Search results for: technology supported model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 24275

Search results for: technology supported model

19085 Modelling Phytoremediation Rates of Aquatic Macrophytes in Aquaculture Effluent

Authors: E. A. Kiridi, A. O. Ogunlela

Abstract:

Pollutants from aquacultural practices constitute environmental problems and phytoremediation could offer cheaper environmentally sustainable alternative since equipment using advanced treatment for fish tank effluent is expensive to import, install, operate and maintain, especially in developing countries. The main objective of this research was, therefore, to develop a mathematical model for phytoremediation by aquatic plants in aquaculture wastewater. Other objectives were to evaluate the retention times on phytoremediation rates using the model and to measure the nutrient level of the aquaculture effluent and phytoremediation rates of three aquatic macrophytes, namely; water hyacinth (Eichornia crassippes), water lettuce (Pistial stratoites) and morning glory (Ipomea asarifolia). A completely randomized experimental design was used in the study. Approximately 100 g of each macrophyte were introduced into the hydroponic units and phytoremediation indices monitored at 8 different intervals from the first to the 28th day. The water quality parameters measured were pH and electrical conductivity (EC). Others were concentration of ammonium–nitrogen (NH₄⁺ -N), nitrite- nitrogen (NO₂⁻ -N), nitrate- nitrogen (NO₃⁻ -N), phosphate –phosphorus (PO₄³⁻ -P), and biomass value. The biomass produced by water hyacinth was 438.2 g, 600.7 g, 688.2 g and 725.7 g at four 7–day intervals. The corresponding values for water lettuce were 361.2 g, 498.7 g, 561.2 g and 623.7 g and for morning glory were 417.0 g, 567.0 g, 642.0 g and 679.5g. Coefficient of determination was greater than 80% for EC, TDS, NO₂⁻ -N, NO₃⁻ -N and 70% for NH₄⁺ -N using any of the macrophytes and the predicted values were within the 95% confidence interval of measured values. Therefore, the model is valuable in the design and operation of phytoremediation systems for aquaculture effluent.

Keywords: aquaculture effluent, macrophytes, mathematical model, phytoremediation

Procedia PDF Downloads 222
19084 Assessing the Cumulative Impact of PM₂.₅ Emissions from Power Plants by Using the Hybrid Air Quality Model and Evaluating the Contributing Salient Factor in South Taiwan

Authors: Jackson Simon Lusagalika, Lai Hsin-Chih, Dai Yu-Tung

Abstract:

Particles with an aerodynamic diameter of 2.5 meters or less are referred to as "fine particulate matter" (PM₂.₅) are easily inhaled and can go deeper into the lungs than other particles in the atmosphere, where it may have detrimental health consequences. In this study, we use a hybrid model that combined CMAQ and AERMOD as well as initial meteorological fields from the Weather Research and Forecasting (WRF) model to study the impact of power plant PM₂.₅ emissions in South Taiwan since it frequently experiences higher PM₂.₅ levels. A specific date of March 3, 2022, was chosen as a result of a power outage that prompted the bulk of power plants to shut down. In some way, it is not conceivable anywhere in the world to turn off the power for the sole purpose of doing research. Therefore, this catastrophe involving a power outage and the shutdown of power plants offers a great occasion to evaluate the impact of air pollution driven by this power sector. As a result, four numerical experiments were conducted in the study using the Continuous Emission Data System (CEMS), assuming that the power plants continued to function normally after the power outage. The hybrid model results revealed that power plants have a minor impact in the study region. However, we examined the accumulation of PM₂.₅ in the study and discovered that once the vortex at 925hPa was established and moved to the north of Taiwan's coast, the study region experienced higher observed PM₂.₅ concentrations influenced by meteorological factors. This study recommends that decision-makers take into account not only control techniques, specifically emission reductions, but also the atmospheric and meteorological implications for future investigations.

Keywords: PM₂.₅ concentration, powerplants, hybrid air quality model, CEMS, Vorticity

Procedia PDF Downloads 75
19083 An Entropy Based Novel Algorithm for Internal Attack Detection in Wireless Sensor Network

Authors: Muhammad R. Ahmed, Mohammed Aseeri

Abstract:

Wireless Sensor Network (WSN) consists of low-cost and multi functional resources constrain nodes that communicate at short distances through wireless links. It is open media and underpinned by an application driven technology for information gathering and processing. It can be used for many different applications range from military implementation in the battlefield, environmental monitoring, health sector as well as emergency response of surveillance. With its nature and application scenario, security of WSN had drawn a great attention. It is known to be valuable to variety of attacks for the construction of nodes and distributed network infrastructure. In order to ensure its functionality especially in malicious environments, security mechanisms are essential. Malicious or internal attacker has gained prominence and poses the most challenging attacks to WSN. Many works have been done to secure WSN from internal attacks but most of it relay on either training data set or predefined threshold. Without a fixed security infrastructure a WSN needs to find the internal attacks is a challenge. In this paper we present an internal attack detection method based on maximum entropy model. The final experimental works showed that the proposed algorithm does work well at the designed level.

Keywords: internal attack, wireless sensor network, network security, entropy

Procedia PDF Downloads 454
19082 Food Waste Utilization: A Contemporary Prospect of Meeting Energy Crisis Using Microbial Fuel Cell

Authors: Bahareh Asefi, Fereidoun Farzaneh, Ghazaleh Asefi, Chang-Ping Yu

Abstract:

Increased production of food waste (FW) is a global issue that is receiving more attention due to its environmental and economic impacts. The generation of electricity from food waste, known as energy recovery, is one of the effective solutions in food waste management. Food waste has high energy content which seems ideal to achieve dual benefits in terms of energy recovery and waste stabilization. Microbial fuel cell (MFC) is a promising technology for treating food waste and generate electricity. In this work, we will review energy utilization from different kind of food waste using MFC and factors which affected the process. We have studied the key technology of energy generated from food waste using MFC to enhance the food waste management. The power density and electricity production by each kind of food waste and challenges were identified. This work explored the conversion of FW into energy from different type of food waste, which aim to provide a theoretical analysis for energy utilization of food waste.

