Search results for: train platforming
128 Enhanced CNN for Rice Leaf Disease Classification in Mobile Applications
Authors: Kayne Uriel K. Rodrigo, Jerriane Hillary Heart S. Marcial, Samuel C. Brillo
Abstract:
Rice leaf diseases significantly impact yield production in rice-dependent countries, affecting their agricultural sectors. As part of precision agriculture, early and accurate detection of these diseases is crucial for effective mitigation practices and minimizing crop losses. Hence, this study proposes an enhancement to the Convolutional Neural Network (CNN), a widely-used method for Rice Leaf Disease Image Classification, by incorporating MobileViTV2—a recently advanced architecture that combines CNN and Vision Transformer models while maintaining fewer parameters, making it suitable for broader deployment on edge devices. Our methodology utilizes a publicly available rice disease image dataset from Kaggle, which was validated by a university structural biologist following the guidelines provided by the Philippine Rice Institute (PhilRice). Modifications to the dataset include renaming certain disease categories and augmenting the rice leaf image data through rotation, scaling, and flipping. The enhanced dataset was then used to train the MobileViTV2 model using the Timm library. The results of our approach are as follows: the model achieved notable performance, with 98% accuracy in both training and validation, 6% training and validation loss, and a Receiver Operating Characteristic (ROC) curve ranging from 95% to 100% for each label. Additionally, the F1 score was 97%. These metrics demonstrate a significant improvement compared to a conventional CNN-based approach, which, in a previous 2022 study, achieved only 78% accuracy after using 5 convolutional layers and 2 dense layers. Thus, it can be concluded that MobileViTV2, with its fewer parameters, outperforms traditional CNN models, particularly when applied to Rice Leaf Disease Image Identification. For future work, we recommend extending this model to include datasets validated by international rice experts and broadening the scope to accommodate biotic factors such as rice pest classification, as well as abiotic stressors such as climate, soil quality, and geographic information, which could improve the accuracy of disease prediction.Keywords: convolutional neural network, MobileViTV2, rice leaf disease, precision agriculture, image classification, vision transformer
Procedia PDF Downloads 23127 Umkhonto Wesizwe as the Foundation of Post-Apartheid South Africa’s Foreign Policy and International Relations.
Authors: Bheki R. Mngomezulu
Abstract:
The present paper cogently and systematically traces the history of Umkhonto Wesizwe (MK) and identifies its important role in shaping South Africa’s post-apartheid foreign policy and international relations under black leadership. It provides the political and historical contexts within which we can interpret and better understand South Africa’s controversial ‘Quiet Diplomacy’ approach to Zimbabwe’s endemic political and economic crises, which have dragged for too long. On 16 December 1961, the African National Congress (ANC) officially launched the MK as its military wing. The main aim was to train liberation fighters outside South Africa who would return into the country to topple the apartheid regime. Subsequently, the ANC established links with various countries across Africa and the globe in order to solicit arms, financial resources and military training for its recruits into the MK. Drawing from archival research and empirical data obtained through oral interviews that were conducted with some of the former MK cadres, this paper demonstrates how the ANC forged relations with a number of countries that were like-minded in order to ensure that its dream of removing the apartheid government became a reality. The findings reveal that South Africa’s foreign policy posture and international relations after the demise of apartheid in 1994 built on these relations. As such, even former and current socialist countries that were frowned upon by the Western world became post-apartheid South Africa’s international partners. These include countries such as Cuba and China, among others. Even countries that were not recognized by the Western world as independent states received good reception in post-apartheid South Africa’s foreign policy agenda. One of these countries is Palestine. Within Africa, countries with questionable human rights records such as Nigeria and Zimbabwe were accommodated in South Africa’s foreign policy agenda after 1994. Drawing from this history, the paper concludes that it would be difficult to fully understand and appreciate South Africa’s foreign policy direction and international relations after 1994 without bringing the history and the politics of the MK into the equation. Therefore, the paper proposes that the utilitarian role of history should never be undermined in the analysis of a country’s foreign policy direction and international relations. Umkhonto Wesizwe and South Africa are used as examples to demonstrate how such a link could be drawn through archival and empirical evidence.Keywords: African National Congress, apartheid, foreign policy, international relations
Procedia PDF Downloads 185126 Predicting Daily Patient Hospital Visits Using Machine Learning
Authors: Shreya Goyal
Abstract:
The study aims to build user-friendly software to understand patient arrival patterns and compute the number of potential patients who will visit a particular health facility for a given period by using a machine learning algorithm. The underlying machine learning algorithm used in this study is the Support Vector Machine (SVM). Accurate prediction of patient arrival allows hospitals to operate more effectively, providing timely and efficient care while optimizing resources and improving patient experience. It allows for better allocation of staff, equipment, and other resources. If there's a projected surge in patients, additional staff or resources can be allocated to handle the influx, preventing bottlenecks or delays in care. Understanding patient arrival patterns can also help streamline processes to minimize waiting times for patients and ensure timely access to care for patients in need. Another big advantage of using this software is adhering to strict data protection regulations such as the Health Insurance Portability and Accountability Act (HIPAA) in the United States as the hospital will not have to share the data with any third party or upload it to the cloud because the software can read data locally from the machine. The data needs to be arranged in. a particular format and the software will be able to read the data and provide meaningful output. Using software that operates locally can facilitate compliance with these regulations by minimizing data exposure. Keeping patient data within the hospital's local systems reduces the risk of unauthorized access or breaches associated with transmitting data over networks or storing it in external servers. This can help maintain the confidentiality and integrity of sensitive patient information. Historical patient data is used in this study. The input variables used to train the model include patient age, time of day, day of the week, seasonal variations, and local events. The algorithm uses a Supervised learning method to optimize the objective function and find the global minima. The algorithm stores the values of the local minima after each iteration and at the end compares all the local minima to find the global minima. The strength of this study is the transfer function used to calculate the number of patients. The model has an output accuracy of >95%. The method proposed in this study could be used for better management planning of personnel and medical resources.Keywords: machine learning, SVM, HIPAA, data
Procedia PDF Downloads 65125 Advancements in AI Training and Education for a Future-Ready Healthcare System
Authors: Shamie Kumar
Abstract:
Background: Radiologists and radiographers (RR) need to educate themselves and their colleagues to ensure that AI is integrated safely, useful, and in a meaningful way with the direction it always benefits the patients. AI education and training are fundamental to the way RR work and interact with it, such that they feel confident using it as part of their clinical practice in a way they understand it. Methodology: This exploratory research will outline the current educational and training gaps for radiographers and radiologists in AI radiology diagnostics. It will review the status, skills, challenges of educating and teaching. Understanding the use of artificial intelligence within daily clinical practice, why it is fundamental, and justification on why learning about AI is essential for wider adoption. Results: The current knowledge among RR is very sparse, country dependent, and with radiologists being the majority of the end-users for AI, their targeted training and learning AI opportunities surpass the ones available to radiographers. There are many papers that suggest there is a lack of knowledge, understanding, and training of AI in radiology amongst RR, and because of this, they are unable to comprehend exactly how AI works, integrates, benefits of using it, and its limitations. There is an indication they wish to receive specific training; however, both professions need to actively engage in learning about it and develop the skills that enable them to effectively use it. There is expected variability amongst the profession on their degree of commitment to AI as most don’t understand its value; this only adds to the need to train and educate RR. Currently, there is little AI teaching in either undergraduate or postgraduate study programs, and it is not readily available. In addition to this, there are other training programs, courses, workshops, and seminars available; most of these are short and one session rather than a continuation of learning which cover a basic understanding of AI and peripheral topics such as ethics, legal, and potential of AI. There appears to be an obvious gap between the content of what the training program offers and what the RR needs and wants to learn. Due to this, there is a risk of ineffective learning outcomes and attendees feeling a lack of clarity and depth of understanding of the practicality of using AI in a clinical environment. Conclusion: Education, training, and courses need to have defined learning outcomes with relevant concepts, ensuring theory and practice are taught as a continuation of the learning process based on use cases specific to a clinical working environment. Undergraduate and postgraduate courses should be developed robustly, ensuring the delivery of it is with expertise within that field; in addition, training and other programs should be delivered as a way of continued professional development and aligned with accredited institutions for a degree of quality assurance.Keywords: artificial intelligence, training, radiology, education, learning
