Search results for: orthopedic applications
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6288

Search results for: orthopedic applications

5808 A Filtering Algorithm for a Nonlinear State-Space Model

Authors: Abdullah Eqal Al Mazrooei

Abstract:

Kalman filter is a famous algorithm that utilizes to estimate the state in the linear systems. It has numerous applications in technology and science. Since of the most of applications in real life can be described by nonlinear systems. So, Kalman filter does not work with the nonlinear systems because it is suitable to linear systems only. In this work, a nonlinear filtering algorithm is presented which is suitable to use with the special kinds of nonlinear systems. This filter generalizes the Kalman filter. This means that this filter also can be used for the linear systems. Our algorithm depends on a special linearization of the second degree. We introduced the nonlinear algorithm with a bilinear state-space model. A simulation example is presented to illustrate the efficiency of the algorithm.

Keywords: Kalman filter, filtering algorithm, nonlinear systems, state-space model

Procedia PDF Downloads 355
5807 Microwave Assisted Growth of Varied Phases and Morphologies of Vanadium Oxides Nanostructures: Structural and Optoelectronic Properties

Authors: Issam Derkaoui, Mohammed Khenfouch, Bakang M. Mothudi, Malik Maaza, Izeddine Zorkani, Anouar Jorio

Abstract:

Transition metal oxides nanoparticles with different morphologies have attracted a lot of attention recently owning to their distinctive geometries, and demonstrated promising electrical properties for various applications. In this paper, we discuss the time and annealing effects on the structural and electrical properties of vanadium oxides nanoparticles (VO-NPs) prepared by microwave method. In this sense, transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman Spectroscopy, Ultraviolet-visible absorbance spectra (Uv-Vis) and electrical conductivity were investigated. Hence, the annealing state and the time are two crucial parameters for the improvement of the optoelectronic properties. The use of these nanostructures is promising way for the development of technological applications especially for energy storage devices.

Keywords: Vanadium oxide, Microwave, Electrical conductivity, Optoelectronic properties

Procedia PDF Downloads 176
5806 [Keynote Talk]: Evidence Fusion in Decision Making

Authors: Mohammad Abdullah-Al-Wadud

Abstract:

In the current era of automation and artificial intelligence, different systems have been increasingly keeping on depending on decision-making capabilities of machines. Such systems/applications may range from simple classifiers to sophisticated surveillance systems based on traditional sensors and related equipment which are becoming more common in the internet of things (IoT) paradigm. However, the available data for such problems are usually imprecise and incomplete, which leads to uncertainty in decisions made based on traditional probability-based classifiers. This requires a robust fusion framework to combine the available information sources with some degree of certainty. The theory of evidence can provide with such a method for combining evidence from different (may be unreliable) sources/observers. This talk will address the employment of the Dempster-Shafer Theory of evidence in some practical applications.

Keywords: decision making, dempster-shafer theory, evidence fusion, incomplete data, uncertainty

Procedia PDF Downloads 405
5805 Design of Multiband Microstrip Antenna Using Stepped Cut Method for WLAN/WiMAX and C/Ku-Band Applications

Authors: Ahmed Boutejdar, Bishoy I. Halim, Soumia El Hani, Larbi Bellarbi, Amal Afyf

Abstract:

In this paper, a planar monopole antenna for multi band applications is proposed. The antenna structure operates at three operating frequencies at 3.7, 6.2, and 13.5 GHz which cover different communication frequency ranges. The antenna consists of a quasi-modified rectangular radiating patch with a partial ground plane and two parasitic elements (open-loop-ring resonators) to serve as coupling-bridges. A stepped cut at lower corners of the radiating patch and the partial ground plane are used, to achieve the multiband features. The proposed antenna is manufactured on the FR4 substrate and is simulated and optimized using High Frequency Simulation System (HFSS). The antenna topology possesses an area of 30.5 x 30 x 1.6 mm3. The measured results demonstrate that the candidate antenna has impedance bandwidths for 10 dB return loss and operates from 3.80 – 3.90 GHz, 4.10 – 5.20 GHz, 11.2 – 11.5 GHz and from 12.5 – 14.0 GHz, which meet the requirements of the wireless local area network (WLAN), worldwide interoperability for microwave access (WiMAX), C- (Uplink) and Ku- (Uplink) band applications. Acceptable agreement is obtained between measurement and simulation results. Experimental results show that the antenna is successfully simulated and measured, and the tri-band antenna can be achieved by adjusting the lengths of the three elements and it gives good gains across all the operation bands.

Keywords: planar monopole antenna, FR4 substrate, HFSS, WLAN, WiMAX, C and Ku

Procedia PDF Downloads 172
5804 Hibiscus Sabdariffa Extracts: A Sustainable and Eco-Friendly Resource for Multifunctional Cellulosic Fibers

Authors: Mohamed Rehan, Gamil E. Ibrahim, Mohamed S. Abdel-Aziz, Shaimaa R. Ibrahim, Tawfik A. Khattab

Abstract:

The utilization of natural products in finishing textiles toward multifunctional applications without side effects is an extremely motivating goal. Hibiscus sabdariffa usually has been used for many traditional medicine applications. To develop an additional use for Hibiscus sabdariffa, an extraction of bioactive compounds from Hibiscus sabdariffa followed by finishing on cellulosic fibers was designed to cleaner production of the value-added textiles fibers with multifunctional applications. The objective of this study is to explore, identify, and evaluate the bioactive compound extracted from Hibiscus sabdariffa by different solvent via ultrasonic technique as a potential eco-friendly agent for multifunctional cellulosic fabrics via two approaches. In the first approach, Hibiscus sabdariffa extract was used as a source of sustainable eco-friendly for simultaneous coloration and multi-finishing of cotton fabrics via in situ incorporations of nanoparticles (silver and metal oxide). In the second approach, the micro-capsulation of Hibiscus sabdariffa extracts was followed by coating onto cotton gauze to introduce multifunctional healthcare applications. The effect of the solvent type was accelerated by ultrasonic on the phytochemical, antioxidant, and volatile compounds of Hibiscus sabdariffa. The surface morphology and elemental content of the treated fabrics were explored using Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), and energy-dispersive X-ray spectroscopy (EDX). The multifunctional properties of treated fabrics, including coloration, sensor properties and protective properties against pathogenic microorganisms and UV radiation as well as wound healing property were evaluated. The results showed that the water, as well as ethanol/water, was selected as a solvent for the extraction of natural compounds from Hibiscus Sabdariffa with high in extract yield, total phenolic contents, flavonoid contents, and antioxidant activity. These natural compounds were utilized to enhance cellulosic fibers functionalization by imparting faint/dark red color, antimicrobial against different organisms, and antioxidants as well as UV protection properties. The encapsulation of Hibiscus Sabdariffa extracts, as well as wound healing, is under consideration and evaluation. As a result, the current study presents a sustainable and eco-friendly approach to design cellulosic fabrics for multifunctional medical and healthcare applications.

Keywords: cellulosic fibers, Hibiscus sabdariffa extract, multifunctional application, nanoparticles

Procedia PDF Downloads 126
5803 Heat and Radiation Influence on Granite-Galena Concrete for Nuclear Shielding Applications

Authors: Mohamed A. Safan, Walid Khalil, Amro Fathalla

Abstract:

Advances in concrete technology and implementation of new materials made it possible to produce special types of concrete for different structural applications. In this research, granite and galena were incorporated in different concrete mixes to obtain high performance concrete for shielding against gamma radiations in nuclear facilities. Chemically prepared industrial galena was used to replace different volume fractions of the fine aggregate. The test specimens were exposed to different conditions of heating cycles and irradiation. The exposed specimens and counterpart unexposed specimens were tested to evaluate the density, the compressive strength and the attenuation coefficient. The proposed mixes incorporating galena showed better performance in terms of compressive strength and gamma attenuation capacity, especially after the exposure to different heating cycles.

Keywords: concrete, galena, shielding, attenuation, radiation

Procedia PDF Downloads 439
5802 Inelastic and Elastic Taping in Plantar Pressure of Runners Pronators: Clinical Trial

Authors: Liana Gomide, Juliana Rodrigues

Abstract:

The morphology of the foot defines its mode of operation and a biomechanical reform indispensable for a symmetrical distribution of plantar pressures in order not to overload some of its components in isolation. High plantar pressures at specific points in the foot may be a causal factor in several orthopedic disorders that affect the feet such as pain and stress fracture. With digital baro-podometry equipment one can observe an intensity of pressures along the entire foot and quantify some of the movements, such as a subtalar pronation present in the midfoot region. Although, they are involved in microtraumas. In clinical practice, excessive movement has been limited with the use of different taping techniques applied on the plantar arch. Thus, the objective of the present study was to analyze and compare the influence of the inelastic and elastic taping on the distribution of plantar pressure of runners pronators. This is a randomized clinical trial and blind-crossover. Twenty (20) male subjects, mean age 33 ± 7 years old, mean body mass of 71 ± 7 kg, mean height of 174 ± 6 cm, were included in the study. A data collection was carried out by a single research through barop-odometry equipment - Tekscan, model F-scan mobile. The tests were performed at three different times. In the first, an initial barop-odometric evaluation was performed, without a bandage application, with edges at a speed of 9.0 km/h. In the second and third moments, the inelastic or elastic taping was applied consecutively, according to the definition defined in the randomization. As results, it was observed that both as inelastic and elastic taping, provided significant reductions in contact pressure and peak pressure values when compared to the moment without a taping. However, an elastic taping was more effective in decreasing contact pressure (no bandage = 714 ± 201, elastic taping = 690 ± 210 and inelastic taping = 716 ± 180) and no peak pressure in the midfoot region (no bandage = 1490 ± 42, elastic taping = 1273 ± 323 and inelastic taping = 1487 ± 437). It is possible to conclude that it is an elastic taping provided by pressure in the middle region, thereby reducing the subtalar pronunciation event during the run.

Keywords: elastic taping, inelastic taping, running, subtalar pronation

Procedia PDF Downloads 129
5801 Automatic Extraction of Water Bodies Using Whole-R Method

Authors: Nikhat Nawaz, S. Srinivasulu, P. Kesava Rao

Abstract:

Feature extraction plays an important role in many remote sensing applications. Automatic extraction of water bodies is of great significance in many remote sensing applications like change detection, image retrieval etc. This paper presents a procedure for automatic extraction of water information from remote sensing images. The algorithm uses the relative location of R-colour component of the chromaticity diagram. This method is then integrated with the effectiveness of the spatial scale transformation of whole method. The whole method is based on water index fitted from spectral library. Experimental results demonstrate the improved accuracy and effectiveness of the integrated method for automatic extraction of water bodies.