Keywords: energy generation, food waste, microbial fuel cell, power density

Procedia PDF Downloads 227
19081 Perceptions of Climate Change and Adaptation of Climate-Smart Technology by the Paddy Farmers: A Case Study of Kandy District in Sri Lanka

Authors: W. A. D. P. Wanigasundera, P. C. B. Alahakoon

Abstract:

Kandy district in Sri Lanka has small scale and rain-fed paddy farming, and highly vulnerable to climate change. In this study, the status of climate change was assessed using meteorological data and compared with the perceptions of paddy farming community. Factors affecting the adaptation to the climate smart farming were also assessed. Meteorological data for 33 years were collected and the changes over time compared with the perceptions of farmers. The temperature, rainfall and number of rainy days have increased in both locations. The onset of rains also has shifted. The perceptions of the majority of the farmers were in line with the actual changes. The knowledge and attitudes about the causes of climate change and adaptation were medium and related to level of adoption. Formulating effective communication strategies, and a collaborative approach involving state, private sector, civil society to make Sri Lankan agriculture ‘climate-smart’ is urgently needed.

Keywords: adaptation of climate-smart technology, climate change, perception, rain-fed paddy

Procedia PDF Downloads 330
19080 Dexamethasone Treatment Deregulates Proteoglycans Expression in Normal Brain Tissue

Authors: A. Y. Tsidulko, T. M. Pankova, E. V. Grigorieva

Abstract:

High-grade gliomas are the most frequent and most aggressive brain tumors which are characterized by active invasion of tumor cells into the surrounding brain tissue, where the extracellular matrix (ECM) plays a crucial role. Disruption of ECM can be involved in anticancer drugs effectiveness, side-effects and also in tumor relapses. The anti-inflammatory agent dexamethasone is a common drug used during high-grade glioma treatment for alleviating cerebral edema. Although dexamethasone is widely used in the clinic, its effects on normal brain tissue ECM remain poorly investigated. It is known that proteoglycans (PGs) are a major component of the extracellular matrix in the central nervous system. In our work, we studied the effects of dexamethasone on the ECM proteoglycans (syndecan-1, glypican-1, perlecan, versican, brevican, NG2, decorin, biglican, lumican) using RT-PCR in the experimental animal model. It was shown that proteoglycans in rat brain have age-specific expression patterns. In early post-natal rat brain (8 days old rat pups) overall PGs expression was quite high and mainly expressed PGs were biglycan, decorin, and syndecan-1. The overall transcriptional activity of PGs in adult rat brain is 1.5-fold decreased compared to post-natal brain. The expression pattern was changed as well with biglycan, decorin, syndecan-1, glypican-1 and brevican becoming almost equally expressed. PGs expression patterns create a specific tissue microenvironment that differs in developing and adult brain. Dexamethasone regimen close to the one used in the clinic during high-grade glioma treatment significantly affects proteoglycans expression. It was shown that overall PGs transcription activity is 1.5-2-folds increased after dexamethasone treatment. The most up-regulated PGs were biglycan, decorin, and lumican. The PGs expression pattern in adult brain changed after treatment becoming quite close to the expression pattern in developing brain. It is known that microenvironment in developing tissues promotes cells proliferation while in adult tissues proliferation is usually suppressed. The changes occurring in the adult brain after dexamethasone treatment may lead to re-activation of cell proliferation due to signals from changed microenvironment. Taken together obtained data show that dexamethasone treatment significantly affects the normal brain ECM, creating the appropriate microenvironment for tumor cells proliferation and thus can reduce the effectiveness of anticancer treatment and promote tumor relapses. This work has been supported by a Russian Science Foundation (RSF Grant 16-15-10243)

Keywords: dexamthasone, extracellular matrix, glioma, proteoglycan

Procedia PDF Downloads 198
19079 Automated Vehicle Traffic Control Tower: A Solution to Support the Next Level Automation

Authors: Xiaoyun Zhao, Rami Darwish, Anna Pernestål

Abstract:

Automated vehicles (AVs) have the potential to enhance road capacity, improving road safety and traffic efficiency. Research and development on AVs have been going on for many years. However, when the complicated traffic rules and real situations interacted, AVs fail to make decisions on contradicting situations, and are not able to have control in all conditions due to highly dynamic driving scenarios. This limits AVs’ usage and restricts the full potential benefits that they can bring. Furthermore, regulations, infrastructure development, and public acceptance cannot keep up at the same pace as technology breakthroughs. Facing these challenges, this paper proposes automated vehicle traffic control tower (AVTCT) acting as a safe, efficient and integrated solution for AV control. It introduces a concept of AVTCT for control, management, decision-making, communication and interaction with various aspects in transportation. With the prototype demonstrations and simulations, AVTCT has the potential to overcome the control challenges with AVs and can facilitate AV reaching their full potential. Possible functionalities, benefits as well as challenges of AVTCT are discussed, which set the foundation for the conceptual model, simulation and real application of AVTCT.

