Search results for: continuous speed profile data
25024 Design of a Standard Weather Data Acquisition Device for the Federal University of Technology, Akure Nigeria
Authors: Isaac Kayode Ogunlade
Abstract:
Data acquisition (DAQ) is the process by which physical phenomena from the real world are transformed into an electrical signal(s) that are measured and converted into a digital format for processing, analysis, and storage by a computer. The DAQ is designed using PIC18F4550 microcontroller, communicating with Personal Computer (PC) through USB (Universal Serial Bus). The research deployed initial knowledge of data acquisition system and embedded system to develop a weather data acquisition device using LM35 sensor to measure weather parameters and the use of Artificial Intelligence(Artificial Neural Network - ANN)and statistical approach(Autoregressive Integrated Moving Average – ARIMA) to predict precipitation (rainfall). The device is placed by a standard device in the Department of Meteorology, Federal University of Technology, Akure (FUTA) to know the performance evaluation of the device. Both devices (standard and designed) were subjected to 180 days with the same atmospheric condition for data mining (temperature, relative humidity, and pressure). The acquired data is trained in MATLAB R2012b environment using ANN, and ARIMAto predict precipitation (rainfall). Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Correction Square (R2), and Mean Percentage Error (MPE) was deplored as standardize evaluation to know the performance of the models in the prediction of precipitation. The results from the working of the developed device show that the device has an efficiency of 96% and is also compatible with Personal Computer (PC) and laptops. The simulation result for acquired data shows that ANN models precipitation (rainfall) prediction for two months (May and June 2017) revealed a disparity error of 1.59%; while ARIMA is 2.63%, respectively. The device will be useful in research, practical laboratories, and industrial environments.Keywords: data acquisition system, design device, weather development, predict precipitation and (FUTA) standard device
Procedia PDF Downloads 9225023 The Characteristics of the Fragments from Cylindrical Casing with One of End Caps Fully Constrained
Authors: Yueguang Gao, Qi Huang, Shunshan Feng
Abstract:
In order to study the process and characteristic of the fragments in the warhead with one end cap under full constraint condition, we established a cylindrical casing with two end caps which one of which was fully constrained using the simulation analysis. The result showed that the fragmentation of cylindrical casing with one end full constrained has its own characteristic. The Mach stem was generated when the detonation wave propagated to the fully constrained end cap under the condition of one end detonation, working on unreactive explosives and causing the nearby fragment subjected to nearly 2.5 times the normal pressure to obtain a higher speed. The cylindrical casing first ruptured at the contact surface with the fully constrained end, and then at the end cover of the initiating end, and then the rupture extends to the whole cylindrical casing. The detonation products started to leak out from the rupture. Driving fragments to fly and forming two dense flying areas. The analysis of this paper can provide a reference for the optimal design of this kind of warhead.Keywords: fragment, cylindrical casing, detonation waves, numerical simulation
Procedia PDF Downloads 12425022 Spatial Data Science for Data Driven Urban Planning: The Youth Economic Discomfort Index for Rome
Authors: Iacopo Testi, Diego Pajarito, Nicoletta Roberto, Carmen Greco
Abstract:
Today, a consistent segment of the world’s population lives in urban areas, and this proportion will vastly increase in the next decades. Therefore, understanding the key trends in urbanization, likely to unfold over the coming years, is crucial to the implementation of sustainable urban strategies. In parallel, the daily amount of digital data produced will be expanding at an exponential rate during the following years. The analysis of various types of data sets and its derived applications have incredible potential across different crucial sectors such as healthcare, housing, transportation, energy, and education. Nevertheless, in city development, architects and urban planners appear to rely mostly on traditional and analogical techniques of data collection. This paper investigates the prospective of the data science field, appearing to be a formidable resource to assist city managers in identifying strategies to enhance the social, economic, and environmental sustainability of our urban areas. The collection of different new layers of information would definitely enhance planners' capabilities to comprehend more in-depth urban phenomena such as gentrification, land use definition, mobility, or critical infrastructural issues. Specifically, the research results correlate economic, commercial, demographic, and housing data with the purpose of defining the youth economic discomfort index. The statistical composite index provides insights regarding the economic disadvantage of citizens aged between 18 years and 29 years, and results clearly display that central urban zones and more disadvantaged than peripheral ones. The experimental set up selected the city of Rome as the testing ground of the whole investigation. The methodology aims at applying statistical and spatial analysis to construct a composite index supporting informed data-driven decisions for urban planning.Keywords: data science, spatial analysis, composite index, Rome, urban planning, youth economic discomfort index
Procedia PDF Downloads 13525021 AI-Based Technologies in International Arbitration: An Exploratory Study on the Practicability of Applying AI Tools in International Arbitration
Authors: Annabelle Onyefulu-Kingston
Abstract:
One of the major purposes of AI today is to evaluate and analyze millions of micro and macro data in order to determine what is relevant in a particular case and proffer it in an adequate manner. Microdata, as far as it relates to AI in international arbitration, is the millions of key issues specifically mentioned by either one or both parties or by their counsels, arbitrators, or arbitral tribunals in arbitral proceedings. This can be qualifications of expert witness and admissibility of evidence, amongst others. Macro data, on the other hand, refers to data derived from the resolution of the dispute and, consequently, the final and binding award. A notable example of this includes the rationale of the award and specific and general damages awarded, amongst others. This paper aims to critically evaluate and analyze the possibility of technological inclusion in international arbitration. This research will be imploring the qualitative method by evaluating existing literature on the consequence of applying AI to both micro and macro data in international arbitration, and how this can be of assistance to parties, counsels, and arbitrators.Keywords: AI-based technologies, algorithms, arbitrators, international arbitration
Procedia PDF Downloads 9525020 Evaluation of Triage Performance: Nurse Practice and Problem Classifications
Authors: Atefeh Abdollahi, Maryam Bahreini, Babak Choobi Anzali, Fatemeh Rasooli
Abstract:
Introduction: Triage becomes the main part of organization of care in Emergency department (ED)s. It is used to describe the sorting of patients for treatment priority in ED. The accurate triage of injured patients has reduced fatalities and improved resource usage. Besides, the nurses’ knowledge and skill are important factors in triage decision-making. The ability to define an appropriate triage level and their need for intervention is crucial to guide to a safe and effective emergency care. Methods: This is a prospective cross-sectional study designed for emergency nurses working in four public university hospitals. Five triage workshops have been conducted every three months for emergency nurses based on a standard triage Emergency Severity Index (ESI) IV slide set - approved by Iranian Ministry of Health. Most influential items on triage performance were discussed through brainstorming in workshops which then, were peer reviewed by five emergency physicians and two head registered nurses expert panel. These factors that might distract nurse’ attention from proper decisions included patients’ past medical diseases, the natural tricks of triage and system failure. After permission had been taken, emergency nurses participated in the study and were given the structured questionnaire. Data were analysed by SPSS 21.0. Results: 92 emergency nurses enrolled in the study. 30 % of nurses reported the past history of chronic disease as the most influential confounding factor to ascertain triage level, other important factors were the history of prior admission, past history of myocardial infarction and heart failure to be 20, 17 and 11 %, respectively. Regarding the concept of difficulties in triage practice, 54.3 % reported that the discussion with patients and family members was difficult and 8.7 % declared that it is hard to stay in a single triage room whole day. Among the participants, 45.7 and 26.1 % evaluated the triage workshops as moderately and highly effective, respectively. 56.5 % reported overcrowding as the most important system-based difficulty. Nurses were mainly doubtful to differentiate between the triage levels 2 and 3 according to the ESI VI system. No significant correlation was found between the work record of nurses in triage and the uncertainty in determining the triage level and difficulties. Conclusion: The work record of nurses hardly seemed to be effective on the triage problems and issues. To correct the deficits, training workshops should be carried out, followed by continuous refresher training and supportive supervision.Keywords: assessment, education, nurse, triage
Procedia PDF Downloads 23325019 Geotechnical Investigation of Soil Foundation for Ramps of Dawar El-Tawheed Bridge in Jizan City, Kingdom of Saudi Arabia
Authors: Ali H. Mahfouz, Hossam E. M. Sallam, Abdulwali Wazir, Hamod H. Kharezi
Abstract:
The soil profile at site of the bridge project includes soft fine grained soil layer located between 5.0 m to 11.0 m in depth, it has high water content, low SPT no., and low bearing capacity. The clay layer induces high settlement due to surcharge application of earth embankment at ramp T1, ramp T2, and ramp T3 especially at heights from 9m right 3m. Calculated settlement for embankment heights less than 3m may be accepted regarding Saudi Code for soil and foundation. The soil and groundwater at the project site comprise high contents of sulfates and chlorides of high aggressively on concrete and steel bars, respectively. Regarding results of the study, it has been recommended to use stone column piles or new technology named PCC piles as soil improvement to improve the bearing capacity of the weak layer. The new technology is cast in-situ thin wall concrete pipe piles (PCC piles), it has economically advantageous and high workability. The technology can save time of implementation and cost of application is almost 30% of other types of piles.Keywords: soft foundation soil, bearing capacity, bridge ramps, soil improvement, geogrid, PCC piles
Procedia PDF Downloads 39925018 A Virtual Grid Based Energy Efficient Data Gathering Scheme for Heterogeneous Sensor Networks
Authors: Siddhartha Chauhan, Nitin Kumar Kotania
Abstract:
Traditional Wireless Sensor Networks (WSNs) generally use static sinks to collect data from the sensor nodes via multiple forwarding. Therefore, network suffers with some problems like long message relay time, bottle neck problem which reduces the performance of the network. Many approaches have been proposed to prevent this problem with the help of mobile sink to collect the data from the sensor nodes, but these approaches still suffer from the buffer overflow problem due to limited memory size of sensor nodes. This paper proposes an energy efficient scheme for data gathering which overcomes the buffer overflow problem. The proposed scheme creates virtual grid structure of heterogeneous nodes. Scheme has been designed for sensor nodes having variable sensing rate. Every node finds out its buffer overflow time and on the basis of this cluster heads are elected. A controlled traversing approach is used by the proposed scheme in order to transmit data to sink. The effectiveness of the proposed scheme is verified by simulation.Keywords: buffer overflow problem, mobile sink, virtual grid, wireless sensor networks
Procedia PDF Downloads 39125017 Grain Size Effect of Durability of Bio-Clogging Treatment
Authors: Tahani Farah, Hanène Souli, Jean-Marie Fleureau, Guillaume Kermouche, Jean-Jacques Fry, Benjamin Girard, Denis Aelbrecht
Abstract:
In this work, the bio-clogging of two soils with different granulometries is presented. The durability of the clogging is also studied under cycles of hydraulic head and under cycles of desaturation- restauration. The studied materials present continuous grain size distributions. The first one corresponding to the "material 1", presents grain sizes between 0.4 and 4 mm. The second material called "material 2" is composed of grains with size varying between 1 and 10 mm. The results show that clogging occurs very quickly after the injection of nutrition and an outlet flow near to 0 is observed. The critical hydraulic head is equal to 0.76 for "material 1", and 0.076 for "material 2". The durability tests show a good resistance to unclogging under cycles of hydraulic head and desaturation-restauration for the "material 1". Indeed, the flow after the cycles is very low. In contrast, "material 2", shows a very bad resistance, especially under the hydraulic head cycles. The resistance under the cycles of desaturation-resaturation is better but an important increase of the flow is observed. The difference of behavior is due to the granulometry of the materials. Indeed, the large grain size contributes to the reduction of the efficiency of the bio-clogging treatment in this material.Keywords: bio-clogging, granulometry, permeability, nutrition
Procedia PDF Downloads 40725016 Information Communication Technology Based Road Traffic Accidents’ Identification, and Related Smart Solution Utilizing Big Data
Authors: Ghulam Haider Haidaree, Nsenda Lukumwena
Abstract:
Today the world of research enjoys abundant data, available in virtually any field, technology, science, and business, politics, etc. This is commonly referred to as big data. This offers a great deal of precision and accuracy, supportive of an in-depth look at any decision-making process. When and if well used, Big Data affords its users with the opportunity to produce substantially well supported and good results. This paper leans extensively on big data to investigate possible smart solutions to urban mobility and related issues, namely road traffic accidents, its casualties, and fatalities based on multiple factors, including age, gender, location occurrences of accidents, etc. Multiple technologies were used in combination to produce an Information Communication Technology (ICT) based solution with embedded technology. Those technologies include principally Geographic Information System (GIS), Orange Data Mining Software, Bayesian Statistics, to name a few. The study uses the Leeds accident 2016 to illustrate the thinking process and extracts thereof a model that can be tested, evaluated, and replicated. The authors optimistically believe that the proposed model will significantly and smartly help to flatten the curve of road traffic accidents in the fast-growing population densities, which increases considerably motor-based mobility.Keywords: accident factors, geographic information system, information communication technology, mobility
Procedia PDF Downloads 20825015 Rainfall–Runoff Simulation Using WetSpa Model in Golestan Dam Basin, Iran
Authors: M. R. Dahmardeh Ghaleno, M. Nohtani, S. Khaledi
Abstract:
Flood simulation and prediction is one of the most active research areas in surface water management. WetSpa is a distributed, continuous, and physical model with daily or hourly time step that explains precipitation, runoff, and evapotranspiration processes for both simple and complex contexts. This model uses a modified rational method for runoff calculation. In this model, runoff is routed along the flow path using Diffusion-Wave equation which depends on the slope, velocity, and flow route characteristics. Golestan Dam Basin is located in Golestan province in Iran and it is passing over coordinates 55° 16´ 50" to 56° 4´ 25" E and 37° 19´ 39" to 37° 49´ 28"N. The area of the catchment is about 224 km2, and elevations in the catchment range from 414 to 2856 m at the outlet, with average slope of 29.78%. Results of the simulations show a good agreement between calculated and measured hydrographs at the outlet of the basin. Drawing upon Nash-Sutcliffe model efficiency coefficient for calibration periodic model estimated daily hydrographs and maximum flow rate with an accuracy up to 59% and 80.18%, respectively.Keywords: watershed simulation, WetSpa, stream flow, flood prediction
Procedia PDF Downloads 24425014 The Crack Propagation on Glass in Laser Thermal Cleavage
Authors: Jehnming Lin
Abstract:
In the laser cleavage of glass, the laser is mostly adopted as a heat source to generate a thermal stress state on the substrates. The crack propagation of the soda-lime glass in the laser thermal cleavage with the straight-turning paths was investigated in this study experimentally and numerically. The crack propagation was visualized by a high speed camera with the off-line examination on the micro-crack propagation. The temperature and stress distributions induced by the laser heat source were calculated by ANSYS software based on the finite element method (FEM). With the cutting paths in various turning directions, the experimental and numerical results were in comparison and verified. The fracture modes due to the normal and shear stresses were verified at the turning point of the laser cleavage path. It shows a significant variation of the stress profiles along the straight-turning paths and causes a change on the fracture modes.Keywords: laser cleavage, glass, fracture, stress analysis
Procedia PDF Downloads 23025013 Analysis of ECGs Survey Data by Applying Clustering Algorithm
Authors: Irum Matloob, Shoab Ahmad Khan, Fahim Arif
Abstract:
As Indo-pak has been the victim of heart diseases since many decades. Many surveys showed that percentage of cardiac patients is increasing in Pakistan day by day, and special attention is needed to pay on this issue. The framework is proposed for performing detailed analysis of ECG survey data which is conducted for measuring the prevalence of heart diseases statistics in Pakistan. The ECG survey data is evaluated or filtered by using automated Minnesota codes and only those ECGs are used for further analysis which is fulfilling the standardized conditions mentioned in the Minnesota codes. Then feature selection is performed by applying proposed algorithm based on discernibility matrix, for selecting relevant features from the database. Clustering is performed for exposing natural clusters from the ECG survey data by applying spectral clustering algorithm using fuzzy c means algorithm. The hidden patterns and interesting relationships which have been exposed after this analysis are useful for further detailed analysis and for many other multiple purposes.Keywords: arrhythmias, centroids, ECG, clustering, discernibility matrix