Keywords: feature extraction, remote sensing, image retrieval, chromaticity, water index, spectral library, integrated method

Procedia PDF Downloads 360
5800 Optimization the Conditions of Electrophoretic Deposition Fabrication of Graphene-Based Electrode to Consider Applications in Electro-Optical Sensors

Authors: Sepehr Lajevardi Esfahani, Shohre Rouhani, Zahra Ranjbar

Abstract:

Graphene has gained much attention owing to its unique optical and electrical properties. Charge carriers in graphene sheets (GS) carry out a linear dispersion relation near the Fermi energy and behave as massless Dirac fermions resulting in unusual attributes such as the quantum Hall effect and ambipolar electric field effect. It also exhibits nondispersive transport characteristics with an extremely high electron mobility (15000 cm2/(Vs)) at room temperature. Recently, several progresses have been achieved in the fabrication of single- or multilayer GS for functional device applications in the fields of optoelectronic such as field-effect transistors ultrasensitive sensors and organic photovoltaic cells. In addition to device applications, graphene also can serve as reinforcement to enhance mechanical, thermal, or electrical properties of composite materials. Electrophoretic deposition (EPD) is an attractive method for development of various coatings and films. It readily applied to any powdered solid that forms a stable suspension. The deposition parameters were controlled in various thicknesses. In this study, the graphene electrodeposition conditions were optimized. The results were obtained from SEM, Ohm resistance measuring technique and AFM characteristic tests. The minimum sheet resistance of electrodeposited reduced graphene oxide layers is achieved at conditions of 2 V in 10 s and it is annealed at 200 °C for 1 minute.

Keywords: electrophoretic deposition (EPD), graphene oxide (GO), electrical conductivity, electro-optical devices

Procedia PDF Downloads 169
5799 Evaluating the Tracking Abilities of Microsoft HoloLens-1 for Small-Scale Industrial Processes

Authors: Kuhelee Chandel, Julia Åhlén, Stefan Seipel

Abstract:

This study evaluates the accuracy of Microsoft HoloLens (Version 1) for small-scale industrial activities, comparing its measurements to ground truth data from a Kuka Robotics arm. Two experiments were conducted to assess its position-tracking capabilities, revealing that the HoloLens device is effective for measuring the position of dynamic objects with small dimensions. However, its precision is affected by the velocity of the trajectory and its position within the device's field of view. While the HoloLens device may be suitable for small-scale tasks, its limitations for more complex and demanding applications requiring high precision and accuracy must be considered. The findings can guide the use of HoloLens devices in industrial applications and contribute to the development of more effective and reliable position-tracking systems.

Keywords: augmented reality (AR), Microsoft HoloLens, object tracking, industrial processes, manufacturing processes

Procedia PDF Downloads 107
5798 Combine Resection of Talocalcaneal Tarsal Coalition and Calcaneal Lengthening Osteotomy. Short-to-Intermediate Term Results

Authors: Naum Simanovsky, Vladimir Goldman, Michael Zaidman

Abstract:

Background: The optimal algorithm for the management of symptomatic tarsal coalition is still under discussion in pediatric literature. It's debatable what surgical steps are essential to achieve the best outcome. Method: The investigators retrospectively reviewed the records of twelve patients with symptomatic tarsal coalition that were treated operatively between 2017 and 2019. Only painful flat feet were operated. Two patients were excluded from the study due to lack of sufficient follow-up. Ten of eleven feet were treated with the combination of calcaneal lengthening osteotomy (CLO) and resection of coalition (RC). Only one foot was operated with CLO alone. In half of our patients, Achilles lengthening was performed. For two children, medial plication was added. Short leg cast was applied to all children for 6-8 weeks, and soft shoe insoles for medial arch support were prescribed after. Demographic, clinical, and radiographic records were reviewed. The outcome was evaluated using American Orthopedic Foot and Ankle Society (AOFAS) Ankle Hindfoot Score. Results: There were seven boys and three girls. The mean age at the time of surgery was 13.9 (range 12 to 17) years, and the mean follow-up was 18 (range 8 to 34) months. The early complications included one superficial wound infection and dehiscence. Late complication includes two children with residual forefoot supination. None of our patients required additional operations during the follow-up period. All feet achieved complete deformity correction or dramatic improvement. In the last follow-up, seven feet were painless, and four children had some mild pain after intensive activities. All feet achieved excellent and good scoring on AOFAS. Conclusions: Many patients with talocalcaneal coalition also have rigid or stiff, painful, flat feet. For these patients, the resection of coalition with concomitant CLO can be safely recommended.

Keywords: Tarsal coalition, calcaneal lengthening osteotomy., flat foot, coalition resection

Procedia PDF Downloads 49
5797 Novel Coprocessor for DNA Sequence Alignment in Resequencing Applications

Authors: Atef Ibrahim, Hamed Elsimary, Abdullah Aljumah, Fayez Gebali

Abstract:

This paper presents a novel semi-systolic array architecture for an optimized parallel sequence alignment algorithm. This architecture has the advantage that it can be modified to be reused for multiple pass processing in order to increase the number of processing elements that can be packed into a single FPGA and to increase the number of sequences that can be aligned in parallel in a single FPGA. This resolves the potential problem of many FPGA resources left unused for designs that have large values of short read length. When using the previously published conventional hardware design. FPGA implementation results show that, for large values of short read lengths (M>128), the proposed design has a slightly higher speed up and FPGA utilization over the the conventional one.

