Search results for: Grey prediction model
12944 Social Business Models: When Profits and Impacts Are Not at Odds
Authors: Elisa Pautasso, Matteo Castagno, Michele Osella
Abstract:
In the last decade, the emergence of new social needs as an effect of the economic crisis has stimulated the flourishing of business endeavours characterised by explicit social goals. Social start-ups, social enterprises or Corporate Social Responsibility operations carried out by traditional companies are quintessential examples in this regard. This paper analyses these kinds of initiatives in order to discover the main characteristics of social business models and to provide insights to social entrepreneurs for developing or improving their strategies. The research is conducted through the integration of literature review and case study analysis and, thanks to the recognition of the importance of both profits and social impacts as the key success factors for a social business model, proposes a framework for identifying indicators suitable for measuring the social impacts generated.Keywords: business model, case study, impacts, social business
Procedia PDF Downloads 35312943 Multistep Thermal Degradation Kinetics: Pyrolysis of CaSO₄-Complex Obtained by Antiscaling Effect of Maleic-Anhydride Polymer
Authors: Yousef M. Al-Roomi, Kaneez Fatema Hussain
Abstract:
This work evaluates the thermal degradation kinetic parameters of CaSO₄-complex isolated after the inhibition effect of maleic-anhydride based polymer (YMR-polymers). Pyrolysis experiments were carried out at four heating rates (5, 10, 15 and 20°C/min). Several analytical model-free methods were used to determine the kinetic parameters, including Friedman, Coats and Redfern, Kissinger, Flynn-Wall-Ozawa and Kissinger-Akahira–Sunose methods. The Criado model fitting method based on real mechanism followed in thermal degradation of the complex has been applied to explain the degradation mechanism of CaSO₄-complex. In addition, a simple dynamic model was proposed over two temperature ranges for successive decomposition of CaSO₄-complex which has a combination of organic and inorganic part (adsorbed polymer + CaSO₄.2H₂O scale). The model developed enabled the assessment of pre-exponential factor (A) and apparent activation-energy (Eₐ) for both stages independently using a mathematical developed expression based on an integral solution. The unique reaction mechanism approach applied in this study showed that (Eₐ₁-160.5 kJ/mole) for organic decomposition (adsorbed polymer stage-I) has been lower than Eₐ₂-388 kJ/mole for the CaSO₄ decomposition (inorganic stage-II). Further adsorbed YMR-antiscalant not only reduced the decomposition temperature of CaSO₄-complex compared to CaSO₄-blank (CaSO₄.2H₂O scales in the absence of YMR-polymer) but also distorted the crystal lattice of the organic complex of CaSO₄ precipitates, destroying their compact and regular crystal structures observed from XRD and SEM studies.Keywords: CaSO₄-complex, maleic-anhydride polymers, thermal degradation kinetics and mechanism, XRD and SEM studies
Procedia PDF Downloads 12212942 Offender Rehabilitation: The Middle Way of Maimonides to Mental and Social Health
Authors: Liron Hoch
Abstract:
Traditional religious and spiritual texts offer a surprising wealth of relevant theoretical and practical knowledge about human behavior. This wellspring may contribute significantly to expanding our current body of knowledge in the social sciences and criminology in particular. In Jewish religious texts, specifically by Maimonides, we can find profound analyses of human traits and guidelines for a normative way of life. Among other things, modern criminological literature attempts to link certain character traits and divergent behaviors. Using the hermeneutic phenomenological approach, we analyzed the writings of Maimonides, mainly Laws of Human Dispositions, in order to understand Moses ben Maimon's (1138–1204) view of character traits. The analysis yielded four themes: (1) Human personality between nature and nurture; (2) The complexity of human personality, imbalance and criminality; (3) Extremism as a way to achieve balance; and (4) The Middle Way, flexibility and common sense. These themes can serve therapeutic purposes, as well as inform a rehabilitation model. Grounded in a theoretical rationale about the nature of humans, this model is designed to direct individuals to balance their traits by self-reflection and constant practice of the Middle Way. The proposal we will present is that implementing this model may promote normative behavior and thus contribute to rehabilitating offenders.Keywords: rehabilitation, traits, offenders, maimonides, middle way
Procedia PDF Downloads 7212941 The Relationship between the Skill Mix Model and Patient Mortality: A Systematic Review
Authors: Yi-Fung Lin, Shiow-Ching Shun, Wen-Yu Hu
Abstract:
Background: A skill mix model is regarded as one of the most effective methods of reducing nursing shortages, as well as easing nursing staff workloads and labor costs. Although this model shows several benefits for the health workforce, the relationship between the optimal model of skill mix and the patient mortality rate remains to be discovered. Objectives: This review aimed to explore the relationship between the skill mix model and patient mortality rate in acute care hospitals. Data Sources: A systematic search of the PubMed, Web of Science, Embase, and Cochrane Library databases and researchers retrieved studies published between January 1986 and March 2022. Review methods: Two independent reviewers screened the titles and abstracts based on selection criteria, extracted the data, and performed critical appraisals using the STROBE checklist of each included study. The studies focused on adult patients in acute care hospitals, and the skill mix model and patient mortality rate were included in the analysis. Results: Six included studies were conducted in the USA, Canada, Italy, Taiwan, and European countries (Belgium, England, Finland, Ireland, Spain, and Switzerland), including patients in medical, surgical, and intensive care units. There were both nurses and nursing assistants in their skill mix team. This main finding is that three studies (324,592 participants) show evidence of fewer mortality rates associated with hospitals with a higher percentage of registered nurse staff (range percentage of registered nurse staff 36.1%-100%), but three articles (1,122,270 participants) did not find the same result (range of percentage of registered nurse staff 46%-96%). However, based on appraisal findings, those showing a significant association all meet good quality standards, but only one-third of their counterparts. Conclusions: In light of the limited amount and quality of published research in this review, it is prudent to treat the findings with caution. Although the evidence is not insufficient certainty to draw conclusions about the relationship between nurse staffing level and patients' mortality, this review lights the direction of relevant studies in the future. The limitation of this article is the variation in skill mix models among countries and institutions, making it impossible to do a meta-analysis to compare them further.Keywords: nurse staffing level, nursing assistants, mortality, skill mix
