on Panoramic View, Crowd Simulation and Acoustic Heritage on Mobile Platform
Authors: Lim Chen Kim, Tan Kian Lam, Chan Yi Chee
Abstract:
This research presents a multi-modal simulation in the reconstruction of the past and the construction of present in digital cultural heritage on mobile platform. In bringing the present life, the virtual environment is generated through a presented scheme for rapid and efficient construction of 360° panoramic view. Then, acoustical heritage model and crowd model are presented and improvised into the 360° panoramic view. For the reconstruction of past life, the crowd is simulated and rendered in an old trading port. However, the keystone of this research is in a virtual walkthrough that shows the virtual present life in 2D and virtual past life in 3D, both in an environment of virtual heritage sites in George Town through mobile device. Firstly, the 2D crowd is modelled and simulated using OpenGL ES 1.1 on mobile platform. The 2D crowd is used to portray the present life in 360° panoramic view of a virtual heritage environment based on the extension of Newtonian Laws. Secondly, the 2D crowd is animated and rendered into 3D with improved variety and incorporated into the virtual past life using Unity3D Game Engine. The behaviours of the 3D models are then simulated based on the enhancement of the classical model of Boid algorithm. Finally, a demonstration system is developed and integrated with the models, techniques and algorithms of this research. The virtual walkthrough is demonstrated to a group of respondents and is evaluated through the user-centred evaluation by navigating around the demonstration system. The results of the evaluation based on the questionnaires have shown that the presented virtual walkthrough has been successfully deployed through a multi-modal simulation and such a virtual walkthrough would be particularly useful in a virtual tour and virtual museum applications.Keywords: Boid Algorithm, Crowd Simulation, Mobile Platform, Newtonian Laws, Virtual Heritage
Procedia PDF Downloads 28011665 The Role of Brand Loyalty in Generating Positive Word of Mouth among Malaysian Hypermarket Customers
Authors: S. R. Nikhashemi, Laily Haj Paim, Ali Khatibi
Abstract:
Structural Equation Modeling (SEM) was used to test a hypothesized model explaining Malaysian hypermarket customers’ perceptions of brand trust (BT), customer perceived value (CPV) and perceived service quality (PSQ) on building their brand loyalty (CBL) and generating positive word-of-mouth communication (WOM). Self-administered questionnaires were used to collect data from 374 Malaysian hypermarket customers from Mydin, Tesco, Aeon Big and Giant in Kuala Lumpur, a metropolitan city of Malaysia. The data strongly supported the model exhibiting that BT, CPV and PSQ are prerequisite factors in building customer brand loyalty, while PSQ has the strongest effect on prediction of customer brand loyalty compared to other factors. Besides, the present study suggests the effect of the aforementioned factors via customer brand loyalty strongly contributes to generate positive word of mouth communication.Keywords: brand trust, perceived value, Perceived Service Quality, Brand loyalty, positive word of mouth communication
Procedia PDF Downloads 48511664 Neuroprotective Effects of Rosmarinic Acid in the MPTP Mouse Model of Parkinson's Disease
Authors: Huamin Xu, Wenting Jia, Hong Jiang, Junxia Xie
Abstract:
Rosmarinic acid (RA) is a natural acid that is found in a variety of herbs, such as rosemary and has multiple biological activities such as antioxidative, anti-inflammatory and antiviral activities. In this study, we investigated the neuroprotective effects of RA on dopaminergic system in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induced mouse model of Parkinson’s disease (PD). The mice received oral administration of RA before MPTP injection. Results showed that the tyrosine hydroxylase expression in SN reduced and the levels of dopamine and its metabolites in the striatum decreased in MPTP intoxicated PD mice. Pretreatment with RA significantly inhibited these changes. Further studies demonstrated that MPTP treatment increased the iron content, which was counteracted by pre-treatment with RA. In addition, RA could restore the decrease of superoxide dismutase (SOD) induced by MPTP. This study provides evidence that RA could suppress MPTP-induced degeneration of the nigrostriatal dopaminergic system by regulating iron content and the expression of SOD. Thus, RA might be clinically evaluated for the prevention of neurodegenerative diseases.Keywords: rosmarinic acid, Parkinson's disease, MPTP, dopaminergic system
Procedia PDF Downloads 20811663 Comics Scanlation and Publishing Houses Translation
Authors: Sharifa Alshahrani
Abstract:
Comics is a multimodal text wherein meaning is created by taking in all modes of expression at once. It uses two different semiotic modes, the verbal and the visual modes, together to make meaning and these different semiotic modes can be socially and culturally shaped to give meaning. Therefore, comics translation cannot treat comics as a monomodal text by translating only the verbal mode inside or outside the speech balloons as the cultural differences are encoded in the visual mode as well. Due to the development of the internet and editing software, comics translation is not anymore confined to the publishing houses and official translation as scanlation, or the fan translation took the initiative in translating comics for being emotionally attracted to the culture and genre. Scanlation is carried out by volunteering fans who translate out of passion. However, quality is one of the debatable issues relating to scanlation and fan translation. This study will investigate how the dynamic multimodal relationship in comics is exploited and interpreted in the translation by exploring the translation strategies and procedures adopted by the publishing houses and scanlation in interpreting comics into Arabic using three analytical frameworks; cultural references model, multimodal relation model and translation strategies and procedures models.Keywords: comics, multimodality, translation, scanlation
