Search results for: predictive modlleing
535 Evaluation of P16, Human Papillomavirus Capsid Protein L1 and Ki67 in Cervical Intraepithelial Lesions: Potential Utility in Diagnosis and Prognosis
Authors: Hanan Alsaeid Alshenawy
Abstract:
Background: Cervical dysplasia, which is potentially precancerous, has increased in young women. Detection of cervical is important for reducing morbidity and mortality in cervical cancer. This study analyzes the immunohistochemical expression of p16, HPV L1 capsid protein and Ki67 in cervical intraepithelial lesions and correlates them with lesion grade to develop a set of markers for diagnosis and detect the prognosis of cervical cancer precursors. Methods: 75 specimens were analyzed including 15 cases CIN 1, 28 CIN 2, 20 CIN 3, and 12 cervical squamous carcinoma, besides 10 normal cervical tissues. They were stained for p16, HPV L1 and Ki-67. Sensitivity, specificity, predictive values and accuracy were evaluated for each marker. Results: p16 expression increased during the progression from CIN 1 to carcinoma. HPV L1 positivity was detected in CIN 2 and decreased gradually as the CIN grade increased but disappear in carcinoma. Strong Ki-67 expression was observed with high grades CIN and carcinoma. p16, HPV L1 and Ki67 were sensitive but with variable specificity in detecting CIN lesions. Conclusions: p16, HPV L1 and Ki67 are useful set of markers in establishing the risk of high-grade CIN. They complete each other to reach accurate diagnosis and prognosis.Keywords: p16, HPV L1, Ki67, CIN, cervical carcinoma
Procedia PDF Downloads 341534 Generating Swarm Satellite Data Using Long Short-Term Memory and Generative Adversarial Networks for the Detection of Seismic Precursors
Authors: Yaxin Bi
Abstract:
Accurate prediction and understanding of the evolution mechanisms of earthquakes remain challenging in the fields of geology, geophysics, and seismology. This study leverages Long Short-Term Memory (LSTM) networks and Generative Adversarial Networks (GANs), a generative model tailored to time-series data, for generating synthetic time series data based on Swarm satellite data, which will be used for detecting seismic anomalies. LSTMs demonstrated commendable predictive performance in generating synthetic data across multiple countries. In contrast, the GAN models struggled to generate synthetic data, often producing non-informative values, although they were able to capture the data distribution of the time series. These findings highlight both the promise and challenges associated with applying deep learning techniques to generate synthetic data, underscoring the potential of deep learning in generating synthetic electromagnetic satellite data.Keywords: LSTM, GAN, earthquake, synthetic data, generative AI, seismic precursors
Procedia PDF Downloads 32533 Automatic Content Curation of Visual Heritage
Authors: Delphine Ribes Lemay, Valentine Bernasconi, André Andrade, Lara DéFayes, Mathieu Salzmann, FréDéRic Kaplan, Nicolas Henchoz
Abstract:
Digitization and preservation of large heritage induce high maintenance costs to keep up with the technical standards and ensure sustainable access. Creating impactful usage is instrumental to justify the resources for long-term preservation. The Museum für Gestaltung of Zurich holds one of the biggest poster collections of the world from which 52’000 were digitised. In the process of building a digital installation to valorize the collection, one objective was to develop an algorithm capable of predicting the next poster to show according to the ones already displayed. The work presented here describes the steps to build an algorithm able to automatically create sequences of posters reflecting associations performed by curator and professional designers. The exposed challenge finds similarities with the domain of song playlist algorithms. Recently, artificial intelligence techniques and more specifically, deep-learning algorithms have been used to facilitate their generations. Promising results were found thanks to Recurrent Neural Networks (RNN) trained on manually generated playlist and paired with clusters of extracted features from songs. We used the same principles to create the proposed algorithm but applied to a challenging medium, posters. First, a convolutional autoencoder was trained to extract features of the posters. The 52’000 digital posters were used as a training set. Poster features were then clustered. Next, an RNN learned to predict the next cluster according to the previous ones. RNN training set was composed of poster sequences extracted from a collection of books from the Gestaltung Museum of Zurich dedicated to displaying posters. Finally, within the predicted cluster, the poster with the best proximity compared to the previous poster is selected. The mean square distance between features of posters was used to compute the proximity. To validate the predictive model, we compared sequences of 15 posters produced by our model to randomly and manually generated sequences. Manual sequences were created by a professional graphic designer. We asked 21 participants working as professional graphic designers to sort the sequences from the one with the strongest graphic line to the one with the weakest and to motivate their answer with a short description. The sequences produced by the designer were ranked first 60%, second 25% and third 15% of the time. The sequences produced by our predictive model were ranked first 25%, second 45% and third 30% of the time. The sequences produced randomly were ranked first 15%, second 29%, and third 55% of the time. Compared to designer sequences, and as reported by participants, model and random sequences lacked thematic continuity. According to the results, the proposed model is able to generate better poster sequencing compared to random sampling. Eventually, our algorithm is sometimes able to outperform a professional designer. As a next step, the proposed algorithm should include a possibility to create sequences according to a selected theme. To conclude, this work shows the potentiality of artificial intelligence techniques to learn from existing content and provide a tool to curate large sets of data, with a permanent renewal of the presented content.Keywords: Artificial Intelligence, Digital Humanities, serendipity, design research
Procedia PDF Downloads 184532 On Hyperbolic Gompertz Growth Model (HGGM)
Authors: S. O. Oyamakin, A. U. Chukwu,
Abstract:
We proposed a Hyperbolic Gompertz Growth Model (HGGM), which was developed by introducing a stabilizing parameter called θ using hyperbolic sine function into the classical gompertz growth equation. The resulting integral solution obtained deterministically was reprogrammed into a statistical model and used in modeling the height and diameter of Pines (Pinus caribaea). Its ability in model prediction was compared with the classical gompertz growth model, an approach which mimicked the natural variability of height/diameter increment with respect to age and therefore provides a more realistic height/diameter predictions using goodness of fit tests and model selection criteria. The Kolmogorov-Smirnov test and Shapiro-Wilk test was also used to test the compliance of the error term to normality assumptions while using testing the independence of the error term using the runs test. The mean function of top height/Dbh over age using the two models under study predicted closely the observed values of top height/Dbh in the hyperbolic gompertz growth models better than the source model (classical gompertz growth model) while the results of R2, Adj. R2, MSE, and AIC confirmed the predictive power of the Hyperbolic Monomolecular growth models over its source model.Keywords: height, Dbh, forest, Pinus caribaea, hyperbolic, gompertz