Keywords: automated vehicle, connectivity and automation, intelligent transport system, traffic control, traffic safety

Procedia PDF Downloads 138
19078 Interpretable Deep Learning Models for Medical Condition Identification

Authors: Dongping Fang, Lian Duan, Xiaojing Yuan, Mike Xu, Allyn Klunder, Kevin Tan, Suiting Cao, Yeqing Ji

Abstract:

Accurate prediction of a medical condition with straight clinical evidence is a long-sought topic in the medical management and health insurance field. Although great progress has been made with machine learning algorithms, the medical community is still, to a certain degree, suspicious about the model's accuracy and interpretability. This paper presents an innovative hierarchical attention deep learning model to achieve good prediction and clear interpretability that can be easily understood by medical professionals. This deep learning model uses a hierarchical attention structure that matches naturally with the medical history data structure and reflects the member’s encounter (date of service) sequence. The model attention structure consists of 3 levels: (1) attention on the medical code types (diagnosis codes, procedure codes, lab test results, and prescription drugs), (2) attention on the sequential medical encounters within a type, (3) attention on the medical codes within an encounter and type. This model is applied to predict the occurrence of stage 3 chronic kidney disease (CKD3), using three years’ medical history of Medicare Advantage (MA) members from a top health insurance company. The model takes members’ medical events, both claims and electronic medical record (EMR) data, as input, makes a prediction of CKD3 and calculates the contribution from individual events to the predicted outcome. The model outcome can be easily explained with the clinical evidence identified by the model algorithm. Here are examples: Member A had 36 medical encounters in the past three years: multiple office visits, lab tests and medications. The model predicts member A has a high risk of CKD3 with the following well-contributed clinical events - multiple high ‘Creatinine in Serum or Plasma’ tests and multiple low kidneys functioning ‘Glomerular filtration rate’ tests. Among the abnormal lab tests, more recent results contributed more to the prediction. The model also indicates regular office visits, no abnormal findings of medical examinations, and taking proper medications decreased the CKD3 risk. Member B had 104 medical encounters in the past 3 years and was predicted to have a low risk of CKD3, because the model didn’t identify diagnoses, procedures, or medications related to kidney disease, and many lab test results, including ‘Glomerular filtration rate’ were within the normal range. The model accurately predicts members A and B and provides interpretable clinical evidence that is validated by clinicians. Without extra effort, the interpretation is generated directly from the model and presented together with the occurrence date. Our model uses the medical data in its most raw format without any further data aggregation, transformation, or mapping. This greatly simplifies the data preparation process, mitigates the chance for error and eliminates post-modeling work needed for traditional model explanation. To our knowledge, this is the first paper on an interpretable deep-learning model using a 3-level attention structure, sourcing both EMR and claim data, including all 4 types of medical data, on the entire Medicare population of a big insurance company, and more importantly, directly generating model interpretation to support user decision. In the future, we plan to enrich the model input by adding patients’ demographics and information from free-texted physician notes.

Keywords: deep learning, interpretability, attention, big data, medical conditions

Procedia PDF Downloads 89
19077 Closed-Form Solutions for Nanobeams Based on the Nonlocal Euler-Bernoulli Theory

Authors: Francesco Marotti de Sciarra, Raffaele Barretta

Abstract:

Starting from nonlocal continuum mechanics, a thermodynamically new nonlocal model of Euler-Bernoulli nanobeams is provided. The nonlocal variational formulation is consistently provided and the governing differential equation for transverse displacement are presented. Higher-order boundary conditions are then consistently derived. An example is contributed in order to show the effectiveness of the proposed model.

Keywords: Bernoulli-Euler beams, nanobeams, nonlocal elasticity, closed-form solutions

Procedia PDF Downloads 367
19076 The Development of Potential in Skilled Laborers in Producing Basketry

Authors: Chutikarn Sriwiboon

Abstract:

The purposes of this paper were to study the production problems of basketry in the central region and to study the development of potential in skilled labourers in producing basketry in three provinces: Suphanburi, Ayuthaya, and Aungthong. A quota sampling was utilized to get 486 respondents from 243 basketry communities that were registered with OTOP project. A focus group was also used with a connoisseurship model to study knowledge and factors that related to the development of potential in skilled labourers in producing basketry. The findings revealed that the process getting service is the major problem for customers to get service. Also, there should be more of a variety of knowledge for customers. In terms of technology, the variety of information was rated as the most important problem. In terms staff's ability, the knowledge of staff was the most important problem. For the development of potential in high skilled labours for basketry, the findings revealed that having proper tools was considered the most important factor. In terms of economy, the findings revealed that the basketry job must provide sufficient income was considered the most important factor. In terms of using natural resources, efficiency is the most important factor. In terms of mentality, integrity is the most important factor. Finally, in terms of society and culture, help in the local activities is the most important factor.

Keywords: basketry, development, potential, skilled labours

Procedia PDF Downloads 294
19075 Soil-Less Misting System: A Technology for Hybrid Seed Production in Tomato (Lycopersicon esculentum Mill.).

Authors: K. D. Rajatha, S. Rajendra Prasad, N. Nethra

Abstract:

Aeroponics is one of the advanced techniques to cultivate plants without soil with minimal water and nutrient consumption. This is the technology which could bring the vertical growth in agriculture. It is an eco-friendly approach widely used for commercial cultivation of vegetables to obtain the supreme quality and yield. In this context, to harvest potentiality of the technology, an experiment was designed to evaluate the suitability of the aeroponics method over the conventional method for hybrid seed production of tomato. The experiment was carried out under Completely Randomized Design with Factorial (FCRD) concept with three replications during the year 2017-18 at UAS, GKVK Bengaluru. Nutrients and pH were standardized; among the six different nutrient solutions, the crop performance was better in Hoagland’s solution with pH between 5.5-7. The results of the present study revealed that between TAG1F and TAG2F parental lines, TAG1F performed better in both the methods of seed production. Among the methods, aeroponics showed better performance for the quality parameters except for plant spread, due to better availability of nutrients and aeration, huge root biomass in aeroponics. Aeroponics method showed significantly higher plant length (124.9 cm), plant growth rate (0.669), seedling survival rate (100%), early flowering (27.5 days), highest fruit weight (121.5 g), 100 seed weight (0.373 g) and total seed yield plant⁻¹ (11.68 g) compared to the conventional method. By providing the best environment for plant growth, the genetically best possible plant could be grown, thus complete potentiality of the plant could be harvested. Hence, aeroponics could be a promising tool for quality and healthy hybrid seed production throughout the year within protected cultivation.