Procedia PDF Downloads 21711662 A Comparative Study of Optimization Techniques and Models to Forecasting Dengue Fever
Abstract:
Dengue is a serious public health issue that causes significant annual economic and welfare burdens on nations. However, enhanced optimization techniques and quantitative modeling approaches can predict the incidence of dengue. By advocating for a data-driven approach, public health officials can make informed decisions, thereby improving the overall effectiveness of sudden disease outbreak control efforts. The National Oceanic and Atmospheric Administration and the Centers for Disease Control and Prevention are two of the U.S. Federal Government agencies from which this study uses environmental data. Based on environmental data that describe changes in temperature, precipitation, vegetation, and other factors known to affect dengue incidence, many predictive models are constructed that use different machine learning methods to estimate weekly dengue cases. The first step involves preparing the data, which includes handling outliers and missing values to make sure the data is prepared for subsequent processing and the creation of an accurate forecasting model. In the second phase, multiple feature selection procedures are applied using various machine learning models and optimization techniques. During the third phase of the research, machine learning models like the Huber Regressor, Support Vector Machine, Gradient Boosting Regressor (GBR), and Support Vector Regressor (SVR) are compared with several optimization techniques for feature selection, such as Harmony Search and Genetic Algorithm. In the fourth stage, the model's performance is evaluated using Mean Square Error (MSE), Mean Absolute Error (MAE), and Root Mean Square Error (RMSE) as assistance. Selecting an optimization strategy with the least number of errors, lowest price, biggest productivity, or maximum potential results is the goal. In a variety of industries, including engineering, science, management, mathematics, finance, and medicine, optimization is widely employed. An effective optimization method based on harmony search and an integrated genetic algorithm is introduced for input feature selection, and it shows an important improvement in the model's predictive accuracy. The predictive models with Huber Regressor as the foundation perform the best for optimization and also prediction.Keywords: deep learning model, dengue fever, prediction, optimization
Procedia PDF Downloads 7011661 Finite Element Assessment on Bond Behaviour of FRP-to-Concrete Joints under Cyclic Loading
Authors: F. Atheer, Al-Saoudi, Robin Kalfat, Riadh Al-Mahaidi
Abstract:
Over the last two decades, externally bonded fiber reinforced polymer (FRP) composites bonded to concrete substrates has become a popular method for strengthening reinforced concrete (RC) highway and railway bridges. Such structures are exposed to severe cyclic loading throughout their lifetime often resulting in fatigue damage to structural components and a reduction in the service life of the structure. Since experimental and numerical results on the fatigue performance of FRP-to-concrete joints are still limited, the current research focuses on assessing the fatigue performance of externally bonded FRP-to-concrete joints using a direct shear test. Some early results indicate that the stress ratio and the applied cyclic stress level have a direct influence on the fatigue life of the externally bonded FRP. In addition, a calibrated finite element model is developed to provide further insight into the influence of certain parameters such as: concrete strength, FRP thickness, number of cycles, frequency and stiffness on the fatigue life of the FRP-to-concrete joints.Keywords: FRP, concrete bond, control, fatigue, finite element model
Procedia PDF Downloads 45211660 Deterministic and Stochastic Modeling of a Micro-Grid Management for Optimal Power Self-Consumption
Authors: D. Calogine, O. Chau, S. Dotti, O. Ramiarinjanahary, P. Rasoavonjy, F. Tovondahiniriko
Abstract:
Mafate is a natural circus in the north-western part of Reunion Island, without an electrical grid and road network. A micro-grid concept is being experimented in this area, composed of a photovoltaic production combined with electrochemical batteries, in order to meet the local population for self-consumption of electricity demands. This work develops a discrete model as well as a stochastic model in order to reach an optimal equilibrium between production and consumptions for a cluster of houses. The management of the energy power leads to a large linearized programming system, where the time interval of interest is 24 hours The experimental data are solar production, storage energy, and the parameters of the different electrical devices and batteries. The unknown variables to evaluate are the consumptions of the various electrical services, the energy drawn from and stored in the batteries, and the inhabitants’ planning wishes. The objective is to fit the solar production to the electrical consumption of the inhabitants, with an optimal use of the energies in the batteries by satisfying as widely as possible the users' planning requirements. In the discrete model, the different parameters and solutions of the linear programming system are deterministic scalars. Whereas in the stochastic approach, the data parameters and the linear programming solutions become random variables, then the distributions of which could be imposed or established by estimation from samples of real observations or from samples of optimal discrete equilibrium solutions.Keywords: photovoltaic production, power consumption, battery storage resources, random variables, stochastic modeling, estimations of probability distributions, mixed integer linear programming, smart micro-grid, self-consumption of electricity.