Procedia PDF Downloads 441531 Using the Technology Acceptance Model to Examine Seniors’ Attitudes toward Facebook
Authors: Chien-Jen Liu, Shu Ching Yang
Abstract:
Using the technology acceptance model (TAM), this study examined the external variables of technological complexity (TC) to acquire a better understanding of the factors that influence the acceptance of computer application courses by learners at Active Aging Universities. After the learners in this study had completed a 27-hour Facebook course, 44 learners responded to a modified TAM survey. Data were collected to examine the path relationships among the variables that influence the acceptance of Facebook-mediated community learning. The partial least squares (PLS) method was used to test the measurement and the structural model. The study results demonstrated that attitudes toward Facebook use directly influence behavioral intentions (BI) with respect to Facebook use, evincing a high prediction rate of 58.3%. In addition to the perceived usefulness (PU) and perceived ease of use (PEOU) measures that are proposed in the TAM, other external variables, such as TC, also indirectly influence BI. These four variables can explain 88% of the variance in BI and demonstrate a high level of predictive ability. Finally, limitations of this investigation and implications for further research are discussed.Keywords: technology acceptance model (TAM), technological complexity, partial least squares (PLS), perceived usefulness
Procedia PDF Downloads 345530 Correlation of Clinical and Sonographic Findings with Cytohistology for Diagnosis of Ovarian Tumours
Authors: Meenakshi Barsaul Chauhan, Aastha Chauhan, Shilpa Hurmade, Rajeev Sen, Jyotsna Sen, Monika Dalal
Abstract:
Introduction: Ovarian masses are common forms of neoplasm in women and represent 2/3rd of gynaecological malignancies. A pre-operative suggestion of malignancy can guide the gynecologist to refer women with suspected pelvic mass to a gynecological oncologist for appropriate therapy and optimized treatment, which can improve survival. In the younger age group preoperative differentiation into benign or malignant pathology can decide for conservative or radical surgery. Imaging modalities have a definite role in establishing the diagnosis. By using International Ovarian Tumor Analysis (IOTA) classification with sonography, costly radiological methods like Magnetic Resonance Imaging (MRI) / computed tomography (CT) scan can be reduced, especially in developing countries like India. Thus, this study is being undertaken to evaluate the role of clinical methods and sonography for diagnosis of the nature of the ovarian tumor. Material And Methods: This prospective observational study was conducted on 40 patients presenting with ovarian masses, in the Department of Obstetrics and Gynaecology, at a tertiary care center in northern India. Functional cysts were excluded. Ultrasonography and color Doppler were performed on all the cases.IOTA rules were applied, which take into account locularity, size, presence of solid components, acoustic shadow, dopper flow etc . Magnetic Resonance Imaging (MRI) / computed tomography (CT) scans abdomen and pelvis were done in cases where sonography was inconclusive. In inoperable cases, Fine needle aspiration cytology (FNAC) was done. The histopathology report after surgery and cytology report after FNAC was correlated statistically with the pre-operative diagnosis made clinically and sonographically using IOTA rules. Statistical Analysis: Descriptive measures were analyzed by using mean and standard deviation and the Student t-test was applied and the proportion was analyzed by applying the chi-square test. Inferential measures were analyzed by sensitivity, specificity, negative predictive value, and positive predictive value. Results: Provisional diagnosis of the benign tumor was made in 16(42.5%) and of the malignant tumor was made in 24(57.5%) patients on the basis of clinical findings. With IOTA simple rules on sonography, 15(37.5%) were found to be benign, while 23 (57.5%) were found to be malignant and findings were inconclusive in 2 patients (5%). FNAC/Histopathology reported that benign ovarian tumors were 14 (35%) and 26(65%) were malignant, which was taken as the gold standard. The clinical finding alone was found to have a sensitivity of 66.6% and a specificity of 90.9%. USG alone had a sensitivity of 86% and a specificity of 80%. When clinical findings and IOTA simple rules of sonography were combined (excluding inconclusive masses), the sensitivity and specificity were 83.3% and 92.3%, respectively. While including inconclusive masses, sensitivity came out to be 91.6% and specificity was 89.2. Conclusion: IOTA's simple sonography rules are highly sensitive and specific in the prediction of ovarian malignancy and also easy to use and easily reproducible. Thus, combining clinical examination with USG will help in the better management of patients in terms of time, cost and better prognosis. This will also avoid the need for costlier modalities like CT, and MRI.Keywords: benign, international ovarian tumor analysis classification, malignant, ovarian tumours, sonography
Procedia PDF Downloads 80529 Modelling Fluoride Pollution of Groundwater Using Artificial Neural Network in the Western Parts of Jharkhand
Authors: Neeta Kumari, Gopal Pathak
Abstract:
Artificial neural network has been proved to be an efficient tool for non-parametric modeling of data in various applications where output is non-linearly associated with input. It is a preferred tool for many predictive data mining applications because of its power , flexibility, and ease of use. A standard feed forward networks (FFN) is used to predict the groundwater fluoride content. The ANN model is trained using back propagated algorithm, Tansig and Logsig activation function having varying number of neurons. The models are evaluated on the basis of statistical performance criteria like Root Mean Squarred Error (RMSE) and Regression coefficient (R2), bias (mean error), Coefficient of variation (CV), Nash-Sutcliffe efficiency (NSE), and the index of agreement (IOA). The results of the study indicate that Artificial neural network (ANN) can be used for groundwater fluoride prediction in the limited data situation in the hard rock region like western parts of Jharkhand with sufficiently good accuracy.Keywords: Artificial neural network (ANN), FFN (Feed-forward network), backpropagation algorithm, Levenberg-Marquardt algorithm, groundwater fluoride contamination
Procedia PDF Downloads 550528 Predicting COVID-19 Severity Using a Simple Parameters in Resource-Limited Settings
Authors: Sireethorn Nimitvilai, Ussanee Poolvivatchaikarn, Nuchanart Tomeun