Keywords: aeroponics, Hoagland’s solution, hybrid seed production, Lycopersicon esculentum

Procedia PDF Downloads 100
19074 Study and Simulation of a Dynamic System Using Digital Twin

Authors: J.P. Henriques, E. R. Neto, G. Almeida, G. Ribeiro, J.V. Coutinho, A.B. Lugli

Abstract:

Industry 4.0, or the Fourth Industrial Revolution, is transforming the relationship between people and machines. In this scenario, some technologies such as Cloud Computing, Internet of Things, Augmented Reality, Artificial Intelligence, Additive Manufacturing, among others, are making industries and devices increasingly intelligent. One of the most powerful technologies of this new revolution is the Digital Twin, which allows the virtualization of a real system or process. In this context, the present paper addresses the linear and nonlinear dynamic study of a didactic level plant using Digital Twin. In the first part of the work, the level plant is identified at a fixed point of operation, BY using the existing method of least squares means. The linearized model is embedded in a Digital Twin using Automation Studio® from Famous Technologies. Finally, in order to validate the usage of the Digital Twin in the linearized study of the plant, the dynamic response of the real system is compared to the Digital Twin. Furthermore, in order to develop the nonlinear model on a Digital Twin, the didactic level plant is identified by using the method proposed by Hammerstein. Different steps are applied to the plant, and from the Hammerstein algorithm, the nonlinear model is obtained for all operating ranges of the plant. As for the linear approach, the nonlinear model is embedded in the Digital Twin, and the dynamic response is compared to the real system in different points of operation. Finally, yet importantly, from the practical results obtained, one can conclude that the usage of Digital Twin to study the dynamic systems is extremely useful in the industrial environment, taking into account that it is possible to develop and tune controllers BY using the virtual model of the real systems.

Keywords: industry 4.0, digital twin, system identification, linear and nonlinear models

Procedia PDF Downloads 146
19073 Evaluation of Modern Natural Language Processing Techniques via Measuring a Company's Public Perception

Authors: Burak Oksuzoglu, Savas Yildirim, Ferhat Kutlu

Abstract:

Opinion mining (OM) is one of the natural language processing (NLP) problems to determine the polarity of opinions, mostly represented on a positive-neutral-negative axis. The data for OM is usually collected from various social media platforms. In an era where social media has considerable control over companies’ futures, it’s worth understanding social media and taking actions accordingly. OM comes to the fore here as the scale of the discussion about companies increases, and it becomes unfeasible to gauge opinion on individual levels. Thus, the companies opt to automize this process by applying machine learning (ML) approaches to their data. For the last two decades, OM or sentiment analysis (SA) has been mainly performed by applying ML classification algorithms such as support vector machines (SVM) and Naïve Bayes to a bag of n-gram representations of textual data. With the advent of deep learning and its apparent success in NLP, traditional methods have become obsolete. Transfer learning paradigm that has been commonly used in computer vision (CV) problems started to shape NLP approaches and language models (LM) lately. This gave a sudden rise to the usage of the pretrained language model (PTM), which contains language representations that are obtained by training it on the large datasets using self-supervised learning objectives. The PTMs are further fine-tuned by a specialized downstream task dataset to produce efficient models for various NLP tasks such as OM, NER (Named-Entity Recognition), Question Answering (QA), and so forth. In this study, the traditional and modern NLP approaches have been evaluated for OM by using a sizable corpus belonging to a large private company containing about 76,000 comments in Turkish: SVM with a bag of n-grams, and two chosen pre-trained models, multilingual universal sentence encoder (MUSE) and bidirectional encoder representations from transformers (BERT). The MUSE model is a multilingual model that supports 16 languages, including Turkish, and it is based on convolutional neural networks. The BERT is a monolingual model in our case and transformers-based neural networks. It uses a masked language model and next sentence prediction tasks that allow the bidirectional training of the transformers. During the training phase of the architecture, pre-processing operations such as morphological parsing, stemming, and spelling correction was not used since the experiments showed that their contribution to the model performance was found insignificant even though Turkish is a highly agglutinative and inflective language. The results show that usage of deep learning methods with pre-trained models and fine-tuning achieve about 11% improvement over SVM for OM. The BERT model achieved around 94% prediction accuracy while the MUSE model achieved around 88% and SVM did around 83%. The MUSE multilingual model shows better results than SVM, but it still performs worse than the monolingual BERT model.

