Search results for: energy non-supplied
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8435

Search results for: energy non-supplied

3245 BLDC Motor Driven for Solar Photo Voltaic Powered Air Cooling System

Authors: D. Shobha Rani, M. Muralidhar

Abstract:

Solar photovoltaic (SPV) power systems can be employed as electrical power sources to meet the daily residential energy needs of rural areas that have no access to grid systems. In view of this, a standalone SPV powered air cooling system is proposed in this paper, which constitutes a dc-dc boost converter, two voltage source inverters (VSI) connected to two brushless dc (BLDC) motors which are coupled to a centrifugal water pump and a fan blower. A simple and efficient Maximum Power Point Tracking (MPPT) technique based on Silver Mean Method (SMM) is utilized in this paper. The air cooling system is developed and simulated using the MATLAB / Simulink environment considering the dynamic and steady state variation in the solar irradiance.

Keywords: boost converter, solar photovoltaic array, voltage source inverter, brushless DC motor, solar irradiance, maximum power point tracking, silver mean method

Procedia PDF Downloads 276
3244 Fault Diagnosis and Fault-Tolerant Control of Bilinear-Systems: Application to Heating, Ventilation, and Air Conditioning Systems in Multi-Zone Buildings

Authors: Abderrhamane Jarou, Dominique Sauter, Christophe Aubrun

Abstract:

Over the past decade, the growing demand for energy efficiency in buildings has attracted the attention of the control community. Failures in HVAC (heating, ventilation and air conditioning) systems in buildings can have a significant impact on the desired and expected energy performance of buildings and on the user's comfort as well. FTC is a recent technology area that studies the adaptation of control algorithms to faulty operating conditions of a system. The application of Fault-Tolerant Control (FTC) in HVAC systems has gained attention in the last two decades. The objective is to maintain the variations in system performance due to faults within an acceptable range with respect to the desired nominal behavior. This paper considers the so-called active approach, which is based on fault and identification scheme combined with a control reconfiguration algorithm that consists in determining a new set of control parameters so that the reconfigured performance is "as close as possible, "in some sense, to the nominal performance. Thermal models of buildings and their HVAC systems are described by non-linear (usually bi-linear) equations. Most of the works carried out so far in FDI (fault diagnosis and isolation) or FTC consider a linearized model of the studied system. However, this model is only valid in a reduced range of variation. This study presents a new fault diagnosis (FD) algorithm based on a bilinear observer for the detection and accurate estimation of the magnitude of the HVAC system failure. The main contribution of the proposed FD algorithm is that instead of using specific linearized models, the algorithm inherits the structure of the actual bilinear model of the building thermal dynamics. As an immediate consequence, the algorithm is applicable to a wide range of unpredictable operating conditions, i.e., weather dynamics, outdoor air temperature, zone occupancy profile. A bilinear fault detection observer is proposed for a bilinear system with unknown inputs. The residual vector in the observer design is decoupled from the unknown inputs and, under certain conditions, is made sensitive to all faults. Sufficient conditions are given for the existence of the observer and results are given for the explicit computation of observer design matrices. Dedicated observer schemes (DOS) are considered for sensor FDI while unknown input bilinear observers are considered for actuator or system components FDI. The proposed strategy for FTC works as follows: At a first level, FDI algorithms are implemented, making it also possible to estimate the magnitude of the fault. Once the fault is detected, the fault estimation is then used to feed the second level and reconfigure the control low so that that expected performances are recovered. This paper is organized as follows. A general structure for fault-tolerant control of buildings is first presented and the building model under consideration is introduced. Then, the observer-based design for Fault Diagnosis of bilinear systems is studied. The FTC approach is developed in Section IV. Finally, a simulation example is given in Section V to illustrate the proposed method.

Keywords: bilinear systems, fault diagnosis, fault-tolerant control, multi-zones building

Procedia PDF Downloads 176
3243 Lubricating Grease from Waste Cooking Oil and Waste Motor Sludge

Authors: Aseem Rajvanshi, Pankaj Kumar Pandey

Abstract:

Increase in population has increased the demand of energy to fulfill all its needs. This will result in burden on fossil fuels especially crude oil. Waste oil due to its disposal problem creates environmental degradation. In this context, this paper studies utilization of waste cooking oil and waste motor sludge for making lubricating grease. Experimental studies have been performed by variation in time and concentration of mixture of waste cooking oil and waste motor sludge. The samples were analyzed using penetration test (ASTM D-217), dropping point (ASTM D-566), work penetration (ASTM D-217) and copper strip test (ASTM D-408). Among 6 samples, sample 6 gives the best results with a good drop point and a fine penetration value. The dropping point and penetration test values were found to be 205 °C and 315, respectively. The penetration value falls under the category of NLGI (National Lubricating Grease Institute) consistency number 1.