Keywords: bioinformatics, genome sequence alignment, re-sequencing applications, systolic array

Procedia PDF Downloads 506
5796 Review of Theories and Applications of Genetic Programing in Sediment Yield Modeling

Authors: Adesoji Tunbosun Jaiyeola, Josiah Adeyemo

Abstract:

Sediment yield can be considered to be the total sediment load that leaves a drainage basin. The knowledge of the quantity of sediments present in a river at a particular time can lead to better flood capacity in reservoirs and consequently help to control over-bane flooding. Furthermore, as sediment accumulates in the reservoir, it gradually loses its ability to store water for the purposes for which it was built. The development of hydrological models to forecast the quantity of sediment present in a reservoir helps planners and managers of water resources systems, to understand the system better in terms of its problems and alternative ways to address them. The application of artificial intelligence models and technique to such real-life situations have proven to be an effective approach of solving complex problems. This paper makes an extensive review of literature relevant to the theories and applications of evolutionary algorithms, and most especially genetic programming. The successful applications of genetic programming as a soft computing technique were reviewed in sediment modelling and other branches of knowledge. Some fundamental issues such as benchmark, generalization ability, bloat and over-fitting and other open issues relating to the working principles of GP, which needs to be addressed by the GP community were also highlighted. This review aim to give GP theoreticians, researchers and the general community of GP enough research direction, valuable guide and also keep all stakeholders abreast of the issues which need attention during the next decade for the advancement of GP.

Keywords: benchmark, bloat, generalization, genetic programming, over-fitting, sediment yield

Procedia PDF Downloads 422
5795 Brain-Computer Interface Based Real-Time Control of Fixed Wing and Multi-Rotor Unmanned Aerial Vehicles

Authors: Ravi Vishwanath, Saumya Kumaar, S. N. Omkar

Abstract:

Brain-computer interfacing (BCI) is a technology that is almost four decades old, and it was developed solely for the purpose of developing and enhancing the impact of neuroprosthetics. However, in the recent times, with the commercialization of non-invasive electroencephalogram (EEG) headsets, the technology has seen a wide variety of applications like home automation, wheelchair control, vehicle steering, etc. One of the latest developed applications is the mind-controlled quadrotor unmanned aerial vehicle. These applications, however, do not require a very high-speed response and give satisfactory results when standard classification methods like Support Vector Machine (SVM) and Multi-Layer Perceptron (MLPC). Issues are faced when there is a requirement for high-speed control in the case of fixed-wing unmanned aerial vehicles where such methods are rendered unreliable due to the low speed of classification. Such an application requires the system to classify data at high speeds in order to retain the controllability of the vehicle. This paper proposes a novel method of classification which uses a combination of Common Spatial Paradigm and Linear Discriminant Analysis that provides an improved classification accuracy in real time. A non-linear SVM based classification technique has also been discussed. Further, this paper discusses the implementation of the proposed method on a fixed-wing and VTOL unmanned aerial vehicles.

Keywords: brain-computer interface, classification, machine learning, unmanned aerial vehicles

Procedia PDF Downloads 258
5794 Light Weight Fly Ash Based Composite Material for Thermal Insulation Applications

Authors: Bharath Kenchappa, Kunigal Shivakumar

Abstract:

Lightweight, low thermal conductivity and high temperature resistant materials or the system with moderate mechanical properties and capable of taking high heating rates are needed in both commercial and military applications. A single material with these attributes is very difficult to find and one needs to come with innovative ideas to make such material system using what is available. To bring down the cost of the system, one has to be conscious about the cost of basic materials. Such a material system can be called as the thermal barrier system. This paper focuses on developing, testing and characterization of material system for thermal barrier applications. The material developed is porous, low density, low thermal conductivity of 0.1062 W/m C and glass transition temperature about 310 C. Also, the thermal properties of the developed material was measured in both longitudinal and thickness direction to highlight the fact that the material shows isotropic behavior. The material is called modified Eco-Core which uses only less than 9% weight of high-char resin in the composite. The filler (reinforcing material) is a component of fly ash called Cenosphere, they are hollow micro-bubbles made of ceramic materials. Special mixing-technique is used to surface coat the fillers with a thin layer of resin to develop a point-to-point contact of particles. One could use commercial ceramic micro-bubbles instead of Cenospheres, but it is expensive. The bulk density of Cenospheres is about 0.35 g/cc and we could accomplish the composite density of about 0.4 g/cc. One percent filler weight of 3mm length standard drywall grade fibers was used to bring the added toughness. Both thermal and mechanical characterization was performed and properties are documented. For higher temperature applications (up to 1,000 C), a hybrid system was developed using an aerogel mat. Properties of combined material was characterized and documented. Thermal tests were conducted on both the bare modified Eco-Core and hybrid materials to assess the suitability of the material to a thermal barrier application. The hybrid material system was found to meet the requirement of the application.