Keywords: BERT, MUSE, opinion mining, pretrained language model, SVM, Turkish

Procedia PDF Downloads 146
19072 Novel Pyrimidine Based Semicarbazones: Confirmation of Four Binding Site Pharmacophoric Model Hypothesis for Antiepileptic Activity

Authors: Harish Rajak, Swati Singh

Abstract:

A series of novel pyrimidine based semicarbazone were designed and synthesized on the basis of semicarbazone based pharmacophoric model to satisfy the structural prerequisite crucial for antiepileptic activity. The semicarbazones based pharmacophoric model consists of following four essential binding sites: (i) An aryl hydrophobic binding site with halo substituent; (ii) A hydrogen bonding domain; (iii) An electron donor group and (iv) Another hydrophobic-hydrophilic site controlling the pharmacokinetic features of the anticonvulsant. The aryl semicarbazones has been recognized as a structurally novel class of compounds with remarkable anticonvulsant activity. In the present study, all the test semicarbazones were subjected to molecular docking using Glide v5.8. Some of the compounds were found to interact with ARG192, GLU270 and THR353 residues of 1OHV protein, present in GABA-AT receptor. The chemical structures of the synthesized molecules were characterized by elemental and spectral (IR, 1H NMR, 13C NMR and MS) analysis. The anticonvulsant activities of the compounds were investigated using maximal electroshock seizure (MES) and subcutaneous pentylenetrtrazole (scPTZ) models. The neurotoxicity was evaluated in mice by the rotorod test. The attempts were also made to establish structure-activity relationships among synthesized compounds. The results of the present study confirmed that the pharmacophore model with four binding sites is essential for antiepileptic activity.

Keywords: pyrimidine, semicarbazones, anticonvulsant activity, neurotoxicity

Procedia PDF Downloads 252
19071 Optimizing Mechanical Behavior of Middle Ear Prosthesis Using Finite Element Method with Material Degradation Functionally Graded Materials in Three Functions

Authors: Khatir Omar, Fekih Sidi Mohamed, Sahli Abderahmene, Benkhettou Abdelkader, Boudjemaa Ismail

Abstract:

Advancements in technology have revolutionized healthcare, with notable impacts on auditory health. This study introduces an approach aimed at optimizing materials for middle ear prostheses to enhance auditory performance. We have developed a finite element (FE) model of the ear incorporating a pure titanium TORP prosthesis, validated against experimental data. Subsequently, we applied the Functionally Graded Materials (FGM) methodology, utilizing linear, exponential, and logarithmic degradation functions to modify prosthesis materials. Biocompatible materials suitable for auditory prostheses, including Stainless Steel, titanium, and Hydroxyapatite, were investigated. The findings indicate that combinations such as Stainless Steel with titanium and Hydroxyapatite offer improved outcomes compared to pure titanium and Hydroxyapatite ceramic in terms of both displacement and stress. Additionally, personalized prostheses tailored to individual patient needs are feasible, underscoring the potential for further advancements in auditory healthcare.

Keywords: middle ear, prosthesis, ossicles, FGM, vibration analysis, finite-element method

Procedia PDF Downloads 81
19070 Study on Construction of 3D Topography by UAV-Based Images

Authors: Yun-Yao Chi, Chieh-Kai Tsai, Dai-Ling Li

Abstract:

In this paper, a method of fast 3D topography modeling using the high-resolution camera images is studied based on the characteristics of Unmanned Aerial Vehicle (UAV) system for low altitude aerial photogrammetry and the need of three dimensional (3D) urban landscape modeling. Firstly, the existing high-resolution digital camera with special design of overlap images is designed by reconstructing and analyzing the auto-flying paths of UAVs, which improves the self-calibration function to achieve the high precision imaging by software, and further increased the resolution of the imaging system. Secondly, several-angle images including vertical images and oblique images gotten by the UAV system are used for the detail measure of urban land surfaces and the texture extraction. Finally, the aerial photography and 3D topography construction are both developed in campus of Chang-Jung University and in Guerin district area in Tainan, Taiwan, provide authentication model for construction of 3D topography based on combined UAV-based camera images from system. The results demonstrated that the UAV system for low altitude aerial photogrammetry can be used in the construction of 3D topography production, and the technology solution in this paper offers a new, fast, and technical plan for the 3D expression of the city landscape, fine modeling and visualization.

Keywords: 3D, topography, UAV, images

Procedia PDF Downloads 302
19069 The Effectiveness of Computerized Dynamic Listening Assessment Informed by Attribute-Based Mediation Model

Authors: Yaru Meng

Abstract:

The study contributes to the small but growing literature around computerized approaches to dynamic assessment (C-DA), wherein individual items are accompanied by mediating prompts. Mediation in the current computerized dynamic listening assessment (CDLA) was informed by an attribute-based mediation model (AMM) that identified the underlying L2 listening cognitive abilities and associated descriptors. The AMM served to focus mediation during C-DA on particular cognitive abilities with a goal of specifying areas of learner difficulty. 86 low-intermediate L2 English learners from a university in China completed three listening assessments, with an experimental group receiving the CLDA system and a control group a non-dynamic assessment. As an assessment, the use of the AMM in C-DA generated detailed diagnoses for each learner. In addition, both within- and between-group repeated ANOVA found greater gains at the level of specific attributes among C-DA learners over the course of a 5-week study. Directions for future research are discussed.

Keywords: computerized dynamic assessment, effectiveness, English as foreign language listening, attribute-based mediation model

Procedia PDF Downloads 222
19068 Study of Information Technology Support to Knowledge Sharing in Social Enterprises

Authors: Maria Granados

Abstract:

Information technology (IT) facilitates the management of knowledge in organisations through the effective leverage of collective experience and knowledge of employees. This supports information processing needs, as well as enables and facilitates sense-making activities of knowledge workers. The study of IT support for knowledge management (KM) has been carried out mainly in larger organisations where resources and competitive conditions can trigger the use of KM. However, there is still a lack of understanding on how IT can support the management of knowledge under different organisational settings influenced by: constant tensions between social and economic objectives, more focus on sustainability than competiveness, limited resources, and high levels of democratic participation and intrinsic motivations among employees. All these conditions are presented in Social Enterprises (SEs), which are normally micro and small businesses that trade to tackle social problems, improve communities, people’s life chances, and the environment. Thus, their importance to society and economies is increasing. However, there is still a need for more understanding of how these organisations operate, perform, innovate and scale-up. This knowledge is crucial to design and provide accurate strategies to enhance the sector and increase its impact and coverage. To obtain a conceptual and empirical understanding of how IT can facilitate KM in the particular organisational conditions of SEs, a quantitative study was conducted with 432 owners and senior members of SEs in UK, underpinned by 21 interviews. The findings demonstrated how IT was supporting more the recovery and storage of necessary information in SEs, and less the collaborative work and communication among enterprise members. However, it was established that SEs were using cloud solutions, web 2.0 tools, Skype and centralised shared servers to manage informally their knowledge. The possible impediments for SEs to support themselves more on IT solutions can be linked mainly to economic and human constraints. These findings elucidate new perspectives that can contribute not only to SEs and SE supporters, but also to other businesses.

