Search results for: architectural design learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18782

Search results for: architectural design learning

13682 Assisting Dating of Greek Papyri Images with Deep Learning

Authors: Asimina Paparrigopoulou, John Pavlopoulos, Maria Konstantinidou

Abstract:

Dating papyri accurately is crucial not only to editing their texts but also for our understanding of palaeography and the history of writing, ancient scholarship, material culture, networks in antiquity, etc. Most ancient manuscripts offer little evidence regarding the time of their production, forcing papyrologists to date them on palaeographical grounds, a method often criticized for its subjectivity. By experimenting with data obtained from the Collaborative Database of Dateable Greek Bookhands and the PapPal online collections of objectively dated Greek papyri, this study shows that deep learning dating models, pre-trained on generic images, can achieve accurate chronological estimates for a test subset (67,97% accuracy for book hands and 55,25% for documents). To compare the estimates of these models with those of humans, experts were asked to complete a questionnaire with samples of literary and documentary hands that had to be sorted chronologically by century. The same samples were dated by the models in question. The results are presented and analysed.

Keywords: image classification, papyri images, dating

Procedia PDF Downloads 82
13681 Accounting Practitioners’ Insight into Distance-Learning Graduates’ Workplace Ethics

Authors: Annelien A. Van Rooyen, Carol S. Binnekade, Deon Scott, Christina C. Shuttleworth

Abstract:

Society expects professional accountants to uphold fundamental principles of professional competence, confidentiality, and ethical behavior. Their work needs to be trusted by the public, clients and other stakeholders. However, self-interest, intimidation and even ignorance could create conditions in which accounting practitioners and their staff may act contradictory to these principles. Similarly, plagiarism and cheating occur regularly at higher education institutions, where students claim ignorance of these actions and the accompanying consequences. Teaching students ethical skills in a distance-learning environment where interaction between students and instructors is limited is a challenge for academics. This also applies to instructors who teach accounting subjects to potential professional accountants. The researchers wanted to understand the concerns of accounting practitioners regarding recently qualified accounting students’ understanding of ethics and the resulting influence on their conduct. A mixed method approach was used to obtain feedback from numerous accounting practitioners in South Africa. The research questions focused mainly on ethical conduct in the workplace and the influence of social media on the behavior of graduates. The findings of the research suggested, inter alia, that accounting practitioners are of the opinion that the ethical conduct of graduates starts at home, but higher education institutions play a pivotal role in providing students with an understanding of ethics in the workplace, including the role of social media. The paper concludes with recommendations on how academics in higher education institutions need to address these challenges.

Keywords: accounting profession, distance learning, ethics, workplace

Procedia PDF Downloads 209
13680 Identification of Promising Infant Clusters to Obtain Improved Block Layout Designs

Authors: Mustahsan Mir, Ahmed Hassanin, Mohammed A. Al-Saleh

Abstract:

The layout optimization of building blocks of unequal areas has applications in many disciplines including VLSI floorplanning, macrocell placement, unequal-area facilities layout optimization, and plant or machine layout design. A number of heuristics and some analytical and hybrid techniques have been published to solve this problem. This paper presents an efficient high-quality building-block layout design technique especially suited for solving large-size problems. The higher efficiency and improved quality of optimized solutions are made possible by introducing the concept of Promising Infant Clusters in a constructive placement procedure. The results presented in the paper demonstrate the improved performance of the presented technique for benchmark problems in comparison with published heuristic, analytic, and hybrid techniques.

Keywords: block layout problem, building-block layout design, CAD, optimization, search techniques

Procedia PDF Downloads 388
13679 Prosodic Transfer in Foreign Language Learning: A Phonetic Crosscheck of Intonation and F₀ Range between Italian and German Native and Non-Native Speakers

Authors: Violetta Cataldo, Renata Savy, Simona Sbranna

Abstract:

Background: Foreign Language Learning (FLL) is characterised by prosodic transfer phenomena regarding pitch accents placement, intonation patterns, and pitch range excursion from the learners’ mother tongue to their Foreign Language (FL) which suggests that the gradual development of general linguistic competence in FL does not imply an equally correspondent improvement of the prosodic competence. Topic: The present study aims to monitor the development of prosodic competence of learners of Italian and German throughout the FLL process. The primary object of this study is to investigate the intonational features and the f₀ range excursion of Italian and German from a cross-linguistic perspective; analyses of native speakers’ productions point out the differences between this pair of languages and provide models for the Target Language (TL). A following crosscheck compares the L2 productions in Italian and German by non-native speakers to the Target Language models, in order to verify the occurrence of prosodic interference phenomena, i.e., type, degree, and modalities. Methodology: The subjects of the research are university students belonging to two groups: Italian native speakers learning German as FL and German native speakers learning Italian as FL. Both of them have been divided into three subgroups according to the FL proficiency level (beginners, intermediate, advanced). The dataset consists of wh-questions placed in situational contexts uttered in both speakers’ L1 and FL. Using a phonetic approach, analyses have considered three domains of intonational contours (Initial Profile, Nuclear Accent, and Terminal Contour) and two dimensions of the f₀ range parameter (span and level), which provide a basis for comparison between L1 and L2 productions. Findings: Results highlight a strong presence of prosodic transfer phenomena affecting L2 productions in the majority of both Italian and German learners, irrespective of their FL proficiency level; the transfer concerns all the three domains of the contour taken into account, although with different modalities and characteristics. Currently, L2 productions of German learners show a pitch span compression on the domain of the Terminal Contour compared to their L1 towards the TL; furthermore, German learners tend to use lower pitch range values in deviation from their L1 when improving their general linguistic competence in Italian FL proficiency level. Results regarding pitch range span and level in L2 productions by Italian learners are still in progress. At present, they show a similar tendency to expand the pitch span and to raise the pitch level, which also reveals a deviation from the L1 possibly in the direction of German TL. Conclusion: Intonational features seem to be 'resistant' parameters to which learners appear not to be particularly sensitive. By contrast, they show a certain sensitiveness to FL pitch range dimensions. Making clear which the most resistant and the most sensitive parameters are when learning FL prosody could lay groundwork for the development of prosodic trainings thanks to which learners could finally acquire a clear and natural pronunciation and intonation.