Procedia PDF Downloads 11511659 FE Modelling of Structural Effects of Alkali-Silica Reaction in Reinforced Concrete Beams
Authors: Mehdi Habibagahi, Shami Nejadi, Ata Aminfar
Abstract:
A significant degradation factor that impacts the durability of concrete structures is the alkali-silica reaction. Engineers are frequently charged with the challenges of conducting a thorough safety assessment of concrete structures that have been impacted by ASR. The alkali-silica reaction has a major influence on the structural capacities of structures. In most cases, the reduction in compressive strength, tensile strength, and modulus of elasticity is expressed as a function of free expansion and crack widths. Predicting the effect of ASR on flexural strength is also relevant. In this paper, a nonlinear three-dimensional (3D) finite-element model was proposed to describe the flexural strength degradation induced byASR.Initial strains, initial stresses, initial cracks, and deterioration of material characteristics were all considered ASR factors in this model. The effects of ASR on structural performance were evaluated by focusing on initial flexural stiffness, force–deformation curve, and load-carrying capacity. Degradation of concrete mechanical properties was correlated with ASR growth using material test data conducted at Tech Lab, UTS, and implemented into the FEM for various expansions. The finite element study revealed a better understanding of the ASR-affected RC beam's failure mechanism and capacity reduction as a function of ASR expansion. Furthermore, in this study, decreasing of the residual mechanical properties due to ASRisreviewed, using as input data for the FEM model. Finally, analysis techniques and a comparison of the analysis and the experiment results are discussed. Verification is also provided through analyses of reinforced concrete beams with behavior governed by either flexural or shear mechanisms.Keywords: alkali-silica reaction, analysis, assessment, finite element, nonlinear analysis, reinforced concrete
Procedia PDF Downloads 16211658 Conceptualizing IoT Based Framework for Enhancing Environmental Accounting By ERP Systems
Authors: Amin Ebrahimi Ghadi, Morteza Moalagh
Abstract:
This research is carried out to find how a perfect combination of IoT architecture (Internet of Things) and ERP system can strengthen environmental accounting to incorporate both economic and environmental information. IoT (e.g., sensors, software, and other technologies) can be used in the company’s value chain from raw material extraction through materials processing, manufacturing products, distribution, use, repair, maintenance, and disposal or recycling products (Cradle to Grave model). The desired ERP software then will have the capability to track both midpoint and endpoint environmental impacts on a green supply chain system for the whole life cycle of a product. All these enable environmental accounting to calculate, and real-time analyze the operation environmental impacts, control costs, prepare for environmental legislation and enhance the decision-making process. In this study, we have developed a model on how to use IoT devices in life cycle assessment (LCA) to gather emissions, energy consumption, hazards, and wastes information to be processed in different modules of ERP systems in an integrated way for using in environmental accounting to achieve sustainability.Keywords: ERP, environmental accounting, green supply chain, IOT, life cycle assessment, sustainability
Procedia PDF Downloads 17711657 Methodology of Construction Equipment Optimization for Earthwork
Authors: Jaehyun Choi, Hyunjung Kim, Namho Kim
Abstract:
Earthwork is one of the critical civil construction operations that require large-quantities of resources due to its intensive dependency upon construction equipment. Therefore, efficient construction equipment management can highly contribute to productivity improvements and cost savings. Earthwork operation utilizes various combinations of construction equipment in order to meet project requirements such as time and cost. Identification of site condition and construction methods should be performed in advance in order to develop a proper execution plan. The factors to be considered include capacity of equipment assigned, the method of construction, the size of the site, and the surrounding condition. In addition, optimal combination of various construction equipment should be selected. However, in real world practice, equipment utilization plan is performed based on experience and intuition of management. The researchers evaluated the efficiency of various alternatives of construction equipment combinations by utilizing the process simulation model, validated the model from a case study project, and presented a methodology to find optimized plan among alternatives.Keywords: earthwork operation, construction equipment, process simulation, optimization
Procedia PDF Downloads 43411656 Performance Evaluation of Using Genetic Programming Based Surrogate Models for Approximating Simulation Complex Geochemical Transport Processes
Authors: Hamed K. Esfahani, Bithin Datta
Abstract:
Transport of reactive chemical contaminant species in groundwater aquifers is a complex and highly non-linear physical and geochemical process especially for real life scenarios. Simulating this transport process involves solving complex nonlinear equations and generally requires huge computational time for a given aquifer study area. Development of optimal remediation strategies in aquifers may require repeated solution of such complex numerical simulation models. To overcome this computational limitation and improve the computational feasibility of large number of repeated simulations, Genetic Programming based trained surrogate models are developed to approximately simulate such complex transport processes. Transport process of acid mine drainage, a hazardous pollutant is first simulated using a numerical simulated model: HYDROGEOCHEM 5.0 for a contaminated aquifer in a historic mine site. Simulation model solution results for an illustrative contaminated aquifer site is then approximated by training and testing a Genetic Programming (GP) based surrogate model. Performance evaluation of the ensemble GP models as surrogate models for the reactive species transport in groundwater demonstrates the feasibility of its use and the associated computational advantages. The results show the efficiency and feasibility of using ensemble GP surrogate models as approximate simulators of complex hydrogeologic and geochemical processes in a contaminated groundwater aquifer incorporating uncertainties in historic mine site.Keywords: geochemical transport simulation, acid mine drainage, surrogate models, ensemble genetic programming, contaminated aquifers, mine sites
Procedia PDF Downloads 28311655 The Development of Supported Employment in Malaysia
Authors: Chu Shi Wei
Abstract:
Supported employment in Malaysia is in the early stages of development. The development of supported employment in Malaysia is an important step towards the inclusion of individuals with disabilities who have previously lacked the necessary support for employment in the open labour market as they were confined to sheltered workshops. There is a paradigm shift from sheltered to supported employment as the sheltered workshop is based on the medical model of disability, which focuses on the disability of the individual and segregated training institutions. The paradigm shift revolves around the social model of disability, which emphasizes the abilities of the individual and the removal of the barriers in the environment by the provision of support. This study explores the development of supported employment by utilizing a mixed methods approach which consists of collecting quantitative data through a survey and interviewing participants to collect qualitative data. Job coaches from six employment sectors participated in the survey and interview. The findings of the study indicate that the role of job coaches is integral to the development of supported employment. The role of job coaches includes job matching, on-the-job training, and developing natural supports to foster greater diversity and inclusion in the workplace.Keywords: supported employment, disabilities, diversity, development
Procedia PDF Downloads 7411654 Analysing the Interactive Effects of Factors Influencing Sand Production on Drawdown Time in High Viscosity Reservoirs
Authors: Gerald Gwamba, Bo Zhou, Yajun Song, Dong Changyin
Abstract:
The challenges that sand production presents to the oil and gas industry, particularly while working in poorly consolidated reservoirs, cannot be overstated. From restricting production to blocking production tubing, sand production increases the costs associated with production as it elevates the cost of servicing production equipment over time. Production in reservoirs that present with high viscosities, flow rate, cementation, clay content as well as fine sand contents is even more complex and challenging. As opposed to the one-factor at a-time testing, investigating the interactive effects arising from a combination of several factors offers increased reliability of results as well as representation of actual field conditions. It is thus paramount to investigate the conditions leading to the onset of sanding during production to ensure the future sustainability of hydrocarbon production operations under viscous conditions. We adopt the Design of Experiments (DOE) to analyse, using Taguchi factorial designs, the most significant interactive effects of sanding. We propose an optimized regression model to predict the drawdown time at sand production. The results obtained underscore that reservoirs characterized by varying (high and low) levels of viscosity, flow rate, cementation, clay, and fine sand content have a resulting impact on sand production. The only significant interactive effect recorded arises from the interaction between BD (fine sand content and flow rate), while the main effects included fluid viscosity and cementation, with percentage significances recorded as 31.3%, 37.76%, and 30.94%, respectively. The drawdown time model presented could be useful for predicting the time to reach the maximum drawdown pressure under viscous conditions during the onset of sand production.Keywords: factorial designs, DOE optimization, sand production prediction, drawdown time, regression model
Procedia PDF Downloads 15611653 Application of the Concept of Comonotonicity in Option Pricing
Authors: A. Chateauneuf, M. Mostoufi, D. Vyncke
Abstract:
Monte Carlo (MC) simulation is a technique that provides approximate solutions to a broad range of mathematical problems. A drawback of the method is its high computational cost, especially in a high-dimensional setting, such as estimating the Tail Value-at-Risk for large portfolios or pricing basket options and Asian options. For these types of problems, one can construct an upper bound in the convex order by replacing the copula by the comonotonic copula. This comonotonic upper bound can be computed very quickly, but it gives only a rough approximation. In this paper we introduce the Comonotonic Monte Carlo (CoMC) simulation, by using the comonotonic approximation as a control variate. The CoMC is of broad applicability and numerical results show a remarkable speed improvement. We illustrate the method for estimating Tail Value-at-Risk and pricing basket options and Asian options when the logreturns follow a Black-Scholes model or a variance gamma model.Keywords: control variate Monte Carlo, comonotonicity, option pricing, scientific computing