Abstract:
Objective: To determine the simple laboratory parameters to predict disease severity among COVID-19 patients in resource-limited settings. Material and methods: A retrospective cohort study was conducted at Nakhonpathom Hospital, a 722-bed tertiary care hospital, with an average of 50,000 admissions per year, during April 15 and May 15, 2021. Eligible patients were adults aged ≥ 15 years who were hospitalized with COVID-19. Baseline characteristics, comorbid conditions ad laboratory findings at admission were collected. Predictive factors for severe COVID-19 infection were analyzed. Result: There were 207 patients (79 male and 128 female) and the mean age was 46.7 (16.8) years. Of these, 39 cases (18.8%) were severe and 168 (81.2%) cases were non-severe. Factors associated with severe COVID-19 were neutrophil to lymphocyte ratio ≥ 4 (OR 8.1, 95%CI 2.3-20.3, P < 0.001) and C-reactive protein to albumin ratio ≥ 10 (OR 3.49, 95%CI 1.3-9.1, p 0.01). Conclusions: Complete blood counts, C-reactive protein and albumin are simple, inexpensive, widely available tests and can be used to predict severe COVID-19 in resource-limited settings.Keywords: COVID-19, predictor of severity, resource-limiting settings, simple laboratory parameters
Procedia PDF Downloads 180527 A Neural Network Modelling Approach for Predicting Permeability from Well Logs Data
Authors: Chico Horacio Jose Sambo
Abstract:
Recently neural network has gained popularity when come to solve complex nonlinear problems. Permeability is one of fundamental reservoir characteristics system that are anisotropic distributed and non-linear manner. For this reason, permeability prediction from well log data is well suited by using neural networks and other computer-based techniques. The main goal of this paper is to predict reservoir permeability from well logs data by using neural network approach. A multi-layered perceptron trained by back propagation algorithm was used to build the predictive model. The performance of the model on net results was measured by correlation coefficient. The correlation coefficient from testing, training, validation and all data sets was evaluated. The results show that neural network was capable of reproducing permeability with accuracy in all cases, so that the calculated correlation coefficients for training, testing and validation permeability were 0.96273, 0.89991 and 0.87858, respectively. The generalization of the results to other field can be made after examining new data, and a regional study might be possible to study reservoir properties with cheap and very fast constructed models.Keywords: neural network, permeability, multilayer perceptron, well log
Procedia PDF Downloads 403526 COVID-19 Vaccine Hesitancy: The Role of Existential Concerns in Individual’s Decisions Regarding the Vaccine Uptake
Authors: Vittoria Franchina, Laura Salerno, Rubinia Celeste Bonfanti, Gianluca Lo Coco
Abstract:
This study examines the relationships between existential concerns (ECs), basic psychological needs (BPNs), vaccine hesitancy (VH), and the mediating role of negative attitudes toward COVID-19 vaccines. A cross-sectional survey was carried out on a sample of two-hundred eighty-seven adults (Mage = 36.04 (12.07); 59.9% females). Participants were recruited online through clickworker and filled in measures on existential concerns, basic psychological needs, attitudes toward COVID-19 vaccines, and vaccine hesitancy for Pfizer-BioNTech and Astrazeneca vaccines separately. Structural equation modelling showed that existential concerns were related to Pfizer-BioNTech and Astrazeneca vaccine hesitancy both directly and indirectly through negative attitudes toward possible side effects of COVID-19 vaccines. The present study has identified several predictive factors relating to the intention to uptake vaccination to protect against COVID-19 in Italy. Specifically, these findings suggest a causal link between existential concerns, attitudes, and vaccine hesitancy.Keywords: COVID-19, existential concerns, Pfizer-BioNTech and Astrazeneca vaccines, vaccine hesitancy
Procedia PDF Downloads 99525 Developing Early Intervention Tools: Predicting Academic Dishonesty in University Students Using Psychological Traits and Machine Learning
Authors: Pinzhe Zhao
Abstract:
This study focuses on predicting university students' cheating tendencies using psychological traits and machine learning techniques. Academic dishonesty is a significant issue that compromises the integrity and fairness of educational institutions. While much research has been dedicated to detecting cheating behaviors after they have occurred, there is limited work on predicting such tendencies before they manifest. The aim of this research is to develop a model that can identify students who are at higher risk of engaging in academic misconduct, allowing for earlier interventions to prevent such behavior. Psychological factors are known to influence students' likelihood of cheating. Research shows that traits such as test anxiety, moral reasoning, self-efficacy, and achievement motivation are strongly linked to academic dishonesty. High levels of anxiety may lead students to cheat as a way to cope with pressure. Those with lower self-efficacy are less confident in their academic abilities, which can push them toward dishonest behaviors to secure better outcomes. Students with weaker moral judgment may also justify cheating more easily, believing it to be less wrong under certain conditions. Achievement motivation also plays a role, as students driven primarily by external rewards, such as grades, are more likely to cheat compared to those motivated by intrinsic learning goals. In this study, data on students’ psychological traits is collected through validated assessments, including scales for anxiety, moral reasoning, self-efficacy, and motivation. Additional data on academic performance, attendance, and engagement in class are also gathered to create a more comprehensive profile. Using machine learning algorithms such as Random Forest, Support Vector Machines (SVM), and Long Short-Term Memory (LSTM) networks, the research builds models that can predict students’ cheating tendencies. These models are trained and evaluated using metrics like accuracy, precision, recall, and F1 scores to ensure they provide reliable predictions. The findings demonstrate that combining psychological traits with machine learning provides a powerful method for identifying students at risk of cheating. This approach allows for early detection and intervention, enabling educational institutions to take proactive steps in promoting academic integrity. The predictive model can be used to inform targeted interventions, such as counseling for students with high test anxiety or workshops aimed at strengthening moral reasoning. By addressing the underlying factors that contribute to cheating behavior, educational institutions can reduce the occurrence of academic dishonesty and foster a culture of integrity. In conclusion, this research contributes to the growing body of literature on predictive analytics in education. It offers a approach by integrating psychological assessments with machine learning to predict cheating tendencies. This method has the potential to significantly improve how academic institutions address academic dishonesty, shifting the focus from punishment after the fact to prevention before it occurs. By identifying high-risk students and providing them with the necessary support, educators can help maintain the fairness and integrity of the academic environment.Keywords: academic dishonesty, cheating prediction, intervention strategies, machine learning, psychological traits, academic integrity
