Search results for: soil aquifer treatment
10493 Conservation Agriculture under Mediterranean Climate: Effects on below and Above-Ground Processes during Wheat Cultivation
Authors: Vasiliki Kolake, Christos Kavalaris, Sofia Megoudi, Maria Maxouri, Panagiotis A. Karas, Aris Kyparissis, Efi Levizou
Abstract:
Conservation agriculture (CA), is a production system approach that can tackle the challenges of climate change mainly through facilitating carbon storage into the soil and increasing crop resilience. This is extremely important for the vulnerable Mediterranean agroecosystems, which already face adverse environmental conditions. The agronomic practices used in CA, i.e. permanent soil cover and no-tillage, result in reduced soil erosion and increased soil organic matter, preservation of water and improvement of quality and fertility of the soil in the long-term. Thus the functional characteristics and processes of the soil are considerably affected by the implementation of CA. The aim of the present work was to assess the effects of CA on soil nitrification potential and mycorrhizal colonization about the above-ground production in a wheat field. Two adjacent but independent field sites of 1.5ha each were used (Thessaly plain, Central Greece), comprising the no-till and conventional tillage treatments. The no-tillage site was covered by residues of the previous crop (cotton). Potential nitrification and the nitrate and ammonium content of the soil were measured at two different soil depths (3 and 15cm) at 20-days intervals throughout the growth period. Additionally, the leaf area index (LAI) was monitored at the same time-course. The mycorrhizal colonization was measured at the commencement and end of the experiment. At the final harvest, total yield and plant biomass were also recorded. The results indicate that wheat yield was considerably favored by CA practices, exhibiting a 42% increase compared to the conventional tillage treatment. The superior performance of the CA crop was also depicted in the above-ground plant biomass, where a 26% increase was recorded. LAI, which is considered a reliable growth index, did not show statistically significant differences between treatments throughout the growth period. On the contrary, significant differences were recorded in endomycorrhizal colonization one day before the final harvest, with CA plants exhibiting 20% colonization, while the conventional tillage plants hardly reached 1%. The on-going analyses of potential nitrification measurements, as well as nitrate and ammonium determination, will shed light on the effects of CA on key processes in the soil. These results will integrate the assessment of CA impact on certain below and above-ground processes during wheat cultivation under the Mediterranean climate.Keywords: conservation agriculture, LAI, mycorrhizal colonization, potential nitrification, wheat, yield
Procedia PDF Downloads 13010492 Analysis of Pollution in Agriculture Land Using Decagon Em-50 and Rock Magnetism Method
Authors: Adinda Syifa Azhari, Eleonora Agustine, Dini Fitriani
Abstract:
This measurement has been done to analyze the impact of industrial pollution on the environment. Our research is to indicate the soil which has contained some pollution by industrial activity around the area, especially in Sumedang, West Java. The parameter phsyics such as total dissolved solid, volumetric water content, electrical conductivity bulk and FD have shown that the soil has polluted and measured by Decagon EM 50. Decagon EM 50 is one of the geophysical environment instrumentation that is used to interpret the soil condition. This experiment has given a result of these parameter physics, these are: Volumetric water content (m³/m³) = 0,154 – 0,384; Electrical Conductivity Bulk (dS/m) = 0,29 – 1,11 ; Dielectric Permittivity (DP) = 77,636 – 78, 339.Based on these data, we have got the conclusion that the area has, in fact, been contaminated by dangerous materials. VWC is parameter physics that has shown water in soil. The data show the pollution of the soil at the place, of which the specifications are PH, Total Dissolved Solid (TDS), Electrical Conductivity (EC) bigger (>>) and Frequency Dependent (FD) smaller (<<); that means the soil is alkali with big grain and has high salt concentration.Keywords: Decagon EM 50, electrical conductivity, industrial textiles, land, pollution
Procedia PDF Downloads 38110491 Environmental Impact Assessment of Municipal Solid Waste Disposal Site in Shahrood City
Authors: Mehri Bagherkazemi, Naser Hafezi Moghaddas
Abstract:
This study investigates the environmental impact of the disposal site located in Shahrood city, focusing on the geological characteristics of the region. Shahrood's disposal site primarily consists of limestone bedrock, overlaid by substantial alluvial deposits. The area's highly permeable soil is anticipated to have a significant influence on groundwater pollution. Spanning 52 hectares, the Shahrood disposal site is situated in the eastern sector of the city. Historically, waste disposal took place on the surface, but recent practices involve on-site trenching. This research involved the collection of soil and water samples near the disposal site, with subsequent analysis of 11 soil samples and 3 water samples. The soil's particle size distribution was determined, and comprehensive analyses were conducted for 35 elements in the soil and 42 elements in water. The study combines the results of these tests with field investigations to evaluate the landfill's impact on the surrounding soil and groundwater contamination.Keywords: environmental geology, environmental impact assessment, disposal site, heavy metals contamination
Procedia PDF Downloads 7910490 Evaluating the Permeability Coefficient of Sandy Soil for Grouting to Reinforce Soft Soil in Binh Duong, Vietnam
Authors: Trung Le Thanh
Abstract:
Soil permeability coefficient is an important parameter that affects the effectiveness of mortar restoration work to reinforce soft soil. Currently, there are many methods to determine the permeability coefficient of ground through laboratory and field experiments. However, the value of the permeability coefficient is determined very differently depending on the geology in general and the sand base in particular. This article presents how to determine the permeability coefficient of sand foundation in Phu My Ward, Tan Uyen City, Binh Duong. The author analyzes and evaluates the advantages and disadvantages of assessment methods based on the data and results obtained, and on that basis recommends a suitable method for determining the permeability coefficient for sand foundations. The research results serve the evaluation of the effectiveness of grouting to reinforce soft ground in general, and grouting of bored piles in particular.Keywords: permeability coefficient, soft soil, shaft grouting, post grouting, jet grouting
Procedia PDF Downloads 7410489 An Overview of PFAS Treatment Technologies with an In-Depth Analysis of Two Case Studies
Authors: Arul Ayyaswami, Vidhya Ramalingam
Abstract:
Per- and polyfluoroalkyl substances (PFAS) have emerged as a significant environmental concern due to their ubiquity and persistence in the environment. Their chemical characteristics and adverse effects on human health demands more effective and sustainable solutions in remediation of the PFAS. The work presented here encompasses an overview of treatment technologies with two case studies that utilize effective approaches in addressing PFAS contaminated media. Currently the options for treatment of PFAS compounds include Activated carbon adsorption, Ion Exchange, Membrane Filtration, Advanced oxidation processes, Electrochemical treatment, and Precipitation and Coagulation. In the first case study, a pilot study application of colloidal activated carbon (CAC) was completed to address PFAS from aqueous film-forming foam (AFFF) used to extinguish a large fire. The pilot study was used to demonstrate the effectiveness of a CAC in situ permeable reactive barrier (PRB) in effectively stopping the migration of PFOS and PFOA, moving from the source area at high concentrations. Before the CAC PRB installation, an injection test using - fluorescein dye was conducted to determine the primary fracture-induced groundwater flow pathways. A straddle packer injection delivery system was used to isolate discrete intervals and gain resolution over the 70 feet saturated zone targeted for treatment. Flow rates were adjusted, and aquifer responses were recorded for each interval. The results from the injection test were used to design the pilot test injection plan using CAC PRB. Following the CAC PRB application, the combined initial concentration 91,400 ng/L of PFOS and PFOA were reduced to approximately 70 ng/L (99.9% reduction), after only one month following the injection event. The results demonstrate the remedy's effectiveness to quickly and safely contain high concentrations of PFAS in fractured bedrock, reducing the risk to downgradient receptors. The second study involves developing a reductive defluorination treatment process using UV and electron acceptor. This experiment indicates a significant potential in treatment of PFAS contaminated waste media such as landfill leachates. The technology also shows a promising way of tacking these contaminants without the need for secondary waste disposal or any additional pre-treatments.Keywords: per- and polyfluoroalkyl substances (PFAS), colloidal activated carbon (CAC), destructive PFAS treatment technology, aqueous film-forming foam (AFFF)
Procedia PDF Downloads 5910488 Impact of Mucormycosis Infection In Limb Salvage for Trauma Patients
Authors: Katie-Beth Webster
Abstract:
Mucormycosis is a rare opportunistic fungal infection that, if left untreated, can cause large scale tissue necrosis and death. There are a number of cases of this in the literature, most commonly in the head and neck region arising from sinuses. It is also usually found in immunocompromised patient subgroups. This study reviewed a number of cases of mucormycosis in previously fit and healthy young trauma patients to assess predisposing factors for infection and adequacy of current treatment paradigms. These trauma patients likely contracted the fungal infection from the soil at the site of the incident. Despite early washout and debridement of the wounds at the scene of the injury and on arrival in hospital, both these patients contracted mucormycosis. It was suspected that inadequate early debridement of soil contaminated limbs was one of the major factors that can lead to catastrophic tissue necrosis. In both cases, this resulted in the patients having a higher level of amputation than would have initially been required based on the level of their injury. This was secondary to cutaneous and soft tissue necrosis secondary to the fungal infiltration leading to osteomyelitis and systemic sepsis. In the literature, it appears diagnosis is often protracted in this condition secondary to inadequate early treatment and long processing times for fungal cultures. If fungal cultures were sent at the time of first assessment and adequate debridements are performed aggressively early, it could lead to these critically unwell trauma patients receiving appropriate antifungal and surgical treatment earlier in their episode of care. This is likely to improve long term outcomes for these patients.Keywords: mucormycosis, plastic surgery, osteomyelitis, trauma
Procedia PDF Downloads 20810487 Linking Soil Spectral Behavior and Moisture Content for Soil Moisture Content Retrieval at Field Scale
Authors: Yonwaba Atyosi, Moses Cho, Abel Ramoelo, Nobuhle Majozi, Cecilia Masemola, Yoliswa Mkhize
Abstract:
Spectroscopy has been widely used to understand the hyperspectral remote sensing of soils. Accurate and efficient measurement of soil moisture is essential for precision agriculture. The aim of this study was to understand the spectral behavior of soil at different soil water content levels and identify the significant spectral bands for soil moisture content retrieval at field-scale. The study consisted of 60 soil samples from a maize farm, divided into four different treatments representing different moisture levels. Spectral signatures were measured for each sample in laboratory under artificial light using an Analytical Spectral Device (ASD) spectrometer, covering a wavelength range from 350 nm to 2500 nm, with a spectral resolution of 1 nm. The results showed that the absorption features at 1450 nm, 1900 nm, and 2200 nm were particularly sensitive to soil moisture content and exhibited strong correlations with the water content levels. Continuum removal was developed in the R programming language to enhance the absorption features of soil moisture and to precisely understand its spectral behavior at different water content levels. Statistical analysis using partial least squares regression (PLSR) models were performed to quantify the correlation between the spectral bands and soil moisture content. This study provides insights into the spectral behavior of soil at different water content levels and identifies the significant spectral bands for soil moisture content retrieval. The findings highlight the potential of spectroscopy for non-destructive and rapid soil moisture measurement, which can be applied to various fields such as precision agriculture, hydrology, and environmental monitoring. However, it is important to note that the spectral behavior of soil can be influenced by various factors such as soil type, texture, and organic matter content, and caution should be taken when applying the results to other soil systems. The results of this study showed a good agreement between measured and predicted values of Soil Moisture Content with high R2 and low root mean square error (RMSE) values. Model validation using independent data was satisfactory for all the studied soil samples. The results has significant implications for developing high-resolution and precise field-scale soil moisture retrieval models. These models can be used to understand the spatial and temporal variation of soil moisture content in agricultural fields, which is essential for managing irrigation and optimizing crop yield.Keywords: soil moisture content retrieval, precision agriculture, continuum removal, remote sensing, machine learning, spectroscopy
Procedia PDF Downloads 9910486 The Effect of Wool Mulch on Plant Development in the Light of Soil Physical and Soil Biological Conditions
Authors: Katalin Juhos, Enikő Papdi, Flórián Kovács, Vasileios P. Vasileiadis, Andrea Veres