Keywords: foreign language learning, German, Italian, L2 prosody, pitch range, transfer

Procedia PDF Downloads 289
13678 A Sustainable Training and Feedback Model for Developing the Teaching Capabilities of Sessional Academic Staff

Authors: Nirmani Wijenayake, Louise Lutze-Mann, Lucy Jo, John Wilson, Vivian Yeung, Dean Lovett, Kim Snepvangers

Abstract:

Sessional academic staff at universities have the most influence and impact on student learning, engagement, and experience as they have the most direct contact with undergraduate students. A blended technology-enhanced program was created for the development and support of sessional staff to ensure adequate training is provided to deliver quality educational outcomes for the students. This program combines innovative mixed media educational modules, a peer-driven support forum, and face-to-face workshops to provide a comprehensive training and support package for staff. Additionally, the program encourages the development of learning communities and peer mentoring among the sessional staff to enhance their support system. In 2018, the program was piloted on 100 sessional staff in the School of Biotechnology and Biomolecular Sciences to evaluate the effectiveness of this model. As part of the program, rotoscope animations were developed to showcase ‘typical’ interactions between staff and students. These were designed around communication, confidence building, consistency in grading, feedback, diversity awareness, and mental health and wellbeing. When surveyed, 86% of sessional staff found these animations to be helpful in their teaching. An online platform (Moodle) was set up to disseminate educational resources and teaching tips, to host a discussion forum for peer-to-peer communication and to increase critical thinking and problem-solving skills through scenario-based lessons. The learning analytics from these lessons were essential in identifying difficulties faced by sessional staff to further develop supporting workshops to improve outcomes related to teaching. The face-to-face professional development workshops were run by expert guest speakers on topics such as cultural diversity, stress and anxiety, LGBTIQ and student engagement. All the attendees of the workshops found them to be useful and 88% said they felt these workshops increase interaction with their peers and built a sense of community. The final component of the program was to use an adaptive e-learning platform to gather feedback from the students on sessional staff teaching twice during the semester. The initial feedback provides sessional staff with enough time to reflect on their teaching and adjust their performance if necessary, to improve the student experience. The feedback from students and the sessional staff on this model has been extremely positive. The training equips the sessional staff with knowledge and insights which can provide students with an exceptional learning environment. This program is designed in a flexible and scalable manner so that other faculties or institutions could adapt components for their own training. It is anticipated that the training and support would help to build the next generation of educators who will directly impact the educational experience of students.

Keywords: designing effective instruction, enhancing student learning, implementing effective strategies, professional development

Procedia PDF Downloads 131
13677 Voting Representation in Social Networks Using Rough Set Techniques

Authors: Yasser F. Hassan

Abstract:

Social networking involves use of an online platform or website that enables people to communicate, usually for a social purpose, through a variety of services, most of which are web-based and offer opportunities for people to interact over the internet, e.g. via e-mail and ‘instant messaging’, by analyzing the voting behavior and ratings of judges in a popular comments in social networks. While most of the party literature omits the electorate, this paper presents a model where elites and parties are emergent consequences of the behavior and preferences of voters. The research in artificial intelligence and psychology has provided powerful illustrations of the way in which the emergence of intelligent behavior depends on the development of representational structure. As opposed to the classical voting system (one person – one decision – one vote) a new voting system is designed where agents with opposed preferences are endowed with a given number of votes to freely distribute them among some issues. The paper uses ideas from machine learning, artificial intelligence and soft computing to provide a model of the development of voting system response in a simulated agent. The modeled development process involves (simulated) processes of evolution, learning and representation development. The main value of the model is that it provides an illustration of how simple learning processes may lead to the formation of structure. We employ agent-based computer simulation to demonstrate the formation and interaction of coalitions that arise from individual voter preferences. We are interested in coordinating the local behavior of individual agents to provide an appropriate system-level behavior.

Keywords: voting system, rough sets, multi-agent, social networks, emergence, power indices

Procedia PDF Downloads 398
13676 Web 2.0 in Higher Education: The Instructors’ Acceptance in Higher Educational Institutes in Kingdom of Bahrain

Authors: Amal M. Alrayes, Hayat M. Ali

Abstract:

Since the beginning of distance education with the rapid evolution of technology, the social network plays a vital role in the educational process to enforce the interaction been the learners and teachers. There are many Web 2.0 technologies, services and tools designed for educational purposes. This research aims to investigate instructors’ acceptance towards web-based learning systems in higher educational institutes in Kingdom of Bahrain. Questionnaire is used to investigate the instructors’ usage of Web 2.0 and the factors affecting their acceptance. The results confirm that instructors had high accessibility to such technologies. However, patterns of use were complex. Whilst most expressed interest in using online technologies to support learning activities, learners seemed cautious about other values associated with web-based system, such as the shared construction of knowledge in a public format. The research concludes that there are main factors that affect instructors’ adoption which are security, performance expectation, perceived benefits, subjective norm, and perceived usefulness.