Keywords: crude oil, copper strip corrosion test, dropping point, penetration test

Procedia PDF Downloads 301
3242 Numerical Modeling and Characteristic Analysis of a Parabolic Trough Solar Collector

Authors: Alibakhsh Kasaeian, Mohammad Sameti, Zahra Noori, Mona Rastgoo Bahambari

Abstract:

Nowadays, the parabolic trough solar collector technology has become the most promising large-scale technology among various solar thermal generations. In this paper, a detailed numerical heat transfer model for a parabolic trough collector with nanofluid is presented based on the finite difference approach for which a MATLAB code was developed. The model was used to simulate the performance of a parabolic trough solar collector’s linear receiver, called a heat collector element (HCE). In this model, the heat collector element of the receiver was discretized into several segments in axial directions and energy balances were used for each control volume. All the heat transfer correlations, the thermodynamic equations and the optical properties were considered in details and the set of algebraic equations were solved simultaneously using iterative numerical solutions. The modeling assumptions and limitations are also discussed, along with recommendations for model improvement.

Keywords: heat transfer, nanofluid, numerical analysis, trough

Procedia PDF Downloads 375
3241 Towards Optimising Building Information Modelling and Building Management System in Higher Education Institutions Facility Management: A Review

Authors: Zhuoqun Sun, Francisco Sierra, A. Booth

Abstract:

With BIM rapidly implemented in the design and construction stage of a project, researchers begin to focus on improving the operation and maintenance stage with the aid of BIM. Since the increasing amount of electronic equipment installed in the building, building management system becomes mainstream for controlling a building, especially in higher education institutions that can play an important role in terms of reducing carbon emission and improving energy efficiency. Currently, an approach to integrate BIM and BMS to improve HEIs facility management has not been established yet. Thus, this paper aims to analyse the benefits, issues, and trends of BIM and BMS integration and their application in HEIs. A systematic literature review was carried out on SCOPUS by applying the PRISMA methodology. 73 articles have been chosen based on keywords, abstracts, and the full content of the articles. The benefit and existed issues from the articles are analysed. The review shows the need to develop a tool to improve facility management through BIM BMS integration.

Keywords: BIM, BMS, HEIs, review

Procedia PDF Downloads 165
3240 The Utilization of Magneto-Hydrodynamics Framework in Expansion of Magnetized Conformal Flow

Authors: Majid Karimabadi, Ahmad Farzaneh Kore, Behnam Azadegan

Abstract:

The evolution of magnetized quark gluon plasma (QGP) in the framework of magneto- hydrodynamics is the focus of our study. We are investigating the temporal and spatial evolution of QGP using a second order viscous hydrodynamic framework. The fluid is considered to be magnetized and subjected to the influence of a magnetic field that is generated during the early stages of relativistic heavy ion collisions. We assume boost invariance along the beam line, which is represented by the z coordinate, and fluid expansion in the x direction. Additionally, we assume that the magnetic field is perpendicular to the reaction plane, which corresponds to the y direction. The fluid is considered to have infinite electrical conductivity. To analyze this system, we solve the coupled Maxwell and conservation equations. By doing so, we are able to determine the time and space dependence of the energy density, velocity, and magnetic field in the transverse plane of the viscous magnetized hot plasma. Furthermore, we obtain the spectrum of hadrons and compare it with experimental data.

Keywords: QGP, magnetohydrodynamics, hadrons, conversation

Procedia PDF Downloads 75
3239 Effect of Filler Size and Shape on Positive Temperature Coefficient Effect

Authors: Eric Asare, Jamie Evans, Mark Newton, Emiliano Bilotti

Abstract:

Two types of filler shapes (sphere and flakes) and three different sizes are employed to study the size effect on PTC. The composite is prepared using a mini-extruder with high-density polyethylene (HDPE) as the matrix. A computer modelling is used to fit the experimental results. The percolation threshold decreases with decreasing filler size and this was observed for both the spherical particles as well as the flakes. This was caused by the decrease in interparticle distance with decreasing filler size. The 100 µm particles showed a larger PTC intensity compared to the 5 µm particles for the metal coated glass sphere and flake. The small particles have a large surface area and agglomeration and this makes it difficult for the conductive network to e disturbed. Increasing the filler content decreased the PTC intensity and this is due to an increase in the conductive network within the polymer matrix hence more energy is needed to disrupt the network.

Keywords: positive temperature coefficient (PTC) effect, conductive polymer composite (CPC), electrical conductivity

Procedia PDF Downloads 432
3238 Novel Ti/Al-Cr-Fe Metal Matrix Composites Prepared by Spark Plasma Sintering with Excellent Wear Properties

Authors: Ruitao Li, Zhili Dong, Nay Win Khun, Khiam Aik Khor

Abstract:

In this study, microstructure and sintering mechanism as well as wear resistance properties of Ti/Al-Cr-Fe metal matrix composites (MMCs) fabricated by spark plasma sintering (SPS) with Ti as matrix and Al-Cr-Fe as reinforcement were investigated. Phases and microstructure of the sintered samples were analyzed using X-ray diffractometry (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and transmission electron microscopy (TEM). Wear resistance properties were tested by ball-on-disk method. An Al3Ti ring forms around each Al-Cr-Fe particle as the bonding layer between Ti and Al-Cr-Fe particles. The Al content in Al-Cr-Fe particles experiences a decrease from 70 at.% to 60 at.% in the sintering process. And these particles consist of quasicrystalline icosahedral AlCrFe and quasicrystal approximants γ-brass Al8(Cr,Fe)5 and Al9(Cr,Fe)4 in the sintered compact. The addition of Al-Cr-Fe particles into the Ti matrix can improve the microhardness by about 40% and the wear resistance is improved by more than 50% due to the increase in the microhardness and the change of wear mechanism.

