Search results for: plates
44 Experimental Study of Vibration Isolators Made of Expanded Cork Agglomerate
Authors: S. Dias, A. Tadeu, J. Antonio, F. Pedro, C. Serra
Abstract:
The goal of the present work is to experimentally evaluate the feasibility of using vibration isolators made of expanded cork agglomerate. Even though this material, also known as insulation cork board (ICB), has mainly been studied for thermal and acoustic insulation purposes, it has strong potential for use in vibration isolation. However, the adequate design of expanded cork blocks vibration isolators will depend on several factors, such as excitation frequency, static load conditions and intrinsic dynamic behavior of the material. In this study, transmissibility tests for different static and dynamic loading conditions were performed in order to characterize the material. Since the material’s physical properties can influence the vibro-isolation performance of the blocks (in terms of density and thickness), this study covered four mass density ranges and four block thicknesses. A total of 72 expanded cork agglomerate specimens were tested. The test apparatus comprises a vibration exciter connected to an excitation mass that holds the test specimen. The test specimens under characterization were loaded successively with steel plates in order to obtain results for different masses. An accelerometer was placed at the top of these masses and at the base of the excitation mass. The test was performed for a defined frequency range, and the amplitude registered by the accelerometers was recorded in time domain. For each of the signals (signal 1- vibration of the excitation mass, signal 2- vibration of the loading mass) a fast Fourier transform (FFT) was applied in order to obtain the frequency domain response. For each of the frequency domain signals, the maximum amplitude reached was registered. The ratio between the amplitude (acceleration) of signal 2 and the amplitude of signal 1, allows the calculation of the transmissibility for each frequency. Repeating this procedure allowed us to plot a transmissibility curve for a certain frequency range. A number of transmissibility experiments were performed to assess the influence of changing the mass density and thickness of the expanded cork blocks and the experimental conditions (static load and frequency of excitation). The experimental transmissibility tests performed in this study showed that expanded cork agglomerate blocks are a good option for mitigating vibrations. It was concluded that specimens with lower mass density and larger thickness lead to better performance, with higher vibration isolation and a larger range of isolated frequencies. In conclusion, the study of the performance of expanded cork agglomerate blocks presented herein will allow for a more efficient application of expanded cork vibration isolators. This is particularly relevant since this material is a more sustainable alternative to other commonly used non-environmentally friendly products, such as rubber.Keywords: expanded cork agglomerate, insulation cork board, transmissibility tests, sustainable materials, vibration isolators
Procedia PDF Downloads 33343 Sensory Characteristics of White Chocolate Enriched with Encapsulated Raspberry Juice
Authors: Ivana Loncarevic, Biljana Pajin, Jovana Petrovic, Danica Zaric, Vesna Tumbas Saponjac, Aleksandar Fistes
Abstract:
Chocolate is a food that activates pleasure centers in the human brain. In comparison to black and milk chocolate, white chocolate does not contain fat-free cocoa solids and thus lacks bioactive components. The aim of this study was to examine the sensory characteristics of enriched white chocolate with the addition of 10% of raspberry juice encapsulated in maltodextrins (denoted as encapsulate). Chocolate is primarily intended for enjoyment, and therefore, the sensory expectation is a critical factor for consumers when selecting a new type of chocolate. Consumer acceptance of chocolate depends primarily on the appearance and taste, but also very much on the mouthfeel, which mainly depends on the particle size of chocolate. Chocolate samples were evaluated by a panel of 8 trained panelists, food technologists, trained according to ISO 8586 (2012). Panelists developed the list of attributes to be used in this study: intensity of red color (light to dark); glow on the surface (mat to shiny); texture on snap (appearance of cavities or holes on the snap surface that are seen - even to gritty); hardness (hardness felt during the first bite of chocolate sample in half by incisors - soft to hard); melting (the time needed to convert solid chocolate into a liquid state – slowly to quickly); smoothness (perception of evenness of chocolate during melting - very even to very granular); fruitiness (impression of fruity taste - light fruity notes to distinct fruity notes); sweetness (organoleptic characteristic of pure substance or mixture giving sweet taste - lightly sweet to very sweet). The chocolate evaluation was carried out 24 h after sample preparation in the sensory laboratory, in partitioned booths, which were illuminated with fluorescent lights (ISO 8589, 2007). Samples were served in white plastic plates labeled with three-digit codes from a random number table. Panelist scored the perceived intensity of each attribute using a 7-point scale (1 = the least intensity and 7 = the most intensity) (ISO 4121, 2002). The addition of 10% of encapsulate had a big influence on chocolate color, where enriched chocolate got a nice reddish color. At the same time, the enriched chocolate sample had less intensity of gloss on the surface. The panelists noticed that addition of encapsulate reduced the time needed to convert solid chocolate into a liquid state, increasing its hardness. The addition of encapsulate had a significant impact on chocolate flavor. It reduced the sweetness of white chocolate and contributed to the fruity raspberry flavor.Keywords: white chocolate, encapsulated raspberry juice, color, sensory characteristics
Procedia PDF Downloads 16042 Petrology of the Post-Collisional Dolerites, Basalts from the Javakheti Highland, South Georgia
Authors: Bezhan Tutberidze
Abstract:
The Neogene-Quaternary volcanic rocks of the Javakheti Highland are products of post-collisional continental magmatism and are related to divergent and convergent margins of Eurasian-Afroarabian lithospheric plates. The studied area constitutes an integral part of the volcanic province of Central South Georgia. Three cycles of volcanic activity are identified here: 1. Late Miocene-Early Pliocene, 2. Late Pliocene-Early /Middle/ Pleistocene and 3. Late Pleistocene. An intense basic dolerite magmatic activity occurred within the time span of the Late Pliocene and lasted until at least Late /Middle/ Pleistocene. The age of the volcanogenic and volcanogenic-sedimentary formation was dated by geomorphological, paleomagnetic, paleontological and geochronological methods /1.7-1.9 Ma/. The volcanic area of the Javakheti Highland contains multiple dolerite Plateaus: Akhalkalaki, Gomarethi, Dmanisi, and Tsalka. Petrographic observations of these doleritic rocks reveal fairly constant mineralogical composition: olivine / Fo₈₇.₆₋₈₂.₇ /, plagioclase / Ab₂₂.₈ An₇₅.₉ Or₁.₃; Ab₄₅.₀₋₃₂.₃ An₅₂.₉₋₆₂.₃ Or₂.₁₋₅.₄/. The pyroxene is an augite and may exhibit a visible zoning: / Wo 39.7-43.1 En 43.5-45.2 Fs 16.8-11.7/. Opaque minerals /magnetite, titanomagnetite/ is abundant as inclusions within olivine and pyroxene crystals. The texture of dolerites exhibits intergranular, holocrystalline to ophitic to sub ophitic granular. Dolerites are most common vesicular rocks. Vesicles range in shape from spherical to elongated and in size from 0.5 mm to than 1.5-2 cm and makeup about 20-50 % of the volume. The dolerites have been subjected to considerable alteration. The secondary minerals in the geothermal field are: zeolite, calcite, chlorite, aragonite, clay-like mineral /dominated by smectites/ and iddingsite –like mineral; rare quartz and pumpellyite are present. These vesicles are filled by secondary minerals. In the chemistry, dolerites are the calc-alkalic transition to sub-alkaline with a predominance of Na₂O over K₂O. Chemical analyses indicate that dolerites of all plateaus of the Javakheti Highland have similar geochemical compositions, signifying that they were formed from the same magmatic source by crystallization of olivine basalis magma which less differentiated / ⁸⁷Sr \ ⁸⁶Sr 0.703920-0704195/. There is one argument, which is less convincing, according to which the dolerites/basalts of the Javakheti Highland are considered to be an activity of a mantle plume. Unfortunately, there does not exist reliable evidence to prove this. The petrochemical peculiarities and eruption nature of the dolerites of the Javakheti Plateau point against their plume origin. Nevertheless, it is not excluded that they influence the formation of dolerite producing primary basaltic magma.Keywords: calc-alkalic, dolerite, Georgia, Javakheti Highland
Procedia PDF Downloads 27041 Investigation of Permeate Flux through DCMD Module by Inserting S-Ribs Carbon-Fiber Promoters with Ascending and Descending Hydraulic Diameters
Authors: Chii-Dong Ho, Jian-Har Chen
Abstract:
The decline in permeate flux across membrane modules is attributed to the increase in temperature polarization resistance in flat-plate Direct Contact Membrane Distillation (DCMD) modules for pure water productivity. Researchers have discovered that this effect can be diminished by embedding turbulence promoters, which augment turbulence intensity at the cost of increased power consumption, thereby improving vapor permeate flux. The device performance of DCMD modules for permeate flux was further enhanced by shrinking the hydraulic diameters of inserted S-ribs carbon-fiber promoters as well as considering the energy consumption increment. The mass-balance formulation, based on the resistance-in-series model by energy conservation in one-dimensional governing equations, was developed theoretically and conducted experimentally on a flat-plate polytetrafluoroethylene/polypropylene (PTFE/PP) membrane module to predict permeate flux and temperature distributions. The ratio of permeate flux enhancement to energy consumption increment, as referred to an assessment on economic viewpoint and technical feasibilities, was calculated to determine the suitable design parameters for DCMD operations with the insertion of S-ribs carbon-fiber turbulence promoters. An economic analysis was also performed, weighing both permeate flux improvement and energy consumption increment on modules with promoter-filled channels by different array configurations and various hydraulic diameters of turbulence promoters. Results showed that the ratio of permeate flux improvement to energy consumption increment in descending hydraulic-diameter modules is higher than in uniform hydraulic-diameter modules. The fabrication details of the DCMD module filaments implementing the S-ribs carbon-fiber filaments and the schematic configuration of the flat-plate DCMD experimental setup with presenting acrylic plates as external walls were demonstrated in the present study. The S-ribs carbon fibers perform as turbulence promoters incorporated into the artificial hot saline feed stream, which was prepared by adding inorganic salts (NaCl) to distilled water. Theoretical predictions and experimental results exhibited a great accomplishment to considerably achieve permeate flux enhancement, such as the new design of the DCMD module with inserting S-ribs carbon-fiber promoters. Additionally, the Nusselt number for the water vapor transferring membrane module with inserted S-ribs carbon-fiber promoters was generalized into a simplified expression to predict the heat transfer coefficient and permeate flux as well.Keywords: permeate flux, Nusselt number, DCMD module, temperature polarization, hydraulic diameters
Procedia PDF Downloads 940 Spectrum of Bacteria Causing Oral and Maxillofacial Infections and Their Antibiotic Susceptibility among Patients Attending Muhimbili National Hospital
Authors: Sima E. Rugarabamu, Mecky I. Matee, Elison N. M. Simon
Abstract:
Background: In Tanzania bacteriological studies of etiological agents of oro-facial infections are very limited, and very few have investigated anaerobes. The aim of this study was to determine the spectrum of bacterial agents involved in oral and maxillofacial infections in patients attending Muhimbili National Hospital, Dar-es-salaam, Tanzania. Method: This was a hospital based descriptive cross-sectional study that was conducted in the Department of Oral and Maxillofacial Surgery of the Muhimbili National Hospital in Dar es Salaam, Tanzania from 1st January 2014 to 31st August 2014. Seventy (70) patients with various forms of oral and maxillofacial infections who were recruited for the study. The study participants were interviewed using a prepared questionnaire after getting their consent. Pus aspirate was cultured on Blood agar, Chocolate Agar, MacConkey agar and incubated aerobically at 37°C. Imported blood agar was used for anaerobic culture whereby they were incubated at 37°Cin anaerobic jars in an atmosphere of generated using commercial gas-generating kits in accordance with manufacturer’s instructions. Plates were incubated at 37°C for 24 hours (For aerobic culture and 48 hours for anaerobic cultures). Gram negative rods were identified using API 20E while all other isolates were identified by conventional biochemical tests. Antibiotic sensitivity testing for isolated aerobic and anaerobic bacteria was detected by the disk diffusion, agar dilution and E-test using routine and commercially available antibiotics used to treat oral facial infections. Results: This study comprised of 41 (58.5%) males and 29 (41.5%) females with a mean age of 32 years SD +/-15.1 and a range of 19 to 70 years. A total of 161 bacteria strains were isolated from specimens obtained from 70 patients which were an average of 2.3 isolates per patient. Of these 103 were aerobic organism and 58 were strict anaerobes. A complex mix of strict anaerobes and facultative anaerobes accounted for 87% of all infections.The most frequent aerobes isolated was streptococcus spp 70 (70%) followed by Staphylococcus spp 18 (18%). Other organisms such as Klebsiella spp 4 (4%), Proteus spp 5 (5%) and Pseudomonas spp 2 (2%) were also seen. The anaerobic group was dominated by Prevotella spp 25 (43%) followed by Peptostreptococcus spp 18 (31%); other isolates were Pseudomonas spp 2 (1%), black pigmented Pophyromonas spp 4 (5%), Fusobacterium spp 3 (3%) and Bacteroides spp 5 (8%). Majority of these organisms were sensitive to Amoxicillin (98%), Gentamycin (89%), and Ciprofloxacin (100%). A 40% resistance to metronidazole was observed in Bacteroides spp otherwise this drug and others displayed good activity against anaerobes. Conclusions: Oral and maxillofacial facial infections at Muhimbili National Hospital are mostly caused by streptococcus spp and Prevotella spp. Strict anaerobes accounted for 36% of all isolates. The profile of isolates should assist in selecting empiric therapy for infections of the oral and maxillofacial region. Inclusion of antimicrobial agents against anaerobic bacteria is highly recommended.Keywords: bacteria, oral and maxillofacial infections, antibiotic susceptibility, Tanzania
Procedia PDF Downloads 33139 Verification of Low-Dose Diagnostic X-Ray as a Tool for Relating Vital Internal Organ Structures to External Body Armour Coverage
Authors: Natalie A. Sterk, Bernard van Vuuren, Petrie Marais, Bongani Mthombeni
Abstract:
Injuries to the internal structures of the thorax and abdomen remain a leading cause of death among soldiers. Body armour is a standard issue piece of military equipment designed to protect the vital organs against ballistic and stab threats. When configured for maximum protection, the excessive weight and size of the armour may limit soldier mobility and increase physical fatigue and discomfort. Providing soldiers with more armour than necessary may, therefore, hinder their ability to react rapidly in life-threatening situations. The capability to determine the optimal trade-off between the amount of essential anatomical coverage and hindrance on soldier performance may significantly enhance the design of armour systems. The current study aimed to develop and pilot a methodology for relating internal anatomical structures with actual armour plate coverage in real-time using low-dose diagnostic X-ray scanning. Several pilot scanning sessions were held at Lodox Systems (Pty) Ltd head-office in South Africa. Testing involved using the Lodox eXero-dr to scan dummy trunk rigs at various degrees and heights of measurement; as well as human participants, wearing correctly fitted body armour while positioned in supine, prone shooting, seated and kneeling shooting postures. The verification of sizing and metrics obtained from the Lodox eXero-dr were then confirmed through a verification board with known dimensions. Results indicated that the low-dose diagnostic X-ray has the capability to clearly identify the vital internal structures of the aortic arch, heart, and lungs in relation to the position of the external armour plates. Further testing is still required in order to fully and accurately identify the inferior liver boundary, inferior vena cava, and spleen. The scans produced in the supine, prone, and seated postures provided superior image quality over the kneeling posture. The X-ray-source and-detector distance from the object must be standardised to control for possible magnification changes and for comparison purposes. To account for this, specific scanning heights and angles were identified to allow for parallel scanning of relevant areas. The low-dose diagnostic X-ray provides a non-invasive, safe, and rapid technique for relating vital internal structures with external structures. This capability can be used for the re-evaluation of anatomical coverage required for essential protection while optimising armour design and fit for soldier performance.Keywords: body armour, low-dose diagnostic X-ray, scanning, vital organ coverage
Procedia PDF Downloads 12338 Mobulid Ray Fishery Characteristics and Trends in East Java to Inform Management Decisions
Authors: Muhammad G. Salim, Betty J.L. Laglbauer, Sila K. Sari, Irianes C. Gozali, Fahmi, Didik Rudianto, Selvia Oktaviyani, Isabel Ender
Abstract:
Muncar, East Java, is one of the largest artisanal fisheries in Indonesia. Sharks and rays are caught as both target and bycatch, for local meat consumption and with some derived products exported. Of the seven mobulid ray species occurring in Indonesia, five have been recorded as retained bycatch at Muncar fishing port: the spinetail devil ray (Mobula mobular), the bentfin devil ray (Mobula thurstoni), the sicklefin devil ray (Mobula tarapacana), the oceanic manta ray (Mobula birostris) and the reef manta ray (Mobula alfredi). Both manta ray species are listed as Vulnerable by the International Union for the Conservation of Nature and are protected in Indonesia despite still being captured as bycatch, while all the three devil ray species mentioned here are listed as Endangered and do not currently benefit from any protection in Indonesian waters. Mobulid landings in East Java are caused primarily by small-scale drift gillnets but they also occasionally occur on longlines and in purse-seines operating off the coast of East Java and occasionally in fishing grounds located as far as the Makassar and Sumba Straits. Landing trends from 2015-2019 (non-continuous surveys) revealed that the highest abundance of mobulid rays at Muncar fishing port occurs during the upwelling season from June-October. During El-Nino or above-average temperature years, this may extend until November (such as in 2015 and 2019). The strong seasonal upwelling along the East Java coast is linked to higher zooplankton abundance (inferred from chlorophyll-a sea-surface concentrations), on which mobulids forage, along with teleost fishes constituting the primary target of gillnet fisheries in the Bali Strait. Mobulid ray landings in Muncar were dominated by Mobula mobular, followed by M. thurstoni, M. tarapacana, M. birostris and M. alfredi, however, the catch varied across years and seasons. A majority of immature individuals were recorded in M. mobular and M. thurstoni, and slight decreases in landings, despite no known changes in fishing effort, were observed across the upwelling seasons of 2015-2018 for M. mobular. While all mobulids are listed on Appendix II of the Convention on International Trade in Endangered Species, which regulates international trade in gill plates sought after in the Chinese Medicine Trade, local and national-level management measures are required to sustain mobulid populations. The findings presented here provide important baseline data, from which potential management approaches can be identified.Keywords: devil ray, mobulid, manta ray, Indonesia
Procedia PDF Downloads 17937 Structure and Properties of Intermetallic NiAl-Based Coatings Produced by Magnetron Sputtering Technique
Authors: Tatiana S. Ogneva
Abstract:
Aluminum and nickel-based intermetallic compounds have attracted the attention of scientific community as promising materials for heat-resistant and wear-resistant coatings in such manufacturing areas as microelectronics, aircraft and rocket building and chemical industries. Magnetron sputtering makes possible to coat materials without formation of liquid phase and improves the mechanical and functional properties of nickel aluminides due to the possibility of nanoscale structure formation. The purpose of the study is the investigation of structure and properties of intermetallic coatings produced by magnetron sputtering technique. The feature of this work is the using of composite targets for sputtering, which were consisted of two semicircular sectors of cp-Ni and cp-Al. Plates of alumina, silicon, titanium and steel alloys were used as substrates. To estimate sputtering conditions on structure of intermetallic coatings, a series of samples were produced and studied in detail using scanning and transition electron microcopy and X-Ray diffraction. Besides, nanohardness and scratching tests were carried out. The varying parameters were the distance from the substrate to the target, the duration and the power of the sputtering. The thickness of the obtained intermetallic coatings varied from 0.05 to 0.5 mm depending on the sputtering conditions. The X-ray diffraction data indicated that the formation of intermetallic compounds occurred after sputtering without additional heat treatment. Sputtering at a distance not closer than 120 mm led to the formation of NiAl phase. Increase in the power of magnetron from 300 to 900 W promoted the increase of heterogeneity of the phase composition and the appearance of intermetallic phases NiAl, Ni₂Al₃, NiAl₃, and Al under the aluminum side, and NiAl, Ni₃Al, and Ni under the nickel side of the target. A similar trend is observed with increasing the distance of sputtering from 100 to 60 mm. The change in the phase composition correlates with the changing of the atomic composition of the coatings. Scanning electron microscopy revealed that the coatings have a nanoscale grain structure. In this case, the substrate material and the distance from the substrate to the magnetron have a significant effect on the structure formation process. The size of nanograins differs from 10 to 83 nm and depends not only on the sputtering modes but also on material of a substrate. Nanostructure of the material influences the level of mechanical properties. The highest level of nanohardness of the coatings deposited during 30 minutes on metallic substrates at a distance of 100 mm reached 12 GPa. It was shown that nanohardness depends on the grain size of the intermetallic compound. Scratching tests of the coatings showed a high level of adhesion of the coating to substrate without any delamination and cracking. The results of the study showed that magnetron sputtering of composite targets consisting of nickel and aluminum semicircles makes it possible to form intermetallic coatings with good mechanical properties directly in the process of sputtering without additional heat treatment.Keywords: intermetallic coatings, magnetron sputtering, mechanical properties, structure
Procedia PDF Downloads 12136 Isolation, Selection and Identification of Bacteria for Bioaugmentation of Paper Mills White Water