Procedia PDF Downloads 85124 An ICF Framework for Game-Based Experiences in Geriatric Care
Authors: Marlene Rosa, Susana Lopes
Abstract:
Board games have been used for different purposes in geriatric care, demonstrating good results for health in general. However, there is not a conceptual framework that can help professionals and researchers in this area to design intervention programs or to think about future studies in this area. The aim of this study was to provide a pilot collection of board games’ serious purposes in geriatric care, using a WHO framework for health and disability. Study cases were developed in seven geriatric residential institutions from the center region in Portugal that are included in AGILAB program. The AGILAB program is a serious game-based method to train and spread out the implementation of board games in geriatric care. Each institution provides 2-hours/week of experiences using TATI Hand Game for serious purposes and then fulfill questions about a study-case (player characteristics; explain changes in players health according to this game experience). Two independent researchers read the information and classified it according to the International Classification for Functioning and Disability (ICF) categories. Any discrepancy was solved in a consensus meeting. Results indicate an important variability in body functions and structures: specific mental functions (e.g., b140 Attention functions, b144 Memory functions), b156 Perceptual functions, b2 sensory functions and pain (e.g., b230 Hearing functions; b265 Touch function; b280 Sensation of pain), b7 neuromusculoskeletal and movement-related functions (e.g., b730 Muscle power functions; b760 Control of voluntary movement functions; b710 Mobility of joint functions). Less variability was found in activities and participation domains, such as purposeful sensory experiences (d110-d129) (e.g., d115 Listening), communication (d3), d710 basic interpersonal interactions, d920 recreation and leisure (d9200 Play; d9205 Socializing). Concluding, this framework designed from a brief gamed-based experience includes mental, perceptual, sensory, neuromusculoskeletal, and movement-related functions and participation in sensory, communication, and leisure domains. More studies, including different experiences and a high number of users, should be developed to provide a more comprehensive ICF framework for game-based experiences in geriatric care.Keywords: board game, aging, framework, experience
Procedia PDF Downloads 126123 Predicting Wealth Status of Households Using Ensemble Machine Learning Algorithms
Authors: Habtamu Ayenew Asegie
Abstract:
Wealth, as opposed to income or consumption, implies a more stable and permanent status. Due to natural and human-made difficulties, households' economies will be diminished, and their well-being will fall into trouble. Hence, governments and humanitarian agencies offer considerable resources for poverty and malnutrition reduction efforts. One key factor in the effectiveness of such efforts is the accuracy with which low-income or poor populations can be identified. As a result, this study aims to predict a household’s wealth status using ensemble Machine learning (ML) algorithms. In this study, design science research methodology (DSRM) is employed, and four ML algorithms, Random Forest (RF), Adaptive Boosting (AdaBoost), Light Gradient Boosted Machine (LightGBM), and Extreme Gradient Boosting (XGBoost), have been used to train models. The Ethiopian Demographic and Health Survey (EDHS) dataset is accessed for this purpose from the Central Statistical Agency (CSA)'s database. Various data pre-processing techniques were employed, and the model training has been conducted using the scikit learn Python library functions. Model evaluation is executed using various metrics like Accuracy, Precision, Recall, F1-score, area under curve-the receiver operating characteristics (AUC-ROC), and subjective evaluations of domain experts. An optimal subset of hyper-parameters for the algorithms was selected through the grid search function for the best prediction. The RF model has performed better than the rest of the algorithms by achieving an accuracy of 96.06% and is better suited as a solution model for our purpose. Following RF, LightGBM, XGBoost, and AdaBoost algorithms have an accuracy of 91.53%, 88.44%, and 58.55%, respectively. The findings suggest that some of the features like ‘Age of household head’, ‘Total children ever born’ in a family, ‘Main roof material’ of their house, ‘Region’ they lived in, whether a household uses ‘Electricity’ or not, and ‘Type of toilet facility’ of a household are determinant factors to be a focal point for economic policymakers. The determinant risk factors, extracted rules, and designed artifact achieved 82.28% of the domain expert’s evaluation. Overall, the study shows ML techniques are effective in predicting the wealth status of households.Keywords: ensemble machine learning, households wealth status, predictive model, wealth status prediction
Procedia PDF Downloads 38122 Shame and Pride in Moral Self-Improvement
Authors: Matt Stichter
Abstract:
Moral development requires learning from one’s failures, but that turnsout to be especially challenging when dealing with moral failures. The distress prompted by moral failure can cause responses ofdefensiveness or disengagement rather than attempts to make amends and work on self-change. The most potentially distressing response to moral failure is a shame. However, there appears to be two different senses of “shame” that are conflated in the literature, depending on whether the failure is appraised as the result of a global and unalterable self-defect, or a local and alterable self-defect. One of these forms of shame does prompt self-improvement in response to moral failure. This occurs if one views the failure as indicating only a specific (local) defect in one’s identity, where that’s something repairable, rather than asanoverall(orglobal)defectinyouridentity that can’t be fixed. So, if the whole of one’s identity as a morally good person isn’t being called into question, but only a part, then that is something one could work on to improve. Shame, in this sense, provides motivation for self-improvement to fix this part oftheselfinthe long run, and this would be important for moral development. One factor that looks to affect these different self-attributions in the wake of moral failure can be found in mindset theory, as reactions to moral failure in these two forms of shame are similar to how those with a fixed or growth mindset of their own abilities, such as intelligence, react to failure. People fall along a continuum with respect to how they view abilities – it is more of a fixed entity that you cannot do much to change, or it is malleable such that you can train to improve it. These two mindsets, ‘fixed’ versus ‘growth’, have different consequences for how we react to failure – a fixed mindset leads to maladaptive responses because of feelings of helplessness to do better; whereas a growth mindset leads to adaptive responses where a person puts forth effort to learn how to act better the next time. Here we can see the parallels between a fixed mindset of one’s own (im)morality, as the way people respond to shame when viewed as indicating a global and unalterable self-defect parallels the reactions people have to failure when they have a fixed mindset. In addition, it looks like there may be a similar structure to pride. Pride is, like shame, a self-conscious emotion that arises from internal attributions about the self as being the cause of some event. There are also paradoxical results from research on pride, where pride was found to motivate pro-social behavior in some cases but aggression in other cases. Research suggests that there may be two forms of pride, authentic and hubristic, that are also connected to different self-attributions, depending on whether one is feeling proud about a particular (local) aspect of the self versus feeling proud about the whole of oneself (global).Keywords: emotion, mindset, moral development, moral psychology, pride, shame, self-regulation
Procedia PDF Downloads 107121 The Accuracy of an 8-Minute Running Field Test to Estimate Lactate Threshold
Authors: Timothy Quinn, Ronald Croce, Aliaksandr Leuchanka, Justin Walker
Abstract:
Many endurance athletes train at or just below an intensity associated with their lactate threshold (LT) and often the heart rate (HR) that these athletes use for their LT are above their true LT-HR measured in a laboratory. Training above their true LT-HR may lead to overtraining and injury. Few athletes have the capability of measuring their LT in a laboratory and rely on perception to guide them, as accurate field tests to determine LT are limited. Therefore, the purpose of this study was to determine if an 8-minute field test could accurately define the HR associated with LT as measured in the laboratory. On Day 1, fifteen male runners (mean±SD; age, 27.8±4.1 years; height, 177.9±7.1 cm; body mass, 72.3±6.2 kg; body fat, 8.3±3.1%) performed a discontinuous treadmill LT/maximal oxygen consumption (LT/VO2max) test using a portable metabolic gas analyzer (Cosmed K4b2) and a lactate analyzer (Analox GL5). The LT (and associated HR) was determined using the 1/+1 method, where blood lactate increased by 1 mMol•L-1 over baseline followed by an additional 1 mMol•L-1 increase. Days 2 and 3 were randomized, and the athletes performed either an 8-minute run on the treadmill (TM) or on a 160-m indoor track (TR) in an effort to cover as much distance as possible while maintaining a high intensity throughout the entire 8 minutes. VO2, HR, ventilation (VE), and respiratory exchange ratio (RER) were measured using the Cosmed system, and rating of perceived exertion (RPE; 6-20 scale) was recorded every minute. All variables were averaged over the 8 minutes. The total distance covered over the 8 minutes was measured in both conditions. At the completion of the 8-minute runs, blood lactate was measured. Paired sample t-tests and pairwise Pearson correlations were computed to determine the relationship between variables measured in the field tests versus those obtained in the laboratory at LT. An alpha level of <0.05 was required for statistical significance. The HR (mean +SD) during the TM (167+9 bpm) and TR (172+9 bpm) tests were strongly correlated to the HR measured during the laboratory LT (169+11 bpm) test (r=0.68; p<0.03 and r=0.88; p<0.001, respectively). Blood lactate values during the TM and TR tests were not different from each other but were strongly correlated with the laboratory LT (r=0.73; p<0.04 and r=0.66; p<0.05, respectively). VE (Lmin-1) was significantly greater during the TR (134.8+11.4 Lmin-1) as compared to the TM (123.3+16.2 Lmin-1) with moderately strong correlations to the laboratory threshold values (r=0.38; p=0.27 and r=0.58; p=0.06, respectively). VO2 was higher during TR (51.4 mlkg-1min-1) compared to TM (47.4 mlkg-1min-1) with correlations of 0.33 (p=0.35) and 0.48 (p=0.13), respectively to threshold values. Total distance run was significantly greater during the TR (2331.6+180.9 m) as compared to the TM (2177.0+232.6 m), but they were strongly correlated with each other (r=0.82; p<0.002). These results suggest that an 8-minute running field test can accurately predict the HR associated with the LT and may be a simple test that athletes and coaches could implement to aid in training techniques.Keywords: blood lactate, heart rate, running, training