Abstract:
Mulching techniques can be a solution for better utilization of precipitation and irrigation water and for mitigating soil degradation and drought damages. Waste fibres as alternative biodegradable mulch materials are increasingly coming to the fore. The effect of wool mulch (WM) on water use efficiency of pepper seedlings were investigated in different soil types (sand, clay loam, peat) in a pot experiment. Two semi-field experiments were also set up to investigate the effect of WM-plant interaction on sweet pepper yield in comparison with agro-textile and straw mulches. Soil parameters (moisture, temperature, DHA, β-glucosidase enzymes, permanganate-oxidizable carbon) were measured during the growing season. The effect of WM on yield and biomass was more significant with less frequent irrigation and the greater the water capacity of soils. The microbiological activity was significantly higher in the presence of plants, because of the water retention of WM, the metabolic products of roots and the more balanced soil temperature caused by plants. On the sandy soil, the straw mulch had a significantly better effect on microbiological parameters and yields than the agro-textile and WM. WM is a sustainable practice for improving soil biological parameters and water use efficiency on soils with a higher water capacity.Keywords: β-glucosidase, DHA enzyme activity; labile carbon, straw mulch; plastic mulch, evapotranspira-tion coefficient, soil temperature
Procedia PDF Downloads 7610485 Correlation of SPT N-Value and Equipment Drilling Parameters in Deep Soil Mixing
Authors: John Eric C. Bargas, Maria Cecilia M. Marcos
Abstract:
One of the most common ground improvement techniques is Deep Soil Mixing (DSM). As the technique progresses, there is still lack in the development when it comes to depth control. This was the issue experienced during the installation of DSM in one of the National projects in the Philippines. This study assesses the feasibility of using equipment drilling parameters such as hydraulic pressure, drilling speed and rotational speed in determining the Standard Penetration Test N-value of a specific soil. Hydraulic pressure and drilling speed with a constant rotational speed of 30 rpm have a positive correlation with SPT N-value for cohesive soil and sand. A linear trend was observed for cohesive soil. The correlation of SPT N-value and hydraulic pressure yielded a R²=0.5377 while the correlation of SPT N-value and drilling speed has a R²=0.6355. While the best fitted model for sand is polynomial trend. The correlation of SPT N-value and hydraulic pressure yielded a R²=0.7088 while the correlation of SPT N-value and drilling speed has a R²=0.4354. The low correlation may be attributed to the behavior of sand when the auger penetrates. Sand tends to follow the rotation of the auger rather than resisting which was observed for very loose to medium dense sand. Specific Energy and the product of hydraulic pressure and drilling speed yielded same R² with a positive correlation. Linear trend was observed for cohesive soil while polynomial trend for sand. Cohesive soil yielded a R²=0.7320 which has a strong relationship. Sand also yielded a strong relationship having a coefficient of determination, R²=0.7203. It is feasible to use hydraulic pressure and drilling speed to estimate the SPT N-value of the soil. Also, the product of hydraulic pressure and drilling speed can be a substitute to specific energy when estimating the SPT N-value of a soil. However, additional considerations are necessary to account for other influencing factors like ground water and physical and mechanical properties of soil.Keywords: ground improvement, equipment drilling parameters, standard penetration test, deep soil mixing
Procedia PDF Downloads 4710484 Effects of the Type of Soil on the Efficiency of a Bioremediation Dispositive by Using Bacterium Hydrocarbonoclastes
Authors: Amel Bouderhem, Aminata Ould El Hadj Khelil, Amina N. Djrarbaoui, Aroussi Aroussi
Abstract:
The present work aims to find the influence of the nature of the soil on the effectiveness of the biodegradation of hydrocarbons by a mixture of bacterial strains hydrocarbonoclastes. Processes of bioaugmentation and biostimulation trial are applied to samples of soils polluted voluntarily by the crude oil. For the evaluation of the biodegradation of hydrocarbons, the bacterial load, the pH and organic carbon total are followed in the different experimental batches. He bacterial load of the sandy soil varies among the witnesses of 45,2 .108 CFU/ml at the beginning of the experimentation to 214,07.108 CFU/ml at the end of the experiment. Of the soil silty-clay varies between 103,31 .108 CFU/ml and 614,86.108 CFU/ml . It was found a strong increase in the bacterial biomass during the processing of all samples. This increase is more important in the samples of sand bioaugmente or biomass increased from 63.16 .108 CFU/ml to 309.68 .108 CFU/ml than in soil samples silty clay- bioaugmente whose content in bacteria evolved of 73,01 .108 CFU/ml to 631.80 . 108CFU/mlKeywords: pollution, hydrocarbons, bioremediation, bacteria hydrocarbonoclastes, ground, texture
Procedia PDF Downloads 47610483 Hydrodynamics in Wetlands of Brazilian Savanna: Electrical Tomography and Geoprocessing
Authors: Lucas M. Furlan, Cesar A. Moreira, Jepherson F. Sales, Guilherme T. Bueno, Manuel E. Ferreira, Carla V. S. Coelho, Vania Rosolen
Abstract:
Located in the western part of the State of Minas Gerais, Brazil, the study area consists of a savanna environment, represented by sedimentary plateau and a soil cover composed by lateritic and hydromorphic soils - in the latter, occurring the deferruginization and concentration of high-alumina clays, exploited as refractory material. In the hydromorphic topographic depressions (wetlands) the hydropedogical relationships are little known, but it is observed that in times of rainfall, the depressed region behaves like a natural seasonal reservoir - which suggests that the wetlands on the surface of the plateau are places of recharge of the aquifer. The aquifer recharge areas are extremely important for the sustainable social, economic and environmental development of societies. The understanding of hydrodynamics in relation to the functioning of the ferruginous and hydromorphic lateritic soils system in the savanna environment is a subject rarely explored in the literature, especially its understanding through the joint application of geoprocessing by UAV (Unmanned Aerial Vehicle) and electrical tomography. The objective of this work is to understand the hydrogeological dynamics in a wetland (with an area of 426.064 m²), in the Brazilian savanna,as well as the understanding of the subsurface architecture of hydromorphic depressions in relation to the recharge of aquifers. The wetland was compartmentalized in three different regions, according to the geoprocessing. Hydraulic conductivity studies were performed in each of these three portions. Electrical tomography was performed on 9 lines of 80 meters in length and spaced 10 meters apart (direction N45), and a line with 80 meters perpendicular to all others. With the data, it was possible to generate a 3D cube. The integrated analysis showed that the area