Procedia PDF Downloads 12112940 Exploring Deep Neural Network Compression: An Overview
Authors: Ghorab Sara, Meziani Lila, Rubin Harvey Stuart
Abstract:
The rapid growth of deep learning has led to intricate and resource-intensive deep neural networks widely used in computer vision tasks. However, their complexity results in high computational demands and memory usage, hindering real-time application. To address this, research focuses on model compression techniques. The paper provides an overview of recent advancements in compressing neural networks and categorizes the various methods into four main approaches: network pruning, quantization, network decomposition, and knowledge distillation. This paper aims to provide a comprehensive outline of both the advantages and limitations of each method.Keywords: model compression, deep neural network, pruning, knowledge distillation, quantization, low-rank decomposition
Procedia PDF Downloads 5012939 Transition from Linear to Circular Business Models with Service Design Methodology
Authors: Minna-Maari Harmaala, Hanna Harilainen
Abstract:
Estimates of the economic value of transitioning to circular economy models vary but it has been estimated to represent $1 trillion worth of new business into the global economy. In Europe alone, estimates claim that adopting circular-economy principles could not only have environmental and social benefits but also generate a net economic benefit of €1.8 trillion by 2030. Proponents of a circular economy argue that it offers a major opportunity to increase resource productivity, decrease resource dependence and waste, and increase employment and growth. A circular system could improve competitiveness and unleash innovation. Yet, most companies are not capturing these opportunities and thus the even abundant circular opportunities remain uncaptured even though they would seem inherently profitable. Service design in broad terms relates to developing an existing or a new service or service concept with emphasis and focus on the customer experience from the onset of the development process. Service design may even mean starting from scratch and co-creating the service concept entirely with the help of customer involvement. Service design methodologies provide a structured way of incorporating customer understanding and involvement in the process of designing better services with better resonance to customer needs. A business model is a depiction of how the company creates, delivers, and captures value; i.e. how it organizes its business. The process of business model development and adjustment or modification is also called business model innovation. Innovating business models has become a part of business strategy. Our hypothesis is that in addition to linear models still being easier to adopt and often with lower threshold costs, companies lack an understanding of how circular models can be adopted into their business and how customers will be willing and ready to adopt the new circular business models. In our research, we use robust service design methodology to develop circular economy solutions with two case study companies. The aim of the process is to not only develop the service concepts and portfolio, but to demonstrate the willingness to adopt circular solutions exists in the customer base. In addition to service design, we employ business model innovation methods to develop, test, and validate the new circular business models further. The results clearly indicate that amongst the customer groups there are specific customer personas that are willing to adopt and in fact are expecting the companies to take a leading role in the transition towards a circular economy. At the same time, there is a group of indifferents, to whom the idea of circularity provides no added value. In addition, the case studies clearly show what changes adoption of circular economy principles brings to the existing business model and how they can be integrated.Keywords: business model innovation, circular economy, circular economy business models, service design
Procedia PDF Downloads 14212938 Discovering the Effects of Meteorological Variables on the Air Quality of Bogota, Colombia, by Data Mining Techniques
Authors: Fabiana Franceschi, Martha Cobo, Manuel Figueredo
Abstract:
Bogotá, the capital of Colombia, is its largest city and one of the most polluted in Latin America due to the fast economic growth over the last ten years. Bogotá has been affected by high pollution events which led to the high concentration of PM10 and NO2, exceeding the local 24-hour legal limits (100 and 150 g/m3 each). The most important pollutants in the city are PM10 and PM2.5 (which are associated with respiratory and cardiovascular problems) and it is known that their concentrations in the atmosphere depend on the local meteorological factors. Therefore, it is necessary to establish a relationship between the meteorological variables and the concentrations of the atmospheric pollutants such as PM10, PM2.5, CO, SO2, NO2 and O3. This study aims to determine the interrelations between meteorological variables and air pollutants in Bogotá, using data mining techniques. Data from 13 monitoring stations were collected from the Bogotá Air Quality Monitoring Network within the period 2010-2015. The Principal Component Analysis (PCA) algorithm was applied to obtain primary relations between all the parameters, and afterwards, the K-means clustering technique was implemented to corroborate those relations found previously and to find patterns in the data. PCA was also used on a per shift basis (morning, afternoon, night and early morning) to validate possible variation of