Procedia PDF Downloads 252120 Heuristic Approaches for Injury Reductions by Reduced Car Use in Urban Areas
Authors: Stig H. Jørgensen, Trond Nordfjærn, Øyvind Teige Hedenstrøm, Torbjørn Rundmo
Abstract:
The aim of the paper is to estimate and forecast road traffic injuries in the coming 10-15 years given new targets in urban transport policy and shifts of mode of transport, including injury cross-effects of mode changes. The paper discusses possibilities and limitations in measuring and quantifying possible injury reductions. Injury data (killed and seriously injured road users) from six urban areas in Norway from 1998-2012 (N= 4709 casualties) form the basis for estimates of changing injury patterns. For the coming period calculation of number of injuries and injury rates by type of road user (categories of motorized versus non-motorized) by sex, age and type of road are made. A prognosticated population increase (25 %) in total population within 2025 in the six urban areas will curb the proceeded fall in injury figures. However, policy strategies and measures geared towards a stronger modal shift from use of private vehicles to safer public transport (bus, train) will modify this effect. On the other side will door to door transport (pedestrians on their way to/from public transport nodes) imply a higher exposure for pedestrians (bikers) converting from private vehicle use (including fall accidents not registered as traffic accidents). The overall effect is the sum of these modal shifts in the increasing urban population and in addition diminishing return to the majority of road safety countermeasures has also to be taken into account. The paper demonstrates how uncertainties in the various estimates (prediction factors) on increasing injuries as well as decreasing injury figures may partly offset each other. The paper discusses road safety policy and welfare consequences of transport mode shift, including reduced use of private vehicles, and further environmental impacts. In this regard, safety and environmental issues will as a rule concur. However pursuing environmental goals (e.g. improved air quality, reduced co2 emissions) encouraging more biking may generate more biking injuries. The study was given financial grants from the Norwegian Research Council’s Transport Safety Program.Keywords: road injuries, forecasting, reduced private care use, urban, Norway
Procedia PDF Downloads 237119 Air Handling Units Power Consumption Using Generalized Additive Model for Anomaly Detection: A Case Study in a Singapore Campus
Authors: Ju Peng Poh, Jun Yu Charles Lee, Jonathan Chew Hoe Khoo
Abstract:
The emergence of digital twin technology, a digital replica of physical world, has improved the real-time access to data from sensors about the performance of buildings. This digital transformation has opened up many opportunities to improve the management of the building by using the data collected to help monitor consumption patterns and energy leakages. One example is the integration of predictive models for anomaly detection. In this paper, we use the GAM (Generalised Additive Model) for the anomaly detection of Air Handling Units (AHU) power consumption pattern. There is ample research work on the use of GAM for the prediction of power consumption at the office building and nation-wide level. However, there is limited illustration of its anomaly detection capabilities, prescriptive analytics case study, and its integration with the latest development of digital twin technology. In this paper, we applied the general GAM modelling framework on the historical data of the AHU power consumption and cooling load of the building between Jan 2018 to Aug 2019 from an education campus in Singapore to train prediction models that, in turn, yield predicted values and ranges. The historical data are seamlessly extracted from the digital twin for modelling purposes. We enhanced the utility of the GAM model by using it to power a real-time anomaly detection system based on the forward predicted ranges. The magnitude of deviation from the upper and lower bounds of the uncertainty intervals is used to inform and identify anomalous data points, all based on historical data, without explicit intervention from domain experts. Notwithstanding, the domain expert fits in through an optional feedback loop through which iterative data cleansing is performed. After an anomalously high or low level of power consumption detected, a set of rule-based conditions are evaluated in real-time to help determine the next course of action for the facilities manager. The performance of GAM is then compared with other approaches to evaluate its effectiveness. Lastly, we discuss the successfully deployment of this approach for the detection of anomalous power consumption pattern and illustrated with real-world use cases.Keywords: anomaly detection, digital twin, generalised additive model, GAM, power consumption, supervised learning
Procedia PDF Downloads 154118 A Holistic Analysis of the Emergency Call: From in Situ Negotiation to Policy Frameworks and Back
Authors: Jo Angouri, Charlotte Kennedy, Shawnea Ting, David Rawlinson, Matthew Booker, Nigel Rees
Abstract:
Ambulance services need to balance the large volume of emergency (999 in the UK) calls they receive (e.g., West Midlands Ambulance Service reports per day about 4,000 999 calls; about 679,000 calls per year are received in Wales), with dispatching limited resource for on-site intervention to the most critical cases. The process by which Emergency Medical Dispatch (EMD) decisions are made is related to risk assessment and involves the caller and call-taker as well as clinical teams negotiating risk levels on a case-by-case basis. Medical Priority Dispatch System (MPDS – also referred to as Advanced Medical Priority Dispatch System AMPDS) are used in the UK by NHS Trusts (e.,g WAST) to process and prioritise 999 calls. MPDS / AMPDS provide structured protocols for call prioritisation and call management. Protocols/policy frameworks have not been examined before in the way we propose in our project. In more detail, the risk factors that play a role in the EMD negotiation between the caller and call-taker have been analysed in both medical and social science research. Research has focused on the structural, morphological and phonological aspects that could improve, and train, human-to-human interaction or automate risk detection, as well as the medical factors that need to be captured from the caller to inform the dispatch decision. There are two significant gaps in our knowledge that we address in our work: 1. the role of backstage clinical teams in translating the caller/call-taker interaction in their internal risk negotiation and, 2. the role of policy frameworks, protocols and regulations in the framing of institutional priorities and resource allocation. We take a multi method approach and combine the analysis of 999 calls with the analysis of policy documents. We draw on interaction analysis, corpus methodologies and thematic analysis. In this paper, we report on our preliminary findings and focus in particular on the risk factors we have identified and the relationship with the regulations that create the frame within which teams operate. We close the paper with implications of our study for providing evidence-based policy intervention and recommendations for further research.Keywords: emergency (999) call, interaction analysis, discourse analysis, ambulance dispatch, medical discourse
Procedia PDF Downloads 103117 DenseNet and Autoencoder Architecture for COVID-19 Chest X-Ray Image Classification and Improved U-Net Lung X-Ray Segmentation
Authors: Jonathan Gong
Abstract:
Purpose AI-driven solutions are at the forefront of many pathology and medical imaging methods. Using algorithms designed to better the experience of medical professionals within their respective fields, the efficiency and accuracy of diagnosis can improve. In particular, X-rays are a fast and relatively inexpensive test that can diagnose diseases. In recent years, X-rays have not been widely used to detect and diagnose COVID-19. The under use of Xrays is mainly due to the low diagnostic accuracy and confounding with pneumonia, another respiratory disease. However, research in this field has expressed a possibility that artificial neural networks can successfully diagnose COVID-19 with high accuracy. Models and Data The dataset used is the COVID-19 Radiography Database. This dataset includes images and masks of chest X-rays under the labels of COVID-19, normal, and pneumonia. The classification model developed uses an autoencoder and a pre-trained convolutional neural network (DenseNet201) to provide transfer learning to the model. The model then uses a deep neural network to finalize the feature extraction and predict the diagnosis for the input image. This model was trained on 4035 images and validated on 807 separate images from the ones used for training. The images used to train the classification model include an important feature: the pictures are cropped beforehand to eliminate distractions when training the model. The image segmentation model uses an improved U-Net architecture. This model is used to extract the lung mask from the chest X-ray image. The model is trained on 8577 images and validated on a validation split of 20%. These models are calculated using the external dataset for validation. The models’ accuracy, precision, recall, f1-score, IOU, and loss are calculated. Results The classification model achieved an accuracy of 97.65% and a loss of 0.1234 when differentiating COVID19-infected, pneumonia-infected, and normal lung X-rays. The segmentation model achieved an accuracy of 97.31% and an IOU of 0.928. Conclusion The models proposed can detect COVID-19, pneumonia, and normal lungs with high accuracy and derive the lung mask from a chest X-ray with similarly high accuracy. The hope is for these models to elevate the experience of medical professionals and provide insight into the future of the methods used.Keywords: artificial intelligence, convolutional neural networks, deep learning, image processing, machine learning