behaves like a natural seasonal reservoir in the months of greater precipitation (December – 289mm; January – 277,9mm; February – 213,2mm), because the hydraulic conductivity is very low in all areas. In the aerial images, geotag correction of the images was performed, that is, the correction of the coordinates of the images by means of the corrected coordinates of the Positioning by Precision Point of the Brazilian Institute of Geography and Statistics (IBGE-PPP). Later, the orthomosaic and the digital surface model (DSM) were generated, which with specific geoprocessing generated the volume of water that the wetland can contain - 780,922m³ in total, 265,205m³ in the region with intermediate flooding and 49,140m³ in the central region, where a greater accumulation of water was observed. Through the electrical tomography it was possible to identify that up to the depth of 6 meters the water infiltrates vertically in the central region. From the 8 meters depth, the water encounters a more resistive layer and the infiltration begins to occur horizontally - tending to concentrate the recharge of the aquifer to the northeast and southwest of the wetland. The hydrodynamics of the area is complex and has many challenges in its understanding. The next step is to relate hydrodynamics to the evolution of the landscape, with the enrichment of high-alumina clays, and to propose a management model for the seasonal reservoir.Keywords: electrical tomography, hydropedology, unmanned aerial vehicle, water resources management
Procedia PDF Downloads 14610482 The Effect of Soil Reinforcement on Pullout Behaviour of Flat Under-Reamer Anchor Pile Placed in Sand
Authors: V. K. Arora, Amit Rastogi
Abstract:
To understand the anchor pile behaviour and to predict the capacity of piles under uplift loading are important concerns in foundation analysis. Experimental model tests have been conducted on single anchor pile embedded in cohesionless soil and subjected to pure uplift loading. A gravel-filled geogrid layer was located around the enlarged pile base. The experimental tests were conducted on straight-shafted vertical steel piles with an outer diameter of 20 mm in a steel soil tank. The tested piles have embedment depth-to-diameter ratios (L/D) of 2, 3, and 4. The sand bed is prepared at three different values of density of 1.67, 1.59, and 1.50gm/cc. Single piles embedded in sandy soil were tested and the results are presented and analysed in this paper. The influences of pile embedment ratio, reinforcement, relative density of soil on the uplift capacity of piles were investigated. The study revealed that the behaviour of single piles under uplift loading depends mainly on both the pile embedment depth-to-diameter ratio and the soil density. It is believed that the experimental results presented in this study would be beneficial to the professional understanding of the soil–pile-uplift interaction problem.Keywords: flat under-reamer anchor pile, geogrid, pullout reinforcement, soil reinforcement
Procedia PDF Downloads 46810481 Examination of the Water and Nutrient Utilization of Maize Hybrids on Chernozem Soil
Authors: L. G. Karancsi
Abstract:
The research was set up on chernozem soil at the Látókép AGTC MÉK research area of the University of Debrecen in Hungary. We examined the yield, the yield production per 1kg NPK fertilizer and the water and nutrient utilization of hybrid PR37N01 and PR37M81 in 2013. We found that PR37N01 produced the most yield at the level of N120+P (17,476kg ha-1) while PR37M81 reached the highest yield at level N150+PK (16,754kg ha-1). Studies related to yield production per 1kg NPK indicated that the best results were achieved at level N30+PK compared to the control treatment. Yield production per 1kg NPK was17.6kg kg-1 by P37N01 and 44.2kg kg-1 by PR37M81. By comparing the water utilization of hybrids we found that the worst water utilization results were reached in the control treatment (PR37N01: 26.2kg mm-1, PR37M81: 19.5kg mm-1). The best water utilization values were produced at level N120+PK in the case of hybrid PR37N01 (32.1kg mm-1) and at N150+PK in the case of hybrid PR37M81 (30.8kg mm-1). We established the values of the nutrient reaction and the fertilizer optimum of hybrids. We discovered a strong relationship between the amount of fertilizer applied and the yield produced (r2= 0.8228–0.9515). The best nutrient response was induced by hybrid PR37N01, while the weakest results were reached by hybrid PR37M81.Keywords: hybrid, maize, nutrient, yield, water utilization
Procedia PDF Downloads 41310480 Ecological Study of Habitat Conditions and Distribution of Cistanche tubulosa (Rare Plant Species) in Pakpattan District, Pakistan
Authors: Shumaila Shakoor
Abstract:
C. tubulosa is a rare parasitic plant. It is found to be endangered and it acquires nutrition by penetrating roots deep in host roots. It has momentous potential to fulfill local and national health needs. This specie became endangered due to its parasitic mode of life and lack of awareness. Investigation of distribution and habitat conditions of C. tubulosa from District Pakpattan is the objective of this study. To explore its habitat conditions and community ecology phytosociological survey of C. tubulosa in different habitats i.e roadsides and graveyards was carried out. It was found that C. tubulosa occurs successfully in different habitats like graveyards and roadsides with specific neighboring species. Soil analysis was carried out by taking soil samples from seven sites. Soil was analyzed for pH, EC, soil texture, OM, N %age, Ca, Mg, P and K, which shows that soil of C. tubulosa is rich in all these nutrients.Keywords: organic matter, potassium, phosphorus, magnesium
Procedia PDF Downloads 19610479 Erodibility Analysis of Cikapundung Hulu: A Study Case of Mekarwangi Catchment Area
Authors: Shantosa Yudha Siswanto, Rachmat Harryanto
Abstract:
The aim of the research was to investigate the effect of land use and slope steepness on soil erodibility index. The research was conducted from September to December 2013 in Mekarwangi catchment area, sub watershed of Cikapundung Hulu, Indonesia. The study was carried out using descriptive method. Physiographic free survey method was used as survey method, it was a survey based on land physiographic appearance. Soil sampling was carried out into transect on the similarity of slope without calculating the range between points of observation. Soil samples were carried onto three classes of land use such as: forest, plantation and dry cultivation area. Each land use consists of three slope classes such as: 8-15%, 16-25%, and 26-40% class. Five samples of soil were taken from each of them, resulting 45 points of observation. The result of the research showed that type of land use and slope classes gave different effect on soil erodibility. The highest C-organic and permeability was found on forest with slope 16-25%. Slope of 8-15% with forest land use give the lowest effect on soil erodibility.Keywords: land use, slope, erodibility, erosion
Procedia PDF Downloads 25110478 Identifying Karst Pattern to Prevent Bell Spring from Being Submerged in Daryan Dam Reservoir
Authors: H. Shafaattalab Dehghani, H. R. Zarei
Abstract:
The large karstic Bell spring with a discharge ranging between 250 and 5300 lit/ sec is one of the most important springs of Kermanshah Province. This spring supplies drinking water of Nodsheh City and its surrounding villages. The spring is located in the reservoir of Daryan Dam and its mouth would be submerged after impounding under a water column of about 110 m height. This paper has aimed to render an account of the karstification pattern around the spring under consideration with the intention of preventing Bell Spring from being submerged in Daryan Dam Reservoir. The studies comprise engineering geology and hydrogeology investigations. Some geotechnical activities included in these studies include geophysical studies, drilling, excavation of exploratory gallery and shaft and diving. The results depict that Bell is a single-conduit siphon spring with 4 m diameter and 85 m height that 32 m of the conduit is located below the spring outlet. To survive the spring, it was decided to plug the outlet and convey the water to upper elevations under the natural pressure of the aquifer. After plugging, water was successfully conveyed to elevation 837 meter above sea level (about 120 m from the outlet) under the natural pressure of the aquifer. This signifies the accuracy of the studies done and proper recognition of the karstification pattern of Bell Spring. This is a unique experience in karst problems in Iran.Keywords: bell spring, Karst, Daryan Dam, submerged
Procedia PDF Downloads 27410477 Impact of Organic Farming on Soil Fertility and Microbial Activity
Authors: Menuka Maharjan
Abstract:
In the name of food security, agriculture intensification through conventional farming is being implemented in Nepal. Government focus on increasing agriculture production completely ignores soil as well human health. This leads to create serious soil degradation, i.e., reduction of soil fertility and microbial activity and health hazard in the country. On this note, organic farming is sustainable agriculture approach which can address challenge of sustaining food security while protecting the environment. This creates a win-win situation both for people and the environment. However, people have limited knowledge on significance of organic farming for environment conservation and food security especially developing countries like Nepal. Thus, the objective of the study was to assess the impacts of organic farming on soil fertility and microbial activity compared to conventional farming and forest in Chitwan, Nepal. Total soil organic carbon (C) was highest in organic farming (24 mg C g⁻¹ soil) followed by conventional farming (15 mg C g⁻¹ soil) and forest (9 mg C g⁻¹ soil) in the topsoil layer (0-10 cm depth). A similar trend was found for total nitrogen (N) content in all three land uses with organic farming soil possessing the highest total N content in both 0-10 cm and 10-20 cm depth. Microbial biomass C and N were also highest under organic farming, especially in the topsoil layer (350 and 46 mg g⁻¹ soil, respectively). Similarly, microbial biomass phosphorus (P) was higher (3.6 and 1.0 mg P kg⁻¹ at 0-10 and 10-20 cm depth, respectively) in organic farming compared to conventional farming and forest at both depths. However, conventional farming and forest soils had similar microbial biomass (C, N, and P) content. After conversion of forest, the P stock significantly increased by 373% and 170% in soil under organic farming at 0-10 and 10-20 cm depth, respectively. In conventional farming, the P stock increased by 64% and 36% at 0-10 cm and 10-20 cm depth, respectively, compared to forest. Overall, organic farming practices, i.e., crop rotation, residue input and farmyard manure application, significantly alters soil fertility and microbial activity. Organic farming system is emerging as a sustainable land use system which can address the issues of food security and environment conservation by increasing sustainable agriculture production and carbon sequestration, respectively, supporting to achieve goals of sustainable development.Keywords: organic farming, soil fertility, micobial biomas, food security
Procedia PDF Downloads 17610476 Sandy Soil Properties under Different Plant Cover Types in Drylands, Sudan
Authors: Rayan Elsiddig Eltaib, Yamanaka Norikazu, Mubarak Abdelrahman Abdalla
Abstract:
This study investigated the effects of Acacia Senegal, Calotropis procera, Leptadenia pyrotechnica, Ziziphus spina Christi, Balanites aegyptiaca, Indigofera oblongigolia, Arachis hypogea and Sesimum indicum grown in the western region of White Nile State on soil properties of the 0-10, 10-30, 30-60 and 60-90 cm depths. Soil properties were: pH(paste), electrical conductivity of the saturation extract (ECe), total N (TN), organic carbon (OC), soluble K, available P, aggregate stability and water holding capacity. Triplicate Soil samples were collected after the end of the rainy season using 5 cm diameter auger. Results indicated that pH, ECe and TN were not significantly different among plant cover types. In the top 10-30 cm depth, OC under all types was significantly higher than the control (4.1 to 7.7 fold). The highest (0.085%) OC was found under the Z. spina Christi and A. Senegal whereas the lowest (0.045%) was reported under the A. hypogea. In the 10-30 cm depth, with the exception of A. hypogea, Z. spina christi and S. indicum, P content was almost similar but significantly higher than the control by 72 to 129%. In the 10-30 cm depth, K content under the S. indicum (0.46 meq/L) was exceptionally high followed by Z. spina christi (0.102 meq/L) as compared to the control (0.029 meq/L). Water holding capacity and aggregate stability of the top 0-10 cm depth were not significantly different among plant cover types. Based on the fact that accumulation of organic matter in the soil profile of any ecosystem is an important indicator of soil quality, results of this study may conclude that (1) cultivation of A.senegal, B.aegyptiaca and Z. spina Christi improved soil quality whereas (2) cultivation of A. hypogea or soil that is solely invaded with C. procera and L.pyrotechnica may induce soil degradation.Keywords: canopy, crops, shrubs, soil properties, trees
Procedia PDF Downloads 28210475 Comparative Pre-treatment Analysis of RNA-Extraction Methods and Efficient Detection of SARS-COV-2 and PMMoV in Influents and 1ˢᵗ Sedimentation from a Wastewater Treatment Plan
Authors: Jesmin Akter, Chang Hyuk Ahn, Ilho Kim, Fumitake Nishimura, Jaiyeop Lee
Abstract:
This study aimed to compare two pre-treatment and two RNA extraction methods, namely PEG, and Nano bubble, Viral RNA Soil, and Mini Kit, in terms of their efficiency in detecting SARS-CoV-2 and PMMoV in influent and 1st sedimentation samples from a wastewater treatment plant. The extracted RNA samples were quantified and evaluated for purity, yield, and integrity. The results indicated that the nanobubble PEG method provided the highest yield of RNA, while the QIAamp Viral RNA Mini Kit produced the purest RNA samples. In terms of sensitivity and specificity, all these methods were able to detect SARS-CoV-2 and PMMoV in both influent and 1st sedimentation samples. However, the nanobubble PEG method showed slightly higher sensitivity compared to the other methods. These findings suggest that the choice of RNA extraction method should depend on the downstream application and the quality of the RNA required. The study also highlights the potential of wastewater-based epidemiology as an effective and non-invasive method for monitoring the spread of infectious diseases in a community.Keywords: influent, PMMoV, SARS-CoV-2, wastewater based epidemiology