Keywords: metal matrix composites, spark plasma sintering, phase transformation, wear

Procedia PDF Downloads 427
3237 Mathematical Modelling and Parametric Study of Water Based Loop Heat Pipe for Ground Application

Authors: Shail N. Shah, K. K. Baraya, A. Madhusudan Achari

Abstract:

Loop Heat Pipe is a passive two-phase heat transfer device which can be used without any external power source to transfer heat from source to sink. The main aim of this paper is to have modelling of water-based LHP at varying heat loads. Through figures, how the fluid flow occurs within the loop has been explained. Energy Balance has been done in each section. IC (Iterative Convergence) scheme to find out the SSOT (Steady State Operating Temperature) has been developed. It is developed using Dev C++. To best of the author’s knowledge, hardly any detail is available in the open literature about how temperature distribution along the loop is to be evaluated. Results for water-based loop heat pipe is obtained and compared with open literature and error is found within 4%. Parametric study has been done to see the effect of different parameters on pressure drop and SSOT at varying heat loads.

Keywords: loop heat pipe, modelling of loop heat pipe, parametric study of loop heat pipe, functioning of loop heat pipe

Procedia PDF Downloads 414
3236 Sustainable Pavements with Reflective and Photoluminescent Properties

Authors: A.H. Martínez, T. López-Montero, R. Miró, R. Puig, R. Villar

Abstract:

An alternative to mitigate the heat island effect is to pave streets and sidewalks with pavements that reflect incident solar energy, keeping their surface temperature lower than conventional pavements. The “Heat island mitigation to prevent global warming by designing sustainable pavements with reflective and photoluminescent properties (RELUM) Project” has been carried out with this intention in mind. Its objective has been to develop bituminous mixtures for urban pavements that help in the fight against global warming and climate change, while improving the quality of life of citizens. The technology employed has focused on the use of reflective pavements, using bituminous mixes made with synthetic bitumens and light pigments that provide high solar reflectance. In addition to this advantage, the light surface colour achieved with these mixes can improve visibility, especially at night. In parallel and following the latter approach, an appropriate type of treatment has also been developed on bituminous mixtures to make them capable of illuminating at night, giving rise to photoluminescent applications, which can reduce energy consumption and increase road safety due to improved night-time visibility. The work carried out consisted of designing different bituminous mixtures in which the nature of the aggregate was varied (porphyry, granite and limestone) and also the colour of the mixture, which was lightened by adding pigments (titanium dioxide and iron oxide). The reflectance of each of these mixtures was measured, as well as the temperatures recorded throughout the day, at different times of the year. The results obtained make it possible to propose bituminous mixtures whose characteristics can contribute to the reduction of urban heat islands. Among the most outstanding results is the mixture made with synthetic bitumen, white limestone aggregate and a small percentage of titanium dioxide, which would be the most suitable for urban surfaces without road traffic, given its high reflectance and the greater temperature reduction it offers. With this solution, a surface temperature reduction of 9.7°C is achieved at the beginning of the night in the summer season with the highest radiation. As for luminescent pavements, paints with different contents of strontium aluminate and glass microspheres have been applied to asphalt mixtures, and the luminance of all the applications designed has been measured by exciting them with electric bulbs that simulate the effect of sunlight. The results obtained at this stage confirm the ability of all the designed dosages to emit light for a certain time, varying according to the proportions used. Not only the effect of the strontium aluminate and microsphere content has been observed, but also the influence of the colour of the base on which the paint is applied; the lighter the base, the higher the luminance. Ongoing studies are focusing on the evaluation of the durability of the designed solutions in order to determine their lifetime.

Keywords: heat island, luminescent paints, reflective pavement, temperature reduction

Procedia PDF Downloads 37
3235 Material Failure Process Simulation by Improved Finite Elements with Embedded Discontinuities

Authors: Gelacio Juárez-Luna, Gustavo Ayala, Jaime Retama-Velasco

Abstract:

This paper shows the advantages of the material failure process simulation by improve finite elements with embedded discontinuities, using a new definition of traction vector, dependent on the discontinuity length and the angle. Particularly, two families of this kind of elements are compared: kinematically optimal symmetric and statically and kinematically optimal non-symmetric. The constitutive model to describe the behavior of the material in the symmetric formulation is a traction-displacement jump relationship equipped with softening after reaching the failure surface. To show the validity of this symmetric formulation, representative numerical examples illustrating the performance of the proposed formulation are presented. It is shown that the non-symmetric family may over or underestimate the energy required to create a discontinuity, as this effect is related with the total length of the discontinuity, fact that is not noticed when the discontinuity path is a straight line.