Procedia PDF Downloads 130116 Impact of Ethnic and Religious Identity on Coping Behavior in Young Adults: Cross-Cultural Research
Authors: Yuliya Kovalenko
Abstract:
Given the social nature of people, it is interesting to explore strategies of responding to psycho-traumatic situations in individuals of different ethnic and religious identity. This would allow to substantially expand the idea of human behavior in general, and coping behavior, in particular. This paper investigated the weighted impact of ethnic and religious identities on the patterns of coping behavior. This cross-cultural research empirically revealed intergroup differences in coping strategies and behavior in the samples of young students and teachers of different ethnic identities (Egyptians N=216 and Ukrainians N=109) and different religious identities (Egyptian Muslims N=147 and Christians, including Egyptian Christians N=68 and Ukrainian Christians N = 109). The empirical data were obtained using the questionnaires SACS and COPE. Statistical analysis and interpretation of the results were performed with IBM SPSS-23.0. It was found that, compared to the religious identity, the ethnic identity of the subjects appeared more predictive of coping behavior. It was shown that the constant exchange of information and the unity of biological and social contributed to a more homogeneous picture in the society where Christians and Muslims were integrated into a single cultural space. It was concluded that depending on their ethnic identity, individuals would form a specific hierarchy of coping strategies resulting in a specific pattern of coping with certain stressors. The Egyptian subjects revealed the following pattern of coping with various kinds of academic stress: 'seeking social support', 'problem solving', 'adapting', 'seeking information'. The coping pattern demonstrated by the Ukrainian subjects could be presented as 'seeking information', 'adapting', 'seeking social support', 'problem solving'. There was a tendency in the group of Egyptians to engage in more collectivist coping strategies (with the predominant coping strategy 'religious coping'), in contrast to the Ukrainians who displayed more individualistic coping strategies (with 'planning' and 'active coping' as the mostly used coping strategies). At the same time, it was obvious that Ukrainians should not be unambiguously attributed to the individualistic coping behavior due to their reliance on 'seeking social support' and 'social contact'. The final conclusion was also drawn from the peculiarities of developing religious identity, including religiosity, in Egyptians (formal religious education of both Muslims and Christians) and Ukrainians (more spontaneous process): Egyptians seem to learn to resort to the religious coping, which could be an indication that, in principle, it is possible and necessary to train individuals in desirable coping behavior.Keywords: coping behavior, cross-cultural research, ethnic and religious identity, hierarchical pattern of coping
Procedia PDF Downloads 162115 Wind Generator Control in Isolated Site
Authors: Glaoui Hachemi
Abstract:
Wind has been proven as a cost effective and reliable energy source. Technological advancements over the last years have placed wind energy in a firm position to compete with conventional power generation technologies. Algeria has a vast uninhabited land area where the south (desert) represents the greatest part with considerable wind regime. In this paper, an analysis of wind energy utilization as a viable energy substitute in six selected sites widely distributed all over the south of Algeria is presented. In this presentation, wind speed frequency distributions data obtained from the Algerian Meteorological Office are used to calculate the average wind speed and the available wind power. The annual energy produced by the Fuhrlander FL 30 wind machine is obtained using two methods. The analysis shows that in the southern Algeria, at 10 m height, the available wind power was found to vary between 160 and 280 W/m2, except for Tamanrasset. The highest potential wind power was found at Adrar, with 88 % of the time the wind speed is above 3 m/s. Besides, it is found that the annual wind energy generated by that machine lie between 33 and 61 MWh, except for Tamanrasset, with only 17 MWh. Since the wind turbines are usually installed at a height greater than 10 m, an increased output of wind energy can be expected. However, the wind resource appears to be suitable for power production on the south and it could provide a viable substitute to diesel oil for irrigation pumps and electricity generation. In this paper, a model of the wind turbine (WT) with permanent magnet generator (PMSG) and its associated controllers is presented. The increase of wind power penetration in power systems has meant that conventional power plants are gradually being replaced by wind farms. In fact, today wind farms are required to actively participate in power system operation in the same way as conventional power plants. In fact, power system operators have revised the grid connection requirements for wind turbines and wind farms, and now demand that these installations be able to carry out more or less the same control tasks as conventional power plants. For dynamic power system simulations, the PMSG wind turbine model includes an aerodynamic rotor model, a lumped mass representation of the drive train system and generator model. In this paper, we propose a model with an implementation in MATLAB / Simulink, each of the system components off-grid small wind turbines.Keywords: windgenerator systems, permanent magnet synchronous generator (PMSG), wind turbine (WT) modeling, MATLAB simulink environment
Procedia PDF Downloads 337114 Oleic Acid Enhances Hippocampal Synaptic Efficacy
Authors: Rema Vazhappilly, Tapas Das
Abstract:
Oleic acid is a cis unsaturated fatty acid and is known to be a partially essential fatty acid due to its limited endogenous synthesis during pregnancy and lactation. Previous studies have demonstrated the role of oleic acid in neuronal differentiation and brain phospholipid synthesis. These evidences indicate a major role for oleic acid in learning and memory. Interestingly, oleic acid has been shown to enhance hippocampal long term potentiation (LTP), the physiological correlate of long term synaptic plasticity. However the effect of oleic acid on short term synaptic plasticity has not been investigated. Short term potentiation (STP) is the physiological correlate of short term synaptic plasticity which is the key underlying molecular mechanism of short term memory and neuronal information processing. STP in the hippocampal CA1 region has been known to require the activation of N-methyl-D-aspartate receptors (NMDARs). The NMDAR dependent hippocampal STP as a potential mechanism for short term memory has been a subject of intense interest for the past few years. Therefore in the present study the effect of oleic acid on NMDAR dependent hippocampal STP was determined in mouse hippocampal slices (in vitro) using Multi-electrode array system. STP was induced by weak tetanic Stimulation (one train of 100 Hz stimulations for 0.1s) of the Schaffer collaterals of CA1 region of the hippocampus in slices treated with different concentrations of oleic acid in presence or absence of NMDAR antagonist D-AP5 (30 µM) . Oleic acid at 20 (mean increase in fEPSP amplitude = ~135 % Vs. Control = 100%; P<0.001) and 30 µM (mean increase in fEPSP amplitude = ~ 280% Vs. Control = 100%); P<0.001) significantly enhanced the STP following weak tetanic stimulation. Lower oleic acid concentrations at 10 µM did not modify the hippocampal STP induced by weak tetanic stimulation. The hippocampal STP induced by weak tetanic stimulation was completely blocked by the NMDA receptor antagonist D-AP5 (30µM) in both oleic acid and control treated hippocampal slices. This lead to the conclusion that the hippocampal STP elicited by weak tetanic stimulation and enhanced by oleic acid was NMDAR dependent. Together these findings suggest that oleic acid may enhance the short term memory and neuronal information processing through the modulation of NMDAR dependent hippocampal short-term synaptic plasticity. In conclusion this study suggests the possible role of oleic acid to prevent the short term memory loss and impaired neuronal function throughout development.Keywords: oleic acid, short-term potentiation, memory, field excitatory post synaptic potentials, NMDA receptor
Procedia PDF Downloads 335113 Corpora in Secondary Schools Training Courses for English as a Foreign Language Teachers
Authors: Francesca Perri
Abstract:
This paper describes a proposal for a teachers’ training course, focused on the introduction of corpora in the EFL didactics (English as a foreign language) of some Italian secondary schools. The training course is conceived as a part of a TEDD participant’s five months internship. TEDD (Technologies for Education: diversity and devices) is an advanced course held by the Department of Engineering and Information Technology at the University of Trento, Italy. Its main aim is to train a selected, heterogeneous group of graduates to engage with the complex interdependence between education and technology in modern society. The educational approach draws on a plural coexistence of various theories as well as socio-constructivism, constructionism, project-based learning and connectivism. TEDD educational model stands as the main reference source to the design of a formative course for EFL teachers, drawing on the digitalization of didactics and creation of learning interactive materials for L2 intermediate students. The training course lasts ten hours, organized into five sessions. In the first part (first and second session) a series of guided and semi-guided activities drive participants to familiarize with corpora through the use of a digital tools kit. Then, during the second part, participants are specifically involved in the realization of a ML (Mistakes Laboratory) where they create, develop and share digital activities according to their teaching goals with the use of corpora, supported by the digital facilitator. The training course takes place into an ICT laboratory where the teachers work either individually or in pairs, with a computer connected to a wi-fi connection, while the digital facilitator shares inputs, materials and digital assistance simultaneously on a whiteboard and on a digital platform where participants interact and work together both synchronically and diachronically. The adoption of good ICT practices is a fundamental step to promote the introduction and use of Corpus Linguistics in EFL teaching and learning processes, in fact dealing with corpora not only promotes L2 learners’ critical thinking and orienteering versus wild browsing when they are looking for ready-made translations or language usage samples, but it also entails becoming confident with digital tools and activities. The paper will explain reasons, limits and resources of the pedagogical approach adopted to engage EFL teachers with the use of corpora in their didactics through the promotion of digital practices.Keywords: digital didactics, education, language learning, teacher training
Procedia PDF Downloads 154112 Building Learning Organization: Case Study of Transforming a Banking Company with 21st Century Creative Services Company
Authors: Zeynep Aykul Yavuz
Abstract:
Misconception about design is about making a product pretty. However, the holistic approaches such as design thinking or human-centered design could take the design from making things nice to things inspired by real people and work with real-world limitations. Design thinking helps companies to understand not only problem area but also opportunities. It can be used by any people from any background which provide a space for companies where employees from different departments work together to solve the same problem. While demanding skills changing year to year into the market, previous technical skills are commons anymore. The frontier companies in the sectors look for interactive methods to solve problems. Moreover, the recruiter aims to understand the candidate’s design thinking skills (. The study includes a case study where a 21st century creative services company “ATÖLYE” offers innovation transformation with design thinking to a banking company. Both companies are located in İstanbul in Turkey. The banking company contacted with the ATÖLYE in January 2018 because they heard design thinking in different markets and how it transformed the way of working. The transformation process had 3 phases which were basic training of teams while getting coaching from ATÖLYE’s employees, coaching training with graduates of basic training, facilitator training. Employees built new skills while solving the banking company’s strategic problems. ATÖLYE offered experiential learning which helped employees’ making sense of new skills and knowledge. One day workshops were organized to create awareness about the practice of design thinking. In addition to these, a community of practice was built to create an environment to make reflections and discuss good practice. Not only graduates from the training program but also other employees from the company participated in the community gatherings. ATÖLYE did not train some employees in the company. Rather than that, its aim was to build a contemporary organization for the company. This provided a sustainable system in terms of human resources and motivation. At the beginning of 2020, employees from the first cohort in the basic training who took coaching training and facilitator training have started to design training for different groups in the company. They have considered what could be better in their training experience and designed new ones according to that, so they have been using design thinking to design the design training. This is one of the outcomes which shows the impact of all process clearly.Keywords: design thinking, learning community, professional development, training, organizational transformation
Procedia PDF Downloads 111111 Preparedness for Nurses to Adopt the Implementation of Inpatient Medication Order Entry (IPMOE) System at United Christian Hospital (UCH) in Hong Kong
Authors: Yiu K. C. Jacky, Tang S. K. Eric, W. Y. Tsang, C. Y. Li, C. K. Leung
Abstract:
Objectives : (1) To enhance the competence of nurses on using IPMOE for drug administration; (2) To ensure the transition on implementation of IPMOE in safer and smooth way hospital-wide. Methodology: (1) Well-structured Governance: To make provision for IPMOE implementation, multidisciplinary governance structure at Corporate and Local levels are well established. (2) Staff Engagement: A series of staff engagement events were conducted including Staff Forum, IPMOE Hospital Visit, Kick-off Ceremony and establishment of IPMOE Webpage for familiarizing the forthcoming implementation with frontline staff. (3) Well-organized training program: from Workshop to Workplace Two different IPMOE training programs were tailor-made which aimed at introducing the core features of administration module. Fifty-five identical training classes and six train-the-trainer workshops were organized at 2-3Q 2015. Lending Scheme on IPMOE hardware for hands-on practicing was launched and further extended the training from workshop to workplace. (4) Standard Guidelines and Workflow: the related workflow and guidelines are developed which facilitates users to acquire the competence towards IPMOE and fully familiarize with the standardized contingency plan. (5) Facilities and Equipment: The installations of IPMOE hardware were promptly arranged for rollout. Besides, IPMOE training venue was well-established for staff training. (6) Risk Management Strategy: UCH Medication Safety Forum is organized in December 2015 for sharing “Tricks & Tips” on IPMOE which further disseminate at webpage for arousal of medication safety. Hospital-wide annual audit on drug administration was planned to figure out the compliance and deliberate the rooms for improvement. Results: Through the comprehensive training plan, over 1,000 UCH nurses attended the training program with positive feedback. They agreed that their competence on using IPMOE was enhanced. By the end of November 2015, 28 wards (over 1,000 Inpatient-bed) involving departments of M&G, SUR, O&T and O&G have been successfully rolled out IPMOE in 5-month. A smooth and safe transition of implementation of IPMOE was achieved. Eventually, we all get prepared for embedding IPMOE into daily nursing and work altogether for medication safety at UCH.Keywords: drug administration, inpatient medication order entry system, medication safety, nursing informatics
Procedia PDF Downloads 342110 Investigate the Competencies Required for Sustainable Entrepreneurship Development in Agricultural Higher Education
Authors: Ehsan Moradi, Parisa Paikhaste, Amir Alam Beigi, Seyedeh Somayeh Bathaei
Abstract:
The need for entrepreneurial sustainability is as important as the entrepreneurship category itself. By transferring competencies in a sustainable entrepreneurship framework, entrepreneurship education can make a significant contribution to the effectiveness of businesses, especially for start-up entrepreneurs. This study analyzes the essential competencies of students in the development of sustainable entrepreneurship. It is an applied causal study in terms of nature and field in terms of data collection. The main purpose of this research project is to study and explain the dimensions of sustainability entrepreneurship competencies among agricultural students. The statistical population consists of 730 junior and senior undergraduate students of the Campus of Agriculture and Natural Resources, University of Tehran. The sample size was determined to be 120 using the Cochran's formula, and the convenience sampling method was used. Face validity, structure validity, and diagnostic methods were used to evaluate the validity of the research tool and Cronbach's alpha and composite reliability to evaluate its reliability. Structural equation modeling (SEM) was used by the confirmatory factor analysis (CFA) method to prepare a measurement model for data processing. The results showed that seven key dimensions play a role in shaping sustainable entrepreneurial development competencies: systems thinking competence (STC), embracing diversity and interdisciplinary (EDI), foresighted thinking (FTC), normative competence (NC), action competence (AC), interpersonal competence (IC), and strategic management competence (SMC). It was found that acquiring skills in SMC by creating the ability to plan to achieve sustainable entrepreneurship in students through the relevant mechanisms can improve entrepreneurship in students by adopting a sustainability attitude. While increasing students' analytical ability in the field of social and environmental needs and challenges and emphasizing curriculum updates, AC should pay more attention to the relationship between the curriculum and its content in the form of entrepreneurship culture promotion programs. In the field of EDI, it was found that the success of entrepreneurs in terms of sustainability and business sustainability of start-up entrepreneurs depends on their interdisciplinary thinking. It was also found that STC plays an important role in explaining the relationship between sustainability and entrepreneurship. Therefore, focusing on these competencies in agricultural education to train start-up entrepreneurs can lead to sustainable entrepreneurship in the agricultural higher education system.Keywords: sustainable entrepreneurship, entrepreneurship education, competency, agricultural higher education
Procedia PDF Downloads 144109 Flexible Coupling between Gearbox and Pump (High Speed Machine)