the previous trends and a per year basis to verify that the identified trends have remained throughout the study time. Results demonstrated that wind speed, wind direction, temperature, and NO2 are the most influencing factors on PM10 concentrations. Furthermore, it was confirmed that high humidity episodes increased PM2,5 levels. It was also found that there are direct proportional relationships between O3 levels and wind speed and radiation, while there is an inverse relationship between O3 levels and humidity. Concentrations of SO2 increases with the presence of PM10 and decreases with the wind speed and wind direction. They proved as well that there is a decreasing trend of pollutant concentrations over the last five years. Also, in rainy periods (March-June and September-December) some trends regarding precipitations were stronger. Results obtained with K-means demonstrated that it was possible to find patterns on the data, and they also showed similar conditions and data distribution among Carvajal, Tunal and Puente Aranda stations, and also between Parque Simon Bolivar and las Ferias. It was verified that the aforementioned trends prevailed during the study period by applying the same technique per year. It was concluded that PCA algorithm is useful to establish preliminary relationships among variables, and K-means clustering to find patterns in the data and understanding its distribution. The discovery of patterns in the data allows using these clusters as an input to an Artificial Neural Network prediction model.Keywords: air pollution, air quality modelling, data mining, particulate matter
Procedia PDF Downloads 26212937 Impact of the Hayne Royal Commission on the Operating Model of Australian Financial Advice Firms
Authors: Mohammad Abu-Taleb
Abstract:
The final report of the Royal Commission into Australian financial services misconduct, released in February 2019, has had a significant impact on the financial advice industry. The recommendations released in the Commissioner’s final report include changes to ongoing fee arrangements, a new disciplinary system for financial advisers, and mandatory reporting of compliance concerns. This thesis aims to explore the impact of the Royal Commission’s recommendations on the operating model of financial advice firms in terms of advice products, processes, delivery models, and customer segments. Also, this research seeks to investigate whether the Royal Commission’s outcome has accelerated the use of enhanced technology solutions within the operating model of financial advice firms. And to identify the key challenges confronting financial advice firms whilst implementing the Commissioner’s recommendations across their operating models. In order to achieve the objectives of this thesis, a qualitative research design has been adopted through semi-structured in-depth interviews with 24 financial advisers and managers who are engaged in the operation of financial advice services. The study used the thematic analysis approach to interpret the qualitative data collected from the interviews. The findings of this thesis reveal that customer-centric operating models will become more prominent across the financial advice industry in response to the Commissioner’s final report. And the Royal Commission’s outcome has accelerated the use of advice technology solutions within the operating model of financial advice firms. In addition, financial advice firms have started more than before using simpler and more automated web-based advice services, which enable financial advisers to provide simple advice in a greater scale, and also to accelerate the use of robo-advice models and digital delivery to mass customers in the long term. Furthermore, the study identifies process and technology changes as, long with technical and interpersonal skills development, as the key challenges encountered financial advice firms whilst implementing the Commissioner’s recommendations across their operating models.Keywords: hayne royal commission, financial planning advice, operating model, advice products, advice processes, delivery models, customer segments, digital advice solutions
Procedia PDF Downloads 9212936 The Development of Online Lessons in Integration Model
Authors: Chalermpol Tapsai
Abstract:
The objectives of this research were to develop and find the efficiency of integrated online lessons by investigating the usage of online lessons, the relationship between learners’ background knowledge, and the achievement after learning with online lessons. The sample group in this study consisted of 97 students randomly selected from 121 students registering in 1/2012 at Trimitwittayaram Learning Center. The sample technique employed stratified sample technique of 4 groups according to their proficiency, i.e. high, moderate, low, and non-knowledge. The research instrument included online lessons in integration model on the topic of Java Programming, test after each lesson, the achievement test at the end of the course, and the questionnaires to find learners’ satisfaction. The results showed that the efficiency of online lessons was 90.20/89.18 with the achievement of after learning with the lessons higher than that before the lessons at the statistically significant level of 0.05. Moreover, the background knowledge of the learners on the programming showed the positive relationship with the achievement learning at the statistically significant level at 0.05. Learners with high background knowledge employed less exercises and samples than those with lower background knowledge. While learners with different background in the group of moderate and low did not show the significant difference in employing samples and exercises.Keywords: integration model, online lessons, learners’ background knowledge, efficiency
Procedia PDF Downloads 36112935 A Case Study on Machine Learning-Based Project Performance Forecasting for an Urban Road Reconstruction Project
Authors: Soheila Sadeghi
Abstract:
In construction projects, predicting project performance metrics accurately is essential for effective management and successful delivery. However, conventional methods often depend on fixed baseline plans, disregarding the evolving nature of project progress and external influences. To address this issue, we introduce a distinct approach based on machine learning to forecast key performance indicators, such as cost variance and earned value, for each Work Breakdown Structure (WBS) category within an urban road reconstruction project. Our proposed model leverages time series forecasting techniques, namely Autoregressive Integrated Moving Average (ARIMA) and Long Short-Term Memory (LSTM) networks, to predict future performance by analyzing historical data and project progress. Additionally, the model incorporates external factors, including weather patterns and resource availability, as features to improve forecast accuracy. By harnessing the predictive capabilities of machine learning, our performance forecasting model enables project managers to proactively identify potential deviations from the baseline plan and take timely corrective measures. To validate the effectiveness of the proposed approach, we conduct a case study on an urban road reconstruction project, comparing the model's predictions with actual project performance data. The outcomes of this research contribute to the advancement of project management practices in the construction industry by providing a data-driven solution for enhancing project performance monitoring and control.Keywords: project performance forecasting, machine learning, time series forecasting, cost variance, schedule variance, earned value management
Procedia PDF Downloads 4312934 Study of Transport in Electronic Devices with Stochastic Monte Carlo Method: Modeling and Simulation along with Submicron Gate (Lg=0.5um)
Authors: N. Massoum, B. Bouazza
Abstract:
In this paper, we have developed a numerical simulation model to describe the electrical properties of GaInP MESFET with submicron gate (Lg = 0.5 µm). This model takes into account the three-dimensional (3D) distribution of the load in the short channel and the law effect of mobility as a function of electric field. Simulation software based on a stochastic method such as Monte Carlo has been established. The results are discussed and compared with those of the experiment. The result suggests experimentally that, in a very small gate length in our devices (smaller than 40 nm), short-channel tunneling explains the degradation of transistor performance, which was previously enhanced by velocity overshoot.Keywords: Monte Carlo simulation, transient electron transport, MESFET device, simulation software
Procedia PDF Downloads 51512933 Social Entrepreneurship on Islamic Perspective: Identifying Research Gap
Authors: Mohd Adib Abd Muin, Shuhairimi Abdullah, Azizan Bahari
Abstract:
Problem: The research problem is lacking of model on social entrepreneurship that focus on Islamic perspective. Objective: The objective of this paper is to analyse the existing model on social entrepreneurship and to identify the research gap on Islamic perspective from existing models. Research Methodology: The research method used in this study is literature review and comparative analysis from 6 existing models of social entrepreneurship. Finding: The research finding shows that 6 existing models on social entrepreneurship has been analysed and it shows that the existing models on social entrepreneurship do not emphasize on Islamic perspective.Keywords: social entrepreneurship, Islamic perspective, research gap, business management
Procedia PDF Downloads 36112932 Sensitivity of the Estimated Output Energy of the Induction Motor to both the Asymmetry Supply Voltage and the Machine Parameters
Authors: Eyhab El-Kharashi, Maher El-Dessouki
Abstract:
The paper is dedicated to precise assessment of the induction motor output energy during the unbalanced operation. Since many years ago and until now the voltage complex unbalance factor (CVUF) is used only to assess the output energy of the induction motor while this output energy for asymmetry supply voltage does not depend on the value of unbalanced voltage only but also on the machine parameters. The paper illustrates the variation of the two unbalance factors, complex voltage unbalance factor (CVUF) and impedance unbalance factor (IUF), with positive sequence voltage component, reveals that degree and manner of unbalance in supply voltage. From this point of view the paper delineates the current unbalance factor (CUF) to exactly reflect the output energy during unbalanced operation. The paper proceeds to illustrate the importance of using this factor in the multi-machine system to precise prediction of the output energy during the unbalanced operation. The use of the proposed unbalance factor (CUF) avoids the accumulation of the error due to more than one machine in the system which is expected if only the complex voltage unbalance factor (CVUF) is used.Keywords: induction motor, electromagnetic torque, voltage unbalance, energy conversion
Procedia PDF Downloads 56112931 In vitro Estimation of Genotoxic Lesions in Peripheral Blood Lymphocytes of Rat Exposed to Organophosphate Pesticides
Authors: A. Ojha, Y. K. Gupta
Abstract:
Organophosphate (OP) pesticides are among the most widely used synthetic chemicals for controlling a wide variety of pests throughout the world. Chlorpyrifos (CPF), methyl parathion (MPT), and malathion (MLT) are among the most extensively used OP pesticides in India. DNA strand breaks and DNA-protein crosslinks (DPC) are toxic lesions associated with the mechanisms of toxicity of genotoxic compounds. In the present study, we have examined the potential of CPF, MPT, and MLT individually and in combination, to cause DNA strand breakage and DPC formation. Peripheral blood lymphocytes of rat were exposed to 1/4 and 1/10 LC50 dose of CPF, MPT, and MLT for 2, 4, 8, and 12h. The DNA strand break was measured by the comet assay and expressed as DNA damage index while DPC estimation was done by fluorescence emission. There was significantly marked increase in DNA damage and DNA-protein crosslink formation in time and dose dependent manner. It was also observed that MPT caused the highest level of DNA damage as compared to other studied OP compounds. Thus, from present study, we can conclude that studied pesticides have genotoxic potential. The pesticides mixture does not potentiate the toxicity of each other. Nonetheless, additional in vivo data are required before a definitive conclusion can be drawn regarding hazard prediction to humans.Keywords: organophosphate, pesticides, DNA damage, DNA protein crosslink, genotoxic
Procedia PDF Downloads 35812930 Level of Application of Integrated Talent Management According To IBM Institute for Business Value Case Study Palestinian Governmental Agencies in Gaza Strip
Authors: Iyad A. A. Abusahloub
Abstract:
This research aimed to measure the level of perception and application of Integrated Talent Management according to IBM standards, by the upper and middle categories in Palestinian government institutions in Gaza, using a descriptive-analytical method. Using a questionnaire based on the standards of the IBM Institute for Business Value, the researcher added a second section to measure the perception of integrated talent management, the sample was 248 managers. The SPSS package was used for statistical analysis. The results showed that government institutions in Gaza apply Integrated Talent Management according to IBM standards at a medium degree did not exceed 59.8%, there is weakness in the perception of integrated talent management at the level of 53.6%, and there is a strong correlation between (Integrated Talent Management) and (the perception of the integrated talent management) amounted to 92.9%, and 88.9% of the change in the perception of the integrated talent management is by (motivate and develop, deploy and manage, connect and enable, and transform and sustain) talents, and 11.1% is by other factors. Conclusion: This study concluded that the integrated talent management model presented by IBM with its six dimensions is an effective model to reach your awareness and understanding of talent management, especially that it must rely on at least four basic dimensions out of the six dimensions: 1- Stimulating and developing talent. 2- Organizing and managing talent. 3- Connecting with talent and empowering it. 4- Succession and sustainability of talent. Therefore, this study recommends the adoption of the integrated talent management model provided by IBM to any organization across the world, regardless of its specialization or size, to reach talent sustainability.Keywords: HR, talent, talent management, IBM
Procedia PDF Downloads 8812929 The Role of Vocabulary in Reading Comprehension
Authors: Engku Haliza Engku Ibrahim, Isarji Sarudin, Ainon Jariah Muhamad
Abstract:
It is generally agreed that many factors contribute to one’s reading comprehension and there is consensus that vocabulary size one of the main factors. This study explores the relationship between second language learners’ vocabulary size and their reading comprehension scores. 130 Malay pre-university students of a public university participated in this study. They were students of an intensive English language programme doing preparatory English courses to pursue bachelors degree in English. A quantitative research method was employed based on the Vocabulary Levels Test by Nation (1990) and the reading comprehension score of the in-house English Proficiency Test. A review of the literature indicates that a somewhat positive correlation is to be expected though findings of this study can only be explicated once the final analysis has been carried out. This is an ongoing study and it is anticipated that results of this research will be finalized in the near future. The findings will help provide beneficial implications for the prediction of reading comprehension performance. It also has implications for the teaching of vocabulary in the ESL context. A better understanding of the relationship between vocabulary size and reading comprehension scores will enhance teachers’ and students’ awareness of the importance of vocabulary acquisition in the L2 classroom.Keywords: vocabulary size, vocabulary learning, reading comprehension, ESL
Procedia PDF Downloads 45412928 Deep Reinforcement Learning Model Using Parameterised Quantum Circuits
Authors: Lokes Parvatha Kumaran S., Sakthi Jay Mahenthar C., Sathyaprakash P., Jayakumar V., Shobanadevi A.
Abstract:
With the evolution of technology, the need to solve complex computational problems like machine learning and deep learning has shot up. But even the most powerful classical supercomputers find it difficult to execute these tasks. With the recent development of quantum computing, researchers and tech-giants strive for new quantum circuits for machine learning tasks, as present works on Quantum Machine Learning (QML) ensure less memory consumption and reduced model parameters. But it is strenuous to simulate classical deep learning models on existing quantum computing platforms due to the inflexibility of deep quantum circuits. As a consequence, it is essential to design viable quantum algorithms for QML for noisy intermediate-scale quantum (NISQ) devices. The proposed work aims to explore Variational Quantum Circuits (VQC) for Deep Reinforcement Learning by remodeling the experience replay and target network into a representation of VQC. In addition, to reduce the number of model parameters, quantum information encoding schemes are used to achieve better results than the classical neural networks. VQCs are employed to approximate the deep Q-value function for decision-making and policy-selection reinforcement learning with experience replay and the target network.Keywords: quantum computing, quantum machine learning, variational quantum circuit, deep reinforcement learning, quantum information encoding scheme
Procedia PDF Downloads 13912927 Systematic Study of Structure Property Relationship in Highly Crosslinked Elastomers
Authors: Natarajan Ramasamy, Gurulingamurthy Haralur, Ramesh Nivarthu, Nikhil Kumar Singha
Abstract:
Elastomers are polymeric materials with varied backbone architectures ranging from linear to dendrimeric structures and wide varieties of monomeric repeat units. These elastomers show strongly viscous and weakly elastic when it is not cross-linked. But when crosslinked, based on the extent the properties of these elastomers can range from highly flexible to highly stiff nature. Lightly cross-linked systems are well studied and reported. Understanding the nature of highly cross-linked rubber based upon chemical structure and architecture is critical for varieties of applications. One of the critical parameters is cross-link density. In the current work, we have studied the highly cross-linked state of linear, lightly branched to star-shaped branched elastomers and determined the cross-linked density by using different models. Change in hardness, shift in Tg, change in modulus and swelling behavior were measured experimentally as a function of the extent of curing. These properties were analyzed using varied models to determine cross-link density. We used hardness measurements to examine cure time. Hardness to the extent of curing relationship is determined. It is well known that micromechanical transitions like Tg and storage modulus