Authors: Nada Verdel, Tomaz Rijavec, Albin Pintar, Ales Lapanje
Abstract:
Objectives: White water circuits of woodfree paper mills contain suspended, dissolved, and colloidal particles, such as cellulose, starch, paper sizings, and dyes. By closing the white water circuits, these particles start to accumulate and affect the production. Due to high amount of organic matter that scavenge radicals and adsorbs onto catalyst surfaces, treatment of white water with photocatalysis is inappropriate. The most suitable approach should be bioaugmentation-assisted bioremediation. Accordingly, objectives were: - to isolate bacteria capable of degrading organic compounds used for the papermaking process - to select the most active bacteria for bioaugmentation. Status: The state-of-the-art of bioaugmentation of pulp and paper mill effluents is mostly based on biodegradation of lignin. Whereas in white water circuits of woodfree paper mills only papermaking compounds are present. As far as one can tell from the literature, the study on degradation activities of bacteria for all possible compounds of the papermaking process is a novelty. Methodology: The main parameters of the selected white water were systematically analyzed during a period of two months. Bacteria were isolated on selective media with particular carbon source. Organic substances used as carbon source either enter white water circuits as base paper or as recycled broke. The screening of bacterial activities for starch, cellulose, latex, polyvinyl alcohol, alkyl ketene dimers, and resin acids was followed by addition of lugol. Degraders of polycyclic aromatic dyes were selected by cometabolism tests; cometabolism is simultaneous biodegradation of two compounds, in which the degradation of the second compound depends on the presence of the first. The obtained strains were identified by 16S rRNA sequencing. Findings: 335 autochthonous strains were isolated on plates with selected carbon source. The isolated strains were selected according to degradation of the particular carbon source. The ultimate degraders of cationic starch, cellulose, and sizings are Pseudomonas sp. NV-CE12-CF and Aeromonas sp. NV-RES19-BTP. The most active strains capable of degrading azo dyes are Aeromonas sp. NV-RES19-BTP and Sphingomonas sp. NV-B14-CF. Klebsiella sp. NV-Y14A-BTP degrade polycyclic aromatic direct blue 15 and also yellow dye, Agromyces sp. NV-RED15A-BF and Cellulosimicrobium sp. NV-A4-BF are specialists for whitener and Aeromonas sp. NV-RES19-BTP is general degrader of all compounds. To the white water adapted bacteria were isolated and selected according to their degradation activities for particular organic substances. Mostly isolated bacteria are specialized to lower the competition in the microbial community. Degraders of readily-biodegradable compounds do not degrade recalcitrant polycyclic aromatic dyes and vice versa. General degraders are rare.Keywords: bioaugmentation, biodegradation of azo dyes, cometabolism, smart wastewater treatment technologies
Procedia PDF Downloads 20435 Growth and Differentiation of Mesenchymal Stem Cells on Titanium Alloy Ti6Al4V and Novel Beta Titanium Alloy Ti36Nb6Ta
Authors: Eva Filová, Jana Daňková, Věra Sovková, Matej Daniel
Abstract:
Titanium alloys are biocompatible metals that are widely used in clinical practice as load bearing implants. The chemical modification may influence cell adhesion, proliferation, and differentiation as well as stiffness of the material. The aim of the study was to evaluate the adhesion, growth and differentiation of pig mesenchymal stem cells on the novel beta titanium alloy Ti36Nb6Ta compared to standard medical titanium alloy Ti6Al4V. Discs of Ti36Nb6Ta and Ti6Al4V alloy were sterilized by ethanol, put in 48-well plates, and seeded by pig mesenchymal stem cells at the density of 60×103/cm2 and cultured in Minimum essential medium (Sigma) supplemented with 10% fetal bovine serum and penicillin/streptomycin. Cell viability was evaluated using MTS assay (CellTiter 96® AQueous One Solution Cell Proliferation Assay;Promega), cell proliferation using Quant-iT™ ds DNA Assay Kit (Life Technologies). Cells were stained immunohistochemically using monoclonal antibody beta-actin, and secondary antibody conjugated with AlexaFluor®488 and subsequently the spread area of cells was measured. Cell differentiation was evaluated by alkaline phosphatase assay using p-nitrophenyl phosphate (pNPP) as a substrate; the reaction was stopped by NaOH, and the absorbance was measured at 405 nm. Osteocalcin, specific bone marker was stained immunohistochemically and subsequently visualized using confocal microscopy; the fluorescence intensity was analyzed and quantified. Moreover, gene expression of osteogenic markers osteocalcin and type I collagen was evaluated by real-time reverse transcription-PCR (qRT-PCR). For statistical evaluation, One-way ANOVA followed by Student-Newman-Keuls Method was used. For qRT-PCR, the nonparametric Kruskal-Wallis Test and Dunn's Multiple Comparison Test were used. The absorbance in MTS assay was significantly higher on titanium alloy Ti6Al4V compared to beta titanium alloy Ti36Nb6Ta on days 7 and 14. Mesenchymal stem cells were well spread on both alloys, but no difference in spread area was found. No differences in alkaline phosphatase assay, fluorescence intensity of osteocalcin as well as the expression of type I collagen, and osteocalcin genes were observed. Higher expression of type I collagen compared to osteocalcin was observed for cells on both alloys. Both beta titanium alloy Ti36Nb6Ta and titanium alloy Ti6Al4V Ti36Nb6Ta supported mesenchymal stem cellsˈ adhesion, proliferation and osteogenic differentiation. Novel beta titanium alloys Ti36Nb6Ta is a promising material for bone implantation. The project was supported by the Czech Science Foundation: grant No. 16-14758S, the Grant Agency of the Charles University, grant No. 1246314 and by the Ministry of Education, Youth and Sports NPU I: LO1309.Keywords: beta titanium, cell growth, mesenchymal stem cells, titanium alloy, implant
Procedia PDF Downloads 31634 Analysis of Mutation Associated with Male Infertility in Patients and Healthy Males in the Russian Population
Authors: Svetlana Zhikrivetskaya, Nataliya Shirokova, Roman Bikanov, Elizaveta Musatova, Yana Kovaleva, Nataliya Vetrova, Ekaterina Pomerantseva
Abstract:
Nowadays there is a growing number of couples with conceiving problems due to male or female infertility. Genetic abnormalities are responsible for about 31% of all cases of male infertility. These abnormalities include both chromosomal aberrations or aneuploidies and mutations in certain genes. Chromosomal abnormalities can be easily identified, thus the development of screening panels able to reveal genetic reasons of male infertility on gene level is of current interest. There are approximately 2,000 genes involved in male fertility that is the reason why it is very important to determine the most clinically relevant in certain population and ethnic conditions. An infertility screening panel containing 48 mutations in genes AMHR2, CFTR, DNAI1, HFE, KAL1, TSSK2 and AZF locus which are the most clinically relevant for the European population according to databases NCBI and ClinVar was designed. The aim of this research was to confirm clinic relevance of these mutations in the Russian population. Genotyping was performed in 220 patients with different types of male infertility and in 57 healthy males with normozoospermia. Mutations were identified by end-point PCR with TaqMan probes in microfluidic plates. The frequency of 5 mutations in healthy males and 13 mutations in patients with infertility was revealed and estimated. The frequency of mutation c.187C>G in HFE gene was significantly lower for healthy males (8.8%) compared with patients (17.7%) and the values for the European population according to ExAc database (13.7%) and dbSNP (17.2%). Analysis of c.3454G>C, and c.1545_1546delTA mutations in the CFTR gene revealed increased frequency (0.9 and 0.2%, respectively) in patients with infertility compared with data for the European population (0.04%, respectively (ExAc, European (Non-Finnish) and for the Aggregated Populations (0.002% (ExAc), because there is no data for European population for c.1545_1546delTA mutation. The frequency of del508 mutation (CFTR) in patients (1.59%) were lower comparing with male infertility Europeans (3.34-6.25% depending on nationality) and at the same level with healthy Europeans (1.06%, ExAc, European (Non-Finnish). Analysis of c.845G>A (HFE) mutation resulted in decreased frequency in patients (1.8%) in contrast with the European population data (5.1%, respectively, ExAc, European (Non-Finnish). Moreover, obtained data revealed no statistically significant frequency difference for c.845G>A mutation (HFE) between healthy males in the Russian and the European populations. Allele frequencies of mutations c.350G>A (CFTR), c.193A>T (HFE), c.774C>T, and c.80A>G (gene TSSK2) showed no significantly difference among patients with infertility, healthy males and Europeans. Analysis of AZF locus revealed increased frequency for AZFc microdeletion in patients with male infertility. Thereby, the new data of the allele frequencies in infertility patients in the Russian population was obtained. As well as the frequency differences of mutations associated with male infertility among patients, healthy males in the Russian population and the European one were estimated. The revealed differences showed that for high effectiveness of screening panel detecting genetically caused male infertility it is very important to consider ethnic and population characteristics of patients which will be screened.Keywords: allele frequency, azoospermia, male infertility, mutation, population
Procedia PDF Downloads 39233 Focus on the Bactericidal Efficacies of Alkaline Agents in Solid and the Required Time for Bacterial Inactivation
Authors: Hakimullah Hakim, Chiharu Toyofuku, Mari Ota, Mayuko Suzuki, Miyuki Komura, Masashi Yamada, Md. Shahin Alam, Natthanan Sangsriratanakul, Dany Shoham, Kazuaki Takehara
Abstract:
Disinfectants and their application are essential part of infection control strategies and enhancement of biosecurity at farms, worldwide. Alkaline agents are well known for their strong and long term antimicrobial capacities and most frequently are applied at farms for control and prevention of biological hazards. However, inadequate information regarding such materials’ capacities to inactivate pathogens and their improper applications fail farmers to achieve the mentioned goal. Thus, this requires attention to further evaluate their efficacies, under different conditions and in different ways. Here in this study we evaluated bactericidal efficacies of food additive grade of calcium hydroxide (FdCa(OH)2) powder derived from natural calcium carbonates obtained from limestone (Fine Co., Ltd., Tokyo, Japan), and bioceramic powder (BCX) derived from chicken feces at pH 13 (NMG environmental development Co., Ltd., Tokyo, Japan), for their efficacies to inactivate bacteria in feces. [Materials & Methods] Chicken feces were inoculated by 100 µl Escherichia coli and Salmonella Infantis in falcon tubes, individually, then FdCa(OH)2 or BCX powders were individually added to make final concentration of 0, 5, 10, 20 and 30% (w/w) in total weight of 0.5g, followed by properly mixing and incubating at room temperature for certain periods of time, in a dark place. Afterwards, 10 ml 1M Tris-HCl (pH 7.2) was added onto them to reduce their pH, in order to stop powders’ activities and to harvest the remained viable bacteria, whereas using normal medium or dW2 to recover bacteria increases the mixture pH, and as a result bacteria would be inactivated soon; therefore, the latter practice brings about incorrect and misleading results. Samples were then inoculated on DHL agar plates in order to calculate colony forming units (CFU)/ml of viable bacteria. [Results and Discussion] FdCa(OH)2 powder at 10% and 5% required 3 hr and 6 hr exposure times, respectively, while BCX powder at 20% concentrations required 6 hr exposure time to kill the mentioned bacteria in feces down to lower than detectable level (≤ 3.6 log10 CFU/ml). This study confirmed capacities of FdCa(OH)2 and BCX powders to inactivate bacteria in feces, and both materials are environment friendly materials, with no risk to human or animal’s health. This finding helps farmers to properly apply alkaline agents in appropriate concentrations and exposure times in their farms, in order to prevent and control infectious diseases outbreaks and to enhance biosecurity. Finally, this finding may help farmers to implement better strategies for infections control in their livestock farms.Keywords: bacterial inactivation, bioceramic, biosecurity at livestock farms, chicken feces