Authors: Naif Mohsen Alharbi
Abstract:
This paper present failure occurred on flexible coupling installed at oil anf gas operation. Also it presents maintenance ideas implemented on the flexible coupling installed to transmit high torque from gearbox to pump. Basically, the machine train is including steam turbine which drives the pump and there is gearbox located in between for speed reduction. investigation are identifying the root causes, solving and developing the technology designs or bad actor. This report provides the study intentionally for continues operation optimization, utilize the advanced opportunity and implement a improvement. Objective: The main objectives of the investigation are identifying the root causes, solving and developing the technology designs or bad actor. Ultimately, fulfilling the operation productivity, also ensuring better technology, quality and design by solutions. This report provides the study intentionally for continues operation optimization, utilize the advanced opportunity and implemet improvement. Method: The method used in this project was a very focused root cause analysis procedure that incorporated engineering analysis and measurements. The analysis method extensively covers the measuring of the complete coupling dimensions. Including the membranes thickness, hubs, bore diameter and total length, dismantle flexible coupling to diagnose how deep the coupling has been affected. Also, defining failure modes, so that the causes could be identified and verified. Moreover, Vibration analysis and metallurgy test. Lastly applying several solutions by advanced tools (will be mentioned in detail). Results and observation: Design capacity: Coupling capacity is an inadequate to fulfil 100% of operating conditions. Therefore, design modification of service factor to be at least 2.07 is crucial to address this issue and prevent recurrence of similar scenario, especially for the new upgrading project. Discharge fluctuation: High torque flexible coupling encountered during the operation. Therefore, discharge valve behaviour, tuning, set point and general conditions revaluated and modified subsequently, it can be used as baseline for upcoming Coupling design project. Metallurgy test: Material of flexible coupling membrane (discs) tested at the lab, for a detailed metallurgical investigation, better material grade has been selected for our operating conditions,Keywords: high speed machine, reliabilty, flexible coupling, rotating equipment
Procedia PDF Downloads 68108 Building Academic Success and Resilience in Social Work Students: An Application of Self-Determination Theory
Authors: Louise Bunce, Jill Childs, Adam J. Lonsdale, Naomi King
Abstract:
A major concern for the Social Work profession concerns the frequency of burn-out and high turnover of staff. The characteristic of resilience has been identified as playing a crucial role in social workers’ ability to have a satisfying and successful career. Thus a critical role for social work education is to develop resilience in social work students. We currently need to know more about how to train resilient social workers who will also increase the academic standing of the profession. The specific aim of this research was to quantify characteristics that may contribute towards resilience and academic success among student social workers in order to mitigate against the problems of burn-out and low academic standing. These three characteristics were competence (effectiveness at mastering the environment), autonomy (sense of control and free will), and relatedness (interacting and connecting with others), as specified in Self-Determination Theory (SDT). When these three needs are satisfied, we experience higher degrees of motivation to succeed and wellbeing. Thus when these three needs are met in social work students, they have the potential to raise academic standards and promote wellbeing characteristics that contribute to the development of resilience. The current study tested the hypothesis that higher levels of autonomy, competence, and relatedness, as defined by SDT, will predict levels of academic success and resilience in social work students. Two hundred and ten social work students studying at a number of universities completed well-established questionnaires to assess autonomy, competence, and relatedness, level of academic performance and resilience (The Brief Resilience Scale). In this scale, students rated their agreement with items e.g., ‘I bounce back quickly after hard times’ and ‘I usually come through difficult times with little struggle’. After controlling for various factors, including age, gender, ethnicity, and course (undergraduate or postgraduate) preliminary analysis revealed that the components of SDT provided useful predictive value for academic success and resilience. In particular, autonomy and competence provided a useful predictor of academic success while relatedness was a particularly useful predictor of resilience. This study demonstrated that SDT provides a valuable framework for helping to understand what predicts academic success and resilience among social work students. This is relevant because the psychological needs for autonomy, competence and relatedness can be affected by external social and cultural pressures, thus they can be improved by the right type of supportive teaching practices and educational environments. These findings contribute to the growing evidence-base to help build an academic and resilient social worker student body and workforce.Keywords: education, resilience, self-determination theory, student social workers
Procedia PDF Downloads 328107 Commodifying Things Past: Comparative Study of Heritage Tourism Practices in Montenegro and Serbia
Authors: Jovana Vukcevic, Sanja Pekovic, Djurdjica Perovic, Tatjana Stanovcic
Abstract:
This paper presents a critical inquiry into the role of uncomfortable heritage in nation branding with the particular focus on the specificities of the politics of memory, forgetting and revisionism in the post-communist post-Yugoslavia. It addresses legacies of unwanted, ambivalent or unacknowledged past and different strategies employed by the former-Yugoslav states and private actors in “rebranding” their heritage, ensuring its preservation, but re-contextualizing the narrative of the past through contemporary tourism practices. It questions the interplay between nostalgia, heritage and market, and the role of heritage in polishing the history of totalitarian and authoritarian regimes in the Balkans. It argues that in post-socialist Yugoslavia, the necessity to limit correlations with former ideology and the use of the commercial brush in shaping a marketable version of the past instigated the emergence of the profit-oriented heritage practices. Building on that argument, the paper addresses these issues as “commodification” and “disneyfication” of Balkans’ ambivalent heritage, contributing to the analysis of changing forms of memorialisation and heritagization practices in Europe. It questions the process of ‘coming to terms with the past’ through marketable forms of heritage tourism, fetching the boundary between market-driven nostalgia and state-imposed heritage policies. In order to analyse plurality of ways of dealing with controversial, ambivalent and unwanted heritage of dictatorships in the Balkans, the paper considers two prominent examples of heritage commodification in Serbia and Montenegro, and the re-appropriations of those narratives for the nation branding purposes. The first one is the story of the Tito’s Blue Train, the landmark of the socialist past and the symbol of Yugoslavia which has nowadays being used for birthday parties and marriage celebrations, while the second emphasises the unusual business arrangement turning the fortress Mamula, former concentration camp through the Second World War, into a luxurious Mediterranean resort. Questioning how the ‘uneasy’ past was acknowledged and embedded into the official heritage institutions and tourism practices, study examines the changing relation towards the legacies of dictatorships, inviting us to rethink the economic models of the things past. Analysis of these processes should contribute to better understanding of the new mnemonics strategies and (converging?) ways of ‘doing’ past in Europe.Keywords: commodification, heritage tourism, totalitarianism, Serbia, Montenegro
Procedia PDF Downloads 252106 Co-Creational Model for Blended Learning in a Flipped Classroom Environment Focusing on the Combination of Coding and Drone-Building
Authors: A. Schuchter, M. Promegger
Abstract:
The outbreak of the COVID-19 pandemic has shown us that online education is so much more than just a cool feature for teachers – it is an essential part of modern teaching. In online math teaching, it is common to use tools to share screens, compute and calculate mathematical examples, while the students can watch the process. On the other hand, flipped classroom models are on the rise, with their focus on how students can gather knowledge by watching videos and on the teacher’s use of technological tools for information transfer. This paper proposes a co-educational teaching approach for coding and engineering subjects with the help of drone-building to spark interest in technology and create a platform for knowledge transfer. The project combines aspects from mathematics (matrices, vectors, shaders, trigonometry), physics (force, pressure and rotation) and coding (computational thinking, block-based programming, JavaScript and Python) and makes use of collaborative-shared 3D Modeling with clara.io, where students create mathematics knowhow. The instructor follows a problem-based learning approach and encourages their students to find solutions in their own time and in their own way, which will help them develop new skills intuitively and boost logically structured thinking. The collaborative aspect of working in groups will help the students develop communication skills as well as structural and computational thinking. Students are not just listeners as in traditional classroom settings, but play an active part in creating content together by compiling a Handbook of Knowledge (called “open book”) with examples and solutions. Before students start calculating, they have to write down all their ideas and working steps in full sentences so other students can easily follow their train of thought. Therefore, students will learn to formulate goals, solve problems, and create a ready-to use product with the help of “reverse engineering”, cross-referencing and creative thinking. The work on drones gives the students the opportunity to create a real-life application with a practical purpose, while going through all stages of product development.Keywords: flipped classroom, co-creational education, coding, making, drones, co-education, ARCS-model, problem-based learning