Keywords: variational formulation, strong discontinuity, embedded discontinuities, strain localization

Procedia PDF Downloads 787
3234 Investigation of the Mechanism, Régio and Sterioselectivity Using the 1,3-Dipolar Cycloaddition Reaction of Fused 1h-Pyrrole-2,3-Diones with Nitrones: Molecular Electron Density Theory Study

Authors: Ameur Soukaina, Zeroual Abdellah, Mazoir Noureddine

Abstract:

Molecular Electron Density Theory (MEDT) elucidates the regioselectivity of the [4+2] cycloaddition reaction between 3-aroylpyrrolo[1,2-α]quinoxaline-1,2,4(5H)-trione and butyl vinyl ether Regioselectivity and stereoselectivity. The regioselectivity mechanisms of these reactions were investigated by evaluating potential energy surfaces calculated for cycloaddition processes and DFT density-based reactivity indices. These methods have been successfully applied to predict preferred regioisomers for different method alternatives. Reactions were monitored by performing transition state optimizations, calculations of intrinsic reaction coordinates, and activation energies. The observed regioselectivity was rationalized using DFT-based reactivity descriptors such as the Parr function. Solvent effects were also investigated in 1,4-dioxane solvent using a field model for self-consistent reactions. The results were compared with experimental data to find good agreement.

Keywords: cycloaddition, DFT, ELF, MEDT, parr, stereoselectivité

Procedia PDF Downloads 114
3233 Corrosion Behavior of Fe-Ni-Cr and Zr Alloys in Supercritical Water Reactors

Authors: Igor Svishchev, Kashif Choudhry

Abstract:

Progress in advanced energy technologies is not feasible without understanding how engineering materials perform under extreme environmental conditions. The corrosion behaviour of Fe-Ni-Cr and Zr alloys has been systematically examined under high-temperature and supercritical water flow conditions. The changes in elemental release rate and dissolved gas concentration provide valuable insights into the mechanism of passivation by forming oxide films. A non-intrusive method for monitoring the extent of surface oxidation based on hydrogen release rate has been developed. This approach can be used for the on-line monitoring corrosion behavior of reactor materials without the need to interrupt the flow and remove corrosion coupons. Surface catalysed thermochemical reactions may generate sufficient hydrogen to have an effect on the accumulation of oxidizing species generated by radiolytic processes in the heat transport systems of the supercritical water cooled nuclear reactor.

Keywords: high-temperature corrosion, non-intrusive monitoring, reactor materials, supercritical water

Procedia PDF Downloads 141
3232 A Study of the Growth of Single-Phase Mg0.5Zn0.5O Films for UV LED

Authors: Hong Seung Kim, Chang Hoi Kim, Lili Yue

Abstract:

Single-phase, high band gap energy Zn0.5Mg0.5O films were grown under oxygen pressure, using pulse laser deposition with a Zn0.5Mg0.5O target. Structural characterization studies revealed that the crystal structures of the ZnX-1MgXO films could be controlled via changes in the oxygen pressure. TEM analysis showed that the thickness of the deposited Zn1-xMgxO thin films was 50–75 nm. As the oxygen pressure increased, we found that one axis of the crystals did not show a very significant increase in the crystallization compared with that observed at low oxygen pressure. The X-ray diffraction peak intensity for the hexagonal-ZnMgO (002) plane increased relative to that for the cubic-ZnMgO (111) plane. The corresponding c-axis of the h-ZnMgO lattice constant increased from 5.141 to 5.148 Å, and the a-axis of the c-ZnMgO lattice constant decreased from 4.255 to 4.250 Å. EDX analysis showed that the Mg content in the mixed-phase ZnMgO films decreased significantly, from 54.25 to 46.96 at.%. As the oxygen pressure was increased from 100 to 150 mTorr, the absorption edge red-shifted from 3.96 to 3.81 eV; however, a film grown at the highest oxygen pressure tested here (200 mTorr).

Keywords: MgO, UV LED, ZnMgO, ZnO

Procedia PDF Downloads 407
3231 Mapping the State of the Art of European Companies Doing Social Business at the Base of the Economic Pyramid as an Advanced Form of Strategic Corporate Social Responsibility

Authors: Claudio Di Benedetto, Irene Bengo

Abstract:

The objective of the paper is to study how large European companies develop social business (SB) at the base of the economic pyramid (BoP). BoP markets are defined as the four billions people living with an annual income below $3,260 in local purchasing power. Despite they are heterogeneous in terms of geographic range they present some common characteristics: the presence of significant unmet (social) needs, high level of informal economy and the so-called ‘poverty penalty’. As a result, most people living at BoP are excluded from the value created by the global market economy. But it is worth noting, that BoP population with an aggregate purchasing power of around $5 trillion a year, represent a huge opportunity for companies that want to enhance their long-term profitability perspective. We suggest that in this context, the development of SB is, for companies, an innovative and promising way to satisfy unmet social needs and to experience new forms of value creation. Indeed, SB can be considered a strategic model to develop CSR programs that fully integrate the social dimension into the business to create economic and social value simultaneously. Despite in literature many studies have been conducted on social business, only few have explicitly analyzed such phenomenon from a company perspective and their role in the development of such initiatives remains understudied with fragmented results. To fill this gap the paper analyzes the key characteristics of the social business initiatives developed by European companies at BoP. The study was performed analyzing 1475 European companies participating in the United Nation Global Compact, the world’s leading corporate social responsibility program. Through the analysis of the corporate websites the study identifies companies that actually do SB at BoP. For SB initiatives identified, information were collected according to a framework adapted from the SB model developed by preliminary results show that more than one hundred European companies have already implemented social businesses at BoP accounting for the 6,5% of the total. This percentage increases to 15% if the focus is on companies with more than 10.440 employees. In terms of geographic distribution 80% of companies doing SB at BoP are located in western and southern Europe. The companies more active in promoting SB belong to financial sector (20%), energy sector (17%) and food and beverage sector (12%). In terms of social needs addressed almost 30% of the companies develop SB to provide access to energy and WASH, 25% of companies develop SB to reduce local unemployment or to promote local entrepreneurship and 21% of companies develop SB to promote financial inclusion of poor. In developing SB companies implement different social business configurations ranging from forms of outsourcing to internal development models. The study identifies seven main configurations through which company develops social business and each configuration present distinguishing characteristics respect to the involvement of the company in the management, the resources provided and the benefits achieved. By performing different analysis on data collected the paper provides detailed insights on how European companies develop SB at BoP.