are related to the extent of crosslinking. The Tg of the elastomer in different crosslinked state was determined by DMA, and based on plateau modulus the crosslink density is estimated by using Nielsen’s model. Usually for lightly crosslinked systems, based on equilibrium swelling ratio in solvent the cross link density is estimated by using Flory–Rhener model. When it comes to highly crosslinked system, Flory-Rhener model is not valid because of smaller chain length. So models based on the assumption of polymer as a Non-Gaussian chain like 1) Helmis–Heinrich–Straube (HHS) model, 2) Gloria M.gusler and Yoram Cohen Model, 3) Barbara D. Barr-Howell and Nikolaos A. Peppas model is used for estimating crosslink density. In this work, correction factors are determined to the existing models and based upon it structure-property relationship of highly crosslinked elastomers was studied.Keywords: dynamic mechanical analysis, glass transition temperature, parts per hundred grams of rubber, crosslink density, number of networks per unit volume of elastomer
Procedia PDF Downloads 16812926 The Prototype of the Solar Energy Utilization for the Finding Sustainable Conditions in the Future: The Solar Community with 4000 Dwellers 960 Families, equal to 480 Solar Dwelling Houses and 32 Mansion Buildings (480 Dwellers)
Authors: Kunihisa Kakumoto
Abstract:
This technical paper is for the prototype of solar energy utilization for finding sustainable conditions. This model has been simulated under the climate conditions in Japan. At the beginning of the study, the solar model house was built up on site. And the concerned data was collected in this model house for several years. On the basis of these collected data, the concept on the solar community was built up. For the finding sustainable conditions, the amount of the solar energy generation and its reduction of carbon dioxide and the reduction of carbon dioxide by the green planting and the amount of carbon dioxide according to the normal daily life in the solar community and the amount of the necessary water for the daily life in the solar community and the amount of the water supply by the rainfall on-site were calculated. These all values were taken into consideration. The relations between each calculated result are shown in the expression of inequality. This solar community and its consideration for finding sustainable conditions can be one prototype to do the feasibility study for our life in the futureKeywords: carbon dioxide, green planting, smart city, solar community, sustainable condition, water activity
Procedia PDF Downloads 29112925 An Information Matrix Goodness-of-Fit Test of the Conditional Logistic Model for Matched Case-Control Studies
Authors: Li-Ching Chen
Abstract:
The case-control design has been widely applied in clinical and epidemiological studies to investigate the association between risk factors and a given disease. The retrospective design can be easily implemented and is more economical over prospective studies. To adjust effects for confounding factors, methods such as stratification at the design stage and may be adopted. When some major confounding factors are difficult to be quantified, a matching design provides an opportunity for researchers to control the confounding effects. The matching effects can be parameterized by the intercepts of logistic models and the conditional logistic regression analysis is then adopted. This study demonstrates an information-matrix-based goodness-of-fit statistic to test the validity of the logistic regression model for matched case-control data. The asymptotic null distribution of this proposed test statistic is inferred. It needs neither to employ a simulation to evaluate its critical values nor to partition covariate space. The asymptotic power of this test statistic is also derived. The performance of the proposed method is assessed through simulation studies. An example of the real data set is applied to illustrate the implementation of the proposed method as well.Keywords: conditional logistic model, goodness-of-fit, information matrix, matched case-control studies
Procedia PDF Downloads 29512924 Grammar as a Logic of Labeling: A Computer Model
Authors: Jacques Lamarche, Juhani Dickinson
Abstract:
This paper introduces a computational model of a Grammar as Logic of Labeling (GLL), where the lexical primitives of morphosyntax are phonological matrixes, the form of words, understood as labels that apply to realities (or targets) assumed to be outside of grammar altogether. The hypothesis is that even though a lexical label relates to its target arbitrarily, this label in a complex (constituent) label is part of a labeling pattern which, depending on its value (i.e., N, V, Adj, etc.), imposes language-specific restrictions on what it targets outside of grammar (in the world/semantics or in cognitive knowledge). Lexical forms categorized as nouns, verbs, adjectives, etc., are effectively targets of labeling patterns in use. The paper illustrates GLL through a computer model of basic patterns in English NPs. A constituent label is a binary object that encodes: i) alignment of input forms so that labels occurring at different points in time are understood as applying at once; ii) endocentric structuring - every grammatical constituent has a head label that determines the target of the constituent, and a limiter label (the non-head) that restricts this target. The N or A values are restricted to limiter label, the two differing in terms of alignment with a head. Consider the head initial DP ‘the dog’: the label ‘dog’ gets an N value because it is a limiter that is evenly aligned with the head ‘the’, restricting application of the DP. Adapting a traditional analysis of ‘the’ to GLL – apply label to something familiar – the DP targets and identifies one reality familiar to participants by applying to it the label ‘dog’ (singular). Consider next the DP ‘the large dog’: ‘large dog’ is nominal by even alignment with ‘the’, as before, and since ‘dog’ is the head of (head final) ‘large dog’, it is also nominal. The label ‘large’, however, is adjectival by narrow alignment with the head ‘dog’: it doesn’t target the head but targets a property of what dog applies to (a property or value of attribute). In other words, the internal composition of constituents determines that a form targets a property or a reality: ‘large’ and ‘dog’ happen to be valid targets to realize this constituent. In the presentation, the computer model of the analysis derives the 8 possible sequences of grammatical values with three labels after the determiner (the x y z): 1- D [ N [ N N ]]; 2- D [ A [ N N ] ]; 3- D [ N [ A N ] ]; 4- D [ A [ A N ] ]; 5- D [ [ N N ] N ]; 5- D [ [ A N ] N ]; 6- D [ [ N A ] N ] 7- [ [ N A ] N ] 8- D [ [ Adv A ] N ]. This approach that suggests that a computer model of these grammatical patterns could be used to construct ontologies/knowledge using speakers’ judgments about the validity of lexical meaning in grammatical patterns.Keywords: syntactic theory, computational linguistics, logic and grammar, semantics, knowledge and grammar