Keywords: Web 2.0, higher education, acceptance, students' perception

Procedia PDF Downloads 343
13675 An Energy Efficient Clustering Approach for Underwater ‎Wireless Sensor Networks

Authors: Mohammad Reza Taherkhani‎

Abstract:

Wireless sensor networks that are used to monitor a special environment, are formed from a large number of sensor nodes. The role of these sensors is to sense special parameters from ambient and to make a connection. In these networks, the most important challenge is the management of energy usage. Clustering is one of the methods that are broadly used to face this challenge. In this paper, a distributed clustering protocol based on learning automata is proposed for underwater wireless sensor networks. The proposed algorithm that is called LA-Clustering forms clusters in the same energy level, based on the energy level of nodes and the connection radius regardless of size and the structure of sensor network. The proposed approach is simulated and is compared with some other protocols with considering some metrics such as network lifetime, number of alive nodes, and number of transmitted data. The simulation results demonstrate the efficiency of the proposed approach.

Keywords: underwater sensor networks, clustering, learning automata, energy consumption

Procedia PDF Downloads 367
13674 FMR1 Gene Carrier Screening for Premature Ovarian Insufficiency in Females: An Indian Scenario

Authors: Sarita Agarwal, Deepika Delsa Dean

Abstract:

Like the task of transferring photo images to artistic images, image-to-image translation aims to translate the data to the imitated data which belongs to the target domain. Neural Style Transfer and CycleGAN are two well-known deep learning architectures used for photo image-to-art image transfer. However, studies involving these two models concentrate on one-to-one domain translation, not one-to-multi domains translation. Our study tries to investigate deep learning architectures, which can be controlled to yield multiple artistic style translation only by adding a conditional vector. We have expanded CycleGAN and constructed Conditional CycleGAN for 5 kinds of categories translation. Our study found that the architecture inserting conditional vector into the middle layer of the Generator could output multiple artistic images.

Keywords: genetic counseling, FMR1 gene, fragile x-associated primary ovarian insufficiency, premutation

Procedia PDF Downloads 134
13673 Process Driven Architecture For The ‘Lessons Learnt’ Knowledge Sharing Framework: The Case Of A ‘Lessons Learnt’ Framework For KOC

Authors: Rima Al-Awadhi, Abdul Jaleel Tharayil

Abstract:

On a regular basis, KOC engages into various types of Projects. However, due to very nature and complexity involved, each project experience generates a lot of ‘learnings’ that need to be factored into while drafting a new contract and thus avoid repeating the same mistakes. But, many a time these learnings are localized and remain as tacit leading to scope re-work, larger cycle time, schedule overrun, adjustment orders and claims. Also, these experiences are not readily available to new employees leading to steep learning curve and longer time to competency. This is to share our experience in designing and implementing a process driven architecture for the ‘lessons learnt’ knowledge sharing framework in KOC. It high-lights the ‘lessons learnt’ sharing process adopted, integration with the organizational processes, governance framework, the challenges faced and learning from our experience in implementing a ‘lessons learnt’ framework.

Keywords: lessons learnt, knowledge transfer, knowledge sharing, successful practices, Lessons Learnt Workshop, governance framework

Procedia PDF Downloads 579
13672 Relationship between Deliberate Practice of Dribbling and Self-Regulatory Behavior of Male Basketball Players

Authors: Daud Abdia, Aqsa Shamim, Farhan Tabassum

Abstract:

In order to achieve specific goals, basketball players have to use different skills to enhance their motivation, one such skill is deliberate practice. The aim of this study was to explore the relationship between deliberate practice of dribbling and self-regulatory behavior of male basketball players. For this purpose, a sample of 108 basketball players using stratified sampling was taken from public and private sector universities. Sample was divided into two groups that are experimental (n=54) and control group (n=54) using comparative experimental design. Experimental group was involved in the training of deliberate practice of dribbling for 5 weeks. Amounts of weekly practice activity and Self-Regulation of Learning Self-Report Scale (SRL-SRS) were used for self-regulatory behavior to collect data after the deliberate practice. The reliability of amounts of weekly practice activity was found to be 0.852, whereas SRL-SRS was found to be 0.890. The results of the study indicated a strong positive correlation between deliberate practice of dribbling and self-regulatory behavior (r=0.755, n=54, p=.000). Whereas, paired sample t-test; t(53)=1.37, p < 0.005 shows statistically significant improvement in the self-regulatory behavior after the training program of deliberate practice from 3.02 ± 0.64m to 3.21 ± 0.75m (p < 0.005). It was concluded that in order to enhance the self-regulatory behavior of basketball players we should work on the deliberate practice of the players.

Keywords: self-regulatory behavior, deliberate practice, dribbling, basketball

Procedia PDF Downloads 177
13671 A User-Friendly Approach for Design and Economic Analysis of Standalone PV System for the Electrification of Rural Area of Eritrea

Authors: Tedros Asefaw Gebremeskel, Xaoyi Yang

Abstract:

The potential of solar energy in Eritrea is relatively high, based on this truth, there are a number of isolated and remote villages situated far away from the electrical national grid which don’t get access to electricity. The core objective of this work is to design a most favorable and cost-effective power by means of standalone PV system for the electrification of a single housing in the inaccessible area of Eritrea. The sizing of the recommended PV system is achieved, such as radiation data and electrical load for the typical household of the selected site is also well thought-out in the design steps. Finally, the life cycle cost (LCC) analysis is conducted to evaluate the economic viability of the system. The outcome of the study promote the use of PV system for a residential building and show that PV system is a reasonable option to provide electricity for household applications in the rural area of Eritrea.