Procedia PDF Downloads 51711652 Privacy Label: An Alternative Approach to Present Privacy Policies from Online Services to the User
Authors: Diego Roberto Goncalves De Pontes, Sergio Donizetti Zorzo
Abstract:
Studies show that most users do not read privacy policies from the online services they use. Some authors claim that one of the main causes of this is that policies are long and usually hard to understand, which make users lose interest in reading them. In this scenario, users may agree with terms without knowing what kind of data is being collected and why. Given that, we aimed to develop a model that would present the privacy policies contents in an easy and graphical way for the user to understand. We call it the Privacy Label. Using information recovery techniques, we propose an architecture that is able to extract information about what kind of data is being collected and to what end in the policies and show it to the user in an automated way. To assess our model, we calculated the precision, recall and f-measure metrics on the information extracted by our technique. The results for each metric were 68.53%, 85.61% e 76,13%, respectively, making it possible for the final user to understand which data was being collected without reading the whole policy. Also, our proposal can facilitate the notice-and-choice by presenting privacy policy information in an alternative way for online users.Keywords: privacy, policies, user behavior, computer human interaction
Procedia PDF Downloads 30911651 User Modeling from the Perspective of Improvement in Search Results: A Survey of the State of the Art
Authors: Samira Karimi-Mansoub, Rahem Abri
Abstract:
Currently, users expect high quality and personalized information from search results. To satisfy user’s needs, personalized approaches to web search have been proposed. These approaches can provide the most appropriate answer for user’s needs by using user context and incorporating information about query provided by combining search technologies. To carry out personalized web search, there is a need to make different techniques on whole of user search process. There are the number of possible deployment of personalized approaches such as personalized web search, personalized recommendation, personalized summarization and filtering systems and etc. but the common feature of all approaches in various domains is that user modeling is utilized to provide personalized information from the Web. So the most important work in personalized approaches is user model mining. User modeling applications and technologies can be used in various domains depending on how the user collected information may be extracted. In addition to, the used techniques to create user model is also different in each of these applications. Since in the previous studies, there was not a complete survey in this field, our purpose is to present a survey on applications and techniques of user modeling from the viewpoint of improvement in search results by considering the existing literature and researches.Keywords: filtering systems, personalized web search, user modeling, user search behavior
Procedia PDF Downloads 28211650 Adoption and Use of an Electronic Voting System in Ghana
Authors: Isaac Kofi Mensah
Abstract:
The manual system of voting has been the most widely used system of electing representatives around the globe, particularly in Africa. Due to the known numerous problems and challenges associated with the manual system of voting, many countries are migrating to the electronic voting system as a suitable and credible means of electing representatives over the manual paper-based system. This research paper therefore investigated the factors influencing adoption and use of an electronic voting system in Ghana. A total of 400 Questionnaire Instruments (QI) were administered to potential respondents in Ghana, of which 387 responded representing a response rate of 96.75%. The Technology Acceptance Model was used as the theoretical framework for the study. The research model was tested using a simple linear regression analysis with SPSS. A little of over 71.1% of the respondents recommended the Electoral Commission (EC) of Ghana to adopt an electronic voting system in the conduct of public elections in Ghana. The results indicated that all the six predictors such as perceived usefulness (PU), perceived ease of use (PEOU), perceived free and fair elections (PFFF), perceived credible elections (PCE), perceived system integrity (PSI) and citizens trust in the election management body (CTEM) were all positively significant in predicting the readiness of citizens to adopt and use an electronic voting system in Ghana. However, jointly, the hypotheses tested revealed that apart from Perceived Free and Fair Elections and Perceived Credible and Transparent Elections, all the other factors such as PU, Perceived System Integrity and Security and Citizen Trust in the Election Management Body were found to be significant predictors of the Willingness of Ghanaians to use an electronic voting system. All the six factors considered in this study jointly account for about 53.1% of the reasons determining the readiness to adopt and use an electronic voting system in Ghana. The implications of this research finding on elections in Ghana are discussed.Keywords: credible elections, Election Management Body (EMB), electronic voting, Ghana, Technology Acceptance Model (TAM)