Keywords: base of the economic pyramid, corporate social responsibility, social business, social enterprise

Procedia PDF Downloads 228
3230 Experimental Investigation of Cup Anemometer under Static and Dynamic Wind Direction Changes: Evaluation of Directional Sensitivity

Authors: Vaibhav Rana, Nicholas Balaresque

Abstract:

The 3-cup anemometer is the most commonly used instrument for wind speed measurement and, consequently, for the wind resource assessment. Though the cup anemometer shows accurate measurement under quasi-static conditions, there is uncertainty in the measurement when subjected to field measurement. Sensitivity to the angle of attacks with respect to horizontal plane, dynamic response, and non-linear behavior in calibration due to friction. The presented work aimed to identify the sensitivity of anemometer to non-horizontal flow. The cup anemometer was investigated under low wind speed wind tunnel, first under the static flow direction changes and second under the dynamic direction changes, at a different angle of attacks, under the similar conditions of reference wind tunnel speeds. The cup anemometer response under both conditions was evaluated and compared. The results showed the anemometer under dynamic wind direction changes is highly sensitive compared to static conditions.

Keywords: wind energy, cup anemometer, directional sensitivity, dynamic behavior, wind tunnel

Procedia PDF Downloads 154
3229 Analysis of the Effect of GSR on the Performance of Double Flow Corrugated Absorber Solar Air Heater

Authors: S. P. Sharma, Som Nath Saha

Abstract:

This study investigates the effect of Global Solar Radiation (GSR) on the performance of double flow corrugated absorber solar air heater. A mathematical model of a double flow solar air heater, in which air is flowing simultaneously over and under the absorbing plate is presented and solved by developing a computer program in C++ language. The performance evaluation is studied in terms of air temperature rise, energy, effective and exergy efficiencies. The performance of double flow corrugated absorber is compared with double flow flat plate and conventional solar air heaters. It is found that double flow effectively increases the air temperature rise and efficiencies in comparison to a conventional collector. However, corrugated absorber is more superior to that of flat plate double flow solar air heater. The results show that increasing the solar radiation leads to achieve higher air temperature rise and efficiencies.

Keywords: corrugated absorber, double flow, flat plate, solar air heater

Procedia PDF Downloads 354
3228 Multipass Scratch Characterization of TiNbVN Thin Coatings Deposited by Magnetron Sputtering

Authors: Hikmet Cicek

Abstract:

Transition metal nitrides are widely used as protective coatings on machine parts and cutting tools to protect the surfaces from abrasion and corrosion for decades. In this study, the ternary TiNbVN thin coatings were produced with closed field unbalanced magnetron sputtering system and their structural, mechanical and fatigue-like (multi-pass scratch test) properties were investigated. Two different substrates (M2 and H13 steels) were used to explore substrates effects. X-Ray diffractometer, scanning electron microscope, and energy dispersive spectroscopy were used for the structural and chemical analysis of the coatings. Nanohardness tests were proceed for mechanical properties. The fatigue-like properties of the coatings obtained from the multi-scratch test under three different cycle passes. The results showed that TiNbVN films have excellent fatigue resistance and the coatings deposited on M2 steel substrate have higher hardness and better fatigue resistance.

Keywords: physical vapor deposition, fatigue, metal nitride, multipass scratch test

Procedia PDF Downloads 213
3227 Far-Field Acoustic Prediction of a Supersonic Expanding Jet Using Large Eddy Simulation

Authors: Jesus Ruano, Asensi Oliva

Abstract:

The hydrodynamic field generated by a jet expansion is computed via three dimensional compressible Large Eddy Simulation (LES). Finite Volume Method (FVM) will be the discretization used during this simulation as well as hybrid schemes based on Kinetic Energy Preserving (KEP) schemes and up-winding Godunov based schemes with instabilities detectors. Velocity and pressure fields will be stored at different surfaces near the jet, but far enough to enclose all the fluctuations, in order to use them as input for the acoustic solver. The acoustic field is obtained in the far-field region at several locations by means of a hybrid method based on Ffowcs-Williams and Hawkings (FWH) equation. This equation will be formulated in the spectral domain, via Fourier Transform of the acoustic sources, which are modeled from the results of the initial simulation. The obtained results will allow the study of the broadband noise generated as well as sound directivities.