Procedia PDF Downloads 9610474 Changes in Physical Soil Properties and Crop Status on Soil Enriched With Treated Manure
Authors: Vaclav Novak, Katerina Krizova, Petr Sarec
Abstract:
Modern agriculture has to face many issues from which soil degradation and lack of organic matter in the soil are only a few of them. Apart from Climate Change, human utilization of landscape is the cause of a majority part of these problems. Cattle production in Czechia has been reduced by more than half in recent 30 years. However, cattle manure is considered as staple organic fertilizer, and its role in attempts for sustainable agriculture is irreplaceable. This study aims to describe the impact of so-called activators of biological manure transformation (Z´fix, Olmix Group) mainly on physical soil properties but also on crop status. The experiment has been established in 2017; nevertheless, initial measurements of implement draft have been performed before the treated manure application. In 2018, the physical soil properties and crop status (sugar beet) has been determined and compared with the untreated manure and control variant. Significant results have been observed already in the first year, where the implement draft decreased by 9.2 % within the treated manure variant in comparison with the control variant.Keywords: field experiment, implement draft, vegetation index, sugar beet
Procedia PDF Downloads 15610473 Investigation of Zinc Corrosion in Tropical Soil Solution
Authors: M. Lebrini, L. Salhi, C. Deyrat, C. Roos, O. Nait-Rabah
Abstract:
The paper presents a large experimental study on the corrosion of zinc in tropical soil and in the ground water at the various depths. Through this study, the corrosion rate prediction was done on the basis of two methods the electrochemical method and the gravimetric. The electrochemical results showed that the corrosion rate is more important at the depth levels 0 m to 0.5 m and 0.5 m to 1 m and beyond these depth levels, the corrosion rate is less important. The electrochemical results indicated also that a passive layer is formed on the zinc surface. The found SEM and EDX micrographs displayed that the surface is extremely attacked and confirmed that a zinc oxide layer is present on the surface whose thickness and relief increase as the contact with soil increases.Keywords: soil corrosion, galvanized steel, electrochemical technique, SEM and EDX
Procedia PDF Downloads 12710472 The Small Strain Effects to the Shear Strength and Maximum Stiffness of Post-Cyclic Degradation of Hemic Peat Soil
Authors: Z. Adnan, M. M. Habib
Abstract:
The laboratory tests for measuring the effects of small strain to the shear strength and maximum stiffness development of post-cyclic degradation of hemic peat are reviewed in this paper. A series of laboratory testing has been conducted to fulfil the objective of this research to study the post-cyclic behaviour of peat soil and focuses on the small strain characteristics. For this purpose, a number of strain-controlled static, cyclic and post-cyclic triaxial tests were carried out in undrained condition on hemic peat soil. The shear strength and maximum stiffness of hemic peat are evaluated immediately after post-cyclic monotonic testing. There are two soil samples taken from West Johor and East Malaysia peat soil. Based on these laboratories and field testing data, it was found that the shear strength and maximum stiffness of peat soil decreased in post-cyclic monotonic loading than its initial shear strength and stiffness. In particular, degradation in shear strength and stiffness is more sensitive for peat soil due to fragile and uniform fibre structures. Shear strength of peat soil, τmax = 12.53 kPa (Beaufort peat, BFpt) and 36.61 kPa (Parit Nipah peat, PNpt) decreased than its initial 58.46 kPa and 91.67 kPa. The maximum stiffness, Gmax = 0.23 and 0.25 decreased markedly with post-cyclic, Gmax = 0.04 and 0.09. Simple correlations between the Gmax and the τmax effects due to small strain, ε = 0.1, the Gmax values for post-cyclic are relatively low compared to its initial Gmax. As a consequence, the reported values and patterns of both the West Johor and East Malaysia peat soil are generally the same.Keywords: post-cyclic, strain, maximum stiffness, shear strength
Procedia PDF Downloads 30210471 Reduction of Chemical Fertilizer in Rice-Rice Cropping Pattern Using Different Vermicompost
Authors: Azizul Haque, Kamrun Nahar
Abstract:
Field experiments were conducted to reduce the chemical fertilizers with the integrated use of straight and phospho- vermicompost with chemical fertilizers in T. aman-Boro rice cropping pattern at the BINA farm, Mymensingh during 2019-20. Six treatments were used in the experiment for both the crops. The treatments used for T. aman rice (Binadhan 17) with straight vermicompost were as follows: T1: Native soil fertility, T2: 100% N from Chemical Fertilizer (CF), T3:70%N from CF, T4: 30% N from vermicompost-3 + 70% N from CF and T5:30% N from vermicompost-4 + 70% N from CF and T6: 100% PKS only. The treatments of Boro rice (var. Binadhan -10) with phospho-vermicompost were: T1: Native soil fertility, T2: 100% NPKS from chemical fertilizer (CF), T3:75% NKS from CF (Non IPNS) with 1 t ha-1 Phospho-vermicompost (P-Vermicom), T4: 100% NKS (IPNS) with 2 t ha-1 P-Vermicom, T5: 100% NKS from CF (Non IPNS) with 2 t ha-1 P-Vermicom and T6: 100% NKS. The experiments were conducted in a Randomized Complete Block Design with three replications. The treatment T5 (5.5 t ha-1) gave maximum grain yield of T.aman rice followed by the treatment T4 (5.4 t ha-1). But the treatmentsT5, T4, and T2 gave identical grain yields of T. aman rice. Similar results were observed in case of straw yields of T. Aman rice. The result indicated that 70% N from CF with 30% N from either straight vermicompost-3 or straight vermicompost-4 gave comparable yield to the sole application of 100% N from CF alone. Therefore, 30% chemical fertilizers (N, P, K and S) could be saved with the integrated (IPNS) use of vermicompost-3 or vermicompost-4 in the cultivation of T. aman rice. Application of Phospho-vermicompost significantly influenced the yield and yield contributing characters of Boro rice (Binadhan-10). The treatment T4 (7.23.0 t ha-1) gave maximum grain yield of Boro rice followed by the treatments T2 and T5. But the treatments T2 and T5 produced statistically similar grain yields. The results from the treatment T4 (100% NKS (IPNS) with 2.0 t ha-1P-Vermicom) indicated that full demand of P could be met up from 2 t ha-1 Phospho-vermicompost with IPNS chemical fertilizers (NKS) which was sufficient for attaining the highest grain yield of Boro rice than that of the treatment T2 (100% NPKS from CF) and the treatmentT5 (100% NKS from CF (Non IPNS) + 2 t ha-1 Phospho-vermicompost). The results revealed that 100% P and substantial amount of N (21%), K (44.6%) and S (53.7%) fertilizers could be saved with the integrated use of Phospho-vermicompost in the cultivation of Boro rice. In case of Boro rice partial cost benefit analysis showed that the application of Phospho-vermicompost (@2 tha--1) with IPNS chemical fertilizes (NKS) gave higher return of Tk. 18,213 / - than that of only 100% chemical fertilizer. Therefore, use of Phospho-vermicompost was beneficial for the cultivation of Boro rice in combination with suitable dose of chemical fertilizers.Keywords: phosphovermicompost, cropping pattern, rice yield, chemical fertilizer