Procedia PDF Downloads 40311649 A Study on the Factors Affecting Student Behavior Intention to Attend Robotics Courses at the Primary and Secondary School Levels
Authors: Jingwen Shan
Abstract:
In order to explore the key factors affecting the robot program learning intention of school students, this study takes the technology acceptance model as the theoretical basis and invites 167 students from Jiading District of Shanghai as the research subjects. In the robot course, the model of school students on their learning behavior is constructed. By verifying the causal path relationship between variables, it is concluded that teachers can enhance students’ perceptual usefulness to robotics courses by enhancing subjective norms, entertainment perception, and reducing technical anxiety, such as focusing on the gradual progress of programming and analyzing learner characteristics. Students can improve perceived ease of use by enhancing self-efficacy. At the same time, robot hardware designers can optimize in terms of entertainment and interactivity, which will directly or indirectly increase the learning intention of the robot course. By changing these factors, the learning behavior of primary and secondary school students can be more sustainable.Keywords: TAM, learning behavior intentions, robot courses, primary and secondary school students
Procedia PDF Downloads 15611648 Performance Investigation of Unmanned Aerial Vehicles Attitude Control Based on Modified PI-D and Nonlinear Dynamic Inversion
Authors: Ebrahim H. Kapeel, Ahmed M. Kamel, Hossam Hendy, Yehia Z. Elhalwagy
Abstract:
Interest in autopilot design has been raised intensely as a result of recent advancements in Unmanned Aerial vehicles (UAVs). Due to the enormous number of applications that UAVs can achieve, the number of applied control theories used for them has increased in recent years. These small fixed-wing UAVs are suffering high non-linearity, sensitivity to disturbances, and coupling effects between their channels. In this work, the nonlinear dynamic inversion (NDI) control law is designed for a nonlinear small fixed-wing UAV model. The NDI is preferable for varied operating conditions, there is no need for a scheduling controller. Moreover, it’s applicable for high angles of attack. For the designed flight controller validation, a nonlinear Modified PI-D controller is performed with our model. A comparative study between both controllers is achieved to evaluate the NDI performance. Simulation results and analysis are proposed to illustrate the effectiveness of the designed controller based on NDI.Keywords: attitude control, nonlinear PID, dynamic inversion
Procedia PDF Downloads 11611647 Pre-Cooling Strategies for the Refueling of Hydrogen Cylinders in Vehicular Transport
Authors: C. Hall, J. Ramos, V. Ramasamy
Abstract:
Hydrocarbon-based fuel vehicles are a major contributor to air pollution due to harmful emissions produced, leading to a demand for cleaner fuel types. A leader in this pursuit is hydrogen, with its application in vehicles producing zero harmful emissions and the only by-product being water. To compete with the performance of conventional vehicles, hydrogen gas must be stored on-board of vehicles in cylinders at high pressures (35–70 MPa) and have a short refueling duration (approximately 3 mins). However, the fast-filling of hydrogen cylinders causes a significant rise in temperature due to the combination of the negative Joule-Thompson effect and the compression of the gas. This can lead to structural failure and therefore, a maximum allowable internal temperature of 85°C has been imposed by the International Standards Organization. The technological solution to tackle the issue of rapid temperature rise during the refueling process is to decrease the temperature of the gas entering the cylinder. Pre-cooling of the gas uses a heat exchanger and requires energy for its operation. Thus, it is imperative to determine the least amount of energy input that is required to lower the gas temperature for cost savings. A validated universal thermodynamic model is used to identify an energy-efficient pre-cooling strategy. The model requires negligible computational time and is applied to previously validated experimental cases to optimize pre-cooling requirements. The pre-cooling characteristics include the location within the refueling timeline and its duration. A constant pressure-ramp rate is imposed to eliminate the effects of rapid changes in mass flow rate. A pre-cooled gas temperature of -40°C is applied, which is the lowest allowable temperature. The heat exchanger is assumed to be ideal with no energy losses. The refueling of the cylinders is modeled with the pre-cooling split in ten percent time intervals. Furthermore, varying burst durations are applied in both the early and late stages of the refueling procedure. The model shows that pre-cooling in the later stages of the refuelling process is more energy-efficient than early pre-cooling. In addition, the efficiency of pre-cooling towards the end of the refueling process is independent of the pressure profile at the inlet. This leads to the hypothesis that pre-cooled gas should be applied as late as possible in the refueling timeline and at very low temperatures. The model had shown a 31% reduction in energy demand whilst achieving the same final gas temperature for a refueling scenario when pre-cooling was applied towards the end of the process. The identification of the most energy-efficient refueling approaches whilst adhering to the safety guidelines is imperative to reducing the operating cost of hydrogen refueling stations. Heat exchangers are energy-intensive and thus, reducing the energy requirement would lead to cost reduction. This investigation shows that pre-cooling should be applied as late as possible and for short durations.Keywords: cylinder, hydrogen, pre-cooling, refueling, thermodynamic model