Procedia PDF Downloads 44032 Monocoque Systems: The Reuniting of Divergent Agencies for Wood Construction
Authors: Bruce Wrightsman
Abstract:
Construction and design are inexorably linked. Traditional building methodologies, including those using wood, comprise a series of material layers differentiated and separated from each other. This results in the separation of two agencies of building envelope (skin) separate from the structure. However, from a material performance position reliant on additional materials, this is not an efficient strategy for the building. The merits of traditional platform framing are well known. However, its enormous effectiveness within wood-framed construction has seldom led to serious questioning and challenges in defining what it means to build. There are several downsides of using this method, which is less widely discussed. The first and perhaps biggest downside is waste. Second, its reliance on wood assemblies forming walls, floors and roofs conventionally nailed together through simple plate surfaces is structurally inefficient. It requires additional material through plates, blocking, nailers, etc., for stability that only adds to the material waste. In contrast, when we look back at the history of wood construction in airplane and boat manufacturing industries, we will see a significant transformation in the relationship of structure with skin. The history of boat construction transformed from indigenous wood practices of birch bark canoes to copper sheathing over wood to improve performance in the late 18th century and the evolution of merged assemblies that drives the industry today. In 1911, Swiss engineer Emile Ruchonnet designed the first wood monocoque structure for an airplane called the Cigare. The wing and tail assemblies consisted of thin, lightweight, and often fabric skin stretched tightly over a wood frame. This stressed skin has evolved into semi-monocoque construction, in which the skin merges with structural fins that take additional forces. It provides even greater strength with less material. The monocoque, which translates to ‘mono or single shell,’ is a structural system that supports loads and transfers them through an external enclosure system. They have largely existed outside the domain of architecture. However, this uniting of divergent systems has been demonstrated to be lighter, utilizing less material than traditional wood building practices. This paper will examine the role monocoque systems have played in the history of wood construction through lineage of boat and airplane building industries and its design potential for wood building systems in architecture through a case-study examination of a unique wood construction approach. The innovative approach uses a wood monocoque system comprised of interlocking small wood members to create thin shell assemblies for the walls, roof and floor, increasing structural efficiency and wasting less than 2% of the wood. The goal of the analysis is to expand the work of practice and the academy in order to foster deeper, more honest discourse regarding the limitations and impact of traditional wood framing.Keywords: wood building systems, material histories, monocoque systems, construction waste
Procedia PDF Downloads 7831 Fabrication of Electrospun Green Fluorescent Protein Nano-Fibers for Biomedical Applications
Authors: Yakup Ulusu, Faruk Ozel, Numan Eczacioglu, Abdurrahman Ozen, Sabriye Acikgoz
Abstract:
GFP discovered in the mid-1970s, has been used as a marker after replicated genetic study by scientists. In biotechnology, cell, molecular biology, the GFP gene is frequently used as a reporter of expression. In modified forms, it has been used to make biosensors. Many animals have been created that express GFP as an evidence that a gene can be expressed throughout a given organism. Proteins labeled with GFP identified locations are determined. And so, cell connections can be monitored, gene expression can be reported, protein-protein interactions can be observed and signals that create events can be detected. Additionally, monitoring GFP is noninvasive; it can be detected by under UV-light because of simply generating fluorescence. Moreover, GFP is a relatively small and inert molecule, that does not seem to treat any biological processes of interest. The synthesis of GFP has some steps like, to construct the plasmid system, transformation in E. coli, production and purification of protein. GFP carrying plasmid vector pBAD–GFPuv was digested using two different restriction endonuclease enzymes (NheI and Eco RI) and DNA fragment of GFP was gel purified before cloning. The GFP-encoding DNA fragment was ligated into pET28a plasmid using NheI and Eco RI restriction sites. The final plasmid was named pETGFP and DNA sequencing of this plasmid indicated that the hexa histidine-tagged GFP was correctly inserted. Histidine-tagged GFP was expressed in an Escherichia coli BL21 DE3 (pLysE) strain. The strain was transformed with pETGFP plasmid and grown on LuiraBertoni (LB) plates with kanamycin and chloramphenicol selection. E. coli cells were grown up to an optical density (OD 600) of 0.8 and induced by the addition of a final concentration of 1mM isopropyl-thiogalactopyranoside (IPTG) and then grown for additional 4 h. The amino-terminal hexa-histidine-tag facilitated purification of the GFP by using a His Bind affinity chromatography resin (Novagen). Purity of GFP protein was analyzed by a 12 % sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). The concentration of protein was determined by UV absorption at 280 nm (Varian Cary 50 Scan UV/VIS spectrophotometer). Synthesis of GFP-Polymer composite nanofibers was produced by using GFP solution (10mg/mL) and polymer precursor Polyvinylpyrrolidone, (PVP, Mw=1300000) as starting materials and template, respectively. For the fabrication of nanofibers with the different fiber diameter; a sol–gel solution comprising of 0.40, 0.60 and 0.80 g PVP (depending upon the desired fiber diameter) and 100 mg GFP in 10 mL water: ethanol (3:2) mixtures were prepared and then the solution was covered on collecting plate via electro spinning at 10 kV with a feed-rate of 0.25 mL h-1 using Spellman electro spinning system. Results show that GFP-based nano-fiber can be used plenty of biomedical applications such as bio-imaging, bio-mechanic, bio-material and tissue engineering.Keywords: biomaterial, GFP, nano-fibers, protein expression
Procedia PDF Downloads 32030 The Combined Use of L-Arginine and Progesterone During the Post-breeding Period in Female Rabbits Increases the Weight of Their Fetuses
Authors: Diego F. Carrillo-González, Milena Osorio, Natalia M. Cerro, Yasser Y. Lenis
Abstract:
Introduction: mortality during the implantation and early embryonic development periods reach around 30% in different mammalian species. It has been described that progesterone (P4) and Arginine (Arg) play a beneficial role in establishing and maintaining early pregnancy in mammals. The combined effect between Arg and P4 on reproductive parameters in the rabbit species is not yet elucidated, to our best knowledge. Objective: to assess the effect of L-arginine and progesterone during the post-breeding period in female rabbits on the composition of the amniotic fluid, the placental structure, and the bone growth in their fetuses. Methods: crossbred female rabbits (n=16) were randomly distributed into four experimental groups (Ctrl, Arg, P4, and Arg+P4). In the control group, 0.9% saline solution was administered as a placebo, the Arg group was administered arginine (50 mg/kg BW) from day 4.5 to day 19 post-breeding, the P4 group was administered progesterone (Gestavec®, 1.5 mg/kg BW) from 24 hours to day 4 post-breeding and for the Arg+P4 group, an administration was performed under the same time and dose guidelines as the Arg and P4 treatments. Four females were sacrificed, and the amniotic fluid was collected and analyzed with rapid urine test strips, while the placenta and fetuses were processed in the laboratory to obtain histological plates. The percentage of deciduous, labyrinthine, and junctional zones was determined, and the length of the femur for each fetus was measured as an indicator of growth. Descriptive statistics were applied to identify the success rates for each of the tests. Afterwards, A one-way analysis of variance (ANOVA) was performed, and a comparison of means was conducted by Tukey's test. Results: a higher density (p<0.05) was observed in the amniotic fluid for fetuses in the control group (1022±2.5g/mL) compared to the P4 (1015±5.3g/mL) and Arg+P4 (1016±4,9g/mL) groups. Additionally, the density of amniotic fluid in the Arg group (1021±2.5g/mL) was higher (p<0.05) than in the P4 group. The concentration of protein, glucose, and ascorbic acid had no statistical difference between treatments (p>0.05). The histological analysis of the uteroplacental regions, a statistical difference (p<0,05) in the proportion of deciduous zone was found between the P4 group (9.6±2.6%) when compared with the Ctrl (28.15±12.3%), and Arg+P4 (26.3±4.9) groups. In the analysis of the fetuses, the weight was higher for the Arg group (2.69±0.18), compared to the other groups (p<0.05), while a shorter length was observed (p<0.05) in the fetuses for the Arg+P4 group (25.97±1.17). However, no difference (p>0.05) was found when comparing the length of the developing femurs between the experimental groups. Conclusion: the combination of L-arginine and progesterone allows a reduction in the density of amniotic fluid, without affecting the protein, energy, and antioxidant components. However, the use of L-arginine stimulates weight gain in fetuses, without affecting size, which could be used to improve production parameters in rabbit production systems. In addition, the modification in the deciduous zone could show a placental adaptation based on the fetal growth process, however more specific studies on the placentation process are required.Keywords: arginine, progesterone, rabbits, reproduction
Procedia PDF Downloads 8929 Designing a Thermal Management System for Lithium Ion Battery Packs in Electric Vehicles
Authors: Ekin Esen, Mohammad Alipour, Riza Kizilel
Abstract:
Rechargeable lithium-ion batteries have been replacing lead-acid batteries for the last decade due to their outstanding properties such as high energy density, long shelf life, and almost no memory effect. Besides these, being very light compared to lead acid batteries has gained them their dominant place in the portable electronics market, and they are now the leading candidate for electric vehicles (EVs) and hybrid electric vehicles (HEVs). However, their performance strongly depends on temperature, and this causes some inconveniences for their utilization in extreme temperatures. Since weather conditions vary across the globe, this situation limits their utilization for EVs and HEVs and makes a thermal management system obligatory for the battery units. The objective of this study is to understand thermal characteristics of Li-ion battery modules for various operation conditions and design a thermal management system to enhance battery performance in EVs and HEVs. In the first part of our study, we investigated thermal behavior of commercially available pouch type 20Ah LiFePO₄ (LFP) cells under various conditions. Main parameters were chosen as ambient temperature and discharge current rate. Each cell was charged and discharged at temperatures of 0°C, 10°C, 20°C, 30°C, 40°C, and 50°C. The current rate of charging process was 1C while it was 1C, 2C, 3C, 4C, and 5C for discharge process. Temperatures of 7 different points on the cells were measured throughout charging and discharging with N-type thermocouples, and a detailed temperature profile was obtained. In the second part of our study, we connected 4 cells in series by clinching and prepared 4S1P battery modules similar to ones in EVs and HEVs. Three reference points were determined according to the findings of the first part of the study, and a thermocouple is placed on each reference point on the cells composing the 4S1P battery modules. In the end, temperatures of 6 points in the module and 3 points on the top surface were measured and changes in the surface temperatures were recorded for different discharge rates (0.2C, 0.5C, 0.7C, and 1C) at various ambient temperatures (0°C – 50°C). Afterwards, aluminum plates with channels were placed between the cells in the 4S1P battery modules, and temperatures were controlled with airflow. Airflow was provided with a regular compressor, and the effect of flow rate on cell temperature was analyzed. Diameters of the channels were in mm range, and shapes of the channels were determined in order to make the cell temperatures uniform. Results showed that the designed thermal management system could help keeping the cell temperatures in the modules uniform throughout charge and discharge processes. Other than temperature uniformity, the system was also beneficial to keep cell temperature close to the optimum working temperature of Li-ion batteries. It is known that keeping the temperature at an optimum degree and maintaining uniform temperature throughout utilization can help obtaining maximum power from the cells in battery modules for a longer time. Furthermore, it will increase safety by decreasing the risk of thermal runaways. Therefore, the current study is believed to be beneficial for wider use of Li batteries for battery modules of EVs and HEVs globally.Keywords: lithium ion batteries, thermal management system, electric vehicles, hybrid electric vehicles
Procedia PDF Downloads 16328 Uncertainty Quantification of Crack Widths and Crack Spacing in Reinforced Concrete
Authors: Marcel Meinhardt, Manfred Keuser, Thomas Braml
Abstract:
Cracking of reinforced concrete is a complex phenomenon induced by direct loads or restraints affecting reinforced concrete structures as soon as the tensile strength of the concrete is exceeded. Hence it is important to predict where cracks will be located and how they will propagate. The bond theory and the crack formulas in the actual design codes, for example, DIN EN 1992-1-1, are all based on the assumption that the reinforcement bars are embedded in homogeneous concrete without taking into account the influence of transverse reinforcement and the real stress situation. However, it can often be observed that real structures such as walls, slabs or beams show a crack spacing that is orientated to the transverse reinforcement bars or to the stirrups. In most Finite Element Analysis studies, the smeared crack approach is used for crack prediction. The disadvantage of this model is that the typical strain localization of a crack on element level can’t be seen. The crack propagation in concrete is a discontinuous process characterized by different factors such as the initial random distribution of defects or the scatter of material properties. Such behavior presupposes the elaboration of adequate models and methods of simulation because traditional mechanical approaches deal mainly with average material parameters. This paper concerned with the modelling of the initiation and the propagation of cracks in reinforced concrete structures considering the influence of transverse reinforcement and the real stress distribution in reinforced concrete (R/C) beams/plates in bending action. Therefore, a parameter study was carried out to investigate: (I) the influence of the transversal reinforcement to the stress distribution in concrete in bending mode and (II) the crack initiation in dependence of the diameter and distance of the transversal reinforcement to each other. The numerical investigations on the crack initiation and propagation were carried out with a 2D reinforced concrete structure subjected to quasi static loading and given boundary conditions. To model the uncertainty in the tensile strength of concrete in the Finite Element Analysis correlated normally and lognormally distributed random filed with different correlation lengths were generated. The paper also presents and discuss different methods to generate random fields, e.g. the Covariance Matrix Decomposition Method. For all computations, a plastic constitutive law with softening was used to model the crack initiation and the damage of the concrete in tension. It was found that the distributions of crack spacing and crack widths are highly dependent of the used random field. These distributions are validated to experimental studies on R/C panels which were carried out at the Laboratory for Structural Engineering at the University of the German Armed Forces in Munich. Also, a recommendation for parameters of the random field for realistic modelling the uncertainty of the tensile strength is given. The aim of this research was to show a method in which the localization of strains and cracks as well as the influence of transverse reinforcement on the crack initiation and propagation in Finite Element Analysis can be seen.Keywords: crack initiation, crack modelling, crack propagation, cracks, numerical simulation, random fields, reinforced concrete, stochastic
Procedia PDF Downloads 15727 Review of Carbon Materials: Application in Alternative Energy Sources and Catalysis
Authors: Marita Pigłowska, Beata Kurc, Maciej Galiński
Abstract:
The application of carbon materials in the branches of the electrochemical industry shows an increasing tendency each year due to the many interesting properties they possess. These are, among others, a well-developed specific surface, porosity, high sorption capacity, good adsorption properties, low bulk density, electrical conductivity and chemical resistance. All these properties allow for their effective use, among others in supercapacitors, which can store electric charges of the order of 100 F due to carbon electrodes constituting the capacitor plates. Coals (including expanded graphite, carbon black, graphite carbon fibers, activated carbon) are commonly used in electrochemical methods of removing oil derivatives from water after tanker disasters, e.g. phenols and their derivatives by their electrochemical anodic oxidation. Phenol can occupy practically the entire surface of carbon material and leave the water clean of hydrophobic impurities. Regeneration of such electrodes is also not complicated, it is carried out by electrochemical methods consisting in unblocking the pores and reducing resistances, and thus their reactivation for subsequent adsorption processes. Graphite is commonly used as an anode material in lithium-ion cells, while due to the limited capacity it offers (372 mAh g-1), new solutions are sought that meet both capacitive, efficiency and economic criteria. Increasingly, biodegradable materials, green materials, biomass, waste (including agricultural waste) are used in order to reuse them and reduce greenhouse effects and, above all, to meet the biodegradability criterion necessary for the production of lithium-ion cells as chemical power sources. The most common of these materials are cellulose, starch, wheat, rice, and corn waste, e.g. from agricultural, paper and pharmaceutical production. Such products are subjected to appropriate treatments depending on the desired application (including chemical, thermal, electrochemical). Starch is a biodegradable polysaccharide that consists of polymeric units such as amylose and amylopectin that build an ordered (linear) and amorphous (branched) structure of the polymer. Carbon is also used as a catalyst. Elemental carbon has become available in many nano-structured forms representing the hybridization combinations found in the primary carbon allotropes, and the materials can be enriched with a large number of surface functional groups. There are many examples of catalytic applications of coal in the literature, but the development of this field has been hampered by the lack of a conceptual approach combining structure and function and a lack of understanding of material synthesis. In the context of catalytic applications, the integrity of carbon environmental management properties and parameters such as metal conductivity range and bond sequence management should be characterized. Such data, along with surface and textured information, can form the basis for the provision of network support services.Keywords: carbon materials, catalysis, BET, capacitors, lithium ion cell
Procedia PDF Downloads 17426 Fermented Fruit and Vegetable Discard as a Source of Feeding Ingredients and Functional Additives
Authors: Jone Ibarruri, Mikel Manso, Marta Cebrián
Abstract:
A high amount of food is lost or discarded in the World every year. In addition, in the last decades, an increasing demand of new alternative and sustainable sources of proteins and other valuable compounds is being observed in the food and feeding sectors and, therefore, the use of food by-products as nutrients for these purposes sounds very interesting from the environmental and economical point of view. However, the direct use of discarded fruit and vegetables that present, in general, a low protein content is not interesting as feeding ingredient except if they are used as a source of fiber for ruminants. Especially in the case of aquaculture, several alternatives to the use of fish meal and other vegetable protein sources have been extensively explored due to the scarcity of fish stocks and the unsustainability of fishing for these purposes. Fish mortality is also of great concern in this sector as this problem highly reduces their economic feasibility. So, the development of new functional and natural ingredients that could reduce the need for vaccination is also of great interest. In this work, several fermentation tests were developed at lab scale using a selected mixture of fruit and vegetable discards from a wholesale market located in the Basque Country to increase their protein content and also to produce some bioactive extracts that could be used as additives in aquaculture. Fruit and vegetable mixtures (60/40 ww) were centrifugated for humidity reduction and crushed to 2-5 mm particle size. Samples were inoculated with a selected Rhizopus oryzae strain and fermented for 7 days in controlled conditions (humidity between 65 and 75% and 28ºC) in Petri plates (120 mm) by triplicate. Obtained results indicated that the final fermented product presented a twofold protein content (from 13 to 28% d.w). Fermented product was further processed to determine their possible functionality as a feed additive. Extraction tests were carried out to obtain an ethanolic extract (60:40 ethanol: water, v.v) and remaining biomass that also could present applications in food or feed sectors. The extract presented a polyphenol content of about 27 mg GAE/gr d.w with antioxidant activity of 8.4 mg TEAC/g d.w. Remining biomass is mainly composed of fiber (51%), protein (24%) and fat (10%). Extracts also presented antibacterial activity according to the results obtained in Agar Diffusion and to the Minimum Inhibitory Concentration (MIC) tests determined against several food and fish pathogen strains. In vitro, digestibility was also assessed to obtain preliminary information about the expected effect of extraction procedure on fermented product digestibility. First results indicated that remaining biomass after extraction doesn´t seem to improve digestibility in comparison to the initial fermented product. These preliminary results show that fermented fruit and vegetables can be a useful source of functional ingredients for aquaculture applications and a substitute of other protein sources in the feeding sector. Further validation will be also carried out through “in vivo” tests with trout and bass.Keywords: fungal solid state fermentation, protein increase, functional extracts, feed ingredients
Procedia PDF Downloads 6425 Exploring Fluoroquinolone-Resistance Dynamics Using a Distinct in Vitro Fermentation Chicken Caeca Model
Authors: Bello Gonzalez T. D. J., Setten Van M., Essen Van A., Brouwer M., Veldman K. T.