Procedia PDF Downloads 121105 Dynamic Two-Way FSI Simulation for a Blade of a Small Wind Turbine
Authors: Alberto Jiménez-Vargas, Manuel de Jesús Palacios-Gallegos, Miguel Ángel Hernández-López, Rafael Campos-Amezcua, Julio Cesar Solís-Sanchez
Abstract:
An optimal wind turbine blade design must be able of capturing as much energy as possible from the wind source available at the area of interest. Many times, an optimal design means the use of large quantities of material and complicated processes that make the wind turbine more expensive, and therefore, less cost-effective. For the construction and installation of a wind turbine, the blades may cost up to 20% of the outline pricing, and become more important due to they are part of the rotor system that is in charge of transmitting the energy from the wind to the power train, and where the static and dynamic design loads for the whole wind turbine are produced. The aim of this work is the develop of a blade fluid-structure interaction (FSI) simulation that allows the identification of the major damage zones during the normal production situation, and thus better decisions for design and optimization can be taken. The simulation is a dynamic case, since we have a time-history wind velocity as inlet condition instead of a constant wind velocity. The process begins with the free-use software NuMAD (NREL), to model the blade and assign material properties to the blade, then the 3D model is exported to ANSYS Workbench platform where before setting the FSI system, a modal analysis is made for identification of natural frequencies and modal shapes. FSI analysis is carried out with the two-way technic which begins with a CFD simulation to obtain the pressure distribution on the blade surface, then these results are used as boundary condition for the FEA simulation to obtain the deformation levels for the first time-step. For the second time-step, CFD simulation is reconfigured automatically with the next time-step inlet wind velocity and the deformation results from the previous time-step. The analysis continues the iterative cycle solving time-step by time-step until the entire load case is completed. This work is part of a set of projects that are managed by a national consortium called “CEMIE-Eólico” (Mexican Center in Wind Energy Research), created for strengthen technological and scientific capacities, the promotion of creation of specialized human resources, and to link the academic with private sector in national territory. The analysis belongs to the design of a rotor system for a 5 kW wind turbine design thought to be installed at the Isthmus of Tehuantepec, Oaxaca, Mexico.Keywords: blade, dynamic, fsi, wind turbine
Procedia PDF Downloads 482104 System Devices to Reduce Particulate Matter Concentrations in Railway Metro Systems
Authors: Armando Cartenì
Abstract:
Within the design of sustainable transportation engineering, the problem of reducing particulate matter (PM) concentrations in railways metro system was not much discussed. It is well known that PM levels in railways metro system are mainly produced by mechanical friction at the rail-wheel-brake interactions and by the PM re-suspension caused by the turbulence generated by the train passage, which causes dangerous problems for passenger health. Starting from these considerations, the aim of this research was twofold: i) to investigate the particulate matter concentrations in a ‘traditional’ railways metro system; ii) to investigate the particulate matter concentrations of a ‘high quality’ metro system equipped with design devices useful for reducing PM concentrations: platform screen doors, rubber-tyred and an advanced ventilation system. Two measurement surveys were performed: one in the ‘traditional’ metro system of Naples (Italy) and onother in the ‘high quality’ rubber-tyred metro system of Turin (Italy). Experimental results regarding the ‘traditional’ metro system of Naples, show that the average PM10 concentrations measured in the underground station platforms are very high and range between 172 and 262 µg/m3 whilst the average PM2,5 concentrations range between 45 and 60 µg/m3, with dangerous problems for passenger health. By contrast the measurements results regarding the ‘high quality’ metro system of Turin show that: i) the average PM10 (PM2.5) concentrations measured in the underground station platform is 22.7 µg/m3 (16.0 µg/m3) with a standard deviation of 9.6 µg/m3 (7.6 µg/m3); ii) the indoor concentrations (both for PM10 and for PM2.5) are statistically lower from those measured in outdoors (with a ratio equal to 0.9-0.8), meaning that the indoor air quality is greater than those in urban ambient; iii) that PM concentrations in underground stations are correlated to the trains passage; iv) the inside trains concentrations (both for PM10 and for PM2.5) are statistically lower from those measured at station platform (with a ratio equal to 0.7-0.8), meaning that inside trains the use of air conditioning system could promote a greater circulation that clean the air. The comparison among the two case studies allow to conclude that the metro system designed with PM reduction devices allow to reduce PM concentration up to 11 times against a ‘traditional’ one. From these results, it is possible to conclude that PM concentrations measured in a ‘high quality’ metro system are significantly lower than the ones measured in a ‘traditional’ railway metro systems. This result allows possessing the bases for the design of useful devices for retrofitting metro systems all around the world.Keywords: air quality, pollutant emission, quality in public transport, underground railway, external cost reduction, transportation planning
Procedia PDF Downloads 210103 Copyright Clearance for Artificial Intelligence Training Data: Challenges and Solutions
Authors: Erva Akin
Abstract:
– The use of copyrighted material for machine learning purposes is a challenging issue in the field of artificial intelligence (AI). While machine learning algorithms require large amounts of data to train and improve their accuracy and creativity, the use of copyrighted material without permission from the authors may infringe on their intellectual property rights. In order to overcome copyright legal hurdle against the data sharing, access and re-use of data, the use of copyrighted material for machine learning purposes may be considered permissible under certain circumstances. For example, if the copyright holder has given permission to use the data through a licensing agreement, then the use for machine learning purposes may be lawful. It is also argued that copying for non-expressive purposes that do not involve conveying expressive elements to the public, such as automated data extraction, should not be seen as infringing. The focus of such ‘copy-reliant technologies’ is on understanding language rules, styles, and syntax and no creative ideas are being used. However, the non-expressive use defense is within the framework of the fair use doctrine, which allows the use of copyrighted material for research or educational purposes. The questions arise because the fair use doctrine is not available in EU law, instead, the InfoSoc Directive provides for a rigid system of exclusive rights with a list of exceptions and limitations. One could only argue that non-expressive uses of copyrighted material for machine learning purposes do not constitute a ‘reproduction’ in the first place. Nevertheless, the use of machine learning with copyrighted material is difficult because EU copyright law applies to the mere use of the works. Two solutions can be proposed to address the problem of copyright clearance for AI training data. The first is to introduce a broad exception for text and data mining, either mandatorily or for commercial and scientific purposes, or to permit the reproduction of works for non-expressive purposes. The second is that copyright laws should permit the reproduction of works for non-expressive purposes, which opens the door to discussions regarding the transposition of the fair use principle from the US into EU law. Both solutions aim to provide more space for AI developers to operate and encourage greater freedom, which could lead to more rapid innovation in the field. The Data Governance Act presents a significant opportunity to advance these debates. Finally, issues concerning the balance of general public interests and legitimate private interests in machine learning training data must be addressed. In my opinion, it is crucial that robot-creation output should fall into the public domain. Machines depend on human creativity, innovation, and expression. To encourage technological advancement and innovation, freedom of expression and business operation must be prioritised.Keywords: artificial intelligence, copyright, data governance, machine learning
Procedia PDF Downloads 83102 Towards Creative Movie Title Generation Using Deep Neural Models
Authors: Simon Espigolé, Igor Shalyminov, Helen Hastie
Abstract:
Deep machine learning techniques including deep neural networks (DNN) have been used to model language and dialogue for conversational agents to perform tasks, such as giving technical support and also for general chit-chat. They have been shown to be capable of generating long, diverse and coherent sentences in end-to-end dialogue systems and natural language generation. However, these systems tend to imitate the training data and will only generate the concepts and language within the scope of what they have been trained on. This work explores how deep neural networks can be used in a task that would normally require human creativity, whereby the human would read the movie description and/or watch the movie and come up with a compelling, interesting movie title. This task differs from simple summarization in that the movie title may not necessarily be derivable from the content or semantics of the movie description. Here, we train a type of DNN called a sequence-to-sequence model (seq2seq) that takes as input a short textual movie description and some information on e.g. genre of the movie. It then learns to output a movie title. The idea is that the DNN will learn certain techniques and approaches that the human movie titler may deploy that may not be immediately obvious to the human-eye. To give an example of a generated movie title, for the movie synopsis: ‘A hitman concludes his legacy with one more job, only to discover he may be the one getting hit.’; the original, true title is ‘The Driver’ and the one generated by the model is ‘The Masquerade’. A human evaluation was conducted where the DNN output was compared to the true human-generated title, as well as a number of baselines, on three 5-point Likert scales: ‘creativity’, ‘naturalness’ and ‘suitability’. Subjects were also asked which of the two systems they preferred. The scores of the DNN model were comparable to the scores of the human-generated movie title, with means m=3.11, m=3.12, respectively. There is room for improvement in these models as they were rated significantly less ‘natural’ and ‘suitable’ when compared to the human title. In addition, the human-generated title was preferred overall 58% of the time when pitted against the DNN model. These results, however, are encouraging given the comparison with a highly-considered, well-crafted human-generated movie title. Movie titles go through a rigorous process of assessment by experts and focus groups, who have watched the movie. This process is in place due to the large amount of money at stake and the importance of creating an effective title that captures the audiences’ attention. Our work shows progress towards automating this process, which in turn may lead to a better understanding of creativity itself.Keywords: creativity, deep machine learning, natural language generation, movies
Procedia PDF Downloads 326101 The Effect of Using Universal Design for Learning to Improve the Quality of Vocational Programme with Intellectual Disabilities and the Challenges Facing This Method from the Teachers' Point of View
Authors: Ohud Adnan Saffar
Abstract:
This study aims to know the effect of using universal design for learning (UDL) to improve the quality of vocational programme with intellectual disabilities (SID) and the challenges facing this method from the teachers' point of view. The significance of the study: There are comparatively few published studies on UDL in emerging nations. Therefore, this study will encourage the researchers to consider a new approaches teaching. Development of this study will contribute significant information on the cognitively disabled community on a universal scope. In order to collect and evaluate the data and for the verification of the results, this study has been used the mixed research method, by using two groups comparison method. To answer the study questions, we were used the questionnaire, lists of observations, open questions, and pre and post-test. Thus, the study explored the advantages and drawbacks, and know about the impact of using the UDL method on integrating SID with students non-special education needs in the same classroom. Those aims were realized by developing a workshop to explain the three principles of the UDL and train (16) teachers in how to apply this method to teach (12) students non-special education needs and the (12) SID in the same classroom, then take their opinion by using the questionnaire and questions. Finally, this research will explore the effects of the UDL on the teaching of professional photography skills for the SID in Saudi Arabia. To achieve this goal, the research method was a comparison of the performance of the SID using the UDL method with that of female students with the same challenges applying other strategies by teachers in control and experiment groups, we used the observation lists, pre and post-test. Initial results: It is clear from the previous response to the participants that most of the answers confirmed that the use of UDL achieves the principle of inclusion between the SID and students non-special education needs by 93.8%. In addition, the results show that the majority of the sampled people see that the most important advantages of using UDL in teaching are creating an interactive environment with using new and various teaching methods, with a percentage of 56.2%. Following this result, the UDL is useful for integrating students with general education, with a percentage of 31.2%. Moreover, the finding indicates to improve understanding through using the new technology and exchanging the primitive ways of teaching with the new ones, with a percentage of 25%. The result shows the percentages of the sampled people's opinions about the financial obstacles, and it concluded that the majority see that the cost is high and there is no computer maintenance available, with 50%. There are no smart devices in schools to help in implementing and applying for the program, with a percentage of 43.8%.Keywords: universal design for learning, intellectual disabilities, vocational programme, the challenges facing this method
Procedia PDF Downloads 129100 An Open Trial of Mobile-Assisted Cognitive Behavioral Therapy for Negative Symptoms in Schizophrenia: Pupillometry Predictors of Outcome
Authors: Eric Granholm, Christophe Delay, Jason Holden, Peter Link
Abstract:
Negative symptoms are an important unmet treatment needed for schizophrenia. We conducted an open trial of a novel blended intervention called mobile-assisted cognitive behavior therapy for negative symptoms (mCBTn). mCBTn is a weekly group therapy intervention combining in-person and smartphone-based CBT (CBT2go app) to improve experiential negative symptoms in people with schizophrenia. Both the therapy group and CBT2go app included recovery goal setting, thought challenging, scheduling of pleasurable activities and social interactions, and pleasure savoring interventions to modify defeatist attitudes, a target mechanism associated with negative symptoms, and improve experiential negative symptoms. We tested whether participants with schizophrenia or schizoaffective disorder (N=31) who met prospective criteria for persistent negative symptoms showed improvement in experiential negative symptoms. Retention was excellent (87% at 18 weeks) and severity of defeatist attitudes and motivation and pleasure negative symptoms declined significantly in mCBTn with large effect sizes. We also tested whether pupillary responses, a measure of cognitive effort, predicted improvement in negative symptoms mCBTn. Pupillary responses were recorded at baseline using a Tobii pupillometer during the digit span task with 3-, 6- and 9-digit spans. Mixed models showed that greater dilation during the task at baseline significantly predicted a greater reduction in experiential negative symptoms. Pupillary responses may provide a much-needed prognostic biomarker of which patients are most likely to benefit from CBT. Greater pupil dilation during a cognitive task predicted greater improvement in experiential negative symptoms. Pupil dilation has been linked to motivation and engagement of executive control, so these factors may contribute to benefits in interventions that train cognitive skills to manage negative thoughts and emotions. The findings suggest mCBTn is a feasible and effective treatment for experiential negative symptoms and justify a larger randomized controlled clinical trial. The findings also provide support for the defeatist attitude model of experiential negative symptoms and suggest that mobile-assisted interventions like mCBTn can strengthen and shorten intensive psychosocial interventions for schizophrenia.Keywords: cognitive-behavioral therapy, mobile interventions, negative symptoms, pupillometry schizophrenia
Procedia PDF Downloads 18099 Developing Curricula for Signaling and Communication Course at Malaysia Railway Academy (MyRA) through Industrial Collaboration Program
Authors: Mohd Fairus Humar, Ibrahim Sulaiman, Pedro Cruz, Hasry Harun
Abstract:
This paper presents the propose knowledge transfer program on railway signaling and communication by Original Equipment Manufacturer (OEM) Thales Portugal. The fundamental issue is that there is no rail related course offered by local universities and colleges in Malaysia which could be an option to pursue student career path. Currently, dedicated trainings related to the rail technology are provided by in-house training academies established by the respective rail operators such as Malaysia Railway Academy (MyRA) and Rapid Rail Training Centre. In this matter, the content of training and facilities need to be strengthened to keep up-to-date with the dynamic evolvement of the rail technology. This is because rail products have evolved to be more sophisticated and embedded with high technology components which no longer exist in the mechanical form alone but combined with electronics, information technology and others. These demand for a workforce imbued with knowledge, multi-skills and competency to deal with specialized technical areas. Talent is needed to support sustainability in Southeast Asia. Keeping the above factors in mind, an Industrial Collaboration Program (ICP) was carried out to transfer knowledge on curricula of railway signaling and communication to a selected railway operators and tertiary educational institution in Malaysia. In order to achieve the aim, a partnership was formed between Technical Depository Agency (TDA), Thales Portugal and MyRA for two years with three main stages of program implementation comprising of: i) training on basic railway signaling and communication for 1 month with Thales in Malaysia; ii) training on advance railway signaling and communication for 4 months with Thales in Portugal and; iii) a series of workshop. Two workshops were convened to develop and harmonize curricula of railway signaling and communication course and were followed by one training for installation equipment of railway signaling and Controlled Train Centre (CTC) system from Thales Portugal. With active involvement from Technical Depository Agency (TDA), railway operators, universities, and colleges, in planning, executing, monitoring, control and closure, the program module of railway signaling and communication course with a lab railway signaling field equipment and CTC simulator were developed. Through this program, contributions from various parties help to build committed societies to engage important issues in relation to railway signaling and communication towards creating a sustainable future.Keywords: knowledge transfer program, railway signaling and communication, curricula, module and teaching aid simulator
Procedia PDF Downloads 192