Search results for: statistical features
7182 Drying Kinects of Soybean Seeds
Authors: Amanda Rithieli Pereira Dos Santos, Rute Quelvia De Faria, Álvaro De Oliveira Cardoso, Anderson Rodrigo Da Silva, Érica Leão Fernandes Araújo
Abstract:
The study of the kinetics of drying has great importance for the mathematical modeling, allowing to know about the processes of transference of heat and mass between the products and to adjust dryers managing new technologies for these processes. The present work had the objective of studying the kinetics of drying of soybean seeds and adjusting different statistical models to the experimental data varying cultivar and temperature. Soybean seeds were pre-dried in a natural environment in order to reduce and homogenize the water content to the level of 14% (b.s.). Then, drying was carried out in a forced air circulation oven at controlled temperatures of 38, 43, 48, 53 and 58 ± 1 ° C, using two soybean cultivars, BRS 8780 and Sambaíba, until reaching a hygroscopic equilibrium. The experimental design was completely randomized in factorial 5 x 2 (temperature x cultivar) with 3 replicates. To the experimental data were adjusted eleven statistical models used to explain the drying process of agricultural products. Regression analysis was performed using the least squares Gauss-Newton algorithm to estimate the parameters. The degree of adjustment was evaluated from the analysis of the coefficient of determination (R²), the adjusted coefficient of determination (R² Aj.) And the standard error (S.E). The models that best represent the drying kinetics of soybean seeds are those of Midilli and Logarítmico.Keywords: curve of drying seeds, Glycine max L., moisture ratio, statistical models
Procedia PDF Downloads 6307181 Effective Parameter Selection for Audio-Based Music Mood Classification for Christian Kokborok Song: A Regression-Based Approach
Authors: Sanchali Das, Swapan Debbarma
Abstract:
Music mood classification is developing in both the areas of music information retrieval (MIR) and natural language processing (NLP). Some of the Indian languages like Hindi English etc. have considerable exposure in MIR. But research in mood classification in regional language is very less. In this paper, powerful audio based feature for Kokborok Christian song is identified and mood classification task has been performed. Kokborok is an Indo-Burman language especially spoken in the northeastern part of India and also some other countries like Bangladesh, Myanmar etc. For performing audio-based classification task, useful audio features are taken out by jMIR software. There are some standard audio parameters are there for the audio-based task but as known to all that every language has its unique characteristics. So here, the most significant features which are the best fit for the database of Kokborok song is analysed. The regression-based model is used to find out the independent parameters that act as a predictor and predicts the dependencies of parameters and shows how it will impact on overall classification result. For classification WEKA 3.5 is used, and selected parameters create a classification model. And another model is developed by using all the standard audio features that are used by most of the researcher. In this experiment, the essential parameters that are responsible for effective audio based mood classification and parameters that do not significantly change for each of the Christian Kokborok songs are analysed, and a comparison is also shown between the two above model.Keywords: Christian Kokborok song, mood classification, music information retrieval, regression
Procedia PDF Downloads 2227180 128-Multidetector CT for Assessment of Optimal Depth of Electrode Array Insertion in Cochlear Implant Operations
Authors: Amina Sultan, Mohamed Ghonim, Eman Oweida, Aya Abdelaziz
Abstract:
Objective: To assess the diagnostic reliability of multi-detector CT in pre and post-operative evaluation of cochlear implant candidates. Material and Methods: The study includes 40 patients (18 males and 22 females); mean age 5.6 years. They were classified into two groups: Group A (20 patients): cochlear implant device was Nucleus-22 and Group B (20 patients): the device was MED-EL. Cochlear length (CL) and cochlear height (CH) were measured pre-operatively by 128-multidetector CT. Electrode length (EL) and insertion depth angle (α) were measured post-operatively by MDCT. Results: For Group A mean CL was 9.1 mm ± 0.4 SD; mean CH was 4.1 ± 0.3 SD; mean EL was 18 ± 2.7 SD; mean α angle was 299.05 ± 37 SD. Significant statistical correlation (P < 0.05) was found between preoperative CL and post-operative EL (r²=0.6); as well as EL and α angle (r²=0.7). Group B's mean CL was 9.1 mm ± 0.3 SD; mean CH was 4.1 ± 0.4 SD; mean EL was 27 ± 2.1 SD; mean α angle was 287.6 ± 41.7 SD. Significant statistical correlation was found between CL and EL (r²= 0.6) and α angle (r²=0.5). Also, a strong correlation was found between EL and α angle (r²=0.8). Significant statistical difference was detected between the two devices as regards to the electrode length. Conclusion: Multidetector CT is a reliable tool for preoperative planning and post-operative evaluation of the outcomes of cochlear implant operations. Cochlear length is a valuable prognostic parameter for prediction of the depth of electrode array insertion which can influence criteria of device selection.Keywords: angle of insertion (α angle), cochlear implant (CI), cochlear length (CL), Multidetector Computed Tomography (MDCT)
Procedia PDF Downloads 1957179 Validation of the Linear Trend Estimation Technique for Prediction of Average Water and Sewerage Charge Rate Prices in the Czech Republic
Authors: Aneta Oblouková, Eva Vítková
Abstract:
The article deals with the issue of water and sewerage charge rate prices in the Czech Republic. The research is specifically focused on the analysis of the development of the average prices of water and sewerage charge rate in the Czech Republic in the years 1994-2021 and on the validation of the chosen methodology relevant for the prediction of the development of the average prices of water and sewerage charge rate in the Czech Republic. The research is based on data collection. The data for this research was obtained from the Czech Statistical Office. The aim of the paper is to validate the relevance of the mathematical linear trend estimate technique for the calculation of the predicted average prices of water and sewerage charge rates. The real values of the average prices of water and sewerage charge rates in the Czech Republic in the years 1994-2018 were obtained from the Czech Statistical Office and were converted into a mathematical equation. The same type of real data was obtained from the Czech Statistical Office for the years 2019-2021. Prediction of the average prices of water and sewerage charge rates in the Czech Republic in the years 2019-2021 were also calculated using a chosen method -a linear trend estimation technique. The values obtained from the Czech Statistical Office and the values calculated using the chosen methodology were subsequently compared. The research result is a validation of the chosen mathematical technique to be a suitable technique for this research.Keywords: Czech Republic, linear trend estimation, price prediction, water and sewerage charge rate
Procedia PDF Downloads 1207178 Robust Noisy Speech Identification Using Frame Classifier Derived Features
Authors: Punnoose A. K.
Abstract:
This paper presents an approach for identifying noisy speech recording using a multi-layer perception (MLP) trained to predict phonemes from acoustic features. Characteristics of the MLP posteriors are explored for clean speech and noisy speech at the frame level. Appropriate density functions are used to fit the softmax probability of the clean and noisy speech. A function that takes into account the ratio of the softmax probability density of noisy speech to clean speech is formulated. These phoneme independent scoring is weighted using a phoneme-specific weightage to make the scoring more robust. Simple thresholding is used to identify the noisy speech recording from the clean speech recordings. The approach is benchmarked on standard databases, with a focus on precision.Keywords: noisy speech identification, speech pre-processing, noise robustness, feature engineering
Procedia PDF Downloads 1287177 Evaluation of Systemic Immune-Inflammation Index in Obese Children
Authors: Mustafa M. Donma, Orkide Donma
Abstract:
A growing list of cancers might be influenced by obesity. Obesity is associated with an increased risk for the occurrence and development of some cancers. Inflammation can lead to cancer. It is one of the characteristic features of cancer and plays a critical role in cancer development. C-reactive protein (CRP) is under evaluation related to the new and simple prognostic factors in patients with metastatic renal cell cancer. Obesity can predict and promote systemic inflammation in healthy adults. BMI is correlated with hs-CRP. In this study, SII index and CRP values were evaluated in children with normal BMI and those within the range of different obesity grades to detect the tendency towards cancer in pediatric obesity. A total of one hundred and ninety-four children; thirty-five children with normal BMI, twenty overweight (OW), forty-seven obese (OB) and ninety-two morbid obese (MO) participated in the study. Age- and sex-matched groups were constituted using BMI-for age percentiles. Informed consent was obtained. Ethical Committee approval was taken. Weight, height, waist circumference (C), hip C, head C and neck C of the children were measured. The complete blood count test was performed. C-reactive protein analysis was performed. Statistical analyses were performed using SPSS. The degree for statistical significance was p≤0.05. SII index values were progressively increasing starting from normal weight (NW) to MO children. There is a statistically significant difference between NW and OB as well as MO children. No significant difference was observed between NW and OW children, however, a correlation was observed between NW and OW children. MO constitutes the only group, which exhibited a statistically significant correlation between SII index and CRP. Obesity-related bladder, kidney, cervical, liver, colorectal, endometrial cancers are still being investigated. Obesity, characterized as a chronic low-grade inflammation, is a crucial risk factor for colon cancer. Elevated childhood BMI values may be indicative of processes leading to cancer, initiated early in life. Prevention of childhood adiposity may decrease the cancer incidence in adults. To authors’ best knowledge, this study is the first to introduce SII index values during obesity of varying degrees of severity. It is suggested that this index seems to affect all stages of obesity with an increasing tendency and may point out the concomitant status of obesity and cancer starting from very early periods of life.Keywords: children, C-reactive protein, systemic immune-inflammation index, obesity
Procedia PDF Downloads 1797176 Understanding the Damage Evolution and the Risk of Failure of Pyrrhotite Containing Concrete Foundations
Authors: Marisa Chrysochoou, James Mahoney, Kay Wille
Abstract:
Pyrrhotite is an iron-sulfide mineral which releases sulfuric acid when exposed to water and oxygen. The presence of this mineral in concrete foundations across Connecticut and Massachusetts in the US is causing in some cases premature failure. This has resulted in a devastating crisis for all parties affected by this type of failure which can take up to 15-25 years before internal damage becomes visible on the surface. This study shares laboratory results aimed to investigate the fundamental mechanisms of pyrrhotite reaction and to further the understanding of its deterioration kinetics within concrete. This includes the following analyses: total sulfur, wavelength dispersive X-ray fluorescence, expansion, reaction rate combined with ion-chromatography, as well as damage evolution using electro-chemical acceleration. This information is coupled to a statistical analysis of over 150 analyzed concrete foundations. Those samples were obtained and process using a developed and validated sampling method that is minimally invasive to the foundation in use, provides representative samples of the concrete matrix across the entire foundation, and is time and cost-efficient. The processed samples were then analyzed using a developed modular testing method based on total sulfur and wavelength dispersive X-ray fluorescence analysis to quantify the amount of pyrrhotite. As part of the statistical analysis the results were grouped into the following three categories: no damage observed and no pyrrhotite detected, no damage observed and pyrrhotite detected and damaged observed and pyrrhotite detected. As expected, a strong correlation between amount of pyrrhotite, age of the concrete and damage is observed. Information from the laboratory investigation and from the statistical analysis of field samples will aid in forming a scientific basis to support the decision process towards sustainable financial and administrative solutions by state and local stakeholders.Keywords: concrete, pyrrhotite, risk of failure, statistical analysis
Procedia PDF Downloads 717175 Impulsivity and Nutritional Restrictions in BED
Authors: Jaworski Mariusz, Owczarek Krzysztof, Adamus Mirosława
Abstract:
Binge eating disorder (BED) is one of the three main eating disorders, beside anorexia and bulimia nervosa. BED is characterized by a loss of control over the quantity of food consumed and the lack of the compensatory behaviors, such as induced vomiting or purging. Studies highlight that certain personality traits may contribute to the severity of symptoms in the ED. The aim of this study is to analyze the relationship between psychological variables (Impulsivity and Urgency) and Nutritional restrictions in BED. The study included two groups. The first group consisted of 35 women with BED aged 18 to 28. The control group - 35 women without ED aged 18 to 28. ED-1 questionnaire was used in a study to assess the severity of impulsivity, urgency and nutritional restrictions. The obtained data were standardized. Statistical analyzes were performed using SPSS 21 software. The severity of impulsivity was higher in patients with BED than the control group. The relation between impulsivity and nutritional restrictions in BED was observed, only taking into consideration the relationship of these variables with the level of urgency. However, if the severity of urgency in this relationship is skipped, the relationship between impulsivity and nutritional restrictions will not occur. Impulsivity has a negative relationship with the level of urgency. This study suggests the need to analyze the interaction between impulsivity and urgency, and their relationship with dietary behavior in BED, especially nutritional restrictions. Analysis of single isolated features may give erroneous results.Keywords: binge eating disorder, impulsivity, nutritional restrictions, urgency
Procedia PDF Downloads 4697174 Statistical Estimation of Ionospheric Energy Dissipation Using ØStgaard's Empirical Relation
Authors: M. A. Ahmadu, S. S. Rabia
Abstract:
During the past few decades, energy dissipation in the ionosphere resulting from the geomagnetic activity has caused an increasing number of major disruptions of important power and communication services, malfunctions and loss of expensive facilities. Here, the electron precipitation energy, w(ep) and joule heating energy, w(jh) was used in the computation of this dissipation using Østgaard’s empirical relation from hourly geomagnetic indices of 2012, under the assumption that the magnetosphere does not store any energy, so that at the beginning of the activity t1=0 and end at t2=t, the statistical results obtained show that ionospheric dissipation varies month to month, day to day and hour to hour and estimated with a value ~3.6 w(ep), which is in agreement with experimental result.Keywords: Ostgaard's, ionospheric dissipation, joule heating, electron precipitation, geomagnetic indices, empirical relation
Procedia PDF Downloads 2957173 Experimental Assessment of Alkaline Leaching of Lepidolite
Authors: António Fiúza, Aurora Futuro, Joana Monteiro, Joaquim Góis
Abstract:
Lepidolite is an important lithium mineral that, to the author’s best knowledge, has not been used to produce lithium hydroxide, which is necessary for energy conversion to electric vehicles. Alkaline leaching of lithium concentrates allows the establishment of a production diagram avoiding most of the environmental drawbacks that are associated with the usage of acid reagents. The tested processes involve a pretreatment by digestion at high temperatures with additives, followed by leaching at hot atmospheric pressure. The solutions obtained must be compatible with solutions from the leaching of spodumene concentrates, allowing the development of a common treatment diagram, an important accomplishment for the feasible exploitation of Portuguese resources. Statistical programming and interpretation techniques minimize the laboratory effort required by conventional approaches and allow phenomenological comprehension.Keywords: alkaline leaching, lithium, research design, statistical interpretation
Procedia PDF Downloads 1027172 Development of Non-Intrusive Speech Evaluation Measure Using S-Transform and Light-Gbm
Authors: Tusar Kanti Dash, Ganapati Panda
Abstract:
The evaluation of speech quality and intelligence is critical to the overall effectiveness of the Speech Enhancement Algorithms. Several intrusive and non-intrusive measures are employed to calculate these parameters. Non-Intrusive Evaluation is most challenging as, very often, the reference clean speech data is not available. In this paper, a novel non-intrusive speech evaluation measure is proposed using audio features derived from the Stockwell transform. These features are used with the Light Gradient Boosting Machine for the effective prediction of speech quality and intelligibility. The proposed model is analyzed using noisy and reverberant speech from four databases, and the results are compared with the standard Intrusive Evaluation Measures. It is observed from the comparative analysis that the proposed model is performing better than the standard Non-Intrusive models.Keywords: non-Intrusive speech evaluation, S-transform, light GBM, speech quality, and intelligibility
Procedia PDF Downloads 2607171 Effects of Charge Fluctuating Positive Dust on Linear Dust-Acoustic Waves
Authors: Sanjit Kumar Paul, A. A. Mamun, M. R. Amin
Abstract:
The Linear propagation of the dust-acoustic wave in a dusty plasma consisting of Boltzmann distributed electrons and ions and mobile charge fluctuating positive dust grains has been investigated by employing the reductive perturbation method. It has been shown that the dust charge fluctuation is a source of dissipation and its responsible for the formation of the dust-acoustic waves in such a dusty plasma. The basic features of such dust-acoustic waves have been identified. It has been proposed to design a new laboratory experiment which will be able to identify the basic features of the dust-acoustic waves predicted in this theoretical investigation.Keywords: dust acoustic waves, dusty plasma, Boltzmann distributed electrons, charge fluctuation
Procedia PDF Downloads 6397170 Secure Image Retrieval Based on Orthogonal Decomposition under Cloud Environment
Authors: Y. Xu, L. Xiong, Z. Xu
Abstract:
In order to protect data privacy, image with sensitive or private information needs to be encrypted before being outsourced to the cloud. However, this causes difficulties in image retrieval and data management. A secure image retrieval method based on orthogonal decomposition is proposed in the paper. The image is divided into two different components, for which encryption and feature extraction are executed separately. As a result, cloud server can extract features from an encrypted image directly and compare them with the features of the queried images, so that the user can thus obtain the image. Different from other methods, the proposed method has no special requirements to encryption algorithms. Experimental results prove that the proposed method can achieve better security and better retrieval precision.Keywords: secure image retrieval, secure search, orthogonal decomposition, secure cloud computing
Procedia PDF Downloads 4877169 Unsupervised Neural Architecture for Saliency Detection
Authors: Natalia Efremova, Sergey Tarasenko
Abstract:
We propose a novel neural network architecture for visual saliency detections, which utilizes neuro physiologically plausible mechanisms for extraction of salient regions. The model has been significantly inspired by recent findings from neuro physiology and aimed to simulate the bottom-up processes of human selective attention. Two types of features were analyzed: color and direction of maximum variance. The mechanism we employ for processing those features is PCA, implemented by means of normalized Hebbian learning and the waves of spikes. To evaluate performance of our model we have conducted psychological experiment. Comparison of simulation results with those of experiment indicates good performance of our model.Keywords: neural network models, visual saliency detection, normalized Hebbian learning, Oja's rule, psychological experiment
Procedia PDF Downloads 3507168 Comparison of Safety Factor Evaluation Methods for Buckling of High Strength Steel Welded Box Section Columns
Authors: Balazs Somodi, Balazs Kovesdi
Abstract:
In the research praxis of civil engineering the statistical evaluation of experimental and numerical investigations is an essential task in order to compare the experimental and numerical resistances of a specific structural problem with the proposed resistances of the standards. However, in the standards and in the international literature there are several different safety factor evaluation methods that can be used to check the necessary safety level (e.g.: 5% quantile level, 2.3% quantile level, 1‰ quantile level, γM partial safety factor, γM* partial safety factor, β reliability index). Moreover, in the international literature different calculation methods could be found even for the same safety factor as well. In the present study the flexural buckling resistance of high strength steel (HSS) welded closed sections are analyzed. The authors investigated the flexural buckling resistances of the analyzed columns by laboratory experiments. In the present study the safety levels of the obtained experimental resistances are calculated based on several safety approaches and compared with the EN 1990. The results of the different safety approaches are compared and evaluated. Based on the evaluation tendencies are identified and the differences between the statistical evaluation methods are explained.Keywords: flexural buckling, high strength steel, partial safety factor, statistical evaluation
Procedia PDF Downloads 1607167 Faster, Lighter, More Accurate: A Deep Learning Ensemble for Content Moderation
Authors: Arian Hosseini, Mahmudul Hasan
Abstract:
To address the increasing need for efficient and accurate content moderation, we propose an efficient and lightweight deep classification ensemble structure. Our approach is based on a combination of simple visual features, designed for high-accuracy classification of violent content with low false positives. Our ensemble architecture utilizes a set of lightweight models with narrowed-down color features, and we apply it to both images and videos. We evaluated our approach using a large dataset of explosion and blast contents and compared its performance to popular deep learning models such as ResNet-50. Our evaluation results demonstrate significant improvements in prediction accuracy, while benefiting from 7.64x faster inference and lower computation cost. While our approach is tailored to explosion detection, it can be applied to other similar content moderation and violence detection use cases as well. Based on our experiments, we propose a "think small, think many" philosophy in classification scenarios. We argue that transforming a single, large, monolithic deep model into a verification-based step model ensemble of multiple small, simple, and lightweight models with narrowed-down visual features can possibly lead to predictions with higher accuracy.Keywords: deep classification, content moderation, ensemble learning, explosion detection, video processing
Procedia PDF Downloads 557166 Optimising the Reservoir Operation Using Water Resources Yield and Planning Model at Inanda Dam, uMngeni Basin
Authors: O. Nkwonta, B. Dzwairo, F. Otieno, J. Adeyemo
Abstract:
The effective management of water resources is of great importance to ensure the supply of water resources to support changing water requirements over a selected planning horizon and in a sustainable and cost-effective way. Essentially, the purpose of the water resources planning process is to balance the available water resources in a system with the water requirements and losses to which the system is subjected. In such situations, water resources yield and planning model can be used to solve those difficulties. It has an advantage over other models by managing model runs, developing a representative system network, modelling incremental sub-catchments, creating a variety of standard system features, special modelling features, and run result output options.Keywords: complex, water resources, planning, cost effective, management
Procedia PDF Downloads 4517165 Explore Urban Spatial Density with Boltzmann Statistical Distribution
Authors: Jianjia Wang, Tong Yu, Haoran Zhu, Kun Liu, Jinwei Hao
Abstract:
The underlying pattern in the modern city is agglomeration. To some degree, the distribution of urban spatial density can be used to describe the status of this assemblage. There are three intrinsic characteristics to measure urban spatial density, namely, Floor Area Ratio (FAR), Building Coverage Ratio (BCR), and Average Storeys (AS). But the underlying mechanism that contributes to these quantities is still vague in the statistical urban study. In this paper, we explore the corresponding extrinsic factors related to spatial density. These factors can further provide the potential influence on the intrinsic quantities. Here, we take Shanghai Inner Ring Area and Manhattan in New York as examples to analyse the potential impacts on urban spatial density with six selected extrinsic elements. Ebery single factor presents the correlation to the spatial distribution, but the overall global impact of all is still implicit. To handle this issue, we attempt to develop the Boltzmann statistical model to explicitly explain the mechanism behind that. We derive a corresponding novel quantity, called capacity, to measure the global effects of all other extrinsic factors to the three intrinsic characteristics. The distribution of capacity presents a similar pattern to real measurements. This reveals the nonlinear influence on the multi-factor relations to the urban spatial density in agglomeration.Keywords: urban spatial density, Boltzmann statistics, multi-factor correlation, spatial distribution
Procedia PDF Downloads 1547164 High Resolution Image Generation Algorithm for Archaeology Drawings
Authors: Xiaolin Zeng, Lei Cheng, Zhirong Li, Xueping Liu
Abstract:
Aiming at the problem of low accuracy and susceptibility to cultural relic diseases in the generation of high-resolution archaeology drawings by current image generation algorithms, an archaeology drawings generation algorithm based on a conditional generative adversarial network is proposed. An attention mechanism is added into the high-resolution image generation network as the backbone network, which enhances the line feature extraction capability and improves the accuracy of line drawing generation. A dual-branch parallel architecture consisting of two backbone networks is implemented, where the semantic translation branch extracts semantic features from orthophotographs of cultural relics, and the gradient screening branch extracts effective gradient features. Finally, the fusion fine-tuning module combines these two types of features to achieve the generation of high-quality and high-resolution archaeology drawings. Experimental results on the self-constructed archaeology drawings dataset of grotto temple statues show that the proposed algorithm outperforms current mainstream image generation algorithms in terms of pixel accuracy (PA), structural similarity (SSIM), and peak signal-to-noise ratio (PSNR) and can be used to assist in drawing archaeology drawings.Keywords: archaeology drawings, digital heritage, image generation, deep learning
Procedia PDF Downloads 607163 Hand Motion Trajectory Analysis for Dynamic Hand Gestures Used in Indian Sign Language
Authors: Daleesha M. Viswanathan, Sumam Mary Idicula
Abstract:
Dynamic hand gestures are an intrinsic component in sign language communication. Extracting spatial temporal features of the hand gesture trajectory plays an important role in a dynamic gesture recognition system. Finding a discrete feature descriptor for the motion trajectory based on the orientation feature is the main concern of this paper. Kalman filter algorithm and Hidden Markov Models (HMM) models are incorporated with this recognition system for hand trajectory tracking and for spatial temporal classification, respectively.Keywords: orientation features, discrete feature vector, HMM., Indian sign language