Procedia PDF Downloads 10310470 Localized Recharge Modeling of a Coastal Aquifer from a Dam Reservoir (Korba, Tunisia)
Authors: Nejmeddine Ouhichi, Fethi Lachaal, Radhouane Hamdi, Olivier Grunberger
Abstract:
Located in Cap Bon peninsula (Tunisia), the Lebna dam was built in 1987 to balance local water salt intrusion taking place in the coastal aquifer of Korba. The first intention was to reduce coastal groundwater over-pumping by supplying surface water to a large irrigation system. The unpredicted beneficial effect was recorded with the occurrence of a direct localized recharge to the coastal aquifer by leakage through the geological material of the southern bank of the lake. The hydrological balance of the reservoir dam gave an estimation of the annual leakage volume, but dynamic processes and sound quantification of recharge inputs are still required to understand the localized effect of the recharge in terms of piezometry and quality. Present work focused on simulating the recharge process to confirm the hypothesis, and established a sound quantification of the water supply to the coastal aquifer and extend it to multi-annual effects. A spatial frame of 30km² was used for modeling. Intensive outcrops and geophysical surveys based on 68 electrical resistivity soundings were used to characterize the aquifer 3D geometry and the limit of the Plio-quaternary geological material concerned by the underground flow paths. Permeabilities were determined using 17 pumping tests on wells and piezometers. Six seasonal piezometric surveys on 71 wells around southern reservoir dam banks were performed during the 2019-2021 period. Eight monitoring boreholes of high frequency (15min) piezometric data were used to examine dynamical aspects. Model boundary conditions were specified using the geophysics interpretations coupled with the piezometric maps. The dam-groundwater flow model was performed using Visual MODFLOW software. Firstly, permanent state calibration based on the first piezometric map of February 2019 was established to estimate the permanent flow related to the different reservoir levels. Secondly, piezometric data for the 2019-2021 period were used for transient state calibration and to confirm the robustness of the model. Preliminary results confirmed the temporal link between the reservoir level and the localized recharge flow with a strong threshold effect for levels below 16 m.a.s.l. The good agreement of computed flow through recharge cells on the southern banks and hydrological budget of the reservoir open the path to future simulation scenarios of the dilution plume imposed by the localized recharge. The dam reservoir-groundwater flow-model simulation results approve a potential for storage of up to 17mm/year in existing wells, under gravity-feed conditions during level increases on the reservoir into the three years of operation. The Lebna dam groundwater flow model characterized a spatiotemporal relation between groundwater and surface water.Keywords: leakage, MODFLOW, saltwater intrusion, surface water-groundwater interaction
Procedia PDF Downloads 13810469 An Insight into the Paddy Soil Denitrifying Bacteria and Their Relation with Soil Phospholipid Fatty Acid Profile
Authors: Meenakshi Srivastava, A. K. Mishra
Abstract:
This study characterizes the metabolic versatility of denitrifying bacterial communities residing in the paddy soil using the GC-MS based Phospholipid Fatty Acid (PLFA) analyses simultaneously with nosZ gene based PCR-DGGE (Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis) and real time Q-PCR analysis. We have analyzed the abundance of nitrous oxide reductase (nosZ) genes, which was subsequently related to soil PLFA profile and DGGE based denitrifier community structure. Soil denitrifying bacterial community comprised majority or dominance of Ochrobactrum sp. following Cupriavidus and uncultured bacteria strains in paddy soil of selected sites. Initially, we have analyzed the abundance of the nitrous oxide reductase gene (nosZ), which was found to be related with PLFA based lipid profile. Chandauli of Eastern UP, India represented greater amount of lipid content (C18-C20) and denitrifier’s diversity. This study suggests the positive co-relation between soil PLFA profiles, DGGE, and Q-PCR data. Thus, a close networking among metabolic abilities and taxonomic composition of soil microbial communities existed, and subsequently, such work at greater extent could be helpful in managing nutrient dynamics as well as microbial dynamics of paddy soil ecosystem.Keywords: denaturing gradient gel electrophoresis, DGGE, nitrifying and denitrifying bacteria, PLFA, Q-PCR
Procedia PDF Downloads 12410468 Comparison Study between Deep Mixed Columns and Encased Sand Column for Soft Clay Soil in Egypt
Authors: Walid El Kamash
Abstract:
Sand columns (or granular piles) can be employed as soil strengthening for flexible constructions such as road embankments, oil storage tanks in addition to multistory structures. The challenge of embedding the sand columns in soft soil is that the surrounding soft soil cannot avail the enough confinement stress in order to keep the form of the sand column. Therefore, the sand columns which were installed in such soil will lose their ability to perform needed load-bearing capacity. The encasement, besides increasing the strength and stiffness of the sand column, prevents the lateral squeezing of sands when the column is installed even in extremely soft soils, thus enabling quicker and more economical installation. This paper investigates the improvement in load capacity of the sand column by encasement through a comprehensive parametric study using the 3-D finite difference analysis for the soft clay of soil in Egypt. Moreover, the study was extended to include a comparison study between encased sand column and Deep Mixed columns (DM). The study showed that confining the sand by geosynthetic resulted in an increment of shear strength. That result paid the attention to use encased sand stone rather than deep mixed columns due to relative high permeability of the first material.Keywords: encased sand column, Deep mixed column, numerical analysis, improving soft soil
Procedia PDF Downloads 37810467 Biodegradation Behavior of Cellulose Acetate with DS 2.5 in Simulated Soil
Authors: Roberta Ranielle M. de Freitas, Vagner R. Botaro
Abstract:
The relationship between biodegradation and mechanical behavior is fundamental for studies of the application of cellulose acetate films as a possible material for biodegradable packaging. In this work, the biodegradation of cellulose acetate (CA) with DS 2.5 was analyzed in simulated soil. CA films were prepared by casting and buried in the simulated soil. Samples were taken monthly and analyzed, the total time of biodegradation was 6 months. To characterize the biodegradable CA, the DMA technique was employed. The main result showed that the time of exposure to the simulated soil affects the mechanical properties of the films and the values of crystallinity. By DMA analysis, it was possible to conclude that as the CA is biodegraded, its mechanical properties were altered, for example, storage modulus has increased with biodegradation and the modulus of loss has decreased. Analyzes of DSC, XRD, and FTIR were also carried out to characterize the biodegradation of CA, which corroborated with the results of DMA. The observation of the carbonyl band by FTIR and crystalline indices obtained by XRD were important to evaluate the degradation of CA during the exposure time.Keywords: biodegradation, cellulose acetate, DMA, simulated soil
Procedia PDF Downloads 21810466 Comparison of Petrophysical Relationship for Soil Water Content Estimation at Peat Soil Area Using GPR Common-Offset Measurements
Authors: Nurul Izzati Abd Karim, Samira Albati Kamaruddin, Rozaimi Che Hasan
Abstract:
The appropriate petrophysical relationship is needed for Soil Water Content (SWC) estimation especially when using Ground Penetrating Radar (GPR). Ground penetrating radar is a geophysical tool that provides indirectly the parameter of SWC. This paper examines the performance of few published petrophysical relationships to obtain SWC estimates from in-situ GPR common- offset survey measurements with gravimetric measurements at peat soil area. Gravimetric measurements were conducted to support of GPR measurements for the accuracy assessment. Further, GPR with dual frequencies (250MHhz and 700MHz) were used in the survey measurements to obtain the dielectric permittivity. Three empirical equations (i.e., Roth’s equation, Schaap’s equation and Idi’s equation) were selected for the study, used to compute the soil water content from dielectric permittivity of the GPR profile. The results indicate that Schaap’s equation provides strong correlation with SWC as measured by GPR data sets and gravimetric measurements.Keywords: common-offset measurements, ground penetrating radar, petrophysical relationship, soil water content
Procedia PDF Downloads 25210465 Assessment of Soil Quality Indicators in Rice Soil of Tamil Nadu
Authors: Kaleeswari R. K., Seevagan L .
Abstract:
Soil quality in an agroecosystem is influenced by the cropping system, water and soil fertility management. A valid soil quality index would help to assess the soil and crop management practices for desired productivity and soil health. The soil quality indices also provide an early indication of soil degradation and needy remedial and rehabilitation measures. Imbalanced fertilization and inadequate organic carbon dynamics deteriorate soil quality in an intensive cropping system. The rice soil ecosystem is different from other arable systems since rice is grown under submergence, which requires a different set of key soil attributes for enhancing soil quality and productivity. Assessment of the soil quality index involves indicator selection, indicator scoring and comprehensive score into one index. The most appropriate indicator to evaluate soil quality can be selected by establishing the minimum data set, which can be screened by linear and multiple regression factor analysis and score function. This investigation was carried out in intensive rice cultivating regions (having >1.0 lakh hectares) of Tamil Nadu viz., Thanjavur, Thiruvarur, Nagapattinam, Villupuram, Thiruvannamalai, Cuddalore and Ramanathapuram districts. In each district, intensive rice growing block was identified. In each block, two sampling grids (10 x 10 sq.km) were used with a sampling depth of 10 – 15 cm. Using GIS coordinates, and soil sampling was carried out at various locations in the study area. The number of soil sampling points were 41, 28, 28, 32, 37, 29 and 29 in Thanjavur, Thiruvarur, Nagapattinam, Cuddalore, Villupuram, Thiruvannamalai and Ramanathapuram districts, respectively. Principal Component Analysis is a data reduction tool to select some of the potential indicators. Principal Component is a linear combination of different variables that represents the maximum variance of the dataset. Principal Component that has eigenvalues equal or higher than 1.0 was taken as the minimum data set. Principal Component Analysis was used to select the representative soil quality indicators in rice soils based on factor loading values and contribution percent values. Variables having significant differences within the production system were used for the preparation of the minimum data set. Each Principal Component explained a certain amount of variation (%) in the total dataset. This percentage provided the weight for variables. The final Principal Component Analysis based soil quality equation is SQI = ∑ i=1 (W ᵢ x S ᵢ); where S- score for the subscripted variable; W-weighing factor derived from PCA. Higher index scores meant better soil quality. Soil respiration, Soil available Nitrogen and Potentially Mineralizable Nitrogen were assessed as soil quality indicators in rice soil of the Cauvery Delta zone covering Thanjavur, Thiruvavur and Nagapattinam districts. Soil available phosphorus could be used as a soil quality indicator of rice soils in the Cuddalore district. In rain-fed rice ecosystems of coastal sandy soil, DTPA – Zn could be used as an effective soil quality indicator. Among the soil parameters selected from Principal Component Analysis, Microbial Biomass Nitrogen could be used quality indicator for rice soils of the Villupuram district. Cauvery Delta zone has better SQI as compared with other intensive rice growing zone of Tamil Nadu.Keywords: soil quality index, soil attributes, soil mapping, and rice soil
Procedia PDF Downloads 8610464 An Evaluation of Edible Plants for Remediation of Contaminated Soil- Can Edible Plants Be Used to Remove Heavy Metals on Soil?
Authors: Celia Marilia Martins, Sonia I. V. Guilundo, Iris M. Victorino, Antonio O. Quilambo
Abstract:
In Mozambique rapid industrialization (mining, aluminium and cement activities) and urbanization processes has led to the incorporation of heavy metals on soil, thus degrading not only the quality of the environment, but also affecting plants, animals and human healthy. Several methods have been used to remediate contaminated soils, but most of them are costly and difficult to get optimum results. Currently, phytoremediation is an effective and affordable technological solution used to extract or remove inactive metals from contaminated soil. Phytoremediation is the use of plants to clean up a contamination from soils, sediments, and water. This technology is environmental friendly and potentially cost effective. The present investigation summarised the potential of edible vegetable to grow under the high level of heavy metals such as lead and zinc. The plants used in these studies include Tomatoes, lettuce and Soya beans. The studies have shown that edible plants can be grown under the high level of heavy metals on the soil. Further investigations are identifying mechanisms used by plants to ensure a safe and sustainable use for remediation of contaminated soils by heavy metals.Keywords: contaminated soil, edible plants, heavy metals, phytoremediation
Procedia PDF Downloads 376