Keywords: far-field noise, Ffowcs-Williams and Hawkings, finite volume method, large eddy simulation, jet noise

Procedia PDF Downloads 302
3226 The Effects of Prosthetic Leg Stiffness on Gait, Comfort, and Satisfaction: A Review of Mechanical Engineering Approaches

Authors: Kourosh Fatehi, Niloofar Hanafi

Abstract:

One of the challenges in providing optimal prosthetic legs for lower limb amputees is to select the appropriate foot stiffness that suits their individual needs and preferences. Foot stiffness affects various aspects of walking, such as stability, comfort, and energy expenditure. However, the current prescription process is largely based on trial-and-error, manufacturer recommendations, or clinician judgment, which may not reflect the prosthesis user’s subjective experience or psychophysical sensitivity. Therefore, there is a need for more scientific and technological tools to measure and understand how prosthesis users perceive and prefer different foot stiffness levels, and how this preference relates to clinical outcomes. This review covers how to measure and design lower leg prostheses based on user preference and foot stiffness. It also explores how these factors affect walking outcomes and quality of life, and identifies the current challenges and gaps in this field from a mechanical engineering standpoint.

Keywords: perception, preference, prosthetics, stiffness

Procedia PDF Downloads 87
3225 Creep Effect on Composite Beam with Perfect Steel-Concrete Connection

Authors: Souici Abdelaziz, Tehami Mohamed, Rahal Nacer, Said Mohamed Bekkouche, Berthet Jean-Fabien

Abstract:

In this paper, the influence of the concrete slab creep on the initial deformability of a bent composite beam is modelled. This deformability depends on the rate of creep. This means the rise in value of the longitudinal strain ε c(x,t), the displacement D eflec(x,t) and the strain energy E(t). The variation of these three parameters can easily affect negatively the good appearance and the serviceability of the structure. Therefore, an analytical approach is designed to control the status of the deformability of the beam at the instant t. This approach is based on the Boltzmann’s superposition principle and very particularly on the irreversible law of deformation. For this, two conditions of compatibility and two other static equilibrium equations are adopted. The two first conditions are set according to the rheological equation of Dischinger. After having done a mathematical arrangement, we have reached a system of two differential equations whose integration allows to find the mathematical expression of each generalized internal force in terms of the ability of the concrete slab to creep.

Keywords: composite section, concrete, creep, deformation, differential equation, time

Procedia PDF Downloads 387
3224 An ab initioStudy of the Structural, Elastic, Electronic, and Optical Properties of the Perovskite ScRhO3

Authors: L. Foudia, K. Haddadi, M. Reffas

Abstract:

First principles study of structural, elastic, electronic and optical properties of the monoclinic perovskite type ScRhO₃ has been reported using the pseudo-potential plane wave method within the local density approximation. The calculated lattice parameters, including the lattice constants and angle β, are in excellent agreement with the available experimental data, which proving the reliability of the chosen theoretical approach. Pressure dependence up to 20 GPa of the single crystal and polycrystalline elastic constants has been investigated in details using the strain-stress approach. The mechanical stability, ductility, average elastic wave velocity, Debye temperature and elastic anisotropy were also assessed. Electronic band structure and density of states (DOS) demonstrated its semiconducting nature showing a direct band gap of 1.38 eV. Furthermore, several optical properties, such as absorption coefficient, reflectivity, refractive index, dielectric function, optical conductivity and electron energy loss function, have been calculated for radiation up to 40 eV.

Keywords: ab-initio, perovskite, DFT, band gap

Procedia PDF Downloads 84
3223 Characterization of Bio-Inspired Thermoelastoplastic Composites Filled with Modified Cellulose Fibers

Authors: S. Cichosz, A. Masek

Abstract:

A new cellulose hybrid modification approach, which is undoubtedly a scientific novelty, is introduced. The study reports the properties of cellulose (Arbocel UFC100 – Ultra Fine Cellulose) and characterizes cellulose filled polymer composites based on an ethylene-norbornene copolymer (TOPAS Elastomer E-140). Moreover, the approach of physicochemical two-stage cellulose treatment is introduced: solvent exchange (to ethanol or hexane) and further chemical modification with maleic anhydride (MA). Furthermore, the impact of the drying process on cellulose properties was investigated. Suitable measurements were carried out to characterize cellulose fibers: spectroscopic investigation (Fourier Transform Infrared Spektrofotometer-FTIR, Near InfraRed spectroscopy-NIR), thermal analysis (Differential scanning calorimetry, Thermal gravimetric analysis ) and Karl Fischer titration. It should be emphasized that for all UFC100 treatments carried out, a decrease in moisture content was evidenced. FT-IR reveals a drop in absorption band intensity at 3334 cm-1, the peak is associated with both –OH moieties and water. Similar results were obtained with Karl Fischer titration. Based on the results obtained, it may be claimed that the employment of ethanol contributes greatly to the lowering of cellulose water absorption ability (decrease of moisture content to approximately 1.65%). Additionally, regarding polymer composite properties, crucial data has been obtained from the mechanical and thermal analysis. The highest material performance was noted in the case of the composite sample that contained cellulose modified with MA after a solvent exchange with ethanol. This specimen exhibited sufficient tensile strength, which is almost the same as that of the neat polymer matrix – in the region of 40 MPa. Moreover, both the Payne effect and filler efficiency factor, calculated based on dynamic mechanical analysis (DMA), reveal the possibility of the filler having a reinforcing nature. What is also interesting is that, according to the Payne effect results, fibers dried before the further chemical modification are assumed to allow more regular filler structure development in the polymer matrix (Payne effect maximum at 1.60 MPa), compared with those not dried (Payne effect in the range 0.84-1.26 MPa). Furthermore, taking into consideration the data gathered from DSC and TGA, higher thermal stability is obtained in case of the materials filled with fibers that were dried before the carried out treatments (degradation activation energy in the region of 195 kJ/mol) in comparison with the polymer composite samples filled with unmodified cellulose (degradation activation energy of approximately 180 kJ/mol). To author’s best knowledge this work results in the introduction of a novel, new filler hybrid treatment approach. Moreover, valuable data regarding the properties of composites filled with cellulose fibers of various moisture contents have been provided. It should be emphasized that plant fiber-based polymer bio-materials described in this research might contribute significantly to polymer waste minimization because they are more readily degraded.