Keywords: aerogel, fly ash, porous material, thermal barrier

Procedia PDF Downloads 90
5793 Liaison Psychiatry in Baixo Alentejo, Portugal: Reality and Perspectives

Authors: Mariana Mangas, Yaroslava Martins, M. Suárez, Célia Santos, Ana Matos Pires

Abstract:

Baixo Alentejo is a region of Portugal characterized by an aging population, geographic isolation, social deprivation and a lack of medical staff. It is one of the most problematic regions in regards to mental health, particularly due to the factors mentioned. The aim of this study is a presentation of liaison psychiatry in Hospital José Joaquim Fernandes; a sample of the work done, the current situation and future perspectives. The aim is to present a retrospective study of internal psychiatric emergencies from January 1st, 2016 to August 31st, 2016. Liaison psychiatry of Department of Psychiatry and Mental Health (Psychiatry Service) of ULSBA includes the following activities: internal psychiatry emergencies, HIV consultation (comprised in the general consultation) and liaison psychology (oncology and pain), consisting of a total of 111 internal psychiatry emergencies during the identified period. Gender distribution was uniform. The most prevalent age group was 71-80 years, and 66,6% of patients were 60 years old and over. The majority of the emergency observations was requested by hospital services of medicine (56,8%) and surgery (24,3%). The most frequent reasons for admission were: respiratory disease (18,0%); tumors (15.3%); other surgical and orthopedic pathology (14,5%) and stroke (11,7%). The most frequent psychiatric diagnoses were: neurotic and organic depression (24,3%); delirium (26,1%) and adjustment reaction (14,5%). Major psychiatric pathology (schizophrenia and affective disorders) was found in 10,8%. Antidepressive medication was prescribed in 37,8% patients; antipsychotics in 34,2%. In 9.9% of the cases, no psychotropic drug was prescribed, and 5,4% of patients received psychologic support. Regarding hospital discharge, 42,4% of patients were referred to the general practitioner or to the medical specialist; 22,5% to outpatient gerontopsychiatry; 17,1% to psychiatric outpatient and 14,4% deceased. A future perspective is to start liaison in areas of HIV and psycho oncology in multidisciplinary approach and to improve collaboration with colleagues of other specialties for refining psychiatric referrals.

Keywords: psychiatry, liaison, internal emergency, psychiatric referral

Procedia PDF Downloads 229
5792 Cultivation of High-value Patent from the Perspective of Knowledge Diffusion: A Case Study of the Power Semiconductor Field

Authors: Lin Qing

Abstract:

[Objective/Significance] The cultivation of high-value patents is the focus and difficulty of patent work, which is of great significance to the construction of a powerful country with intellectual property rights. This work should not only pay attention to the existing patent applications, but also start from the pre-application to explore the high-value technical solutions as the core of high-value patents. [Methods/processes] Comply with the principle of scientific and technological knowledge diffusion, this study studies the top academic conference papers and their cited patent applications, taking the power semiconductor field as an example, using facts date show the feasibility and rationality of mining technology solutions from high quality research results to foster high value patents, stating the actual benefits of these achievements to the industry, giving patent protection suggestions for Chinese applicants comparative with field situation. [Results/Conclusion] The research shows that the quality of citation applications of ISPSD papers is significantly higher than the field average level, and the ability of Chinese applicants to use patent protection related achievements needs to be improved. This study provides a practical and highly targeted reference idea for patent administrators and researchers, and also makes a positive exploration for the practice of the spirit of breaking the five rules.

Keywords: high-value patents cultivation, technical solutions, knowledge diffusion, top academic conference papers, intellectual property information analysis

Procedia PDF Downloads 106
5791 Agarose Based Multifunctional Nanofibrous Bandages for Wound Healing Applications

Authors: Sachin Latiyan, T. S. Sampath Kumar, Mukesh Doble

Abstract:

Natural polymer based nanofibrous wound dressings have gained increased attention because of their high surface area, bioactivity, biodegradability and resemblance to extracellular matrix. Agarose (a natural polymer) have been used largely for angiogenesis, cartilage formation and wound healing applications. However, electrospinning of agarose is tedious thereby rendering limited studies on fabrication and evaluation of agarose based nanofibrous wound dressings. Thus, present study focuses on the fabrication of agarose (10% w/v)/ polyvinyl alcohol (12% w/v) based multifunctional nanofibrous scaffolds. Zinc citrate (1, 3 and 5% w/w of the polymer) was added as a potential antibacterial agent to combat wound infections. The fabricated scaffolds exhibit ~500% swelling (in phosphate buffer saline) with enhanced mechanical strength which is suitable for most of the wound healing applications. In vitro studies were found to reveal an increased migration and proliferation of L929 mouse fibroblasts with agarose blends w.r.t to the control. The fabricated dressings were found to be effective against both Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive) bacterial strains. Hence, a multifunctional (as provides effective swelling and mechanical support along with antibacterial property), natural product based, eco-friendly scaffold was successfully fabricated to serve as a potential wound dressing material.

Keywords: antibacterial dressings, benign solvent, nanofibrous agarose, biocompatibility, enhanced swelling and mechanical strength, biopolymeric dressings

Procedia PDF Downloads 74
5790 Modified Norhaya Upper Limp Elevation Sling-Quick Approach Ensuring Timely Limb Elevation

Authors: Prem, Norhaya, Vwrene C., Mohammad Harris A., Amarjit, Fazir M.