Procedia PDF Downloads 20524 Enhancing Early Detection of Coronary Heart Disease Through Cloud-Based AI and Novel Simulation Techniques
Authors: Md. Abu Sufian, Robiqul Islam, Imam Hossain Shajid, Mahesh Hanumanthu, Jarasree Varadarajan, Md. Sipon Miah, Mingbo Niu
Abstract:
Coronary Heart Disease (CHD) remains a principal cause of global morbidity and mortality, characterized by atherosclerosis—the build-up of fatty deposits inside the arteries. The study introduces an innovative methodology that leverages cloud-based platforms like AWS Live Streaming and Artificial Intelligence (AI) to early detect and prevent CHD symptoms in web applications. By employing novel simulation processes and AI algorithms, this research aims to significantly mitigate the health and societal impacts of CHD. Methodology: This study introduces a novel simulation process alongside a multi-phased model development strategy. Initially, health-related data, including heart rate variability, blood pressure, lipid profiles, and ECG readings, were collected through user interactions with web-based applications as well as API Integration. The novel simulation process involved creating synthetic datasets that mimic early-stage CHD symptoms, allowing for the refinement and training of AI algorithms under controlled conditions without compromising patient privacy. AWS Live Streaming was utilized to capture real-time health data, which was then processed and analysed using advanced AI techniques. The novel aspect of our methodology lies in the simulation of CHD symptom progression, which provides a dynamic training environment for our AI models enhancing their predictive accuracy and robustness. Model Development: it developed a machine learning model trained on both real and simulated datasets. Incorporating a variety of algorithms including neural networks and ensemble learning model to identify early signs of CHD. The model's continuous learning mechanism allows it to evolve adapting to new data inputs and improving its predictive performance over time. Results and Findings: The deployment of our model yielded promising results. In the validation phase, it achieved an accuracy of 92% in predicting early CHD symptoms surpassing existing models. The precision and recall metrics stood at 89% and 91% respectively, indicating a high level of reliability in identifying at-risk individuals. These results underscore the effectiveness of combining live data streaming with AI in the early detection of CHD. Societal Implications: The implementation of cloud-based AI for CHD symptom detection represents a significant step forward in preventive healthcare. By facilitating early intervention, this approach has the potential to reduce the incidence of CHD-related complications, decrease healthcare costs, and improve patient outcomes. Moreover, the accessibility and scalability of cloud-based solutions democratize advanced health monitoring, making it available to a broader population. This study illustrates the transformative potential of integrating technology and healthcare, setting a new standard for the early detection and management of chronic diseases.Keywords: coronary heart disease, cloud-based ai, machine learning, novel simulation techniques, early detection, preventive healthcare
Procedia PDF Downloads 64523 Talent Management through Integration of Talent Value Chain and Human Capital Analytics Approaches
Authors: Wuttigrai Ngamsirijit
Abstract:
Talent management in today’s modern organizations has become data-driven due to a demand for objective human resource decision making and development of analytics technologies. HR managers have been faced with some obstacles in exploiting data and information to obtain their effective talent management decisions. These include process-based data and records; insufficient human capital-related measures and metrics; lack of capabilities in data modeling in strategic manners; and, time consuming to add up numbers and make decisions. This paper proposes a framework of talent management through integration of talent value chain and human capital analytics approaches. It encompasses key data, measures, and metrics regarding strategic talent management decisions along the organizational and talent value chain. Moreover, specific predictive and prescriptive models incorporating these data and information are recommended to help managers in understanding the state of talent, gaps in managing talent and the organization, and the ways to develop optimized talent strategies.Keywords: decision making, human capital analytics, talent management, talent value chain
Procedia PDF Downloads 187522 The Effect of Adolescents’ Grit on Stem Creativity: The Mediation of Creative Self-Efficacy and the Moderation of Future Time Perspective
Authors: Han Kuikui
Abstract:
Adolescents, serving as the reserve force for technological innovation talents, possess STEM creativity that is not only pivotal to achieving STEM education goals but also provides a viable path for reforming science curricula in compulsory education and cultivating innovative talents in China. To investigate the relationship among adolescents' grit, creative self-efficacy, future time perspective, and STEM creativity, a survey was conducted in 2023 using stratified random sampling. A total of 1263 junior high school students from the main urban areas of Chongqing, from grade 7 to grade 9, were sampled. The results indicated that (1) Grit positively predicts adolescents' creative self-efficacy and STEM creativity significantly; (2) Creative self-efficacy mediates the positive relationship between grit and adolescents' STEM creativity; (3) The mediating role of creative self-efficacy is moderated by future time perspective, such that with a higher future time perspective, the positive predictive effect of grit on creative self-efficacy is more substantial, which in turn positively affects their STEM creativity.Keywords: grit, stem creativity, creative self-efficacy, future time perspective
Procedia PDF Downloads 52521 Data Mining Meets Educational Analysis: Opportunities and Challenges for Research
Authors: Carla Silva
Abstract:
Recent development of information and communication technology enables us to acquire, collect, analyse data in various fields of socioeconomic – technological systems. Along with the increase of economic globalization and the evolution of information technology, data mining has become an important approach for economic data analysis. As a result, there has been a critical need for automated approaches to effective and efficient usage of massive amount of educational data, in order to support institutions to a strategic planning and investment decision-making. In this article, we will address data from several different perspectives and define the applied data to sciences. Many believe that 'big data' will transform business, government, and other aspects of the economy. We discuss how new data may impact educational policy and educational research. Large scale administrative data sets and proprietary private sector data can greatly improve the way we measure, track, and describe educational activity and educational impact. We also consider whether the big data predictive modeling tools that have emerged in statistics and computer science may prove useful in educational and furthermore in economics. Finally, we highlight a number of challenges and opportunities for future research.Keywords: data mining, research analysis, investment decision-making, educational research
Procedia PDF Downloads 358520 Self-denigration in Doctoral Defense Sessions: Scale Development and Validation
Authors: Alireza Jalilifar, Nadia Mayahi
Abstract:
The dissertation defense as a complicated conflict-prone context entails the adoption of elegant interactional strategies, one of which is self-denigration. This study aimed to develop and validate a self-denigration model that fits the context of doctoral defense sessions in applied linguistics. Two focus group discussions provided the basis for developing this conceptual model, which assumed 10 functions for self-denigration, namely good manners, modesty, affability, altruism, assertiveness, diffidence, coercive self-deprecation, evasion, diplomacy, and flamboyance. These functions were used to design a 40-item questionnaire on the attitudes of applied linguists concerning self-denigration in defense sessions. The confirmatory factor analysis of the questionnaire indicated the predictive ability of the measurement model. The findings of this study suggest that self-denigration in doctoral defense sessions is the social representation of the participants’ values, ideas and practices adopted as a negotiation strategy and a conflict management policy for the purpose of establishing harmony and maintaining resilience. This study has implications for doctoral students and academics and illuminates further research on self-denigration in other contexts.Keywords: academic discourse, politeness, self-denigration, grounded theory, dissertation defense
Procedia PDF Downloads 137519 A Real-Time Bayesian Decision-Support System for Predicting Suspect Vehicle’s Intended Target Using a Sparse Camera Network
Authors: Payam Mousavi, Andrew L. Stewart, Huiwen You, Aryeh F. G. Fayerman
Abstract:
We present a decision-support tool to assist an operator in the detection and tracking of a suspect vehicle traveling to an unknown target destination. Multiple data sources, such as traffic cameras, traffic information, weather, etc., are integrated and processed in real-time to infer a suspect’s intended destination chosen from a list of pre-determined high-value targets. Previously, we presented our work in the detection and tracking of vehicles using traffic and airborne cameras. Here, we focus on the fusion and processing of that information to predict a suspect’s behavior. The network of cameras is represented by a directional graph, where the edges correspond to direct road connections between the nodes and the edge weights are proportional to the average time it takes to travel from one node to another. For our experiments, we construct our graph based on the greater Los Angeles subset of the Caltrans’s “Performance Measurement System” (PeMS) dataset. We propose a Bayesian approach where a posterior probability for each target is continuously updated based on detections of the suspect in the live video feeds. Additionally, we introduce the concept of ‘soft interventions’, inspired by the field of Causal Inference. Soft interventions are herein defined as interventions that do not immediately interfere with the suspect’s movements; rather, a soft intervention may induce the suspect into making a new decision, ultimately making their intent more transparent. For example, a soft intervention could be temporarily closing a road a few blocks from the suspect’s current location, which may require the suspect to change their current course. The objective of these interventions is to gain the maximum amount of information about the suspect’s intent in the shortest possible time. Our system currently operates in a human-on-the-loop mode where at each step, a set of recommendations are presented to the operator to aid in decision-making. In principle, the system could operate autonomously, only prompting the operator for critical decisions, allowing the system to significantly scale up to larger areas and multiple suspects. Once the intended target is identified with sufficient confidence, the vehicle is reported to the authorities to take further action. Other recommendations include a selection of road closures, i.e., soft interventions, or to continue monitoring. We evaluate the performance of the proposed system using simulated scenarios where the suspect, starting at random locations, takes a noisy shortest path to their intended target. In all scenarios, the suspect’s intended target is unknown to our system. The decision thresholds are selected to maximize the chances of determining the suspect’s intended target in the minimum amount of time and with the smallest number of interventions. We conclude by discussing the limitations of our current approach to motivate a machine learning approach, based on reinforcement learning in order to relax some of the current limiting assumptions.Keywords: autonomous surveillance, Bayesian reasoning, decision support, interventions, patterns of life, predictive analytics, predictive insights
Procedia PDF Downloads 115518 Artificial Neural Network-Based Short-Term Load Forecasting for Mymensingh Area of Bangladesh
Authors: S. M. Anowarul Haque, Md. Asiful Islam
Abstract:
Electrical load forecasting is considered to be one of the most indispensable parts of a modern-day electrical power system. To ensure a reliable and efficient supply of electric energy, special emphasis should have been put on the predictive feature of electricity supply. Artificial Neural Network-based approaches have emerged to be a significant area of interest for electric load forecasting research. This paper proposed an Artificial Neural Network model based on the particle swarm optimization algorithm for improved electric load forecasting for Mymensingh, Bangladesh. The forecasting model is developed and simulated on the MATLAB environment with a large number of training datasets. The model is trained based on eight input parameters including historical load and weather data. The predicted load data are then compared with an available dataset for validation. The proposed neural network model is proved to be more reliable in terms of day-wise load forecasting for Mymensingh, Bangladesh.Keywords: load forecasting, artificial neural network, particle swarm optimization
Procedia PDF Downloads 171517 EGFR Signal Induced-Nuclear Translocation of Beta-catenin and PKM2 Promotes HCC Malignancy and Indicates Early Recurrence After Curative Resection
Authors: Fangtian Fan, Zhaoguo Liu, Yin Lu
Abstract:
Early recurrence (ER) (< 1 year) after liver resection is one of the most important factors that impacts the prognosis of patients with hepatocellular carcinoma (HCC). However, the molecular mechanisms and predictive indexes of ER after curative resection remain largely unknown. The present study aimed to exploit the role of EGFR signaling in EMT and early recurrence of HCC after curative resection and elucidate the molecular mechanisms. Our results showed that nuclear beta-catenin / PKM2 was a independent predictor of early recurrence after curative resection in EGFR-overexpressed HCC. Mechanistic investigation indicated that nuclear accumulation of beta-catenin and PKM2 induced by EGFR signal promoted HCC cell invasion and proliferation, which were required for early recurrence of HCC. These effects were mediated by PI3K/AKT and ERK pathways rather than the canonical Wnt signaling. In conclusions, EGFR signal induced-nuclear translocation of beta-catenin and PKM2 promotes HCC malignancy and indicates early recurrence after curative resection.Keywords: beta-catenin, early recurrence, hepatocellular carcinoma, malignancy, PKM2
Procedia PDF Downloads 357516 The Use of Hec Ras One-Dimensional Model and Geophysics for the Determination of Flood Zones
Authors: Ayoub El Bourtali, Abdessamed Najine, Amrou Moussa Benmoussa
Abstract:
It is becoming more and more necessary to manage flood risk, and it must include all stakeholders and all possible means available. The goal of this work is to map the vulnerability of the Oued Derna-region Tagzirt flood zone in the semi-arid region. This is about implementing predictive models and flood control. This allows for the development of flood risk prevention plans. In this study, A resistivity survey was conducted over the area to locate and evaluate soil characteristics in order to calculate discharges and prevent flooding for the study area. The development of a one-dimensional (1D) hydrodynamic model of the Derna River was carried out in HEC-RAS 5.0.4 using a combination of survey data and spatially extracted cross-sections and recorded river flows. The study area was hit by several extreme floods, causing a lot of property loss and loss of life. This research focuses on the most recent flood events, based on the collected data, the water level, river flow and river cross-section were analyzed. A set of flood levels were obtained as the outputs of the hydraulic model and the accuracy of the simulated flood levels and velocity.Keywords: derna river, 1D hydrodynamic model, flood modelling, HEC-RAS 5.0.4
Procedia PDF Downloads 312515 Development and Characterisation of a Microbioreactor 'Cassette' for Cell Culture Applications
Authors: Nelson Barrientos, Matthew J. Davies, Marco C. Marques, Darren N. Nesbeth, Gary J. Lye, Nicolas Szita
Abstract:
Microbioreactor technology is making important advances towards its application in cell culture and bioprocess development. In particular, the technology promises flexible and controllable devices capable to perform parallelised experimentation at low cost. Currently, state of the art methods (e.g. optical sensors) allow the accurate monitoring of the microbioreactor operation. In addition, the laminar flow regime encountered in these devices allows more predictive fluid dynamics modelling, improving the control over the soluble, physical and mechanical environment of the cells. This work describes the development and characterisation of a novel microbioreactor cassette system (microbioreactor volume is 150 μL. The volumetric oxygen transfer coefficient (KLa) and mixing time have been characterised to be between 25 to 113 h-1 and 0.5 and 0.1 s, respectively. In addition, the Residence time distribution (RTD) analysis confirms that the reactor operates at well mixed conditions. Finally, Staphylococcus carnosus TM300 growth is demonstrated via batch culture experiments. Future work consists in expanding the optics of the microbioreactor design to include the monitoring of variables such as fluorescent protein expression, among others.Keywords: microbioreactor, cell-culture, fermentation, microfluidics
Procedia PDF Downloads 415514 Risk Assessment and Management Using Machine Learning Models
Authors: Lagnajeet Mohanty, Mohnish Mishra, Pratham Tapdiya, Himanshu Sekhar Nayak, Swetapadma Singh
Abstract:
In the era of global interconnectedness, effective risk assessment and management are critical for organizational resilience. This review explores the integration of machine learning (ML) into risk processes, examining its transformative potential and the challenges it presents. The literature reveals ML's success in sectors like consumer credit, demonstrating enhanced predictive accuracy, adaptability, and potential cost savings. However, ethical considerations, interpretability issues, and the demand for skilled practitioners pose limitations. Looking forward, the study identifies future research scopes, including refining ethical frameworks, advancing interpretability techniques, and fostering interdisciplinary collaborations. The synthesis of limitations and future directions highlights the dynamic landscape of ML in risk management, urging stakeholders to navigate challenges innovatively. This abstract encapsulates the evolving discourse on ML's role in shaping proactive and effective risk management strategies in our interconnected and unpredictable global landscape.Keywords: machine learning, risk assessment, ethical considerations, financial inclusion
Procedia PDF Downloads 72513 The Relationship between Motivation for Physical Activity and Level of Physical Activity over Time
Authors: Keyvan Molanorouzi, Selina Khoo, Tony Morris
Abstract:
In recent years, there has been a decline in physical activity among adults. Motivation has been shown to be a crucial factor in maintaining physical activity. The purpose of this study was to whether PA motives measured by the Physical Activity and Leisure Motivation Scale PALMS predicted actual amount of PA at a later time to provide evidence for the construct validity of the PALMS. A quantitative, cross-sectional descriptive research design was employed. The Demographic Form, PALMS, and International Physical Activity Questionnaire Short form (IPAQ-S) questionnaires were used to assess motives and amount for physical activity in adults on two occasions. A sample of 640 (489 male, 151 female) undergraduate students aged 18 to 25 years (mean ±SD; 22.30±8.13 years) took part in the study. Male participants were divided into three types of activities, namely exercise, racquet sport, and team sports and female participants only took part in one type of activity, namely team sports. After 14 weeks, all 640 undergraduate students who had filled in the initial questionnaire (Occasion 1) received the questionnaire via email (Occasion 2). Of the 640 students, 493 (77%; 378 males, 115 females) emailed back the completed questionnaire. The results showed that not only were pertinent sub-scales of PALMS positively related to amount of physical activity, but separate regression analyses showed the positive predictive effect of PALMS motives for amount of physical activity for each type of physical activity among participants. This study supported the construct validity of the PALMS by showing that the motives measured by PALMS did predict