Keywords: social enterprises, knowledge management, information technology, collaboration, small firms

Procedia PDF Downloads 268
19067 Impact of Heavy Metal Toxicity on Metabolic Changes in the Diazotrophic Cyanobacterium Anabaena PCC 7120

Authors: Rishi Saxena

Abstract:

Cyanobacteria is a photosynthetic prokaryote, and these obtain their energy through photosynthesis. In this paper, we studied the effect of iron on metabolic changes in the diazotrophic cyanobacterium Anabaena PCC 7120. Nowadays, metal contamination due to natural and anthropogenic sources is a global environment concern. Iron induced changes in growth, N2-fixation, CO2 fixation and photosynthetic activity were studied in a diazotrophic cyanobacterium Anabaena PCC 7120. Iron at 50 uM concentration supported the maximum growth, heterocyst frequency, CO2 fixation, photosystem I (PS I), photosystem II (PS II) and nitrogenase activities in the organism. Higher concentration of iron inhibited these processes. Chl a and PS II activities were more sensitive to iron than the protein and PS I activity. Here, it is also mentioned that heavy metal induced altered macromolecules metabolism and changes in the central dogma of life (DNA→ mRNA → Protein). And also recent advances have been made in understanding heavy metal-cyanobacteria interaction and their application for metal detoxification.

Keywords: cyanobacterium anabaena 7120, nitrogen fixation, photosystem I (PS I), photosystem II (PS II)

Procedia PDF Downloads 132
19066 Multi-Objective Evolutionary Computation Based Feature Selection Applied to Behaviour Assessment of Children

Authors: F. Jiménez, R. Jódar, M. Martín, G. Sánchez, G. Sciavicco

Abstract:

Abstract—Attribute or feature selection is one of the basic strategies to improve the performances of data classification tasks, and, at the same time, to reduce the complexity of classifiers, and it is a particularly fundamental one when the number of attributes is relatively high. Its application to unsupervised classification is restricted to a limited number of experiments in the literature. Evolutionary computation has already proven itself to be a very effective choice to consistently reduce the number of attributes towards a better classification rate and a simpler semantic interpretation of the inferred classifiers. We present a feature selection wrapper model composed by a multi-objective evolutionary algorithm, the clustering method Expectation-Maximization (EM), and the classifier C4.5 for the unsupervised classification of data extracted from a psychological test named BASC-II (Behavior Assessment System for Children - II ed.) with two objectives: Maximizing the likelihood of the clustering model and maximizing the accuracy of the obtained classifier. We present a methodology to integrate feature selection for unsupervised classification, model evaluation, decision making (to choose the most satisfactory model according to a a posteriori process in a multi-objective context), and testing. We compare the performance of the classifier obtained by the multi-objective evolutionary algorithms ENORA and NSGA-II, and the best solution is then validated by the psychologists that collected the data.

Keywords: evolutionary computation, feature selection, classification, clustering

Procedia PDF Downloads 369
19065 Effectiveness Factor for Non-Catalytic Gas-Solid Pyrolysis Reaction for Biomass Pellet Under Power Law Kinetics

Authors: Haseen Siddiqui, Sanjay M. Mahajani

Abstract:

Various important reactions in chemical and metallurgical industries fall in the category of gas-solid reactions. These reactions can be categorized as catalytic and non-catalytic gas-solid reactions. In gas-solid reaction systems, heat and mass transfer limitations put an appreciable influence on the rate of the reaction. The consequences can be unavoidable for overlooking such effects while collecting the reaction rate data for the design of the reactor. Pyrolysis reaction comes in this category that involves the production of gases due to the interaction of heat and solid substance. Pyrolysis is also an important step in the gasification process and therefore, the gasification reactivity majorly influenced by the pyrolysis process that produces the char, as a feed for the gasification process. Therefore, in the present study, a non-isothermal transient 1-D model is developed for a single biomass pellet to investigate the effect of heat and mass transfer limitations on the rate of pyrolysis reaction. The obtained set of partial differential equations are firstly discretized using the concept of ‘method of lines’ to obtain a set of ordinary differential equation with respect to time. These equations are solved, then, using MATLAB ode solver ode15s. The model is capable of incorporating structural changes, porosity variation, variation in various thermal properties and various pellet shapes. The model is used to analyze the effectiveness factor for different values of Lewis number and heat of reaction (G factor). Lewis number includes the effect of thermal conductivity of the solid pellet. Higher the Lewis number, the higher will be the thermal conductivity of the solid. The effectiveness factor was found to be decreasing with decreasing Lewis number due to the fact that smaller Lewis numbers retard the rate of heat transfer inside the pellet owing to a lower rate of pyrolysis reaction. G factor includes the effect of the heat of reaction. Since the pyrolysis reaction is endothermic in nature, the G factor takes negative values. The more the negative value higher will be endothermic nature of the pyrolysis reaction. The effectiveness factor was found to be decreasing with more negative values of the G factor. This behavior can be attributed to the fact that more negative value of G factor would result in more energy consumption by the reaction owing to a larger temperature gradient inside the pellet. Further, the analytical expressions are also derived for gas and solid concentrations and effectiveness factor for two limiting cases of the general model developed. The two limiting cases of the model are categorized as the homogeneous model and unreacted shrinking core model.