Procedia PDF Downloads 10111646 An Exploratory Study for the Discrimination of Two Types of Pain Based on Chebyshev’s Coefficients of EEG Signal
Authors: C. M. Segning, H. Ezzaidi, S. Nogomo, M. Otis
Abstract:
Our proposal aims for developing an objective pain discrimination system, i.e., to discriminate between two neuronal conditions affecting the same neurophysiological signal. In this study, we present an approach to identify, in the first instance, two types of pain based on the analysis of the EEG signal decomposition coefficients. Each EEG segment of one second duration is analyzed using the Chebyshev and linear prediction transform to extract a set of non-linear features, namely the Chebyshev and linear prediction coefficients. These features are used as the input vector of the Gaussian mixture model (GMM) for classification to differentiate two types of pain. To evaluate the performance of the proposed approach, we used an EEG dataset recorded in the left temporal (T7) and left fronto-central (FC5) regions. The experimental results demonstrate the effectiveness of Chebyshev coefficients for accurate differentiation of chronic fibromyalgia-like pain and experimental pain in the resting gamma band, with an accuracy of 93.9%. These results suggest a potential for discrimination of clinical pain according to its mechanism.Keywords: chronic fibromyalgia pain, Chebyshev coefficients, healthy with induced pain, electroencephalogram, Gaussian mixture model
Procedia PDF Downloads 711645 Chinese Sentence Level Lip Recognition
Authors: Peng Wang, Tigang Jiang
Abstract:
The computer based lip reading method of different languages cannot be universal. At present, for the research of Chinese lip reading, whether the work on data sets or recognition algorithms, is far from mature. In this paper, we study the Chinese lipreading method based on machine learning, and propose a Chinese Sentence-level lip-reading network (CNLipNet) model which consists of spatio-temporal convolutional neural network(CNN), recurrent neural network(RNN) and Connectionist Temporal Classification (CTC) loss function. This model can map variable-length sequence of video frames to Chinese Pinyin sequence and is trained end-to-end. More over, We create CNLRS, a Chinese Lipreading Dataset, which contains 5948 samples and can be shared through github. The evaluation of CNLipNet on this dataset yielded a 41% word correct rate and a 70.6% character correct rate. This evaluation result is far superior to the professional human lip readers, indicating that CNLipNet performs well in lipreading.Keywords: lipreading, machine learning, spatio-temporal, convolutional neural network, recurrent neural network
Procedia PDF Downloads 13111644 The Application of Artificial Neural Networks for the Performance Prediction of Evacuated Tube Solar Air Collector with Phase Change Material
Authors: Sukhbir Singh
Abstract:
This paper describes the modeling of novel solar air collector (NSAC) system by using artificial neural network (ANN) model. The objective of the study is to demonstrate the application of the ANN model to predict the performance of the NSAC with acetamide as a phase change material (PCM) storage. Input data set consist of time, solar intensity and ambient temperature wherever as outlet air temperature of NSAC was considered as output. Experiments were conducted between 9.00 and 24.00 h in June and July 2014 underneath the prevailing atmospheric condition of Kurukshetra (city of the India). After that, experimental results were utilized to train the back propagation neural network (BPNN) to predict the outlet air temperature of NSAC. The results of proposed algorithm show that the BPNN is effective tool for the prediction of responses. The BPNN predicted results are 99% in agreement with the experimental results.Keywords: Evacuated tube solar air collector, Artificial neural network, Phase change material, solar air collector
Procedia PDF Downloads 12611643 Estimating Poverty Levels from Satellite Imagery: A Comparison of Human Readers and an Artificial Intelligence Model
Authors: Ola Hall, Ibrahim Wahab, Thorsteinn Rognvaldsson, Mattias Ohlsson
Abstract:
The subfield of poverty and welfare estimation that applies machine learning tools and methods on satellite imagery is a nascent but rapidly growing one. This is in part driven by the sustainable development goal, whose overarching principle is that no region is left behind. Among other things, this requires that welfare levels can be accurately and rapidly estimated at different spatial scales and resolutions. Conventional tools of household surveys and interviews do not suffice in this regard. While they are useful for gaining a longitudinal understanding of the welfare levels of populations, they do not offer adequate spatial coverage for the accuracy that is needed, nor are their implementation sufficiently swift to gain an accurate insight into people and places. It is this void that satellite imagery fills. Previously, this was near-impossible to implement due to the sheer volume of data that needed processing. Recent advances in machine learning, especially the deep learning subtype, such as deep neural networks, have made this a rapidly growing area of scholarship. Despite their unprecedented levels of performance, such models lack transparency and explainability and thus have seen