Keywords: electrification, inaccessible area, life cycle cost, residential building, stand-alone PV system

Procedia PDF Downloads 146
13670 Optimizing Fire Tube Boiler Design for Efficient Saturated Steam Production at 2000kg/h

Authors: Yoftahe Nigussie Worku

Abstract:

This study focused on designing a Fire tube boiler to generate saturated steam with a 2000kg/h capacity at a 12bar design pressure. The primary project goal is to achieve efficient steam production while minimizing costs. This involves selecting suitable materials for component parts, employing cost-effective construction methods, and optimizing various parameters. The analysis phase employs iterative processes and relevant formulas to determine key design parameters. This includes optimizing the diameter of tubes for overall heat transfer coefficient, considering a two-pass configuration due to tube and shell size, and using heavy oil fuel no.6 with specific heating values. The designed boiler consumes 140.37kg/hr of fuel, producing 1610kw of heat at an efficiency of 85.25%. The fluid flow is configured as cross flow, leveraging its inherent advantages. The tube arrangement involves welding the tubes inside the shell, which is connected to the tube sheet using a combination of gaskets and welding. The design of the shell adheres to the European Standard code for pressure vessels, accounting for weight and supplementary accessories and providing detailed drawings for components like lifting lugs, openings, ends, manholes, and supports.

Keywords: efficiency, coefficient, saturated steam, fire tube

Procedia PDF Downloads 62
13669 Nanotechnology in Conservation of Artworks: TiO2-Based Nanocoatings for the Protection and Preservation of Stone Monuments

Authors: Sayed M. Ahmed, Sawsan S. Darwish, Nagib A. Elmarzugi, Mohammad A. Al-Dosari, Mahmoud A. Adam, Nadia A. Al-Mouallimi

Abstract:

The preservation of cultural heritage is a worldwide problem. Stone monuments represent an important part of this heritage, but due to their prevalently outdoor location, they are generally subject to a complex series of weathering and decay processes, in addition to physical and chemical factors, also biological agents usually play an important role in deterioration phenomena. The aim of this paper is to experimentally verify applicability and feasibility of titanium dioxide (TiO2) nanoparticles for the preservation of historical (architectural, monumental, archaeological) stone surfaces which enables to reduce the deterioration behaviors mentioned above. TiO2 nanoparticles dispersed in an aqueous colloidal suspension were applied directly on travertine (Marble and limestone often used in historical and monumental buildings) by spray-coating in order to obtain a nanometric film on stone samples. SEM, coupled with EDX microanalysis. (SEM-EDX), in order to obtain information oncoating homogeneity, surface morphology before and after aging and penetration depth of the TiO2 within the samples. Activity of the coated surface was evaluated with UV accelerated aging test. Capillary water absorption, thermal aging and colorimetric measurements have been performed on on coated and uncoated samples to evaluate their properties and estimate change of appearance with colour variation. Results show Tio2 nanoparticles good candidate for coating applications on calcareous stone, good water-repellence was observed on the samples after treatment; analyses were carried out on both untreated and freshly treated samples as well as after artificial aging. Colour change showed negligible variations on the coated or uncoated stone as well as after aging. Results showed that treated stone surfaces seem to be not affected after 1000 hours of exposure to UV radiation, no alteration of the original features.

Keywords: architectural and archaeological heritage, calcareous stone, photocatalysis TiO2, self-cleaning, thermal aging

Procedia PDF Downloads 280
13668 Implementing a Neural Network on a Low-Power and Mobile Cluster to Aide Drivers with Predictive AI for Traffic Behavior

Authors: Christopher Lama, Alix Rieser, Aleksandra Molchanova, Charles Thangaraj

Abstract:

New technologies like Tesla’s Dojo have made high-performance embedded computing more available. Although automobile computing has developed and benefited enormously from these more recent technologies, the costs are still high, prohibitively high in some cases for broader adaptation, particularly for the after-market and enthusiast markets. This project aims to implement a Raspberry Pi-based low-power (under one hundred Watts) highly mobile computing cluster for a neural network. The computing cluster built from off-the-shelf components is more affordable and, therefore, makes wider adoption possible. The paper describes the design of the neural network, Raspberry Pi-based cluster, and applications the cluster will run. The neural network will use input data from sensors and cameras to project a live view of the road state as the user drives. The neural network will be trained to predict traffic behavior and generate warnings when potentially dangerous situations are predicted. The significant outcomes of this study will be two folds, firstly, to implement and test the low-cost cluster, and secondly, to ascertain the effectiveness of the predictive AI implemented on the cluster.

Keywords: CS pedagogy, student research, cluster computing, machine learning

Procedia PDF Downloads 106
13667 Strategies for Implementing Climate-Resilient Urban Public Spaces: Key Principles of Public Space Design based on People-Centred and Climate-Responsive

Authors: Abimanyu S. Aji, Ima Yusmanita, R. A .Retno Hastijanti, Yudha Utama

Abstract:

The impacts of climate change are increasingly affecting major cities around the world. In April 2024, floods paralyzed Dubai, while in May of the same year, the city of Sao Leopoldo in southern Brazil, Rio Grande do Sul, experienced significant flooding that resulted in hundreds of casualties. In Europe, extreme weather along the Czech-Polish border caused rivers to overflow, carrying debris that destroyed historic cities and bridges and damaged homes. By the end of October 2024, further torrential flooding in Valencia, Spain, led to fatalities. Meanwhile, Southeast Asian cities, particularly Jakarta, are also highly vulnerable to the impacts of climate change and face the threat of being submerged due to rising sea levels. In response, the Indonesian government plans to relocate the capital to East Kalimantan, as Jakarta is no longer suitable as the capital city due to major urban problems and the impact of climate change. Given these circumstances, urgent action is needed to develop climate-resilient urban mitigation and adaptation strategies. One promising approach involves developing public space infrastructure that serves multiple functions, enhances resilience, and improves community welfare. Current urban design trends that adapt to climate change can create a new typology of spaces that respond to present or future climatic conditions. Small-scale interventions, such as designing and developing climate-resilient public spaces strategically located within spatial planning, can drive large-scale changes by transforming the urban context and enhancing the city's resilience to climate change. Public spaces represent the identity of a city, and functional public spaces that consider natural elements foster a harmonious interaction between the city and its environment. Additionally, the environmental design of these public spaces can help reduce hot temperatures in densely populated urban areas. The objective of this research is to identify suitable public spaces for transformation that can address climate adaptation challenges. Strategies for creating climate-resilient urban public spaces are categorized into two main aspects: tangible and intangible. Intangible strategies focus on community engagement and incorporate the ‘Penta Helix’ model, which includes five key elements: government, community, academia, business, and media. Tangible strategies encompass infrastructure design that adapts to climate change and adheres to several key principles: community co-creation, community health and welfare, learning through local themes, encouraging behavior change and new habits, fostering green entrepreneurship, enhancing environmental resilience, and promoting ecosystem integration. The outcome of these strategies is to create distinctive and inclusive public space architecture, including biophilic design elements. The methodologies employed in this study include both quantitative and qualitative approaches. The result of this study is a strategic concept that outlines key principles for designing community-centered and climate-responsive public spaces. By identifying the vital role of public spaces, this strategy can serve as a foundation for city-level climate adaptation efforts and raise awareness about the urgency of urban resilience, leveraging existing infrastructure opportunities. Furthermore, this research contributes to the global understanding of resilient urban design, offering valuable insights for other regions facing similar challenges.

Keywords: climate adaptation, city resilience, urban public space, community engagement

Procedia PDF Downloads 14
13666 Language Teachers Exercising Agency Amid Educational Constraints: An Overview of the Literature

Authors: Anna Sanczyk

Abstract:

Teacher agency plays a crucial role in effective teaching, supporting diverse students, and providing an enriching learning environment; therefore, it is significant to gain a deeper understanding of language teachers’ sense of agency in teaching linguistically and culturally diverse students. This paper presents an overview of qualitative research on how language teachers exercise their agency in diverse classrooms. The analysis of the literature reveals that language teachers strive for addressing students’ needs and challenging educational inequalities, but experience educational constraints in enacting their agency. The examination of the research on language teacher agency identifies four major areas where language teachers experience challenges in enacting their agency: (1) implementing curriculum; (2) adopting school reforms and policies; (3) engaging in professional learning; (4) and negotiating various identities as professionals. The practical contribution of this literature review is that it provides a much-needed compilation of the studies on how language teachers exercise agency amid educational constraints. The discussion of the overview points to the importance of teacher identity, learner advocacy, and continuous professional learning and the critical need of promoting empowerment, activism, and transformation in language teacher education. The findings of the overview indicate that language teacher education programs should prepare teachers to be active advocates for English language learners and guide teachers to become more conscious of complexities of teaching in constrained educational settings so that they can become agentic professionals. This literature overview illustrates agency work in English language teaching contexts and contributes to understanding of the important link between experiencing educational constraints and development of teacher agency.

Keywords: advocacy, educational constraints, language teacher agency, language teacher education

Procedia PDF Downloads 181
13665 Heart Ailment Prediction Using Machine Learning Methods

Authors: Abhigyan Hedau, Priya Shelke, Riddhi Mirajkar, Shreyash Chaple, Mrunali Gadekar, Himanshu Akula

Abstract:

The heart is the coordinating centre of the major endocrine glandular structure of the body, which produces hormones that profoundly affect the operations of the body, and diagnosing cardiovascular disease is a difficult but critical task. By extracting knowledge and information about the disease from patient data, data mining is a more practical technique to help doctors detect disorders. We use a variety of machine learning methods here, including logistic regression and support vector classifiers (SVC), K-nearest neighbours Classifiers (KNN), Decision Tree Classifiers, Random Forest classifiers and Gradient Boosting classifiers. These algorithms are applied to patient data containing 13 different factors to build a system that predicts heart disease in less time with more accuracy.

Keywords: logistic regression, support vector classifier, k-nearest neighbour, decision tree, random forest and gradient boosting

Procedia PDF Downloads 57
13664 English 2A Students’ Oral Presentation Errors: Basis for English Policy Revision

Authors: Marylene N. Tizon

Abstract:

English instructors pay attention on errors committed by students as errors show whether they know or master their oral skills and what difficulties they may have in the process of learning the English language. This descriptive quantitative study aimed at identifying and categorizing the oral presentation errors of the purposively chosen 118 English 2A students enrolled during the first semester of school year 2013 – 2014. The analysis of the data for this study was undertaken using the errors committed by the students in their presentation. Marking and classifying of errors were made by first classifying them into linguistic grammatical errors then all errors were categorized further into Surface Structure Errors Taxonomy with the use of Frequency and Percentage distribution. From the analysis of the data, the researcher found out: Errors in tenses of the verbs (71 or 16%) and in addition 167 or 37% were most frequently uttered by the students. And Question and negation mistakes (12 or 3%) and misordering errors (28 or 7%) were least frequently enunciated by the students. Thus, the respondents in this study most frequently enunciated errors in tenses and in addition while they uttered least frequently the errors in question, negation, and misordering.