Abstract:
Resistance to fluoroquinolones (FQ) has evolved increasingly over the years, posing a significant challenge for the treatment of human infections, particularly gastrointestinal tract infections caused by zoonotic bacteria transmitted through the food chain and environment. In broiler chickens, a relatively high proportion of FQ resistance has been observed in Escherichia coli indicator, Salmonella and Campylobacter isolates. We hypothesize that flumequine (Flu), used as a secondary choice for the treatment of poultry infections, could potentially be associated with a high proportion of FQ resistance. To evaluate this hypothesis, we used an in vitro fermentation chicken caeca model. Two continuous single-stage fermenters were used to simulate in real time the physiological conditions of the chicken caeca microbial content (temperature, pH, caecal content mixing, and anoxic environment). A pool of chicken caecal content containing FQ-resistant E. coli obtained from chickens at slaughter age was used as inoculum along with a spiked FQ-susceptible Campylobacter jejuni strain isolated from broilers. Flu was added to one of the fermenters (Flu-fermenter) every 24 hours for two days to evaluate the selection and maintenance of FQ resistance over time, while the other served as a control (C-Fermenter). The experiment duration was 5 days. Samples were collected at three different time points: before, during and after Flu administration. Serial dilutions were plated on Butzler culture media with and without Flu (8mg/L) and enrofloxacin (4mg/L) and on MacConkey culture media with and without Flu (4mg/L) and enrofloxacin (1mg/L) to determine the proportion of resistant strains over time. Positive cultures were identified by mass spectrometry and matrix-assisted laser desorption/ionization (MALDI). A subset of the obtained isolates were used for Whole Genome Sequencing analysis. Over time, E. coli exhibited positive growth in both fermenters, while C. jejuni growth was detected up to day 3. The proportion of Flu-resistant E. coli strains recovered remained consistent over time after antibiotic selective pressure, while in the C-fermenter, a decrease was observed at day 5; a similar pattern was observed in the enrofloxacin-resistant E. coli strains. This suggests that Flu might play a role in the selection and persistence of enrofloxacin resistance, compared to C-fermenter, where enrofloxacin-resistant E. coli strains appear at a later time. Furthermore, positive growth was detected from both fermenters only on Butzler plates without antibiotics. A subset of C. jejuni strains from the Flu-fermenter revealed that those strains were susceptible to ciprofloxacin (MIC < 0.12 μg/mL). A selection of E. coli strains from both fermenters revealed the presence of plasmid-mediated quinolone resistance (PMQR) (qnr-B19) in only one strain from the C-fermenter belonging to sequence type (ST) 48, and in all from Flu-fermenter belonged to ST189. Our results showed that Flu selective impact on PMQR-positive E. coli strains, while no effect was observed in C. jejuni. Maintenance of Flu-resistance was correlated with antibiotic selective pressure. Further studies into antibiotic resistance gene transfer among commensal and zoonotic bacteria in the chicken caeca content may help to elucidate the resistance spread mechanisms.Keywords: fluoroquinolone-resistance, escherichia coli, campylobacter jejuni, in vitro model
Procedia PDF Downloads 6224 Sacidava and Its Role of Military Outpost in the Moesian Sector of the Danube Limes: Animal Food Resources and Landscape Reconstruction
Authors: Margareta Simina Stanc, Aurel Mototolea, Tiberiu Potarniche
Abstract:
Sacidava archeological site is located in Dobrudja region, Romania, on a hill on the right bank of the Danube - the Musait point, located at about 5 km north-east from Dunareni village. The place-name documents the fact that, prior to the Roman conquest, in the area, there was a Getic settlement. The location of the Sacidava was made possible by corroborating the data provided by the ancient sources with the epigraphic documents (the milial pillar during the time of Emperor Decius). The tegular findings attest that an infantry unit, cohors I Cilicum milliaria equitata, as well as detachments from Legio V Macedonica and Legio XI Claudia, were confined to Sacidava. During the period of the Dominion, the garrison of the fortification is the host of a cavalry unit: cuneus equitum scutariorum. In the immediate vicinity to the Roman fortress, to the east, were identified two other fortifications: a Getic settlement (4th-1st century B.C.) and an Early Medieval settlement (9th-10th century A.C.). The archaeological material recovered during the research is represented by ceramic forms such as amphoras, jugs, pots, cups, plates, to which are added oil lamps, some of them typologically new at the time of discovery. Local ceramic shapes were also founded, worked by hand or by wheel, considered un-Romanized or in the course of Romanization. During the time of the Principality, Sacidava it represented an important military outpost serving mainly the city of Tropaeum Traiani, controlling also the supply and transport on the Danube limes in the Moesic sector. This role will determine the development of the fortress and the appearance of extramuros civil structures, thus becoming an important landmark during the 5th-6th centuries A.C., becoming a representation of power of the Roman empire in an area of continuous conflict. During recent archaeological researches, faunal remains were recovered, and their analysis allowed to estimate the animal resources and subsistence practices (animal husbandry, hunting, fishing) in the settlement. The methodology was specific to archaeozoology, mainly consisting of anatomical, taxonomical, and taphonomical identifications, recording, and quantification of the data. The remains of domestic mammals have the highest proportion indicating the importance of animal husbandry; the predominant species are Bos taurus, Ovis aries/Capra hircus, and Sus domesticus. Fishing and hunting were of secondary importance in the subsistence economy of the community. Wild boar and the red deer were the most frequently hunted species. Just a few fish bones were recovered. Thus, the ancient city of Sacidava is proving to be an important element of cultural heritage of the south-eastern part of Romania, for whose conservation and enhancement efforts must be made, especially by landscape reconstruction.Keywords: archaeozoology, landscape reconstruction, limes, military outpost
Procedia PDF Downloads 32523 Biosurfactants Produced by Antarctic Bacteria with Hydrocarbon Cleaning Activity
Authors: Claudio Lamilla, Misael Riquelme, Victoria Saez, Fernanda Sepulveda, Monica Pavez, Leticia Barrientos
Abstract:
Biosurfactants are compounds synthesized by microorganisms that show various chemical structures, including glycolipids, lipopeptides, polysaccharide-protein complex, phospholipids, and fatty acids. These molecules have attracted attention in recent years due to the amphipathic nature of these compounds, which allows their application in various activities related to emulsification, foaming, detergency, wetting, dispersion and solubilization of hydrophobic compounds. Microorganisms that produce biosurfactants are ubiquitous, not only present in water, soil, and sediments but in extreme conditions of pH, salinity or temperature such as those present in Antarctic ecosystems. Due to this, it is of interest to study biosurfactants producing bacterial strains isolated from Antarctic environments, with the potential to be used in various biotechnological processes. The objective of this research was to characterize biosurfactants produced by bacterial strains isolated from Antarctic environments, with potential use in biotechnological processes for the cleaning of sites contaminated with hydrocarbons. The samples were collected from soils and sediments in the South Shetland Islands and the Antarctic Peninsula, during the Antarctic Research Expedition INACH 2016, from both pristine and human occupied areas (influenced). The bacteria isolation was performed from solid R2A, M1 and LB media. The selection of strains producing biosurfactants was done by hemolysis test on blood agar plates (5%) and blue agar (CTAB). From 280 isolates, it was determined that 10 bacterial strains produced biosurfactants after stimulation with different carbon sources. 16S rDNA taxonomic markers, using the universal primers 27F-1492R, were used to identify these bacterias. Biosurfactants production was carried out in 250 ml flasks using Bushnell Hass liquid culture medium enriched with different carbon sources (olive oil, glucose, glycerol, and hexadecane) during seven days under constant stirring at 20°C. Each cell-free supernatant was characterized by physicochemical parameters including drop collapse, emulsification and oil displacement, as well as stability at different temperatures, salinity, and pH. In addition, the surface tension of each supernatant was quantified using a tensiometer. The strains with the highest activity were selected, and the production of biosurfactants was stimulated in six liters of culture medium. Biosurfactants were extracted from the supernatants with chloroform methanol (2:1). These biosurfactants were tested against crude oil and motor oil, to evaluate their displacement activity (detergency). The characterization by physicochemical properties of 10 supernatants showed that 80% of them produced the drop collapse, 60% had stability at different temperatures, and 90% had detergency activity in motor and olive oil. The biosurfactants obtained from two bacterial strains showed a high activity of dispersion of crude oil and motor oil with halos superior to 10 cm. We can conclude that bacteria isolated from Antarctic soils and sediments provide biological material of high quality for the production of biosurfactants, with potential applications in the biotechnological industry, especially in hydrocarbons -contaminated areas such as petroleum.Keywords: antarctic, bacteria, biosurfactants, hydrocarbons
Procedia PDF Downloads 27922 Design and Development of Graphene Oxide Modified by Chitosan Nanosheets Showing pH-Sensitive Surface as a Smart Drug Delivery System for Control Release of Doxorubicin
Authors: Parisa Shirzadeh
Abstract:
Drug delivery systems in which drugs are traditionally used, multi-stage and at specified intervals by patients, do not meet the needs of the world's up-to-date drug delivery. In today's world, we are dealing with a huge number of recombinant peptide and protean drugs and analogues of hormones in the body, most of which are made with genetic engineering techniques. Most of these drugs are used to treat critical diseases such as cancer. Due to the limitations of the traditional method, researchers sought to find ways to solve the problems of the traditional method to a large extent. Following these efforts, controlled drug release systems were introduced, which have many advantages. Using controlled release of the drug in the body, the concentration of the drug is kept at a certain level, and in a short time, it is done at a higher rate. Graphene is a natural material that is biodegradable, non-toxic, and natural compared to carbon nanotubes; its price is lower than carbon nanotubes and is cost-effective for industrialization. On the other hand, the presence of highly effective surfaces and wide surfaces of graphene plates makes it more effective to modify graphene than carbon nanotubes. Graphene oxide is often synthesized using concentrated oxidizers such as sulfuric acid, nitric acid, and potassium permanganate based on Hummer 1 method. In comparison with the initial graphene, the resulting graphene oxide is heavier and has carboxyl, hydroxyl, and epoxy groups. Therefore, graphene oxide is very hydrophilic and easily dissolves in water and creates a stable solution. On the other hand, because the hydroxyl, carboxyl, and epoxy groups created on the surface are highly reactive, they have the ability to work with other functional groups such as amines, esters, polymers, etc. Connect and bring new features to the surface of graphene. In fact, it can be concluded that the creation of hydroxyl groups, Carboxyl, and epoxy and in fact graphene oxidation is the first step and step in creating other functional groups on the surface of graphene. Chitosan is a natural polymer and does not cause toxicity in the body. Due to its chemical structure and having OH and NH groups, it is suitable for binding to graphene oxide and increasing its solubility in aqueous solutions. Graphene oxide (GO) has been modified by chitosan (CS) covalently, developed for control release of doxorubicin (DOX). In this study, GO is produced by the hummer method under acidic conditions. Then, it is chlorinated by oxalyl chloride to increase its reactivity against amine. After that, in the presence of chitosan, the amino reaction was performed to form amide transplantation, and the doxorubicin was connected to the carrier surface by π-π interaction in buffer phosphate. GO, GO-CS, and GO-CS-DOX characterized by FT-IR, RAMAN, TGA, and SEM. The ability to load and release is determined by UV-Visible spectroscopy. The loading result showed a high capacity of DOX absorption (99%) and pH dependence identified as a result of DOX release from GO-CS nanosheet at pH 5.3 and 7.4, which show a fast release rate in acidic conditions.Keywords: graphene oxide, chitosan, nanosheet, controlled drug release, doxorubicin