Abstract:

Upper limb surgery is a common orthopedic procedure. After surgery, it is necessary to raise the patient's arm to reduce limb swelling and promote recovery. After an injury or surgery, swelling (edema) in the limbs is common. This swelling can be painful, cause stiffness, and affect movement and ability to do daily activities. One of the easiest ways to manage swelling is to elevate the swollen limb. The goal is to elevate the swollen limb slightly above the level of the heart. This helps the extra fluid move back towards the heart for circulation to the rest of the body. Conventional arm sling or pillows are usually placed under the arm to raise it, but in this way the arm cannot be fixed well and easily slide down, without ideal raising effect. Conventional arm sling need experience to tie the sling and this delay in the application process. To reduce the waiting time and cost, modified Norhaya upper limb elevation sling was designed and made readily available. The sling is made from calico fabric, readily available in the ward. Measurements of patients’ arm lengths are obtained, and fabric sizes are cut into the average arm lengths, as well as 1 size above and below. The cut calico fabric is then sewn together with thick sewing threads. Its application is easy and junior most staff or doctor will be able to apply it on patient. The time taken to set up the sling is also reduced. Feedback gathered from ground staff regarding ease of setting up the sling was tremendous and patient also feel comfort in the modified Norhaya sling. The device can freely adjust the raising height of the affected limb and effectively fix the affected limb to reduce its swelling, thus promoting recovery. This device is worthy to be clinically popularized and applied. The Modified Norhaya upper limb elevation sling is the quickest to set up and the delay in elevating the patient’s hand is significantly reduced. Moreover, it is reproducible and there is also significant cost savings.

Keywords: elevate, effective, sling, timely

Procedia PDF Downloads 171
5789 Microfluidic Manipulation for Biomedical and Biohealth Applications

Authors: Reza Hadjiaghaie Vafaie, Sevda Givtaj

Abstract:

Automation and control of biological samples and solutions at the microscale is a major advantage for biochemistry analysis and biological diagnostics. Despite the known potential of miniaturization in biochemistry and biomedical applications, comparatively little is known about fluid automation and control at the microscale. Here, we study the electric field effect inside a fluidic channel and proper electrode structures with different patterns proposed to form forward, reversal, and rotational flows inside the channel. The simulation results confirmed that the ac electro-thermal flow is efficient for the control and automation of high-conductive solutions. In this research, the fluid pumping and mixing effects were numerically studied by solving physic-coupled electric, temperature, hydrodynamic, and concentration fields inside a microchannel. From an experimental point of view, the electrode structures are deposited on a silicon substrate and bonded to a PDMS microchannel to form a microfluidic chip. The motions of fluorescent particles in pumping and mixing modes were captured by using a CCD camera. By measuring the frequency response of the fluid and exciting the electrodes with the proper voltage, the fluid motions (including pumping and mixing effects) are observed inside the channel through the CCD camera. Based on the results, there is good agreement between the experimental and simulation studies.

Keywords: microfluidic, nano/micro actuator, AC electrothermal, Reynolds number, micropump, micromixer, microfabrication, mass transfer, biomedical applications

Procedia PDF Downloads 36
5788 Point Estimation for the Type II Generalized Logistic Distribution Based on Progressively Censored Data

Authors: Rana Rimawi, Ayman Baklizi

Abstract:

Skewed distributions are important models that are frequently used in applications. Generalized distributions form a class of skewed distributions and gain widespread use in applications because of their flexibility in data analysis. More specifically, the Generalized Logistic Distribution with its different types has received considerable attention recently. In this study, based on progressively type-II censored data, we will consider point estimation in type II Generalized Logistic Distribution (Type II GLD). We will develop several estimators for its unknown parameters, including maximum likelihood estimators (MLE), Bayes estimators and linear estimators (BLUE). The estimators will be compared using simulation based on the criteria of bias and Mean square error (MSE). An illustrative example of a real data set will be given.

Keywords: point estimation, type II generalized logistic distribution, progressive censoring, maximum likelihood estimation

Procedia PDF Downloads 177
5787 Crystalline Silicon Optical Whispering Gallery Mode (WGM) Resonators for Precision Measurements

Authors: Igor Bilenko, Artem Shitikov, Michael Gorodetsky

Abstract:

Optical whispering gallery mode (WGM) resonators combine very high optical quality factor (Q) with small size. Resonators made from low loss crystalline fluorites (CaF2, MgF2) may have Q as high as 1010 that make them unique devices for modern applications including ultrasensitive sensors, frequency control, and precision spectroscopy. While silicon is a promising material transparent from near infrared to terahertz frequencies, fundamental limit for Si WGM quality factor was not reached yet. In our paper, we presented experimental results on the preparation and testing of resonators at 1550 nm wavelength made from crystalline silicon grown and treated by different techniques. Q as high as 3x107 was demonstrated. Future steps need to reach a higher value and possible applications are discussed.