Procedia PDF Downloads 35125012 The Impact of Motivation on Employee Performance in South Korea
Authors: Atabong Awung Lekeazem
Abstract:
The purpose of this paper is to identify the impact or role of incentives on employee’s performance with a particular emphasis on Korean workers. The process involves defining and explaining the different types of motivation. In defining them, we also bring out the difference between the two major types of motivations. The second phase of the paper shall involve gathering data/information from a sample population and then analyzing the data. In the analysis, we shall get to see the almost similar mentality or value which Koreans attach to motivation, which a slide different view coming only from top management personnel. The last phase shall have us presenting the data and coming to a conclusion from which possible knowledge on how managers and potential managers can ignite the best out of their employees.Keywords: motivation, employee’s performance, Korean workers, business information systems
Procedia PDF Downloads 41425011 Improved Classification Procedure for Imbalanced and Overlapped Situations
Authors: Hankyu Lee, Seoung Bum Kim
Abstract:
The issue with imbalance and overlapping in the class distribution becomes important in various applications of data mining. The imbalanced dataset is a special case in classification problems in which the number of observations of one class (i.e., major class) heavily exceeds the number of observations of the other class (i.e., minor class). Overlapped dataset is the case where many observations are shared together between the two classes. Imbalanced and overlapped data can be frequently found in many real examples including fraud and abuse patients in healthcare, quality prediction in manufacturing, text classification, oil spill detection, remote sensing, and so on. The class imbalance and overlap problem is the challenging issue because this situation degrades the performance of most of the standard classification algorithms. In this study, we propose a classification procedure that can effectively handle imbalanced and overlapped datasets by splitting data space into three parts: nonoverlapping, light overlapping, and severe overlapping and applying the classification algorithm in each part. These three parts were determined based on the Hausdorff distance and the margin of the modified support vector machine. An experiments study was conducted to examine the properties of the proposed method and compared it with other classification algorithms. The results showed that the proposed method outperformed the competitors under various imbalanced and overlapped situations. Moreover, the applicability of the proposed method was demonstrated through the experiment with real data.Keywords: classification, imbalanced data with class overlap, split data space, support vector machine
Procedia PDF Downloads 30825010 Numerical Modeling of Structural Failure of a Ship During the Collision Event
Authors: Adjal Yassine, Semmani Amar
Abstract:
During the last decades, The risk of collision has been increased, especially in high maritime traffic. As the consequence, the demand is required for safety at sea and environmental protection. For this purpose, the consequences prediction of ship collisions is recommended in order to minimize structural failure. additionally, at the design stage of the ship, damage generated during the collision event must be taken into consideration. This structural failure, in some cases, can develop into the progressive collapse of other structural elements and generate catastrophic consequences. The present study investigates the progressive collapse of ships damaged by collisions using the Non -linear finite element method. The failure criteria are taken into account. The impacted area has a refined mesh in order to have more reliable results. Finally, a parametric study was conducted in this study to highlight the effect of the ship's speed, as well as the different impacted areas of double-bottom ships.Keywords: collsion, strucural failure, ship, finite element analysis
Procedia PDF Downloads 10025009 Mapping of Geological Structures Using Aerial Photography
Authors: Ankit Sharma, Mudit Sachan, Anurag Prakash
Abstract:
Rapid growth in data acquisition technologies through drones, have led to advances and interests in collecting high-resolution images of geological fields. Being advantageous in capturing high volume of data in short flights, a number of challenges have to overcome for efficient analysis of this data, especially while data acquisition, image interpretation and processing. We introduce a method that allows effective mapping of geological fields using photogrammetric data of surfaces, drainage area, water bodies etc, which will be captured by airborne vehicles like UAVs, we are not taking satellite images because of problems in adequate resolution, time when it is captured may be 1 yr back, availability problem, difficult to capture exact image, then night vision etc. This method includes advanced automated image interpretation technology and human data interaction to model structures and. First Geological structures will be detected from the primary photographic dataset and the equivalent three dimensional structures would then be identified by digital elevation model. We can calculate dip and its direction by using the above information. The structural map will be generated by adopting a specified methodology starting from choosing the appropriate camera, camera’s mounting system, UAVs design ( based on the area and application), Challenge in air borne systems like Errors in image orientation, payload problem, mosaicing and geo referencing and registering of different images to applying DEM. The paper shows the potential of using our method for accurate and efficient modeling of geological structures, capture particularly from remote, of inaccessible and hazardous sites.Keywords: digital elevation model, mapping, photogrammetric data analysis, geological structures
Procedia PDF Downloads 68625008 Efficiency Improvement for Conventional Rectangular Horn Antenna by Using EBG Technique
Authors: S. Kampeephat, P. Krachodnok, R. Wongsan
Abstract:
The conventional rectangular horn has been used for microwave antenna a long time. Its gain can be increased by enlarging the construction of horn to flare exponentially. This paper presents a study of the shaped woodpile Electromagnetic Band Gap (EBG) to improve its gain for conventional horn without construction enlargement. The gain enhancement synthesis method for shaped woodpile EBG that has to transfer the electromagnetic fields from aperture of a horn antenna through woodpile EBG is presented by using the variety of shaped woodpile EBGs such as planar, triangular, quadratic, circular, gaussian, cosine, and squared cosine structures. The proposed technique has the advantages of low profile, low cost for fabrication and light weight. The antenna characteristics such as reflection coefficient (S11), radiation patterns and gain are simulated by utilized A Computer Simulation Technology (CST) software. With the proposed concept, an antenna prototype was fabricated and experimented. The S11 and radiation patterns obtained from measurements show a good impedance matching and a gain enhancement of the proposed antenna. The gain at dominant frequency of 10 GHz is 25.6 dB, application for X- and Ku-Band Radar, that higher than the gain of the basic rectangular horn antenna around 8 dB with adding only one appropriated EBG structures.Keywords: conventional rectangular horn antenna, electromagnetic band gap, gain enhancement, X- and Ku-band radar
Procedia PDF Downloads 27825007 Using Optical Character Recognition to Manage the Unstructured Disaster Data into Smart Disaster Management System
Authors: Dong Seop Lee, Byung Sik Kim
Abstract:
In the 4th Industrial Revolution, various intelligent technologies have been developed in many fields. These artificial intelligence technologies are applied in various services, including disaster management. Disaster information management does not just support disaster work, but it is also the foundation of smart disaster management. Furthermore, it gets historical disaster information using artificial intelligence technology. Disaster information is one of important elements of entire disaster cycle. Disaster information management refers to the act of managing and processing electronic data about disaster cycle from its’ occurrence to progress, response, and plan. However, information about status control, response, recovery from natural and social disaster events, etc. is mainly managed in the structured and unstructured form of reports. Those exist as handouts or hard-copies of reports. Such unstructured form of data is often lost or destroyed due to inefficient management. It is necessary to manage unstructured data for disaster information. In this paper, the Optical Character Recognition approach is used to convert handout, hard-copies, images or reports, which is printed or generated by scanners, etc. into electronic documents. Following that, the converted disaster data is organized into the disaster code system as disaster information. Those data are stored in the disaster database system. Gathering and creating disaster information based on Optical Character Recognition for unstructured data is important element as realm of the smart disaster management. In this paper, Korean characters were improved to over 90% character recognition rate by using upgraded OCR. In the case of character recognition, the recognition rate depends on the fonts, size, and special symbols of character. We improved it through the machine learning algorithm. These converted structured data is managed in a standardized disaster information form connected with the disaster code system. The disaster code system is covered that the structured information is stored and retrieve on entire disaster cycle such as historical disaster progress, damages, response, and recovery. The expected effect of this research will be able to apply it to smart disaster management and decision making by combining artificial intelligence technologies and historical big data.Keywords: disaster information management, unstructured data, optical character recognition, machine learning
Procedia PDF Downloads 12925006 The Effect of Remifentanil on Emergence Agitation after Sevoflurane Anesthesia in Children: A Meta-Analysis
Authors: Jong Yeop Kim, Sung Young Park, Dae Hee Kim, Han Bum Joe, Ji Young Yoo, Jong Bum Choi, Sook Young Lee
Abstract:
Emergence agitation (EA) is commonly reported adverse events after sevoflurane anesthesia in pediatric patients. The efficacy of prophylactic remifentanil, one of mu opioid agonist, in preventing EA is controversial. This meta-analysis assessed the effectiveness of remifentanil to decrease the incidence of EA from sevoflurane anesthesia in children. We searched for randomized controlled trials comparing sevoflurane alone anesthesia with sevoflurane and remifentanil anesthesia to prevent EA in the Cochrane Library, Embase, Pubmed, and KoreaMed, and included 6 studies with 361 patients. The number of patients of reporting EA was summarized using risk ratio (RR) with 95% confidence interval (CI), with point estimates and 95CIs derived from a random effects Mantel-Haenszel method. Overall incidence of EA was about 41%. Compared with sevoflurane alone anesthesia, intravenous infusion of remifentanil with sevoflurane significantly reduced the incidence of EA (RR 0.53, 95% CI 0.39-0.73, P < 0.0001), (heterogeneity, I2 = 0, P = 0.42). This meta-analysis suggested that continuous infusion of remifentanil could be effective in decreasing the EA of about 47% after sevoflurane anesthesia. However, considering limitations of the included studies, more randomized controlled studies are required to verify our results.Keywords: emergence agitation, meta-analysis, remifentanil, pediatrics
Procedia PDF Downloads 37525005 Diffusion MRI: Clinical Application in Radiotherapy Planning of Intracranial Pathology
Authors: Pomozova Kseniia, Gorlachev Gennadiy, Chernyaev Aleksandr, Golanov Andrey
Abstract:
In clinical practice, and especially in stereotactic radiosurgery planning, the significance of diffusion-weighted imaging (DWI) is growing. This makes the existence of software capable of quickly processing and reliably visualizing diffusion data, as well as equipped with tools for their analysis in terms of different tasks. We are developing the «MRDiffusionImaging» software on the standard C++ language. The subject part has been moved to separate class libraries and can be used on various platforms. The user interface is Windows WPF (Windows Presentation Foundation), which is a technology for managing Windows applications with access to all components of the .NET 5 or .NET Framework platform ecosystem. One of the important features is the use of a declarative markup language, XAML (eXtensible Application Markup Language), with which you can conveniently create, initialize and set properties of objects with hierarchical relationships. Graphics are generated using the DirectX environment. The MRDiffusionImaging software package has been implemented for processing diffusion magnetic resonance imaging (dMRI), which allows loading and viewing images sorted by series. An algorithm for "masking" dMRI series based on T2-weighted images was developed using a deformable surface model to exclude tissues that are not related to the area of interest from the analysis. An algorithm of distortion correction using deformable image registration based on autocorrelation of local structure has been developed. Maximum voxel dimension was 1,03 ± 0,12 mm. In an elementary brain's volume, the diffusion tensor is geometrically interpreted using an ellipsoid, which is an isosurface of the probability density of a molecule's diffusion. For the first time, non-parametric intensity distributions, neighborhood correlations, and inhomogeneities are combined in one segmentation of white matter (WM), grey matter (GM), and cerebrospinal fluid (CSF) algorithm. A tool for calculating the coefficient of average diffusion and fractional anisotropy has been created, on the basis of which it is possible to build quantitative maps for solving various clinical problems. Functionality has been created that allows clustering and segmenting images to individualize the clinical volume of radiation treatment and further assess the response (Median Dice Score = 0.963 ± 0,137). White matter tracts of the brain were visualized using two algorithms: deterministic (fiber assignment by continuous tracking) and probabilistic using the Hough transform. The proposed algorithms test candidate curves in the voxel, assigning to each one a score computed from the diffusion data, and then selects the curves with the highest scores as the potential anatomical connections. White matter fibers were visualized using a Hough transform tractography algorithm. In the context of functional radiosurgery, it is possible to reduce the irradiation volume of the internal capsule receiving 12 Gy from 0,402 cc to 0,254 cc. The «MRDiffusionImaging» will improve the efficiency and accuracy of diagnostics and stereotactic radiotherapy of intracranial pathology. We develop software with integrated, intuitive support for processing, analysis, and inclusion in the process of radiotherapy planning and evaluating its results.Keywords: diffusion-weighted imaging, medical imaging, stereotactic radiosurgery, tractography
Procedia PDF Downloads 8525004 2D Nanomaterials-Based Geopolymer as-Self-Sensing Buildings in Construction Industry
Authors: Maryam Kiani
Abstract:
The self-sensing capability opens up new possibilities for structural health monitoring, offering real-time information on the condition and performance of constructions. The synthesis and characterization of these functional 2D material geopolymers will be explored in this study. Various fabrication techniques, including mixing, dispersion, and coating methods, will be employed to ensure uniform distribution and integration of the 2D materials within the geopolymers. The resulting composite materials will be evaluated for their mechanical strength, electrical conductivity, and sensing capabilities through rigorous testing and analysis. The potential applications of these self-sensing geopolymers are vast. They can be used in infrastructure projects, such as bridges, tunnels, and buildings, to provide continuous monitoring and early detection of structural damage or degradation. This proactive approach to maintenance and safety can significantly improve the lifespan and efficiency of constructions, ultimately reducing maintenance costs and enhancing overall sustainability. In conclusion, the development of functional 2D material geopolymers as self-sensing materials presents an exciting advancement in the construction industry. By integrating these innovative materials into structures, we can create a new generation of intelligent, self-monitoring constructions that can adapt and respond to their environment.Keywords: 2D materials, geopolymers, electrical properties, self-sensing
Procedia PDF Downloads 13225003 The Stem Cell Transcription Co-factor Znf521 Sustains Mll-af9 Fusion Protein In Acute Myeloid Leukemias By Altering The Gene Expression Landscape
Authors: Emanuela Chiarella, Annamaria Aloisio, Nisticò Clelia, Maria Mesuraca
Abstract:
ZNF521 is a stem cell-associated transcription co-factor, that plays a crucial role in the homeostatic regulation of the stem cell compartment in the hematopoietic, osteo-adipogenic, and neural system. In normal hematopoiesis, primary human CD34+ hematopoietic stem cells display typically a high expression of ZNF521, while its mRNA levels rapidly decrease when these progenitors progress towards erythroid, granulocytic, or B-lymphoid differentiation. However, most acute myeloid leukemias (AMLs) and leukemia-initiating cells keep high ZNF521 expression. In particular, AMLs are often characterized by chromosomal translocations involving the Mixed Lineage Leukemia (MLL) gene, which MLL gene includes a variety of fusion oncogenes arisen from genes normally required during hematopoietic development; once they are fused, they promote epigenetic and transcription factor dysregulation. The chromosomal translocation t(9;11)(p21-22;q23), fusing the MLL gene with AF9 gene, results in a monocytic immune phenotype with an aggressive course, frequent relapses, and a short survival time. To better understand the dysfunctional transcriptional networks related to genetic aberrations, AML gene expression profile datasets were queried for ZNF521 expression and its correlations with specific gene rearrangements and mutations. The results showed that ZNF521 mRNA levels are associated with specific genetic aberrations: the highest expression levels were observed in AMLs involving t(11q23) MLL rearrangements in two distinct datasets (MILE and den Boer); elevated ZNF521 mRNA expression levels were also revealed in AMLs with t(7;12) or with internal rearrangements of chromosome 16. On the contrary, relatively low ZNF521 expression levels seemed to be associated with the t(8;21) translocation, that in turn is correlated with the AML1-ETO fusion gene or the t(15;17) translocation and in AMLs with FLT3-ITD, NPM1, or CEBPα double mutations. Invitro, we found that the enforced co-expression of ZNF521 in cord blood-derived CD34+ cells induced a significant proliferative advantage, improving MLL-AF9 effects on the induction of proliferation and the expansion of