Keywords: effectiveness factor, G-factor, homogeneous model, lewis number, non-catalytic, shrinking core model

Procedia PDF Downloads 136
19064 Yield Level, Variability and Yield Gap of Maize (Zea Mays L.) Under Variable Climate Condition of the Semi-arid Central Rift Valley of Ethiopia

Authors: Fitih Ademe, Kibebew Kibret, Sheleme Beyene, Mezgebu Getnet, Gashaw Meteke

Abstract:

Soil moisture and nutrient availability are the two key edaphic factors that affect crop yields and are directly or indirectly affected by climate variability and change. The study examined climate-induced yield level, yield variability and gap of maize during 1981-2010 main growing season in the Central Rift Valley (CRV) of Ethiopia. Pearson correlation test was employed to see the relationship between climate variables and yield. The coefficient of variation (CV) was used to analyze annual yield variability. Decision Support System for Agro-technology Transfer cropping system model (DSSAT-CSM) was used to simulate the growth and yield of maize for the study period. The result indicated that maize grain yield was strongly (P<0.01) and positively correlated with seasonal rainfall (r=0.67 at Melkassa and r = 0.69 at Ziway) in the CRV while day temperature affected grain yield negatively (r= -0.44) at Ziway (P<0.05) during the simulation period. Variations in total seasonal rainfall at Melkassa and Ziway explained 44.9 and 48.5% of the variation in yield, respectively, under optimum nutrition. Following variation in rainfall, high yield variability (CV=23.5%, Melkassa and CV=25.3%, Ziway) was observed for optimum nutrient simulation than the corresponding nutrient limited simulation (CV=16%, Melkassa and 24.1%, Ziway) in the study period. The observed farmers’ yield was 72, 52 and 43% of the researcher-managed, water-limited and potential yield of the crop, respectively, indicating a wide maize yield gap in the region. The study revealed rainfed crop production in the CRV is prone to yield variabilities due to its high dependence on seasonal rainfall and nutrient level. Moreover, the high coefficient of variation in the yield gap for the 30-year period also foretells the need for dependable water supply at both locations. Given the wide yield gap especially during lower rainfall years across the simulation periods, it signifies the requirement for a more dependable application of irrigation water and a potential shift to irrigated agriculture; hence, adopting options that can improve water availability and nutrient use efficiency would be crucial for crop production in the area.

Keywords: climate variability, crop model, water availability, yield gap, yield variability

Procedia PDF Downloads 70
19063 QSAR, Docking and E-pharmacophore Approach on Novel Series of HDAC Inhibitors with Thiophene Linker as Anticancer Agents

Authors: Harish Rajak, Preeti Patel

Abstract:

HDAC inhibitors can reactivate gene expression and inhibit the growth and survival of cancer cells. The 3D-QSAR and Pharmacophore modeling studies were performed to identify important pharmacophoric features and correlate 3D-chemical structure with biological activity. The pharmacophore hypotheses were developed using e-pharmacophore script and phase module. Pharmacophore hypothesis represents the 3D arrangement of molecular features necessary for activity. A series of 55 compounds with well-assigned HDAC inhibitory activity was used for 3D-QSAR model development. Best 3D-QSAR model, which is a five PLS factor model with good statistics and predictive ability, acquired Q2 (0.7293), R2 (0.9811) and standard deviation (0.0952). Molecular docking were performed using Histone Deacetylase protein (PDB ID: 1t69) and prepared series of hydroxamic acid based HDAC inhibitors. Docking study of compound 43 show significant binding interactions Ser 276 and oxygen atom of dioxine cap region, Gly 151 and amino group and Asp 267 with carboxyl group of CONHOH, which are essential for anticancer activity. On docking, most of the compounds exhibited better glide score values between -8 to -10.5. We have established structure activity correlation using docking, energetic based pharmacophore modelling, pharmacophore and atom based 3D QSAR model. The results of these studies were further used for the design and testing of new HDAC analogs.

Keywords: Docking, e-pharmacophore, HDACIs, QSAR, Suberoylanilidehydroxamic acid.

Procedia PDF Downloads 298
19062 Delusive versus Genuine Needs: Examining Human Needs within the Islamic Framework of Orbit of Needs

Authors: Abdolmoghset Banikamal

Abstract:

This study looks at the issue of human needs from Islamic perspectives. The key objective of the study is to contribute in regulating the persuasion of needs. It argues that all needs are not necessarily genuine, rather a significant part of them are delusive. To distinguish genuine needs from delusive ones, the study suggests looking at the purpose of the persuasion of that particular need as a key criterion. In doing so, the paper comes with a model namely Orbit of Needs. The orbit has four circles. The central one is a necessity, followed by comfort, beautification, and exhibition. According to the model, all those needs that fall into one of the first three circles in terms of purpose are genuine, while any need which falls into the fourth circle is delusive.