Procedia PDF Downloads 3737162 Recommendations Using Online Water Quality Sensors for Chlorinated Drinking Water Monitoring at Drinking Water Distribution Systems Exposed to Glyphosate
Authors: Angela Maria Fasnacht
Abstract:
Detection of anomalies due to contaminants’ presence, also known as early detection systems in water treatment plants, has become a critical point that deserves an in-depth study for their improvement and adaptation to current requirements. The design of these systems requires a detailed analysis and processing of the data in real-time, so it is necessary to apply various statistical methods appropriate to the data generated, such as Spearman’s Correlation, Factor Analysis, Cross-Correlation, and k-fold Cross-validation. Statistical analysis and methods allow the evaluation of large data sets to model the behavior of variables; in this sense, statistical treatment or analysis could be considered a vital step to be able to develop advanced models focused on machine learning that allows optimized data management in real-time, applied to early detection systems in water treatment processes. These techniques facilitate the development of new technologies used in advanced sensors. In this work, these methods were applied to identify the possible correlations between the measured parameters and the presence of the glyphosate contaminant in the single-pass system. The interaction between the initial concentration of glyphosate and the location of the sensors on the reading of the reported parameters was studied.Keywords: glyphosate, emergent contaminants, machine learning, probes, sensors, predictive
Procedia PDF Downloads 1247161 Hybridization of Manually Extracted and Convolutional Features for Classification of Chest X-Ray of COVID-19
Authors: M. Bilal Ishfaq, Adnan N. Qureshi
Abstract:
COVID-19 is the most infectious disease these days, it was first reported in Wuhan, the capital city of Hubei in China then it spread rapidly throughout the whole world. Later on 11 March 2020, the World Health Organisation (WHO) declared it a pandemic. Since COVID-19 is highly contagious, it has affected approximately 219M people worldwide and caused 4.55M deaths. It has brought the importance of accurate diagnosis of respiratory diseases such as pneumonia and COVID-19 to the forefront. In this paper, we propose a hybrid approach for the automated detection of COVID-19 using medical imaging. We have presented the hybridization of manually extracted and convolutional features. Our approach combines Haralick texture features and convolutional features extracted from chest X-rays and CT scans. We also employ a minimum redundancy maximum relevance (MRMR) feature selection algorithm to reduce computational complexity and enhance classification performance. The proposed model is evaluated on four publicly available datasets, including Chest X-ray Pneumonia, COVID-19 Pneumonia, COVID-19 CTMaster, and VinBig data. The results demonstrate high accuracy and effectiveness, with 0.9925 on the Chest X-ray pneumonia dataset, 0.9895 on the COVID-19, Pneumonia and Normal Chest X-ray dataset, 0.9806 on the Covid CTMaster dataset, and 0.9398 on the VinBig dataset. We further evaluate the effectiveness of the proposed model using ROC curves, where the AUC for the best-performing model reaches 0.96. Our proposed model provides a promising tool for the early detection and accurate diagnosis of COVID-19, which can assist healthcare professionals in making informed treatment decisions and improving patient outcomes. The results of the proposed model are quite plausible and the system can be deployed in a clinical or research setting to assist in the diagnosis of COVID-19.Keywords: COVID-19, feature engineering, artificial neural networks, radiology images
Procedia PDF Downloads 767160 Experiencing an Unknown City: Environmental Features as Pedestrian Wayfinding Clues through the City of Swansea, UK
Authors: Hussah Alotaishan
Abstract:
In today’s globally-driven modern cities diverse groups of new visitors face various challenges when attempting to find their desired location if culture and language are barriers. The most common way-showing tools such as directional and identificational signs are the most problematic and their usefulness can be limited or even non-existent. It is argued new methods should be implemented that could support or replace such conventional literacy and language dependent way-finding aids. It has been concluded in recent research studies that local urban features in complex pedestrian spaces are worthy of further study in order to reveal if they do function as way-showing clues. Some researchers propose a more comprehensive approach to the complex perception of buildings, façade design and surface patterns, while some have been questioning whether we necessarily need directional signs or can other methods deliver the same message but in a clearer manner for a wider range of users. This study aimed to test to what extent do existent environmental and urban features through the city center area of Swansea in the UK facilitate the way-finding process of a first time visitor. The three-hour experiment was set to attempt to find 11 visitor attractions ranging from recreational, historical, educational and religious locations. The challenge was attempting to find as many as possible when no prior geographical knowledge of their whereabouts was established. The only clues were 11 pictures representing each of the locations that had been acquired from the city of Swansea official website. An iPhone and a heart-rate tracker wristwatch were used to record the route was taken and stress levels, and take record photographs of destinations or decision-making points throughout the journey. This paper addresses: current limitations in understanding the ways that the physical environment can be intentionally deployed to facilitate pedestrians while finding their way around, without or with a reduction in language dependent signage; investigates visitor perceptions of their surroundings by indicating what urban elements manifested an impact on the way-finding process. The initial findings support the view that building facades and street features, such as width, could facilitate the decision-making process if strategically employed. However, more importantly, the anticipated features of a specific place construed from a promotional picture can also be misleading and create confusion that may lead to getting lost.Keywords: pedestrian way-finding, environmental features, urban way-showing, environmental affordance