Keywords: optical quality factor, silicon optical losses, silicon optical resonator, whispering gallery modes

Procedia PDF Downloads 475
5786 Ion Beam Sputtering Deposition of Inorganic-Fluoropolymer Nano-Coatings for Real-Life Applications

Authors: M. Valentini, D. Melisi, M. A. Nitti, R A. Picca, M. C. Sportelli, E. Bonerba, G. Casamassima, N. Cioffi, L. Sabbatini, G. Tantillo, A. Valentini

Abstract:

In recent years antimicrobial coatings are receiving increasing attention due to their high demand in medical applications as well as in healthcare and hygiene. Research and technology are constantly involved to develop advanced finishing which can provide bacteriostatic growth without compromising the other typical properties of a textile as durability and non-toxicity, just to cite a few. Here we report on the antimicrobial coatings obtained, at room temperature and without the use of solvents, by means of the ion beam co-sputtering technique of an Ag target and a polytetrafluoroethylene one. In particular, such method allows to conjugate the well-known antimicrobial action of silver with the anti-stain and water-repellent properties of the fluoropolymer. Moreover, different Ag nanoparticle loadings (φ) were prepared by tuning the material deposition conditions achieving a fine control on film thickness and their antimicrobial/anti-stain properties.

Keywords: antimicrobial, ion beam sputtering, nanocoatings, anti-stain

Procedia PDF Downloads 369
5785 Preoperative versus Postoperative Radiation Therapy in Patients with Soft Tissue Sarcoma of the Extremity

Authors: AliAkbar Hafezi, Jalal Taherian, Jamshid Abedi, Mahsa Elahi, Behnam Kadkhodaei

Abstract:

Background: Soft tissue sarcomas (STS) are generally treated with a combination of limb preservation surgery and radiation therapy. Today, preoperative radiation therapy is considered for accurate treatment volume and smaller field size. Therefore, this study was performed to compare preoperative with postoperative radiation therapy in patients with extremity STS. Methods: In this non-randomized clinical trial, patients with localized extremity STS referred to the orthopedic clinics in Iran from 2021 to 2023 were studied. Patients were randomly divided into two groups: preoperative and postoperative radiation therapy. The two groups of patients were compared in terms of acute (wound dehiscence and infection) and late (limb edema, subcutaneous fibrosis, and joint stiffness) complications and their severity, as well as local recurrence and other one-year outcomes. Results: A total of 80 patients with localized extremity STS were evaluated in two treatment groups. The groups were matched in terms of age, sex, history of diabetes mellitus, hypertension, smoking, involved side, involved extremity, lesion location, and tumor histopathology. The acute complications of treatment in the two groups of patients did not differ significantly (P > 0.05). Of the late complications, only joint stiffness between the two groups had significant statistical differences (P < 0.001). The severity of all three late complications in the postoperative radiation therapy group was significantly higher (P < 0.05). There was no significant difference between the two groups in terms of the rate of local recurrence of other one-year outcomes (P > 0.05). Conclusion: This study showed that in patients with localized extremity STS, the two therapeutic approaches of adjuvant and neoadjuvant radiation therapy did not differ significantly in terms of local recurrence and distant metastasis during the one-year follow-up period and due to fewer late complications in preoperative radiotherapy group, this treatment approach can be a better choice than postoperative radiation therapy.

Keywords: soft tissue sarcoma, extremity, preoperative radiation therapy, postoperative radiation therapy

Procedia PDF Downloads 25
5784 Applications of Drones in Infrastructures: Challenges and Opportunities

Authors: Jin Fan, M. Ala Saadeghvaziri

Abstract:

Unmanned aerial vehicles (UAVs), also referred to as drones, equipped with various kinds of advanced detecting or surveying systems, are effective and low-cost in data acquisition, data delivery and sharing, which can benefit the building of infrastructures. This paper will give an overview of applications of drones in planning, designing, construction and maintenance of infrastructures. The drone platform, detecting and surveying systems, and post-data processing systems will be introduced, followed by cases with details of the applications. Challenges from different aspects will be addressed. Opportunities of drones in infrastructure include but not limited to the following. Firstly, UAVs equipped with high definition cameras or other detecting equipment are capable of inspecting the hard to reach infrastructure assets. Secondly, UAVs can be used as effective tools to survey and map the landscape to collect necessary information before infrastructure construction. Furthermore, an UAV or multi-UVAs are useful in construction management. UVAs can also be used in collecting roads and building information by taking high-resolution photos for future infrastructure planning. UAVs can be used to provide reliable and dynamic traffic information, which is potentially helpful in building smart cities. The main challenges are: limited flight time, the robustness of signal, post data analyze, multi-drone collaboration, weather condition, distractions to the traffic caused by drones. This paper aims to help owners, designers, engineers and architects to improve the building process of infrastructures for higher efficiency and better performance.

Keywords: bridge, construction, drones, infrastructure, information

Procedia PDF Downloads 101
5783 Dy³+/Eu³+ Co-Activated Gadolinium Aluminate Borate Phosphor: Enhanced Luminescence and Color Output Tuning

Authors: Osama Madkhali

Abstract:

GdAl₃(BO₃)₄ phosphors, incorporating Dy³+ and Dy³+/Eu³+ activators, were successfully synthesized via the gel combustion method. Powder X-ray diffraction (XRD) was utilized to ascertain phase purity and assess the impact of dopant concentration on the crystallographic structure. Photoluminescence (PL) measurements revealed that luminescence properties' intensity and lifetime varied with Dy³+ and Eu³+ ion concentrations. The relationship between luminescence intensity and doping concentration was explored in the context of the energy transfer process between Eu³+ and Dy³+ ions. An increase in Eu³+ co-doping concentrations resulted in a decrease in luminescence lifetime. Energy transfer efficiency was significantly enhanced from 26% to 84% with Eu³+ co-doping, as evidenced by decay curve analysis. These findings position GdAl₃(BO₃)4: Dy³+, Eu³+ phosphors as promising candidates for LED applications in solid-state lighting and displays.