Procedia PDF Downloads 12021 Strategies for the Optimization of Ground Resistance in Large Scale Foundations for Optimum Lightning Protection
Authors: Oibar Martinez, Clara Oliver, Jose Miguel Miranda
Abstract:
In this paper, we discuss the standard improvements which can be made to reduce the earth resistance in difficult terrains for optimum lightning protection, what are the practical limitations, and how the modeling can be refined for accurate diagnostics and ground resistance minimization. Ground resistance minimization can be made via three different approaches: burying vertical electrodes connected in parallel, burying horizontal conductive plates or meshes, or modifying the own terrain, either by changing the entire terrain material in a large volume or by adding earth-enhancing compounds. The use of vertical electrodes connected in parallel pose several practical limitations. In order to prevent loss of effectiveness, it is necessary to keep a minimum distance between each electrode, which is typically around five times larger than the electrode length. Otherwise, the overlapping of the local equipotential lines around each electrode reduces the efficiency of the configuration. The addition of parallel electrodes reduces the resistance and facilitates the measurement, but the basic parallel resistor formula of circuit theory will always underestimate the final resistance. Numerical simulation of equipotential lines around the electrodes overcomes this limitation. The resistance of a single electrode will always be proportional to the soil resistivity. The electrodes are usually installed with a backfilling material of high conductivity, which increases the effective diameter. However, the improvement is marginal, since the electrode diameter counts in the estimation of the ground resistance via a logarithmic function. Substances that are used for efficient chemical treatment must be environmentally friendly and must feature stability, high hygroscopicity, low corrosivity, and high electrical conductivity. A number of earth enhancement materials are commercially available. Many are comprised of carbon-based materials or clays like bentonite. These materials can also be used as backfilling materials to reduce the resistance of an electrode. Chemical treatment of soil has environmental issues. Some products contain copper sulfate or other copper-based compounds, which may not be environmentally friendly. Carbon-based compounds are relatively inexpensive and they do have very low resistivities, but they also feature corrosion issues. Typically, the carbon can corrode and destroy a copper electrode in around five years. These compounds also have potential environmental concerns. Some earthing enhancement materials contain cement, which, after installation acquire properties that are very close to concrete. This prevents the earthing enhancement material from leaching into the soil. After analyzing different configurations, we conclude that a buried conductive ring with vertical electrodes connected periodically should be the optimum baseline solution for the grounding of a large size structure installed on a large resistivity terrain. In order to show this, a practical example is explained here where we simulate the ground resistance of a conductive ring buried in a terrain with a resistivity in the range of 1 kOhm·m.Keywords: grounding improvements, large scale scientific instrument, lightning risk assessment, lightning standards
Procedia PDF Downloads 13920 Delineation of Different Geological Interfaces Beneath the Bengal Basin: Spectrum Analysis and 2D Density Modeling of Gravity Data
Authors: Md. Afroz Ansari
Abstract:
The Bengal basin is a spectacular example of a peripheral foreland basin formed by the convergence of the Indian plate beneath the Eurasian and Burmese plates. The basin is embraced on three sides; north, west and east by different fault-controlled tectonic features whereas released in the south where the rivers are drained into the Bay of Bengal. The Bengal basin in the eastern part of the Indian subcontinent constitutes the largest fluvio-deltaic to shallow marine sedimentary basin in the world today. This continental basin coupled with the offshore Bengal Fan under the Bay of Bengal forms the biggest sediment dispersal system. The continental basin is continuously receiving the sediments by the two major rivers Ganga and Brahmaputra (known as Jamuna in Bengal), and Meghna (emerging from the point of conflux of the Ganga and Brahmaputra) and large number of rain-fed, small tributaries originating from the eastern Indian Shield. The drained sediments are ultimately delivered into the Bengal fan. The significance of the present study is to delineate the variations in thicknesses of the sediments, different crustal structures, and the mantle lithosphere throughout the onshore-offshore Bengal basin. In the present study, the different crustal/geological units and the shallower mantle lithosphere were delineated by analyzing the Bouguer Gravity Anomaly (BGA) data along two long traverses South-North (running from Bengal fan cutting across the transition offshore-onshore of the Bengal basin and intersecting the Main Frontal Thrust of India-Himalaya collision zone in Sikkim-Bhutan Himalaya) and West-East (running from the Peninsular Indian Shield across the Bengal basin to the Chittagong–Tripura Fold Belt). The BGA map was derived from the analysis of topex data after incorporating Bouguer correction and all terrain corrections. The anomaly map was compared with the available ground gravity data in the western Bengal basin and the sub-continents of India for consistency of the data used. Initially, the anisotropy associated with the thicknesses of the different crustal units, crustal interfaces and moho boundary was estimated through spectral analysis of the gravity data with varying window size over the study area. The 2D density sections along the traverses were finalized after a number of iterations with the acceptable root mean square (RMS) errors. The estimated thicknesses of the different crustal units and dips of the Moho boundary along both the profiles are consistent with the earlier results. Further the results were encouraged by examining the earthquake database and focal mechanism solutions for better understanding the geodynamics. The earthquake data were taken from the catalogue of US Geological Survey, and the focal mechanism solutions were compiled from the Harvard Centroid Moment Tensor Catalogue. The concentrations of seismic events at different depth levels are not uncommon. The occurrences of earthquakes may be due to stress accumulation as a result of resistance from three sides.Keywords: anisotropy, interfaces, seismicity, spectrum analysis
Procedia PDF Downloads 27419 Development and Evaluation of Surgical Sutures Coated with Antibiotic Loaded Gold Nanoparticles
Authors: Sunitha Sampathi, Pankaj Kumar Tiriya, Sonia Gera, Sravanthi Reddy Pailla, V. Likhitha, A. J. Maruthi
Abstract:
Surgical site infections (SSIs) are the most common nosocomial infections localized at the incision site. With an estimated 27 million surgical procedures each year in USA, approximately 2-5% rate of SSIs are predicted to occur annually. SSIs are treated with antibiotic medication. Current trend suggest that the direct drug delivery from the suture to the scared tissue can improve patient comfort and wound recovery. For that reason coating the surface of the medical device such as suture and catguts with broad spectrum antibiotics can prevent the formation of bactierial colonies with out comprimising the mechanical properties of the sutures.Hence, the present study was aimed to develop and evaluate a surgical suture coated with an antibiotic Ciprofloxacin hydrochloride loaded on gold nanoparticles. Gold nanoparticles were synthesized by chemical reduction method and conjugated with ciprofloxacin using Polyvinylpyrolidone as stabilizer and gold as carrier. Ciprofloxacin conjugated gold nanoparticles were coated over an absorbable surgical suture made of Polyglactan using sodium alginate as an immobilising agent by slurry dipping technique. The average particle size and Polydispersity Index of drug conjugated gold NPs were found to be 129±2.35 nm and 0.243±0.36 respectively. Gold nanoparticles are characterized by UV-Vis absorption spectroscopy, Fourier Transform Infrared Spectroscopy (FT-IR), Scanning electron microscopy and Transmission electron microscopy. FT-IR revealed that there is no chemical interaction between drug and polymer. Antimicrobial activity for coated sutures was evaluated by disc diffusion method on culture plates of both gram negative (E-coli) and gram positive bacteria (Staphylococcus aureus) and results found to be satisfactory. In vivo studies for coated sutures was performed on Swiss albino mice and histological evaluation of intestinal wound healing parameters such as wound edges in mucosa, muscularis, presence of necrosis, exudates, granulation tissue, granulocytes, macrophages, restoration, and repair of mucosal epithelium and muscularis propria on day 7 after surgery were studied. The control animal group, sutured with plain suture (uncoated suture) showed signs of restoration and repair, but presence of necrosis, heamorraghic infiltration and granulation tissue was still noticed. Whereas the animal group treated with ciprofloxacin and ciprofloxacin gold nanoparticle coated sutures has shown promising decrease in terms of haemorraghic infiltration, granulation tissue, necrosis and better repaired muscularis layers on comparision with plain coated sutures indicating faster rate of repair and less chance of sepsis. Hence coating of sutures with broad spectrum antibiotics can be an alternate technique to reduce SSIs.Keywords: ciprofloxacin hydrochloride, gold nanoparticles, surgical site infections, sutures
Procedia PDF Downloads 25618 Analysis of Fish Preservation Methods for Traditional Fishermen Boat
Authors: Kusno Kamil, Andi Asni, Sungkono
Abstract:
According to a report of the World Food and Agriculture Agency (FAO): the post-harvest fish losses in Indonesia reaches 30 percent from 170 trillion rupiahs of marine fisheries reserves, then the potential loss reaches 51 trillion rupiahs (end of 2016 data). This condition is caused by traditionally vulnerable fish catches damaged due to disruption of the cold chain of preservation. The physical and chemical changes in fish flesh increase rapidly, especially if exposed to the scorching heat in the middle of the sea, exacerbated by the low awareness of catch hygiene; many unclean catches which contain blood are often treated without special attention and mixed with freshly caught fish, thereby increasing the potential for faster fish spoilage. This background encourages research on traditional fisherman catch preservation methods that aim to find the best and most affordable methods and/or combinations of fish preservation methods so that they can help fishermen increase their fishing duration without worrying that their catch will be damaged, thereby reducing their economic value when returning to the beach to sell their catches. This goal is expected to be achieved through experimental methods of treatment of fresh fish catches in containers with the addition of anti-bacterial copper, liquid smoke solution, and the use of vacuum containers. The other three treatments combined the three previous treatment variables with an electrically powered cooler (temperature 0~4 ᵒC). As a control specimen, the untreated fresh fish (placed in the open air and in the refrigerator) were also prepared for comparison for 1, 3, and 6 days. To test the level of freshness of fish for each treatment, physical observations were used, which were complemented by tests for bacterial content in a trusted laboratory. The content of copper (Cu) in fish meat (which is suspected of having a negative impact on consumers) was also part of the examination on the 6th day of experimentation. The results of physical observations on the test specimens (organoleptic method) showed that preservation assisted by the use of coolers was still better for all treatment variables. The specimens, without cooling, sequentially showed that the best preservation effectiveness was the addition of copper plates, the use of vacuum containers, and then liquid smoke immersion. Especially for liquid smoke, soaking for 6 days of preservation makes the fish meat soft and easy to crumble, even though it doesn't have a bad odor. The visual observation was then complemented by the results of testing the amount of growth (or retardation) of putrefactive bacteria in each treatment of test specimens within similar observation periods. Laboratory measurements report that the minimum amount of putrefactive bacteria achieved by preservation treatment combining cooler with liquid smoke (sample A+), then cooler only (D+), copper layer inside cooler (B+), vacuum container inside cooler (C+), respectively. Other treatments in open air produced a hundred times more putrefactive bacteria. In addition, treatment of the copper layer contaminated the preserved fresh fish more than a thousand times bigger compared to the initial amount, from 0.69 to 1241.68 µg/g.Keywords: fish, preservation, traditional, fishermen, boat
Procedia PDF Downloads 7017 Finite Element Analysis of Hollow Structural Shape (HSS) Steel Brace with Infill Reinforcement under Cyclic Loading
Authors: Chui-Hsin Chen, Yu-Ting Chen
Abstract:
Special concentrically braced frames is one of the seismic load resisting systems, which dissipates seismic energy when bracing members within the frames undergo yielding and buckling while sustaining their axial tension and compression load capacities. Most of the inelastic deformation of a buckling bracing member concentrates in the mid-length region. While experiencing cyclic loading, the region dissipates most of the seismic energy being input into the frame. Such a concentration makes the braces vulnerable to failure modes associated with low-cycle fatigue. In this research, a strategy to improve the cyclic behavior of the conventional steel bracing member is proposed by filling the Hollow Structural Shape (HSS) member with reinforcement. It prevents the local section from concentrating large plastic deformation caused by cyclic loading. The infill helps spread over the plastic hinge region into a wider area hence postpone the initiation of local buckling or even the rupture of the braces. The finite element method is introduced to simulate the complicated bracing member behavior and member-versus-infill interaction under cyclic loading. Fifteen 3-D-element-based models are built by ABAQUS software. The verification of the FEM model is done with unreinforced (UR) HSS bracing members’ cyclic test data and aluminum honeycomb plates’ bending test data. Numerical models include UR and filled HSS bracing members with various compactness ratios based on the specification of AISC-2016 and AISC-1989. The primary variables to be investigated include the relative bending stiffness and the material of the filling reinforcement. The distributions of von Mises stress and equivalent plastic strain (PEEQ) are used as indices to tell the strengths and shortcomings of each model. The result indicates that the change of relative bending stiffness of the infill is much more influential than the change of material in use to increase the energy dissipation capacity. Strengthen the relative bending stiffness of the reinforcement results in additional energy dissipation capacity to the extent of 24% and 46% in model based on AISC-2016 (16-series) and AISC-1989 (89-series), respectively. HSS members with infill show growth in 𝜂Local Buckling, normalized energy cumulated until the happening of local buckling, comparing to UR bracing members. The 89-series infill-reinforced members have more energy dissipation capacity than unreinforced 16-series members by 117% to 166%. The flexural rigidity of infills should be less than 29% and 13% of the member section itself for 16-series and 89-series bracing members accordingly, thereby guaranteeing the spread over of the plastic hinge and the happening of it within the reinforced section. If the parameters are properly configured, the ductility, energy dissipation capacity, and fatigue-life of HSS SCBF bracing members can be improved prominently by the infill-reinforced method.Keywords: special concentrically braced frames, HSS, cyclic loading, infill reinforcement, finite element analysis, PEEQ
Procedia PDF Downloads 9316 Effect of Non-Thermal Plasma, Chitosan and Polymyxin B on Quorum Sensing Activity and Biofilm of Pseudomonas aeruginosa
Authors: Alena Cejkova, Martina Paldrychova, Jana Michailidu, Olga Matatkova, Jan Masak
Abstract:
Increasing the resistance of pathogenic microorganisms to many antibiotics is a serious threat to the treatment of infectious diseases and cleaning medical instruments. It should be added that the resistance of microbial populations growing in biofilms is often up to 1000 times higher compared to planktonic cells. Biofilm formation in a number of microorganisms is largely influenced by the quorum sensing regulatory mechanism. Finding external factors such as natural substances or physical processes that can interfere effectively with quorum sensing signal molecules should reduce the ability of the cell population to form biofilm and increase the effectiveness of antibiotics. The present work is devoted to the effect of chitosan as a representative of natural substances with anti-biofilm activity and non- thermal plasma (NTP) alone or in combination with polymyxin B on biofilm formation of Pseudomonas aeruginosa. Particular attention was paid to the influence of these agents on the level of quorum sensing signal molecules (acyl-homoserine lactones) during planktonic and biofilm cultivations. Opportunistic pathogenic strains of Pseudomonas aeruginosa (DBM 3081, DBM 3777, ATCC 10145, ATCC 15442) were used as model microorganisms. Cultivations of planktonic and biofilm populations in 96-well microtiter plates on horizontal shaker were used for determination of antibiotic and anti-biofilm activity of chitosan and polymyxin B. Biofilm-growing cells on titanium alloy, which is used for preparation of joint replacement, were exposed to non-thermal plasma generated by cometary corona with a metallic grid for 15 and 30 minutes. Cultivation followed in fresh LB medium with or without chitosan or polymyxin B for next 24 h. Biofilms were quantified by crystal violet assay. Metabolic activity of the cells in biofilm was measured using MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) colorimetric test based on the reduction of MTT into formazan by the dehydrogenase system of living cells. Activity of N-acyl homoserine lactones (AHLs) compounds involved in the regulation of biofilm formation was determined using Agrobacterium tumefaciens strain harboring a traG::lacZ/traR reporter gene responsive to AHLs. The experiments showed that both chitosan and non-thermal plasma reduce the AHLs level and thus the biofilm formation and stability. The effectiveness of both agents was somewhat strain dependent. During the eradication of P. aeruginosa DBM 3081 biofilm on titanium alloy induced by chitosan (45 mg / l) there was an 80% decrease in AHLs. Applying chitosan or NTP on the P. aeruginosa DBM 3777 biofilm did not cause a significant decrease in AHLs, however, in combination with both (chitosan 55 mg / l and NTP 30 min), resulted in a 70% decrease in AHLs. Combined application of NTP and polymyxin B allowed reduce antibiotic concentration to achieve the same level of AHLs inhibition in P. aeruginosa ATCC 15442. The results shown that non-thermal plasma and chitosan have considerable potential for the eradication of highly resistant P. aeruginosa biofilms, for example on medical instruments or joint implants.Keywords: anti-biofilm activity, chitosan, non-thermal plasma, opportunistic pathogens
Procedia PDF Downloads 20015 Brittle Fracture Tests on Steel Bridge Bearings: Application of the Potential Drop Method
Authors: Natalie Hoyer
Abstract:
Usually, steel structures are designed for the upper region of the steel toughness-temperature curve. To address the reduced toughness properties in the temperature transition range, additional safety assessments based on fracture mechanics are necessary. These assessments enable the appropriate selection of steel materials to prevent brittle fracture. In this context, recommendations were established in 2011 to regulate the appropriate selection of steel grades for bridge bearing components. However, these recommendations are no longer fully aligned with more recent insights: Designing bridge bearings and their components in accordance with DIN EN 1337 and the relevant sections of DIN EN 1993 has led to an increasing trend of using large plate thicknesses, especially for long-span bridges. However, these plate thicknesses surpass the application limits specified in the national appendix of DIN EN 1993-2. Furthermore, compliance with the regulations outlined in DIN EN 1993-1-10 regarding material toughness and through-thickness properties requires some further modifications. Therefore, these standards cannot be directly applied to the material selection for bearings without additional information. In addition, recent findings indicate that certain bridge bearing components are subjected to high fatigue loads, necessitating consideration in structural design, material selection, and calculations. To address this issue, the German Center for Rail Traffic Research initiated a research project aimed at developing a proposal to enhance the existing standards. This proposal seeks to establish guidelines for the selection of steel materials for bridge bearings to prevent brittle fracture, particularly for thick plates and components exposed to specific fatigue loads. The results derived from theoretical analyses, including finite element simulations and analytical calculations, are verified through component testing on a large-scale. During these large-scale tests, where a brittle failure is deliberately induced in a bearing component, an artificially generated defect is introduced into the specimen at the predetermined hotspot. Subsequently, a dynamic load is imposed until the crack initiation process transpires, replicating realistic conditions akin to a sharp notch resembling a fatigue crack. To stop the action of the dynamic load in time, it is important to precisely determine the point at which the crack size transitions from stable crack growth to unstable crack growth. To achieve this, the potential drop measurement method is employed. The proposed paper informs about the choice of measurement method (alternating current potential drop (ACPD) or direct current potential drop (DCPD)), presents results from correlations with created FE models, and may proposes a new approach to introduce beach marks into the fracture surface within the framework of potential drop measurement.Keywords: beach marking, bridge bearing design, brittle fracture, design for fatigue, potential drop
Procedia PDF Downloads 42