leukemic progenitor cells. Transcriptome profiling of CD34+ cells transduced with either MLL-AF9, ZNF521, or a combination of the two transgenes highlighted specific sets of up- or down-regulated genes that are involved in the leukemic phenotype, including those encoding transcription factors, epigenetic modulators, and cell cycle regulators as well as those engaged in the transport or uptake of nutrients. These data enhance the functional cooperation between ZNF521 and MA9, resulting in the development, maintenance, and clonal expansion of leukemic cells. Finally, silencing of ZNF521 in MLL-AF9-transformed primary CD34+ cells inhibited their proliferation and led to their extinction, as well as ZNF521 silencing in the MLL-AF9+ THP-1 cell line resulted in an impairment of their growth and clonogenicity. Taken together, our data highlight ZNF521 role in the control of self-renewal and in the immature compartment of malignant hematopoiesis, which, by altering the gene expression landscape, contributes to the development and/or maintenance of AML acting in concert with the MLL-AF9 fusion oncogene.Keywords: AML, human zinc finger protein 521 (hZNF521), mixed lineage leukemia gene (MLL) AF9 (MLLT3 or LTG9), cord blood-derived hematopoietic stem cells (CB-CD34+)
Procedia PDF Downloads 11025002 Predicting Seoul Bus Ridership Using Artificial Neural Network Algorithm with Smartcard Data
Authors: Hosuk Shin, Young-Hyun Seo, Eunhak Lee, Seung-Young Kho
Abstract:
Currently, in Seoul, users have the privilege to avoid riding crowded buses with the installation of Bus Information System (BIS). BIS has three levels of on-board bus ridership level information (spacious, normal, and crowded). However, there are flaws in the system due to it being real time which could provide incomplete information to the user. For example, a bus comes to the station, and on the BIS it shows that the bus is crowded, but on the stop that the user is waiting many people get off, which would mean that this station the information should show as normal or spacious. To fix this problem, this study predicts the bus ridership level using smart card data to provide more accurate information about the passenger ridership level on the bus. An Artificial Neural Network (ANN) is an interconnected group of nodes, that was created based on the human brain. Forecasting has been one of the major applications of ANN due to the data-driven self-adaptive methods of the algorithm itself. According to the results, the ANN algorithm was stable and robust with somewhat small error ratio, so the results were rational and reasonable.Keywords: smartcard data, ANN, bus, ridership
Procedia PDF Downloads 16725001 Combination of Artificial Neural Network Model and Geographic Information System for Prediction Water Quality
Authors: Sirilak Areerachakul
Abstract:
Water quality has initiated serious management efforts in many countries. Artificial Neural Network (ANN) models are developed as forecasting tools in predicting water quality trend based on historical data. This study endeavors to automatically classify water quality. The water quality classes are evaluated using 6 factor indices. These factors are pH value (pH), Dissolved Oxygen (DO), Biochemical Oxygen Demand (BOD), Nitrate Nitrogen (NO3N), Ammonia Nitrogen (NH3N) and Total Coliform (T-Coliform). The methodology involves applying data mining techniques using multilayer perceptron (MLP) neural network models. The data consisted of 11 sites of Saen Saep canal in Bangkok, Thailand. The data is obtained from the Department of Drainage and Sewerage Bangkok Metropolitan Administration during 2007-2011. The results of multilayer perceptron neural network exhibit a high accuracy multilayer perception rate at 94.23% in classifying the water quality of Saen Saep canal in Bangkok. Subsequently, this encouraging result could be combined with GIS data improves the classification accuracy significantly.Keywords: artificial neural network, geographic information system, water quality, computer science
Procedia PDF Downloads 34325000 Dynamic of Nonlinear Duopoly Game with Heterogeneous Players
Authors: Jixiang Zhang, Yanhua Wang
Abstract:
A dynamic of Bertrand duopoly game is analyzed, where players use different production methods and choose their prices with bounded rationality. The equilibriums of the corresponding discrete dynamical systems are investigated. The stability conditions of Nash equilibrium under a local adjustment process are studied. The stability conditions of Nash equilibrium under a local adjustment process are studied. The stability of Nash equilibrium, as some parameters of the model are varied, gives rise to complex dynamics such as cycles of higher order and chaos. On this basis, we discover that an increase of adjustment speed of bounded rational player can make Bertrand market sink into the chaotic state. Finally, the complex dynamics, bifurcations and chaos are displayed by numerical simulation.Keywords: Bertrand duopoly model, discrete dynamical system, heterogeneous expectations, nash equilibrium
Procedia PDF Downloads 41524999 Improving Temporal Correlations in Empirical Orthogonal Function Expansions for Data Interpolating Empirical Orthogonal Function Algorithm
Authors: Ping Bo, Meng Yunshan
Abstract:
Satellite-derived sea surface temperature (SST) is a key parameter for many operational and scientific applications. However, the disadvantage of SST data is a high percentage of missing data which is mainly caused by cloud coverage. Data Interpolating Empirical Orthogonal Function (DINEOF) algorithm is an EOF-based technique for reconstructing the missing data and has been widely used in oceanographic field. The reconstruction of SST images within a long time series using DINEOF can cause large discontinuities and one solution for this problem is to filter the temporal covariance matrix to reduce the spurious variability. Based on the previous researches, an algorithm is presented in this paper to improve the temporal correlations in EOF expansion. Similar with the previous researches, a filter, such as Laplacian filter, is implemented on the temporal covariance matrix, but the temporal relationship between two consecutive images which is used in the filter is considered in the presented algorithm, for example, two images in the same season are more likely correlated than those in the different seasons, hence the latter one is less weighted in the filter. The presented approach is tested for the monthly nighttime 4-km Advanced Very High Resolution Radiometer (AVHRR) Pathfinder SST for the long-term period spanning from 1989 to 2006. The results obtained from the presented algorithm are compared to those from the original DINEOF algorithm without filtering and from the DINEOF algorithm with filtering but without taking temporal relationship into account.Keywords: data interpolating empirical orthogonal function, image reconstruction, sea surface temperature, temporal filter