Keywords: GdAl₃(BO₃)₄ phosphors, Dy³+/Eu³+ co-doping, photoluminescence (PL) measurements, luminescence properties, LED applications, solid-state lighting

Procedia PDF Downloads 37
5782 Switched Uses of a Bidirectional Microphone as a Microphone and Sensors with High Gain and Wide Frequency Range

Authors: Toru Shionoya, Yosuke Kurihara, Takashi Kaburagi, Kajiro Watanabe

Abstract:

Mass-produced bidirectional microphones have attractive characteristics. They work as a microphone as well as a sensor with high gain over a wide frequency range; they are also highly reliable and economical. We present novel multiple functional uses of the microphones. A mathematical model for explaining the high-pass-filtering characteristics of bidirectional microphones was presented. Based on the model, the characteristics of the microphone were investigated, and a novel use for the microphone as a sensor with a wide frequency range was presented. In this study, applications for using the microphone as a security sensor and a human biosensor were introduced. The mathematical model was validated through experiments, and the feasibility of the abovementioned applications for security monitoring and the biosignal monitoring were examined through experiments.

Keywords: bidirectional microphone, low-frequency, mathematical model, frequency response

Procedia PDF Downloads 517
5781 Processing Studies and Challenges Faced in Development of High-Pressure Titanium Alloy Cryogenic Gas Bottles

Authors: Bhanu Pant, Sanjay H. Upadhyay

Abstract:

Frequently, the upper stage of high-performance launch vehicles utilizes cryogenic tank-submerged pressurization gas bottles with high volume-to-weight efficiency to achieve a direct gain in the satellite payload. Titanium alloys, owing to their high specific strength coupled with excellent compatibility with various fluids, are the materials of choice for these applications. Amongst the Titanium alloys, there are two alloys suitable for cryogenic applications, namely Ti6Al4V-ELI and Ti5Al2.5Sn-ELI. The two-phase alpha-beta alloy Ti6Al4V-ELI is usable up to LOX temperature of 90K, while the single-phase alpha alloy Ti5Al2.5Sn-ELI can be used down to LHe temperature of 4 K. The high-pressure gas bottles submerged in the LH2 (20K) can store more amount of gas in as compared to those submerged in LOX (90K) bottles the same volume. Thus, the use of these alpha alloy gas bottles stored at 20K gives a distinct advantage with respect to the need for a lesser number of gas bottles to store the same amount of high-pressure gas, which in turn leads to a one-to-one advantage in the payload in the satellite. The cost advantage to the tune of 15000$/ kg of weight is saved in the upper stages, and, thereby, the satellite payload gain is expected by this change. However, the processing of alpha Ti5Al2.5Sn-ELI alloy gas bottles poses challenges due to the lower forgeability of the alloy and mode of qualification for the critical severe application environment. The present paper describes the processing and challenges/ solutions during the development of these advanced gas bottles for LH2 (20K) applications.

Keywords: titanium alloys, cryogenic gas bottles, alpha titanium alloy, alpha-beta titanium alloy

Procedia PDF Downloads 35
5780 Android Application on Checking Halal Product Based on Augmented Reality

Authors: Saidatul A'isyah Ahmad Shukri, Haslina Arshad

Abstract:

This study was conducted to develop an application that provides Augmented Reality experience in identifying halal food products and beverages based on Malaysian Islamic Development Department (JAKIM) database for Muslim consumers in Malaysia. The applications is operating on the mobile device using the Android platform. This application aims to provide a new experience to the user how to use the Android application implements Augmentation Reality technology The methodology used is object-oriented analysis and design (OOAD). The programming language used is JAVA programming using the Android Software Development Kit (SDK) and XML. Android operating system is selected, and it is an open source operating system. Results from the study are implemented to further enhance diversity in presentation of information contained in this application and so can bring users using these applications from different angles.

Keywords: android, augmented reality, food, halal, Malaysia, products, XML

Procedia PDF Downloads 436
5779 Efficient and Timely Mutual Authentication Scheme for RFID Systems

Authors: Hesham A. El Zouka, Mustafa M. Hosni ka

Abstract:

The Radio Frequency Identification (RFID) technology has a diverse base of applications, but it is also prone to security threats. There are different types of security attacks that limit the range of the RFID applications. For example, deploying the RFID networks in insecure environments could make the RFID system vulnerable to many types of attacks such as spoofing attack, location traceability attack, physical attack and many more. Therefore, security is often an important requirement for RFID systems. In this paper, RFID mutual authentication protocol is implemented based on mobile agent technology and timestamp, which are used to provide strong authentication and integrity assurances to both the RFID readers and their corresponding RFID tags. The integration of mobile agent technology and timestamp provides promising results towards achieving this goal and towards reducing the security threats in RFID systems.

Keywords: RFID, security, authentication protocols, privacy, agent-based architecture, time-stamp, digital signature

Procedia PDF Downloads 244