Procedia PDF Downloads 1747159 Estimation of Forces Applied to Forearm Using EMG Signal Features to Control of Powered Human Arm Prostheses
Authors: Faruk Ortes, Derya Karabulut, Yunus Ziya Arslan
Abstract:
Myoelectric features gathering from musculature environment are considered on a preferential basis to perceive muscle activation and control human arm prostheses according to recent experimental researches. EMG (electromyography) signal based human arm prostheses have shown a promising performance in terms of providing basic functional requirements of motions for the amputated people in recent years. However, these assistive devices for neurorehabilitation still have important limitations in enabling amputated people to perform rather sophisticated or functional movements. Surface electromyogram (EMG) is used as the control signal to command such devices. This kind of control consists of activating a motion in prosthetic arm using muscle activation for the same particular motion. Extraction of clear and certain neural information from EMG signals plays a major role especially in fine control of hand prosthesis movements. Many signal processing methods have been utilized for feature extraction from EMG signals. The specific objective of this study was to compare widely used time domain features of EMG signal including integrated EMG(IEMG), root mean square (RMS) and waveform length(WL) for prediction of externally applied forces to human hands. Obtained features were classified using artificial neural networks (ANN) to predict the forces. EMG signals supplied to process were recorded during only type of muscle contraction which is isometric and isotonic one. Experiments were performed by three healthy subjects who are right-handed and in a range of 25-35 year-old aging. EMG signals were collected from muscles of the proximal part of the upper body consisting of: biceps brachii, triceps brachii, pectorialis major and trapezius. The force prediction results obtained from the ANN were statistically analyzed and merits and pitfalls of the extracted features were discussed with detail. The obtained results are anticipated to contribute classification process of EMG signal and motion control of powered human arm prosthetics control.Keywords: assistive devices for neurorehabilitation, electromyography, feature extraction, force estimation, human arm prosthesis
Procedia PDF Downloads 3687158 Analysis of Nonlinear and Non-Stationary Signal to Extract the Features Using Hilbert Huang Transform
Authors: A. N. Paithane, D. S. Bormane, S. D. Shirbahadurkar
Abstract:
It has been seen that emotion recognition is an important research topic in the field of Human and computer interface. A novel technique for Feature Extraction (FE) has been presented here, further a new method has been used for human emotion recognition which is based on HHT method. This method is feasible for analyzing the nonlinear and non-stationary signals. Each signal has been decomposed into the IMF using the EMD. These functions are used to extract the features using fission and fusion process. The decomposition technique which we adopt is a new technique for adaptively decomposing signals. In this perspective, we have reported here potential usefulness of EMD based techniques.We evaluated the algorithm on Augsburg University Database; the manually annotated database.Keywords: intrinsic mode function (IMF), Hilbert-Huang transform (HHT), empirical mode decomposition (EMD), emotion detection, electrocardiogram (ECG)
Procedia PDF Downloads 5817157 A Statistical Approach to Classification of Agricultural Regions
Authors: Hasan Vural
Abstract:
Turkey is a favorable country to produce a great variety of agricultural products because of her different geographic and climatic conditions which have been used to divide the country into four main and seven sub regions. This classification into seven regions traditionally has been used in order to data collection and publication especially related with agricultural production. Afterwards, nine agricultural regions were considered. Recently, the governmental body which is responsible of data collection and dissemination (Turkish Institute of Statistics-TIS) has used 12 classes which include 11 sub regions and Istanbul province. This study aims to evaluate these classification efforts based on the acreage of ten main crops in a ten years time period (1996-2005). The panel data grouped in 11 subregions has been evaluated by cluster and multivariate statistical methods. It was concluded that from the agricultural production point of view, it will be rather meaningful to consider three main and eight sub-agricultural regions throughout the country.Keywords: agricultural region, factorial analysis, cluster analysis,
Procedia PDF Downloads 4167156 Language Use in Autobiographical Memory Transcripts as a Window into Attachment Style and Personality
Authors: McKenzie S. Braley, Lesley Jessiman
Abstract:
If language reveals internal psychological processing, then it is also likely that language use in autobiographical memory transcripts may be used as a window into attachment style and related personality features. The current study, therefore, examined the possible associations between attachment style, negative affectivity, social inhibition, and linguistic features extracted from autobiographical memory transcripts. Young adult participants (n = 61) filled out attachment and personality questionnaires, and orally reported a relationship-related memory. Memories were audio-recorded and later transcribed verbatim. Using a computerized linguistic extraction tool, positive affect words, negative affect words, and cognition words were extracted. Spearman’s rank correlation coefficients revealed that attachment anxiety was negatively correlated with cognition words (r2 = -0.26, p = 0.047) and that negative affectivity was negatively correlated with positive affect words (r2 = -0.32, p = 0.012). The findings suggest that attachment style and personality are associated with speech styles indicative of both emotionality and depth of processing. Because attachment styles, negative affectivity, and social inhibition are associated with poor mental health outcomes, analyses of key linguistics features in autobiographical memory narratives may provide reliable screening tools for mental wellbeing.Keywords: attachment style, autobiographical memory, language, negative affectivity, social inhibition
Procedia PDF Downloads 2747155 Characterization of High Carbon Ash from Pulp and Paper mill for Potential Utilization
Authors: Ruma Rano, Firoza Sultana, Bishal Bhuyan, Nurul Alam Mazumder
Abstract:
Fly ash collected from Cachar Paper Mill, Assam, India has been thoroughly characterized in respect of its physico-chemical, morphological and mineralogical features were concerned by using density, LOI, FTIR, XRD, SEM-EDS etc. The results reveal that there is a striking difference in the features and properties of the coarser and finer fractions .The high carbon ash consists of large unburnt carbon (chars), irregular carbonaceous particles in the coarser fraction, which appear to be porous and may be used as domestic fuel. The percentage of char albeit the carbon content decreases with decrease in size of particles. The various fractions essentially contain quartz and mullite as the main mineral phases. For suggesting the potential utilization channels, number of experiments were performed correlating the total characteristic features. Water holding capacities of different size classified fractions were determined, the coarser fractions have unexpectedly higher water holding capacities than the finer ones. An attempt has been made to correlate the results obtained with potential use in agriculture. Another potential application of coarser particles is used as adsorbent for effluents containing waste organic materials. Thus thorough characterization leads to not only a definite direction about the uses of the value added components but also gives useful information regarding the prevailing combustion process.Keywords: chars, porous, water holding capacity, combustion process
Procedia PDF Downloads 3647154 Evaluation of the Factors Affecting Violence Against Women (Case Study: Couples Referring to Family Counseling Centers in Tehran)
Authors: Hassan Manouchehri
Abstract:
The present study aimed to identify and evaluate the factors affecting violence against women. The statistical population included all couples referring to family counseling centers in Tehran due to domestic violence during the past year. A number of 305 people were selected as a statistical sample using simple random sampling and Cochran's formula in unlimited conditions. A researcher-made questionnaire including 110 items was used for data collection. The face validity and content validity of the questionnaire were confirmed by 30 experts and its reliability was obtained above 0.7 for all studied variables in a preliminary test with 30 subjects and it was acceptable. In order to analyze the data, descriptive statistical methods were used with SPSS software version 22 and inferential statistics were used for modeling structural equations in Smart PLS software version 2. Evaluating the theoretical framework and domestic and foreign studies indicated that, in general, four main factors, including cultural and social factors, economic factors, legal factors, as well as medical factors, underlie violence against women. In addition, structural equation modeling findings indicated that cultural and social factors, economic factors, legal factors, and medical factors affect violence against women.Keywords: violence against women, cultural and social factors, economic factors, legal factors, medical factors
Procedia PDF Downloads 1427153 Driving Mechanism of Urban Sprawl in Chinese Context from the Perspective of Domestic and Overseas Comparison
Authors: Tingke Wu, Yaping Huang
Abstract:
Many cities in China have been experiencing serious urban sprawl since the 1980s, which pose great challenges to a country with scare cultivated land and huge population. Because of different social and economic context and development stage, driving forces of urban sprawl in China are quite different from developed countries. Therefore, it is of great importance to probe into urban sprawl driving mechanism in Chinese context. By a comparison study of the background and features of urban sprawl between China and developed countries, this research establishes an analytical framework for sprawl dynamic mechanism in China. By literature review and analyzing data from national statistical yearbook, it then probes into the driving mechanism and the primary cause of urban sprawl. The results suggest that population increase, economic growth, traffic and information technology development lead to rapid expansion of urban space; defects of land institution and lack of effective guidance give rise to low efficiency of urban land use. Moreover, urban sprawl is ultimately attributed to imperfections of policy and institution. On this basis, this research puts forward several sprawl control strategies in Chinese context.Keywords: China, driving forces, driving mechanism, land institution, urban expansion, urban sprawl
Procedia PDF Downloads 181