Keywords: grammatical error, oral presentation error, surface structure errors taxonomy, descriptive quantitative design, Philippines, Asia

Procedia PDF Downloads 397
13663 Criterion-Referenced Test Reliability through Threshold Loss Agreement: Fuzzy Logic Analysis Approach

Authors: Mohammad Ali Alavidoost, Hossein Bozorgian

Abstract:

Criterion-referenced tests (CRTs) are designed to measure student performance against a fixed set of predetermined criteria or learning standards. The reliability of such tests cannot be based on internal reliability. Threshold loss agreement is one way to calculate the reliability of CRTs. However, the selection of master and non-master in such agreement is determined by the threshold point. The problem is if the threshold point witnesses a minute change, the selection of master and non-master may have a drastic change, leading to the change in reliability results. Therefore, in this study, the Fuzzy logic approach is employed as a remedial procedure for data analysis to obviate the threshold point problem. Forty-one Iranian students were selected; the participants were all between 20 and 30 years old. A quantitative approach was used to address the research questions. In doing so, a quasi-experimental design was utilized since the selection of the participants was not randomized. Based on the Fuzzy logic approach, the threshold point would be more stable during the analysis, resulting in rather constant reliability results and more precise assessment.

Keywords: criterion-referenced tests, threshold loss agreement, threshold point, fuzzy logic approach

Procedia PDF Downloads 375
13662 Turkish Graduate Students' Perceptions of Drop Out Issues in Massive Open Online Courses

Authors: Harun Bozna

Abstract:

MOOC (massive open online course) is a groundbreaking education platform and a current buzzword in higher education. Although MOOCs offer many appreciated learning experiences to learners from various universities and institutions, they have considerably higher dropout rates than traditional education. Only about 10% of the learners who enroll in MOOCs actually complete the course. In this case, perceptions of participants and a comprehensive analysis of MOOCs have become an essential part of the research in this area. This study aims to explore the MOOCs in detail for better understanding its content, purpose and primarily drop out issues. The researcher conducted an online questionnaire to get perceptions of graduate students on their learning experiences in MOOCs and arranged a semi- structured oral interview with some participants. The participants are Turkish graduate level students doing their MA and Ph.D. in various programs. The findings show that participants are more likely to drop out courses due to lack of time and lack of pressure.

Keywords: distance education, MOOCs, drop out, perception of graduate students

Procedia PDF Downloads 245
13661 StockTwits Sentiment Analysis on Stock Price Prediction

Authors: Min Chen, Rubi Gupta

Abstract:

Understanding and predicting stock market movements is a challenging problem. It is believed stock markets are partially driven by public sentiments, which leads to numerous research efforts to predict stock market trend using public sentiments expressed on social media such as Twitter but with limited success. Recently a microblogging website StockTwits is becoming increasingly popular for users to share their discussions and sentiments about stocks and financial market. In this project, we analyze the text content of StockTwits tweets and extract financial sentiment using text featurization and machine learning algorithms. StockTwits tweets are first pre-processed using techniques including stopword removal, special character removal, and case normalization to remove noise. Features are extracted from these preprocessed tweets through text featurization process using bags of words, N-gram models, TF-IDF (term frequency-inverse document frequency), and latent semantic analysis. Machine learning models are then trained to classify the tweets' sentiment as positive (bullish) or negative (bearish). The correlation between the aggregated daily sentiment and daily stock price movement is then investigated using Pearson’s correlation coefficient. Finally, the sentiment information is applied together with time series stock data to predict stock price movement. The experiments on five companies (Apple, Amazon, General Electric, Microsoft, and Target) in a duration of nine months demonstrate the effectiveness of our study in improving the prediction accuracy.

Keywords: machine learning, sentiment analysis, stock price prediction, tweet processing

Procedia PDF Downloads 160
13660 Stepping in Sustainability: Walkability an Upcoming Design Parameter for Transit Based Communities in Lahore, Pakistan

Authors: Sadaf Saeed

Abstract:

The consideration of walkability as an urban design parameter in conjunction with transit-oriented development is an established trend in the developed countries but an upcoming trend in developing countries. In Pakistan, the first Bus Rapid Transit (locally called as Metro Bus) has been introduced in the city of Lahore in 2013 where around 40 percent of the riders access to transit stations by walking. To what extent the aspect of walkability has been considered in the local scenario? To address this question, this paper presents an account of urban design parameters regarding pedestrian provisions and quality of walking environment between Metro Bus stations and users’ destination in the transit neighbourhoods (areas up to 500-meter radius). The primary and secondary data for objective and subjective walkability measurements has been used for neighbourhoods of five selected transit stations ranked against the predefined critical assessed factors (CAF). The multi-criteria approach including visual and geospatially-based parameters at street level, along with walkability index score at selected sites linked with CAF evaluation were the selected methods for this study. The acceptability of walkability as an urban design parameter for transit planning in terms of connectivity and social implications of the concept has also been analysed in the local context. The paper highlights that the aspect of walkability in Lahore is being derelict owing to the focus of government on other initiatives such as park and ride and feeder bus services for mobility of passengers. However, the pedestrian-friendly design parameters as a part of future transit planning can enhance social, liveable and interactive walking environment within transit neighbourhoods.