amount of PA. This information can be obtained to match people with specific sport or activity which in turn could potentially promote longer adherence to the specific activity.Methods: A quantitative, cross-sectional descriptive research design was employed. The Demographic Form, PALMS, and International Physical Activity Questionnaire Short form (IPAQ-S) questionnaires were used to assess motives and amount for physical activity in adults on two occasions. A sample of 640 (489 male, 151 female) undergraduate students aged 18 to 25 years (mean ±SD; 22.30±8.13 years) took part in the study. Male participants were divided into three types of activities, namely exercise, racquet sport, and team sports and female participants only took part in one type of activity, namely team sports. After 14 weeks, all 640 undergraduate students who had filled in the initial questionnaire (Occasion 1) received the questionnaire via email (Occasion 2). Of the 640 students, 493 (77%; 378 males, 115 females) emailed back the completed questionnaire. Results: The results showed that not only were pertinent sub-scales of PALMS positively related to amount of physical activity, but separate regression analyses showed the positive predictive effect of PALMS motives for amount of physical activity for each type of physical activity among participants. This study supported the construct validity of the PALMS by showing that the motives measured by PALMS did predict amount of PA. Conclusion: This information can be obtained to match people with specific sport or activity which in turn could potentially promote longer adherence to the specific activity.Keywords: physical activity, motivation, level of physical activity, type of physical activity
Procedia PDF Downloads 470512 Vertical Urban Design Guideline and Its Application to Measure Human Cognition and Emotions
Authors: Hee Sun (Sunny) Choi, Gerhard Bruyns, Wang Zhang, Sky Cheng, Saijal Sharma
Abstract:
This research addresses the need for a comprehensive framework that can guide the design and assessment of multi-level public spaces and public realms and their impact on the built environment. The study aims to understand and measure the neural mechanisms involved in this process. By doing so, it can lay the foundation for vertical and volumetric urbanism and ensure consistency and excellence in the field while also supporting scientific research methods for urban design with cognitive neuroscientists. To investigate these aspects, the paper focuses on the neighborhood scale in Hong Kong, specifically examining multi-level public spaces and quasi-public spaces within both commercial and residential complexes. The researchers use predictive Artificial Intelligence (AI) as a methodology to assess and comprehend the applicability of the urban design framework for vertical and volumetric urbanism. The findings aim to identify the factors that contribute to successful public spaces within a vertical living environment, thus introducing a new typology of public spaces.Keywords: vertical urbanism, scientific research methods, spatial cognition, urban design guideline
Procedia PDF Downloads 80511 Academic Achievement in Argentinean College Students: Major Findings in Psychological Assessment
Authors: F. Uriel, M. M. Fernandez Liporace
Abstract:
In the last decade, academic achievement in higher education has become a topic of agenda in Argentina, regarding the high figures of adjustment problems, academic failure and dropout, and the low graduation rates in the context of massive classes and traditional teaching methods. Psychological variables, such as perceived social support, academic motivation and learning styles and strategies have much to offer since their measurement by tests allows a proper diagnose of their influence on academic achievement. Framed in a major research, several studies analysed multiple samples, totalizing 5135 students attending Argentinean public universities. The first goal was aimed at the identification of statistically significant differences in psychological variables -perceived social support, learning styles, learning strategies, and academic motivation- by age, gender, and degree of academic advance (freshmen versus sophomores). Thus, an inferential group differences study for each psychological dependent variable was developed by means of student’s T tests, given the features of data distribution. The second goal, aimed at examining associations between the four psychological variables on the one hand, and academic achievement on the other, was responded by correlational studies, calculating Pearson’s coefficients, employing grades as the quantitative indicator of academic achievement. The positive and significant results that were obtained led to the formulation of different predictive models of academic achievement which had to be tested in terms of adjustment and predictive power. These models took the four psychological variables above mentioned as predictors, using regression equations, examining predictors individually, in groups of two, and together, analysing indirect effects as well, and adding the degree of academic advance and gender, which had shown their importance within the first goal’s findings. The most relevant results were: first, gender showed no influence on any dependent variable. Second, only good achievers perceived high social support from teachers, and male students were prone to perceive less social support. Third, freshmen exhibited a pragmatic learning style, preferring unstructured environments, the use of examples and simultaneous-visual processing in learning, whereas sophomores manifest an assimilative learning style, choosing sequential and analytic processing modes. Despite these features, freshmen have to deal with abstract contents and sophomores, with practical learning situations due to study programs in force. Fifth, no differences in academic motivation were found between freshmen and sophomores. However, the latter employ a higher number of more efficient learning strategies. Sixth, freshmen low achievers lack intrinsic motivation. Seventh, models testing showed that social support, learning styles and academic motivation influence learning strategies, which affect academic achievement in freshmen, particularly males; only learning styles influence achievement in sophomores of both genders with direct effects. These findings led to conclude that educational psychologists, education specialists, teachers, and universities must plan urgent and major changes. These must be applied in renewed and better study programs, syllabi and classes, as well as tutoring and training systems. Such developments should be targeted to the support and empowerment of students in their academic pathways, and therefore to the upgrade of learning quality, especially in the case of freshmen, male freshmen, and low achievers.Keywords: academic achievement, academic motivation, coping, learning strategies, learning styles, perceived social support
Procedia PDF Downloads 122510 Machine Learning-Driven Prediction of Cardiovascular Diseases: A Supervised Approach
Authors: Thota Sai Prakash, B. Yaswanth, Jhade Bhuvaneswar, Marreddy Divakar Reddy, Shyam Ji Gupta
Abstract:
Across the globe, there are a lot of chronic diseases, and heart disease stands out as one of the most perilous. Sadly, many lives are lost to this condition, even though early intervention could prevent such tragedies. However, identifying heart disease in its initial stages is not easy. To address this challenge, we propose an automated system aimed at predicting the presence of heart disease using advanced techniques. By doing so, we hope to empower individuals with the knowledge needed to take proactive measures against this potentially fatal illness. Our approach towards this problem involves meticulous data preprocessing and the development of predictive models utilizing classification algorithms such as Support Vector Machines (SVM), Decision Tree, and Random Forest. We assess the efficiency of every model based on metrics like accuracy, ensuring that we select the most reliable option. Additionally, we conduct thorough data analysis to reveal the importance of different attributes. Among the models considered, Random Forest emerges as the standout performer with an accuracy rate of 96.04% in our study.Keywords: support vector machines, decision tree, random forest
Procedia PDF Downloads 40509 Machine Learning-Based Workflow for the Analysis of Project Portfolio
Authors: Jean Marie Tshimula, Atsushi Togashi
Abstract:
We develop a data-science approach for providing an interactive visualization and predictive models to find insights into the projects' historical data in order for stakeholders understand some unseen opportunities in the African market that might escape them behind the online project portfolio of the African Development Bank. This machine learning-based web application identifies the market trend of the fastest growing economies across the continent as well skyrocketing sectors which have a significant impact on the future of business in Africa. Owing to this, the approach is tailored to predict where the investment needs are the most required. Moreover, we create a corpus that includes the descriptions of over more than 1,200 projects that approximately cover 14 sectors designed for some of 53 African countries. Then, we sift out this large amount of semi-structured data for extracting tiny details susceptible to contain some directions to follow. In the light of the foregoing, we have applied the combination of Latent Dirichlet Allocation and Random Forests at the level of the analysis module of our methodology to highlight the most relevant topics that investors may focus on for investing in Africa.Keywords: machine learning, topic modeling, natural language processing, big data
Procedia PDF Downloads 168508 Validation of Existing Index Properties-Based Correlations for Estimating the Soil–Water Characteristic Curve of Fine-Grained Soils
Authors: Karim Kootahi, Seyed Abolhasan Naeini
Abstract:
The soil-water characteristic curve (SWCC), which represents the relationship between suction and water content (or degree of saturation), is an important property of unsaturated soils. The conventional method for determining SWCC is through specialized testing procedures. Since these procedures require specialized unsaturated soil testing apparatus and lengthy testing programs, several index properties-based correlations have been developed for estimating the SWCC of fine-grained soils. There are, however, considerable inconsistencies among the published correlations and there is no validation study on the predictive ability of existing correlations. In the present study, all existing index properties-based correlations are evaluated using a high quality worldwide database. The performances of existing correlations are assessed both graphically and quantitatively using statistical measures. The results of the validation indicate that most of the existing correlations provide unacceptable estimates of degree of saturation but the most recent model appears to be promising.Keywords: SWCC, correlations, index properties, validation
Procedia PDF Downloads 176507 Optimization Studies on Biosorption of Ni(II) and Cd(II) from Wastewater Using Pseudomonas putida in a Packed Bed Bioreactor
Authors: K.Narasimhulu, Y. Pydi Setty
Abstract:
The objective of this present study is the optimization of process parameters in biosorption of Ni(II) and Cd(II) ions by Pseudomonas putida using Response Surface Methodology in a Packed bed bioreactor. The experimental data were also tested with theoretical models to find the best fit model. The present paper elucidates RSM as an efficient approach for predictive model building and optimization of Ni(II) and Cd(II) ions using Pseudomonas putida. In packed bed biosorption studies, comparison of the breakthrough curves of Ni(II) and Cd(II) for Agar immobilized and PAA immobilized Pseudomonas putida at optimum conditions of flow rate of 300 mL/h, initial metal ion concentration of 100 mg/L and bed height of 20 cm with weight of biosorbent of 12 g, it was found that the Agar immobilized Pseudomonas putida showed maximum percent biosorption and bed saturation occurred at 20 minutes. Optimization results of Ni(II) and Cd(II) by Pseudomonas putida from the Design Expert software were obtained as bed height of 19.93 cm, initial metal ion concentration of 103.85 mg/L, and flow rate of 310.57 mL/h. The percent biosorption of Ni(II) and Cd(II) is 87.2% and 88.2% respectively. The predicted optimized parameters are in agreement with the experimental results.Keywords: packed bed bioreactor, response surface mthodology, pseudomonas putida, biosorption, waste water
Procedia PDF Downloads 452506 Dizziness in the Emergency: A 1 Year Prospective Study
Authors: Nouini Adrâa
Abstract:
Background: The management of dizziness and vertigo can be challenging in the emergency department (ED). It is important to rapidly diagnose vertebrobasilar stroke (VBS), as therapeutic options such as thrombolysis and anticoagulation require prompt decisions. Objective: This study aims to assess the rate of misdiagnosis in patients with dizziness caused by VBS in the ED. Methods and Results: The cohort was comprised of 82 patients with a mean age of 55 years; 51% were women and 49% were men. Among dizzy patients, 15% had VBS. We used Cohen’s kappa test to quantify the agreement between two raters – namely, emergency physicians and neurologists – regarding the causes of dizziness in the ED. The agreement between emergency physicians and neurologists is low for the final diagnosis of central vertigo disorders and moderate for the final diagnosis of VBS. The sensitivity of ED clinal examination for benign conditions such as BPPV was low at 56%. The positive predictive value of the ED clinical examination for VBS was also low at 50%. Conclusion: There is a substantial rate of misdiagnosis in patients with dizziness caused by VBS in the ED. To reduce the number of missing diagnoses of VBS in the future, there is a need to train emergency physicians in neuro vestibular examinations, including the HINTS examination for acute vestibular syndrome (AVS) and the Dix-Hallpike (DH) maneuver for episodic vestibular syndrome. Using video head impulse tests could help reduce the rate of misdiagnosis of VBS in the ED.Keywords: dizziness, vertigo, vestibular disease, emergency
Procedia PDF Downloads 56