limited downstream applications as humans generally are apprehensive of techniques that are not inherently interpretable and trustworthy. While several studies have demonstrated the superhuman performance of AI models, none has directly compared the performance of such models and human readers in the domain of poverty studies. In the present study, we directly compare the performance of human readers and a DL model using different resolutions of satellite imagery to estimate the welfare levels of demographic and health survey clusters in Tanzania, using the wealth quintile ratings from the same survey as the ground truth data. The cluster-level imagery covers all 608 cluster locations, of which 428 were classified as rural. The imagery for the human readers was sourced from the Google Maps Platform at an ultra-high resolution of 0.6m per pixel at zoom level 18, while that of the machine learning model was sourced from the comparatively lower resolution Sentinel-2 10m per pixel data for the same cluster locations. Rank correlation coefficients of between 0.31 and 0.32 achieved by the human readers were much lower when compared to those attained by the machine learning model – 0.69-0.79. This superhuman performance by the model is even more significant given that it was trained on the relatively lower 10-meter resolution satellite data while the human readers estimated welfare levels from the higher 0.6m spatial resolution data from which key markers of poverty and slums – roofing and road quality – are discernible. It is important to note, however, that the human readers did not receive any training before ratings, and had this been done, their performance might have improved. The stellar performance of the model also comes with the inevitable shortfall relating to limited transparency and explainability. The findings have significant implications for attaining the objective of the current frontier of deep learning models in this domain of scholarship – eXplainable Artificial Intelligence through a collaborative rather than a comparative framework.Keywords: poverty prediction, satellite imagery, human readers, machine learning, Tanzania
Procedia PDF Downloads 11411642 A Statistical Approach to Predict and Classify the Commercial Hatchability of Chickens Using Extrinsic Parameters of Breeders and Eggs
Authors: M. S. Wickramarachchi, L. S. Nawarathna, C. M. B. Dematawewa
Abstract:
Hatchery performance is critical for the profitability of poultry breeder operations. Some extrinsic parameters of eggs and breeders cause to increase or decrease the hatchability. This study aims to identify the affecting extrinsic parameters on the commercial hatchability of local chicken's eggs and determine the most efficient classification model with a hatchability rate greater than 90%. In this study, seven extrinsic parameters were considered: egg weight, moisture loss, breeders age, number of fertilised eggs, shell width, shell length, and shell thickness. Multiple linear regression was performed to determine the most influencing variable on hatchability. First, the correlation between each parameter and hatchability were checked. Then a multiple regression model was developed, and the accuracy of the fitted model was evaluated. Linear Discriminant Analysis (LDA), Classification and Regression Trees (CART), k-Nearest Neighbors (kNN), Support Vector Machines (SVM) with a linear kernel, and Random Forest (RF) algorithms were applied to classify the hatchability. This grouping process was conducted using binary classification techniques. Hatchability was negatively correlated with egg weight, breeders' age, shell width, shell length, and positive correlations were identified with moisture loss, number of fertilised eggs, and shell thickness. Multiple linear regression models were more accurate than single linear models regarding the highest coefficient of determination (R²) with 94% and minimum AIC and BIC values. According to the classification results, RF, CART, and kNN had performed the highest accuracy values 0.99, 0.975, and 0.972, respectively, for the commercial hatchery process. Therefore, the RF is the most appropriate machine learning algorithm for classifying the breeder outcomes, which are economically profitable or not, in a commercial hatchery.Keywords: classification models, egg weight, fertilised eggs, multiple linear regression
Procedia PDF Downloads 9211641 Architecture Performance-Related Design Based on Graphic Parameterization
Authors: Wenzhe Li, Xiaoyu Ying, Grace Ding
Abstract:
Architecture plane form is an important consideration in the design of green buildings due to its significant impact on energy performance. The most effective method to consider energy performance in the early design stages is parametric modelling. This paper presents a methodology to program plane forms using MATLAB language, generating 16 kinds of plane forms by changing four designed parameters. DesignBuilder (an energy consumption simulation software) was proposed to simulate the energy consumption of the generated planes. A regression mathematical model was established to study the relationship between the plane forms and their energy consumption. The main finding of the study suggested that there was a cubic function relationship between the depth-ratio of U-shaped buildings and energy consumption, and there is also a cubic function relationship between the width-ratio and energy consumption. In the design, the depth-ratio of U-shaped buildings should not be less than 2.5, and the width-ratio should not be less than 2.Keywords: graphic parameterization, green building design, mathematical model, plane form
Procedia PDF Downloads 157