Keywords: desire, human need, Islam, orbit of needs

Procedia PDF Downloads 282
19061 Diesel Engine Performance Optimization to Reduce Fuel Consumption and Emissions Issues

Authors: hadi kargar, bahador shabani

Abstract:

In this article, 16 cylinder motor combustion CFD modeling with a diameter of 165 mm and 195 mm along the way to help the FIRE software to optimize its function to work. A three-dimensional model of the processes that formed inside the cylinder made that involves mixing the fuel and air, ignition and spraying. In this three-dimensional model, all chemical species, density of air fuel spraying and spray with full profile intended to detailed results from mixing the fuel and air, igniting the ignition advance, spray, and mixed media in different times and get fit by moving the piston. Optimal selection of the model for the shape of the piston and spraying fuel specifications (including the management of spraying, the number of azhneh hole, start time of spraying and spraying angle) to achieve the best fuel consumption and minimal pollution. The spray hole 6 and 7 in three different configurations with five spraying and gives the best geometry and various performances in the simulation. 6 hole spray angle, finally spraying 72.5 degrees and two forms of spraying a better performance in comparison with other items of their own.

Keywords: spray, FIRE, CFD, optimize, diesel engine

Procedia PDF Downloads 417
19060 Analysis of the Decoupling Relationship between Urban Green Development and the Level of Regional Integration Based on the Tapio Model

Authors: Ruoyu Mao

Abstract:

Exploring the relationship between urban green development and regional integration level is of great significance for realising regional high quality and sustainable development. Based on the Tapio decoupling model and the theoretical framework of urban green development and regional integration, this paper builds an analysis system, makes a quantitative analysis of urban green development and regional integration level in a certain period, and discusses the relationship between the two. It also takes China's Yangtze River Delta urban agglomeration as an example to study the degree of decoupling, the type of decoupling, and the trend of the evolution of the spatio-temporal pattern of decoupling between the level of urban green development and the level of regional integration in the period of 2014-2021, with the aim of providing a useful reference for the future development of the region.

Keywords: regional integration, urban green development, Tapio decoupling model, Yangtze River Delta urban agglomeration

Procedia PDF Downloads 42
19059 Fault Detection and Isolation of a Three-Tank System using Analytical Temporal Redundancy, Parity Space/Relation Based Residual Generation

Authors: A. T. Kuda, J. J. Dayya, A. Jimoh

Abstract:

This paper investigates the fault detection and Isolation technique of measurement data sets from a three tank system using analytical model-based temporal redundancy which is based on residual generation using parity equations/space approach. It further briefly outlines other approaches of model-based residual generation. The basic idea of parity space residual generation in temporal redundancy is dynamic relationship between sensor outputs and actuator inputs (input-output model). These residuals where then used to detect whether or not the system is faulty and indicate the location of the fault when it is faulty. The method obtains good results by detecting and isolating faults from the considered data sets measurements generated from the system.

Keywords: fault detection, fault isolation, disturbing influences, system failure, parity equation/relation, structured parity equations

Procedia PDF Downloads 300
19058 A Risk Assessment for the Small Hive Beetle Based on Meteorological Standard Measurements

Authors: J. Junk, M. Eickermann

Abstract:

The Small Hive Beetle, Aethina tumida (Coleoptera: Nitidulidae) is a parasite for honey bee colonies, Apis mellifera, and was recently introduced to the European continent, accidentally. Based on the literature, a model was developed by using regional meteorological variables (daily values of minimum, maximum and mean air temperature as well as mean soil temperature at 50 mm depth) to calculate the time-point of hive invasion by A. tumida in springtime, the development duration of pupae as well as the number of generations of A. tumida per year. Luxembourg was used as a test region for our model for 2005 to 2013. The model output indicates a successful surviving of the Small Hive Beetle in Luxembourg with two up to three generations per year. Additionally, based on our meteorological data sets a first migration of SHB to apiaries can be expected from mid of March up to April. Our approach can be transferred easily to other countries to estimate the risk potential for a successful introduction and spreading of A. tumida in Western Europe.

Keywords: Aethina tumida, air temperature, larval development, soil temperature

Procedia PDF Downloads 115
19057 Education in Technology for Sustainable Development Applied to School Gardens

Authors: Sara Blanc, José V. Benlloch-Dualde, Laura Grindei, Ana C. Torres, Angélica Monteiro

Abstract:

This paper presents a study that leads a new experience by introducing digital learning applied to a case study focused on primary and secondary school garden-based education. The approach represents an example of interaction among different education and research agents at different countries and levels, such as universities, public and private research, and schools, to get involved in the implementation of education for sustainable development that will make students become more sensible to natural environment, more responsible for their consumption, more aware about waste reduction and recycling, more conscious of the sustainable use of natural resources and, at the same time, more ‘digitally competent’. The experience was designed attending to the European digital education context and OECD directives in transversal skills education. The paper presents the methodology carried out in the study as well as outcomes obtained from experience.

Keywords: school gardens, primary education, secondary education, science technology and innovation in education, digital learning, sustainable development goals, university, knowledge transference

Procedia PDF Downloads 116
19056 Use and Appreciation of a Type of Mathematics Textbook for Secondary Education

Authors: Verónica Díaz Quezada

Abstract:

Despite the wide variety of educational resources on the market and the advances produced in the technological field, the practice of teaching continues to be supported mainly by textbooks. This article reports on descriptive research with qualitative methodology carried out on secondary school mathematics teachers in a region of Chile, in order to describe the use and the indicators of appreciation that teachers have on the textbooks distributed by the official body to public educational establishments. Data were collected through an open response opinion questionnaire. According to the results, among the texts available for the annual performance of their teaching work, the expository and technological books predominate, to the detriment of comprehensive books. The exhibition structure favors master expositions and repetitive exercises, while, with the technological structure, a productive exercise is attempted, proposing numerous applications with the intention of giving meaning to the different mathematical rules and procedures. In relation to the indicators of appreciation that teachers have regarding the use of mathematics textbooks, the suitability and quality of the teaching resources are verified as the most satisfying characteristic.

Keywords: mathematics, secondary school, teachers, textbooks

Procedia PDF Downloads 163