Procedia PDF Downloads 32424998 Sparse Unmixing of Hyperspectral Data by Exploiting Joint-Sparsity and Rank-Deficiency
Authors: Fanqiang Kong, Chending Bian
Abstract:
In this work, we exploit two assumed properties of the abundances of the observed signatures (endmembers) in order to reconstruct the abundances from hyperspectral data. Joint-sparsity is the first property of the abundances, which assumes the adjacent pixels can be expressed as different linear combinations of same materials. The second property is rank-deficiency where the number of endmembers participating in hyperspectral data is very small compared with the dimensionality of spectral library, which means that the abundances matrix of the endmembers is a low-rank matrix. These assumptions lead to an optimization problem for the sparse unmixing model that requires minimizing a combined l2,p-norm and nuclear norm. We propose a variable splitting and augmented Lagrangian algorithm to solve the optimization problem. Experimental evaluation carried out on synthetic and real hyperspectral data shows that the proposed method outperforms the state-of-the-art algorithms with a better spectral unmixing accuracy.Keywords: hyperspectral unmixing, joint-sparse, low-rank representation, abundance estimation
Procedia PDF Downloads 26124997 Experimental Study of Flag Flutter in Uniform Flow
Authors: A. Sadeghi, M. Sedghi, M. R. Emami Azadi, R. Gharraei Khosroshahi
Abstract:
Flags are objects with very low bending stiffness and under wind forces start to vibrate and finally to flutter. Even in lower velocities of wind their flutter can be seen. In this research physical property of fabric is determined by performing tensile tests. Then with performing laboratory experiments in wind tunnel, determination of initial flapping speed and also study of displacement amplitude at leech and calculation of their frequency would be targeted. Laboratory tests are performed in a wind tunnel and with different velocities of wind flow for specimens with different dimensions. The results show that extension of specimens' width increase flutter initiation velocity and increase of specimen length decreases it. Also by increasing wind velocity displacement amplitude at leech of specimens are decreased. This displacement has a straight relation with specimens' length and width.Keywords: flag, flutter, wind velocity, flutter amplitudes, wind tunnel
Procedia PDF Downloads 43524996 Electronic Physical Activity Record (EPAR): Key for Data Driven Physical Activity Healthcare Services
Authors: Rishi Kanth Saripalle
Abstract:
Medical experts highly recommend to include physical activity in everyone’s daily routine irrespective of gender or age as it helps to improve various medical issues or curb potential issues. Simultaneously, experts are also diligently trying to provide various healthcare services (interventions, plans, exercise routines, etc.) for promoting healthy living and increasing physical activity in one’s ever increasing hectic schedules. With the introduction of wearables, individuals are able to keep track, analyze, and visualize their daily physical activities. However, there seems to be no common agreed standard for representing, gathering, aggregating and analyzing an individual’s physical activity data from disparate multiple sources (exercise pans, multiple wearables, etc.). This issue makes it highly impractical to develop any data-driven physical activity applications and healthcare programs. Further, the inability to integrate the physical activity data into an individual’s Electronic Health Record to provide a wholistic image of that individual’s health is still eluding the experts. This article has identified three primary reasons for this potential issue. First, there is no agreed standard, both structure and semantic, for representing and sharing physical activity data across disparate systems. Second, various organizations (e.g., LA fitness, Gold’s Gym, etc.) and research backed interventions and programs still primarily rely on paper or unstructured format (such as text or notes) to keep track of the data generated from physical activities. Finally, most of the wearable devices operate in silos. This article identifies the underlying problem, explores the idea of reusing existing standards, and identifies the essential modules required to move forward.Keywords: electronic physical activity record, physical activity in EHR EIM, tracking physical activity data, physical activity data standards
Procedia PDF Downloads 28224995 'Violence Is Bad, but It's Just a Game': The Glorification of Violence from Roman Antiquity to Popular Culture
Authors: M. C. Steyn
Abstract:
Violence and entertainment are not mutually exclusive subjects in the Ancient Roman world, in reality they are closely knit together. Their world is permeated by repeated and continuous episodes of violence in its many manifestations, both sanctioned and spontaneous, most of which is considered as some form of entertainment, from plays and writings through the spectrum to the gladiatorial arena. In the 21st century this socio-psychological dynamic is manifested through the stage provided by the screen and what we watch in terms of TV, movies and games. This glorification of violence in a modern world is not out of place as seen in contemporary post apocalyptical/ dystopian literature, film and computer games where the act of violence, frowned upon by social norms and values, becomes sanctioned by the (un)real nature of the game: ‘I am not a violent person, violence is bad, this is just a game’. This paper will examine how violence is framed in the Ancient World and subsequently how it is received by popular culture to represent a world in which the maintenance of stability can only be achieved through officially sanctioned violence, whether sanctioned by the State or the gaming community. This argument will examine both ancient and modern critics of violence such as Senecca, Coleman and Foucault and framed by Baudrillard’s commentary on the post-modern conceptualization of reality.Keywords: entertainment, violence, gladiatorial games, gaming
Procedia PDF Downloads 490