Keywords: walkability, sustainability, transit neighborhoods, social communities

Procedia PDF Downloads 247
13659 A Comprehensive Survey of Artificial Intelligence and Machine Learning Approaches across Distinct Phases of Wildland Fire Management

Authors: Ursula Das, Manavjit Singh Dhindsa, Kshirasagar Naik, Marzia Zaman, Richard Purcell, Srinivas Sampalli, Abdul Mutakabbir, Chung-Horng Lung, Thambirajah Ravichandran

Abstract:

Wildland fires, also known as forest fires or wildfires, are exhibiting an alarming surge in frequency in recent times, further adding to its perennial global concern. Forest fires often lead to devastating consequences ranging from loss of healthy forest foliage and wildlife to substantial economic losses and the tragic loss of human lives. Despite the existence of substantial literature on the detection of active forest fires, numerous potential research avenues in forest fire management, such as preventative measures and ancillary effects of forest fires, remain largely underexplored. This paper undertakes a systematic review of these underexplored areas in forest fire research, meticulously categorizing them into distinct phases, namely pre-fire, during-fire, and post-fire stages. The pre-fire phase encompasses the assessment of fire risk, analysis of fuel properties, and other activities aimed at preventing or reducing the risk of forest fires. The during-fire phase includes activities aimed at reducing the impact of active forest fires, such as the detection and localization of active fires, optimization of wildfire suppression methods, and prediction of the behavior of active fires. The post-fire phase involves analyzing the impact of forest fires on various aspects, such as the extent of damage in forest areas, post-fire regeneration of forests, impact on wildlife, economic losses, and health impacts from byproducts produced during burning. A comprehensive understanding of the three stages is imperative for effective forest fire management and mitigation of the impact of forest fires on both ecological systems and human well-being. Artificial intelligence and machine learning (AI/ML) methods have garnered much attention in the cyber-physical systems domain in recent times leading to their adoption in decision-making in diverse applications including disaster management. This paper explores the current state of AI/ML applications for managing the activities in the aforementioned phases of forest fire. While conventional machine learning and deep learning methods have been extensively explored for the prevention, detection, and management of forest fires, a systematic classification of these methods into distinct AI research domains is conspicuously absent. This paper gives a comprehensive overview of the state of forest fire research across more recent and prominent AI/ML disciplines, including big data, classical machine learning, computer vision, explainable AI, generative AI, natural language processing, optimization algorithms, and time series forecasting. By providing a detailed overview of the potential areas of research and identifying the diverse ways AI/ML can be employed in forest fire research, this paper aims to serve as a roadmap for future investigations in this domain.

Keywords: artificial intelligence, computer vision, deep learning, during-fire activities, forest fire management, machine learning, pre-fire activities, post-fire activities

Procedia PDF Downloads 77
13658 Optimizing Machine Learning Algorithms for Defect Characterization and Elimination in Liquids Manufacturing

Authors: Tolulope Aremu

Abstract:

The key process steps to produce liquid detergent products will introduce potential defects, such as formulation, mixing, filling, and packaging, which might compromise product quality, consumer safety, and operational efficiency. Real-time identification and characterization of such defects are of prime importance for maintaining high standards and reducing waste and costs. Usually, defect detection is performed by human inspection or rule-based systems, which is very time-consuming, inconsistent, and error-prone. The present study overcomes these limitations in dealing with optimization in defect characterization within the process for making liquid detergents using Machine Learning algorithms. Performance testing of various machine learning models was carried out: Support Vector Machine, Decision Trees, Random Forest, and Convolutional Neural Network on defect detection and classification of those defects like wrong viscosity, color deviations, improper filling of a bottle, packaging anomalies. These algorithms have significantly benefited from a variety of optimization techniques, including hyperparameter tuning and ensemble learning, in order to greatly improve detection accuracy while minimizing false positives. Equipped with a rich dataset of defect types and production parameters consisting of more than 100,000 samples, our study further includes information from real-time sensor data, imaging technologies, and historic production records. The results are that optimized machine learning models significantly improve defect detection compared to traditional methods. Take, for instance, the CNNs, which run at 98% and 96% accuracy in detecting packaging anomaly detection and bottle filling inconsistency, respectively, by fine-tuning the model with real-time imaging data, through which there was a reduction in false positives of about 30%. The optimized SVM model on detecting formulation defects gave 94% in viscosity variation detection and color variation. These values of performance metrics correspond to a giant leap in defect detection accuracy compared to the usual 80% level achieved up to now by rule-based systems. Moreover, this optimization with models can hasten defect characterization, allowing for detection time to be below 15 seconds from an average of 3 minutes using manual inspections with real-time processing of data. With this, the reduction in time will be combined with a 25% reduction in production downtime because of proactive defect identification, which can save millions annually in recall and rework costs. Integrating real-time machine learning-driven monitoring drives predictive maintenance and corrective measures for a 20% improvement in overall production efficiency. Therefore, the optimization of machine learning algorithms in defect characterization optimum scalability and efficiency for liquid detergent companies gives improved operational performance to higher levels of product quality. In general, this method could be conducted in several industries within the Fast moving consumer Goods industry, which would lead to an improved quality control process.

Keywords: liquid detergent manufacturing, defect detection, machine learning, support vector machines, convolutional neural networks, defect characterization, predictive maintenance, quality control, fast-moving consumer goods

Procedia PDF Downloads 24
13657 Initial Observations of the Utilization of Zoom Software for Synchronous English as a Foreign Language Oral Communication Classes at a Japanese University

Authors: Paul Nadasdy

Abstract:

In 2020, oral communication classes at many universities in Japan switched to online and hybrid lessons because of the coronavirus pandemic. Teachers had to adapt their practices immediately and deal with the challenges of the online environment. Even for experienced teachers, this still presented a problem as many had not conducted online classes before. Simultaneously, for many students, this type of learning was completely alien to them, and they had to adapt to the challenges faced by communicating in English online. This study collected data from 418 first grade students in the first semester of English communication classes at a technical university in Tokyo, Japan. Zoom software was used throughout the learning period. Though there were many challenges in the setting up and implementation of Zoom classes at the university, the results indicated that the students enjoyed the format and made the most of the circumstances. This proved the robustness of the course that was taught in regular lessons and the adaptability of teachers and students to challenges in a very short timeframe.