Keywords: cellulose fibers, solvent exchange, moisture content, ethylene-norbornene copolymer

Procedia PDF Downloads 121
3222 Dissolution of Zeolite as a Sorbent in Flue Gas Desulphurization Process Using a pH Stat Apparatus

Authors: Hilary Rutto, John Kabuba

Abstract:

Sulphur dioxide is a harmful gaseous product that needs to be minimized in the atmosphere. This research work investigates the use of zeolite as a possible additive that can improve the sulphur dioxide capture in wet flue gas desulphurisation dissolution process. This work determines the effect of temperature, solid to liquid ratio, acid concentration and stirring speed on the leaching of zeolite using a pH stat apparatus. The atomic absorption spectrometer was used to measure the calcium ions from the solution. It was found that the dissolution rate of zeolite decreased with increase in solid to liquid ratio and increases with increase in temperature, stirring speed and acid concentration. The activation energy for the dissolution rate of zeolite in hydrochloric acid was found to be 9.29kJ/mol. and therefore the product layer diffusion was the rate limiting step.

Keywords: calcium ion, pH stat apparatus, wet flue gas desulphurization, zeolite

Procedia PDF Downloads 291
3221 The Effect of Chelate to RE Ratio on Upconversion Emissions Property of NaYF4: Yb3+ and Tm3+ Nanocrystals

Authors: M. Kaviani Darani, S. Bastani, M. Ghahari, P. Kardar

Abstract:

In this paper the NaYF4: Yb3+, Tm3+ nanocrystals were synthesized by hydrothermal method. Different chelating ligand type (citric acid, butanoic acid, and AOT) was selected to investigate the effect of their concentration on upconversion efficiency. Crystal structure and morphology have been well characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analysis. Photo luminescence were recorded on a spectrophotometer equipped with 980 nm laser diode az excitation source and an integerating sphere. The products with various morphologies range from sphere to cubic, hexagonal,prism and nanorods were prepared at different ratios. The particle size was found to be dependent on the nucleation rate, which, in turn, was affected by type and concentration of ligands. The optimum amount of chelate to RE ratio was obtained 0.75, 1.5, and 1 for Citric Acid, Butanoic Acid and AOT, respectively. Emissions in the UV (1D2-3H6), blue-violet(1D2-3F4), blue (1G4-3H6), red (1G4-3F4), and NIR (1G4-3H5) were observed and were the direct result of subsequent transfers of energy from the Yb3+ ion to the Tm3+ ion.

Keywords: upconversion nanoparticles, NaYF4, lanthanide, hydrothermal

Procedia PDF Downloads 265
3220 A Mathematical Model for Studying Landing Dynamics of a Typical Lunar Soft Lander

Authors: Johns Paul, Santhosh J. Nalluveettil, P. Purushothaman, M. Premdas

Abstract:

Lunar landing is one of the most critical phases of lunar mission. The lander is provided with a soft landing system to prevent structural damage of lunar module by absorbing the landing shock and also assure stability during landing. Presently available software are not capable to simulate the rigid body dynamics coupled with contact simulation and elastic/plastic deformation analysis. Hence a separate mathematical model has been generated for studying the dynamics of a typical lunar soft lander. Parameters used in the analysis includes lunar surface slope, coefficient of friction, initial touchdown velocity (vertical and horizontal), mass and moment of inertia of lander, crushing force due to energy absorbing material in the legs, number of legs and geometry of lander. The mathematical model is capable to simulate plastic and elastic deformation of honey comb, frictional force between landing leg and lunar soil, surface contact simulation, lunar gravitational force, rigid body dynamics and linkage dynamics of inverted tripod landing gear. The non linear differential equations generated for studying the dynamics of lunar lander is solved by numerical method. Matlab programme has been used as a computer tool for solving the numerical equations. The position of each kinematic joint is defined by mathematical equations for the generation of equation of motion. All hinged locations are defined by position vectors with respect to body fixed coordinate. The vehicle rigid body rotations and motions about body coordinate are only due to the external forces and moments arise from footpad reaction force due to impact, footpad frictional force and weight of vehicle. All these force are mathematically simulated for the generation of equation of motion. The validation of mathematical model is done by two different phases. First phase is the validation of plastic deformation of crushable elements by employing conservation of energy principle. The second phase is the validation of rigid body dynamics of model by simulating a lander model in ADAMS software after replacing the crushable elements to elastic spring element. Simulation of plastic deformation along with rigid body dynamics and contact force cannot be modeled in ADAMS. Hence plastic element of primary strut is replaced with a spring element and analysis is carried out in ADAMS software. The same analysis is also carried out using the mathematical model where the simulation of honeycomb crushing is replaced by elastic spring deformation and compared the results with ADAMS analysis. The rotational motion of linkages and 6 degree of freedom motion of lunar Lander about its CG can be validated by ADAMS software by replacing crushing element to spring element. The model is also validated by the drop test results of 4 leg lunar lander. This paper presents the details of mathematical model generated and its validation.