Procedia PDF Downloads 4412923 Non-Targeted Adversarial Object Detection Attack: Fast Gradient Sign Method
Authors: Bandar Alahmadi, Manohar Mareboyana, Lethia Jackson
Abstract:
Today, there are many applications that are using computer vision models, such as face recognition, image classification, and object detection. The accuracy of these models is very important for the performance of these applications. One challenge that facing the computer vision models is the adversarial examples attack. In computer vision, the adversarial example is an image that is intentionally designed to cause the machine learning model to misclassify it. One of very well-known method that is used to attack the Convolution Neural Network (CNN) is Fast Gradient Sign Method (FGSM). The goal of this method is to find the perturbation that can fool the CNN using the gradient of the cost function of CNN. In this paper, we introduce a novel model that can attack Regional-Convolution Neural Network (R-CNN) that use FGSM. We first extract the regions that are detected by R-CNN, and then we resize these regions into the size of regular images. Then, we find the best perturbation of the regions that can fool CNN using FGSM. Next, we add the resulted perturbation to the attacked region to get a new region image that looks similar to the original image to human eyes. Finally, we placed the regions back to the original image and test the R-CNN with the attacked images. Our model could drop the accuracy of the R-CNN when we tested with Pascal VOC 2012 dataset.Keywords: adversarial examples, attack, computer vision, image processing
Procedia PDF Downloads 19712922 Proposal of a Model Supporting Decision-Making on Information Security Risk Treatment
Authors: Ritsuko Kawasaki, Takeshi Hiromatsu
Abstract:
Management is required to understand all information security risks within an organization, and to make decisions on which information security risks should be treated in what level by allocating how much amount of cost. However, such decision-making is not usually easy, because various measures for risk treatment must be selected with the suitable application levels. In addition, some measures may have objectives conflicting with each other. It also makes the selection difficult. Therefore, this paper provides a model which supports the selection of measures by applying multi-objective analysis to find an optimal solution. Additionally, a list of measures is also provided to make the selection easier and more effective without any leakage of measures.Keywords: information security risk treatment, selection of risk measures, risk acceptance, multi-objective optimization
Procedia PDF Downloads 38312921 Financial Inclusion for Inclusive Growth in an Emerging Economy
Authors: Godwin Chigozie Okpara, William Chimee Nwaoha
Abstract:
The paper set out to stress on how financial inclusion index could be calculated and also investigated the impact of inclusive finance on inclusive growth in an emerging economy. In the light of these objectives, chi-wins method was used to calculate indexes of financial inclusion while co-integration and error correction model were used for evaluation of the impact of financial inclusion on inclusive growth. The result of the analysis revealed that financial inclusion while having a long-run relationship with GDP growth is an insignificant function of the growth of the economy. The speed of adjustment is correctly signed and significant. On the basis of these results, the researchers called for tireless efforts of government and banking sector in promoting financial inclusion in developing countries.Keywords: chi-wins index, co-integration, error correction model, financial inclusion
Procedia PDF Downloads 65812920 Intelligent Diagnostic System of the Onboard Measuring Devices
Authors: Kyaw Zin Htut
Abstract:
In this article, the synthesis of the efficiency of intelligent diagnostic system in the aircraft measuring devices is described. The technology developments of the diagnostic system are considered based on the model errors of the gyro instruments, which are used to measure the parameters of the aircraft. The synthesis of the diagnostic intelligent system is considered on the example of the problem of assessment and forecasting errors of the gyroscope devices on the onboard aircraft. The result of the system is to detect of faults of the aircraft measuring devices as well as the analysis of the measuring equipment to improve the efficiency of its work.Keywords: diagnostic, dynamic system, errors of gyro instruments, model errors, assessment, prognosis
Procedia PDF Downloads 40212919 A Study of Social Media Users’ Switching Behavior
Authors: Chiao-Chen Chang, Yang-Chieh Chin
Abstract:
Social media has created a change in the way the network community is clustered, especially from the location of the community, from the original virtual space to the intertwined network, and thus the communication between people will change from face to face communication to social media-based communication model. However, social media users who have had a fixed engagement may have an intention to switch to another service provider because of the emergence of new forms of social media. For example, some of Facebook or Twitter users switched to Instagram in 2014 because of social media messages or image overloads, and users may seek simpler and instant social media to become their main social networking tool. This study explores the impact of system features overload, information overload, social monitoring concerns, problematic use and privacy concerns as the antecedents on social media fatigue, dissatisfaction, and alternative attractiveness; further influence social media switching. This study also uses the online questionnaire survey method to recover the sample data, and then confirm the factor analysis, path analysis, model fit analysis and mediating analysis with the structural equation model (SEM). Research findings demonstrated that there were significant effects on multiple paths. Based on the research findings, this study puts forward the implications of theory and practice.Keywords: social media, switching, social media fatigue, alternative attractiveness