Keywords: zoom, hybrid lessons, communicative english, online teaching

Procedia PDF Downloads 87
13656 Implementation of International Standards in the Field of Higher Secondary Education in Kerala

Authors: Bernard Morais Joosa

Abstract:

Kerala, the southern state of India, is known for its accomplishments in universal education and enrollments. Through this mission, the Government proposes comprehensive educational reforms including 1000 Government schools into international standards during the first phase. The idea is not only to improve the infrastructural facilities but also to reform the teaching and learning process to the present day needs by introducing ICT enabled learning and providing smart classrooms. There will be focus on creating educational programmes which are useful for differently abled students. It is also meant to reinforce the teaching–learning process by providing ample opportunities to each student to construct their own knowledge using modern technology tools. The mission will redefine the existing classroom learning process, coordinate resource mobilization efforts and develop ‘Janakeeya Vidyabhyasa Mathruka.' Special packages to support schools which are in existence for over 100 years will also be attempted. The implementation will enlist full involvement and partnership of the Parent Teacher Association. Kerala was the first state in the country to attain 100 percent literacy more than two and a half decades ago. Since then the State has not rested on its laurels. It has moved forward in leaps and bounds conquering targets that no other State could achieve. Now the government of Kerala is taking off towards new goal of comprehensive educational reforms. And it focuses on Betterment of educational surroundings, use of technology in education, renewal of learning method and 1000 schools will be uplifted as Smart Schools. Need to upgrade 1000 schools into international standards and turning classrooms from standard 9 to 12 in high schools and higher secondary into high-tech classrooms and a special unique package for the renovation of schools, which have completed 50 and 100 years. The government intends to focus on developing standards first to eighth standards in tune with the times by engaging the teachers, parents, and alumni to recapture the relevance of public schools. English learning will be encouraged in schools. The idea is not only to improve the infrastructure facilities but also reform the curriculum to the present day needs. Keeping in view the differently-abled friendly approach of the government, there will be focus on creating educational program which is useful for differently abled students. The idea is to address the infrastructural deficiencies being faced by such schools. There will be special emphasis on ensuring internet connectivity to promote IT-friendly existence. A task-force and a full-time chief executive will be in charge of managing the day to day affairs of the mission. Secretary of the Public Education Department will serve as the Mission Secretary and the Chairperson of Task Force. As the Task Force will stress on teacher training and the use of information technology, experts in the field, as well as Directors of SCERT, IT School, SSA, and RMSA, will also be a part of it.

Keywords: educational standards, methodology, pedagogy, technology

Procedia PDF Downloads 139
13655 Application of Golden Ratio in Contemporary Textile Industry and Its Effect on Consumer Preferences

Authors: Rafia Asghar, Abdul Hafeez

Abstract:

This research aims to determine the influence of Fibonacci numbers and golden ratio through textile designs. This study was carried out by collecting a variety of designs from different textile industries. Top textile designers were also interviewed regarding golden ratio and its application on their designs and design execution process. This study revealed that most of the designs fulfilled the golden ratio and the designs that were according to golden ratio were more favorite to the consumers.

Keywords: golden ratio, Fibonacci numbers, textile design, designs

Procedia PDF Downloads 721
13654 Anthropometric Profile as a Factor of Impact on Employee Productivity in Manufacturing Industry of Tijuana, Mexico

Authors: J. A. López, J. E. Olguín, C. W. Camargo, G. A. Quijano, R. Martínez

Abstract:

This paper presents an anthropometric study conducted to 300 employees in a maquiladora industry that belongs to the cluster of medical products as part of a research project to pretend simulate workplace conditions under which operators conduct their activities. This project is relevant because traditionally performed a study to design ergonomic workspaces according to anthropometric profile of users, however, this paper demonstrates the importance of making decisions when the infrastructure cannot be adapted for economic whichever put emphasis on user activity.

Keywords: anthropometry, biomechanics, design, ergonomics, productivity

Procedia PDF Downloads 465
13653 Design Optimization of Doubly Fed Induction Generator Performance by Differential Evolution

Authors: Mamidi Ramakrishna Rao

Abstract:

Doubly-fed induction generators (DFIG) due to their advantages like speed variation and four-quadrant operation, find its application in wind turbines. DFIG besides supplying power to the grid has to support reactive power (kvar) under grid voltage variations, should contribute minimum fault current during faults, have high efficiency, minimum weight, adequate rotor protection during crow-bar-operation from +20% to -20% of rated speed.  To achieve the optimum performance, a good electromagnetic design of DFIG is required. In this paper, a simple and heuristic global optimization – Differential Evolution has been used. Variables considered are lamination details such as slot dimensions, stack diameters, air gap length, and generator stator and rotor stack length. Two operating conditions have been considered - voltage and speed variations. Constraints included were reactive power supplied to the grid and limiting fault current and torque. The optimization has been executed separately for three objective functions - maximum efficiency, weight reduction, and grid fault stator currents. Subsequent calculations led to the conclusion that designs determined through differential evolution help in determining an optimum electrical design for each objective function.

Keywords: design optimization, performance, DFIG, differential evolution

Procedia PDF Downloads 150