Keywords: honeycomb, landing leg tripod, lunar lander, primary link, secondary link

Procedia PDF Downloads 354
3219 Prediction of Mechanical Strength of Multiscale Hybrid Reinforced Cementitious Composite

Authors: Salam Alrekabi, A. B. Cundy, Mohammed Haloob Al-Majidi

Abstract:

Novel multiscale hybrid reinforced cementitious composites based on carbon nanotubes (MHRCC-CNT), and carbon nanofibers (MHRCC-CNF) are new types of cement-based material fabricated with micro steel fibers and nanofilaments, featuring superior strain hardening, ductility, and energy absorption. This study focused on established models to predict the compressive strength, and direct and splitting tensile strengths of the produced cementitious composites. The analysis was carried out based on the experimental data presented by the previous author’s study, regression analysis, and the established models that available in the literature. The obtained models showed small differences in the predictions and target values with experimental verification indicated that the estimation of the mechanical properties could be achieved with good accuracy.

Keywords: multiscale hybrid reinforced cementitious composites, carbon nanotubes, carbon nanofibers, mechanical strength prediction

Procedia PDF Downloads 164
3218 Characterization of Chemically Deposited CdS Thin Films Annealed in Different Atmospheres

Authors: J. Pantoja Enríquez, G. P. Hernández, G. I. Duharte, X. Mathew, J. Moreira, P. J. Sebastian

Abstract:

Cadmium sulfide films were deposited onto glass substrates by chemical bath deposition (CBD) from a bath containing cadmium acetate, ammonium acetate, thiourea, and ammonium hydroxide. The CdS thin films were annealed in air, argon, hydrogen and nitrogen for 1 h at various temperatures (300, 350, 400, 450 and 500 °C). The changes in optical and electrical properties of annealed treated CdS thin films were analyzed. The results showed that, the band-gap and resistivity depend on the post-deposition annealing atmosphere and temperatures. Thus, it was found that these properties of the films, were found to be affected by various processes with opposite effects, some beneficial and others unfavorable. The energy gap and resistivity for different annealing atmospheres was seen to oscillate by thermal annealing. Recrystallization, oxidation, surface passivation, sublimation and materials evaporation were found the main factors of the heat-treatment process responsible for this oscillating behavior. Annealing over 400 °C was seen to degrade the optical and electrical properties of the film.

Keywords: cds, thin films, annealing, optical, electrical properties

Procedia PDF Downloads 513
3217 Optimal Placement and Sizing of Distributed Generation in Microgrid for Power Loss Reduction and Voltage Profile Improvement

Authors: Ferinar Moaidi, Mahdi Moaidi

Abstract:

Environmental issues and the ever-increasing in demand of electrical energy make it necessary to have distributed generation (DG) resources in the power system. In this research, in order to realize the goals of reducing losses and improving the voltage profile in a microgrid, the allocation and sizing of DGs have been used. The proposed Genetic Algorithm (GA) is described from the array of artificial intelligence methods for solving the problem. The algorithm is implemented on the IEEE 33 buses network. This study is presented in two scenarios, primarily to illustrate the effect of location and determination of DGs has been done to reduce losses and improve the voltage profile. On the other hand, decisions made with the one-level assumptions of load are not universally accepted for all levels of load. Therefore, in this study, load modelling is performed and the results are presented for multi-levels load state.

Keywords: distributed generation, genetic algorithm, microgrid, load modelling, loss reduction, voltage improvement

Procedia PDF Downloads 148
3216 Assessing Traffic Calming Measures for Safe and Accessible Emergency Routes in Norrkoping City in Sweden

Authors: Ghazwan Al-Haji

Abstract:

Most accidents occur in urban areas, and the most related casualties are vulnerable road users (pedestrians and cyclists). The traffic calming measures (TCMs) are widely used and considered to be successful in reducing speed and traffic volume. However, TCMs create unwanted effects include: noise, emissions, energy consumption, vehicle delays and emergency response time (ERT). Different vertical and horizontal TCMs have been already applied nationally (Sweden) and internationally with different impacts. It is a big challenge among traffic engineers, planners, and policy-makers to choose and priorities the best TCMs to be implemented. This study will assess the existing guidelines for TCMs in relation to safety and ERT with focus on data from Norrkoping city in Sweden. The expected results will save lives, time, and money on particularly Swedish Roads. The study will also review newly technologies and how they can improve safety and reduce ERT.

Keywords: traffic calming measures, traffic safety, delay time, vulnerable road users

Procedia PDF Downloads 142