Procedia PDF Downloads 14512918 Novel Adaptive Radial Basis Function Neural Networks Based Approach for Short-Term Load Forecasting of Jordanian Power Grid
Authors: Eyad Almaita
Abstract:
In this paper, a novel adaptive Radial Basis Function Neural Networks (RBFNN) algorithm is used to forecast the hour by hour electrical load demand in Jordan. A small and effective RBFNN model is used to forecast the hourly total load demand based on a small number of features. These features are; the load in the previous day, the load in the same day in the previous week, the temperature in the same hour, the hour number, the day number, and the day type. The proposed adaptive RBFNN model can enhance the reliability of the conventional RBFNN after embedding the network in the system. This is achieved by introducing an adaptive algorithm that allows the change of the weights of the RBFNN after the training process is completed, which will eliminates the need to retrain the RBFNN model again. The data used in this paper is real data measured by National Electrical Power co. (Jordan). The data for the period Jan./2012-April/2013 is used train the RBFNN models and the data for the period May/2013- Sep. /2013 is used to validate the models effectiveness.Keywords: load forecasting, adaptive neural network, radial basis function, short-term, electricity consumption
Procedia PDF Downloads 35212917 Performance Evaluation and Dear Based Optimization on Machining Leather Specimens to Reduce Carbonization
Authors: Khaja Moiduddin, Tamer Khalaf, Muthuramalingam Thangaraj
Abstract:
Due to the variety of benefits over traditional cutting techniques, the usage of laser cutting technology has risen substantially in recent years. Hot wire machining can cut the leather in the required shape by controlling the wire by generating thermal energy. In the present study, an attempt has been made to investigate the effects of performance measures in the hot wire machining process on cutting leather specimens. Carbonization and material removal rates were considered as quality indicators. Burning leather during machining might cause carbon particles, reducing product quality. Minimizing the effect of carbon particles is crucial for assuring operator and environmental safety, health, and product quality. Hot wire machining can efficiently cut the specimens by controlling the current through it. Taguchi- DEAR-based optimization was also performed in the process, which resulted in a required Carbonization and material removal rate. Using the DEAR approach, the optimal parameters of the present study were found with 3.7% prediction error accuracy.Keywords: cabronization, leather, MRR, current
Procedia PDF Downloads 6712916 Study the Relationship amongst Digital Finance, Renewable Energy, and Economic Development of Least Developed Countries
Authors: Fatima Sohail, Faizan Iftikhar
Abstract:
This paper studies the relationship between digital finance, renewable energy, and the economic development of Pakistan and least developed countries from 2000 to 2022. The paper used panel analysis and generalized method of moments Arellano-Bond approaches. The findings show that under the growth model, renewable energy (RE) has a strong and favorable link with fixed broadband and mobile subscribers. However, FB and MD have a strong but negative association with the uptake of renewable energy (RE) in the average and simple model. This paper provides valuable insights for policymakers, investors of the digital economy.Keywords: digital finance, renewable energy, economic development, mobile subscription, fixed broadband
Procedia PDF Downloads 4612915 Causal Estimation for the Left-Truncation Adjusted Time-Varying Covariates under the Semiparametric Transformation Models of a Survival Time
Authors: Yemane Hailu Fissuh, Zhongzhan Zhang
Abstract:
In biomedical researches and randomized clinical trials, the most commonly interested outcomes are time-to-event so-called survival data. The importance of robust models in this context is to compare the effect of randomly controlled experimental groups that have a sense of causality. Causal estimation is the scientific concept of comparing the pragmatic effect of treatments conditional to the given covariates rather than assessing the simple association of response and predictors. Hence, the causal effect based semiparametric transformation model was proposed to estimate the effect of treatment with the presence of possibly time-varying covariates. Due to its high flexibility and robustness, the semiparametric transformation model which shall be applied in this paper has been given much more attention for estimation of a causal effect in modeling left-truncated and right censored survival data. Despite its wide applications and popularity in estimating unknown parameters, the maximum likelihood estimation technique is quite complex and burdensome in estimating unknown parameters and unspecified transformation function in the presence of possibly time-varying covariates. Thus, to ease the complexity we proposed the modified estimating equations. After intuitive estimation procedures, the consistency and asymptotic properties of the estimators were derived and the characteristics of the estimators in the finite sample performance of the proposed model were illustrated via simulation studies and Stanford heart transplant real data example. To sum up the study, the bias of covariates was adjusted via estimating the density function for truncation variable which was also incorporated in the model as a covariate in order to relax the independence assumption of failure time and truncation time. Moreover, the expectation-maximization (EM) algorithm was described for the estimation of iterative unknown parameters and unspecified transformation function. In addition, the causal effect was derived by the ratio of the cumulative hazard function of active and passive experiments after adjusting for bias raised in the model due to the truncation variable.Keywords: causal estimation, EM algorithm, semiparametric transformation models, time-to-event outcomes, time-varying covariate
Procedia PDF Downloads 129