Search results for: nano on-chip network
5407 Wireless Sensor Networks Optimization by Using 2-Stage Algorithm Based on Imperialist Competitive Algorithm
Authors: Hamid R. Lashgarian Azad, Seyed N. Shetab Boushehri
Abstract:
Wireless sensor networks (WSN) have become progressively popular due to their wide range of applications. Wireless Sensor Network is made of numerous tiny sensor nodes that are battery-powered. It is a very significant problem to maximize the lifetime of wireless sensor networks. In this paper, we propose a two-stage protocol based on an imperialist competitive algorithm (2S-ICA) to solve a sensor network optimization problem. The energy of the sensors can be greatly reduced and the lifetime of the network reduced by long communication distances between the sensors and the sink. We can minimize the overall communication distance considerably, thereby extending the lifetime of the network lifetime through connecting sensors into a series of independent clusters using 2SICA. Comparison results of the proposed protocol and LEACH protocol, which is common to solving WSN problems, show that our protocol has a better performance in terms of improving network life and increasing the number of transmitted data.Keywords: wireless sensor network, imperialist competitive algorithm, LEACH protocol, k-means clustering
Procedia PDF Downloads 1125406 Application of Wireless Sensor Networks: A Survey in Thailand
Authors: Sathapath Kilaso
Abstract:
Nowadays, Today, wireless sensor networks are an important technology that works with Internet of Things. It is receiving various data from many sensor. Then sent to processing or storing. By wireless network or through the Internet. The devices around us are intelligent, can receiving/transmitting and processing data and communicating through the system. There are many applications of wireless sensor networks, such as smart city, smart farm, environmental management, weather. This article will explore the use of wireless sensor networks in Thailand and collect data from Thai Thesis database in 2012-2017. How to Implementing Wireless Sensor Network Technology. Advantage from this study To know the usage wireless technology in many fields. This will be beneficial for future research. In this study was found the most widely used wireless sensor network in agriculture field. Especially for smart farms. And the second is the adoption of the environment. Such as weather stations and water inspection.Keywords: wireless sensor network, smart city, survey, Adhoc Network
Procedia PDF Downloads 2165405 A Sectional Control Method to Decrease the Accumulated Survey Error of Tunnel Installation Control Network
Authors: Yinggang Guo, Zongchun Li
Abstract:
In order to decrease the accumulated survey error of tunnel installation control network of particle accelerator, a sectional control method is proposed. Firstly, the accumulation rule of positional error with the length of the control network is obtained by simulation calculation according to the shape of the tunnel installation-control-network. Then, the RMS of horizontal positional precision of tunnel backbone control network is taken as the threshold. When the accumulated error is bigger than the threshold, the tunnel installation control network should be divided into subsections reasonably. On each segment, the middle survey station is taken as the datum for independent adjustment calculation. Finally, by taking the backbone control points as faint datums, the weighted partial parameters adjustment is performed with the adjustment results of each segment and the coordinates of backbone control points. The subsections are jointed and unified into the global coordinate system in the adjustment process. An installation control network of the linac with a length of 1.6 km is simulated. The RMS of positional deviation of the proposed method is 2.583 mm, and the RMS of the difference of positional deviation between adjacent points reaches 0.035 mm. Experimental results show that the proposed sectional control method can not only effectively decrease the accumulated survey error but also guarantee the relative positional precision of the installation control network. So it can be applied in the data processing of tunnel installation control networks, especially for large particle accelerators.Keywords: alignment, tunnel installation control network, accumulated survey error, sectional control method, datum
Procedia PDF Downloads 1975404 Investigating the Role of Combined Length Scale Effect on the Mechanical Properties of Ni/Cu Multilayer Structures
Authors: Naresh Radaliyagoda, Nigel M. Jennett, Rong Lan, David Parfitt
Abstract:
A series of length scale engineered multilayer material with temperature robust mechanical properties has been suggested. A range of polycrystalline copper sub-layers with the thickness varying from 1 to 25μm and buried in between two nickel layers was produced using electrodeposition dual bath technique. The structure of the multilayers was characterized using Electron Backscatter Diffraction and Scanning Electron Microscope. The interface effect on the hardness and elastic modulus was tested using Nano-indentation. Results of the grain size and layer thickness measurements, and indentation hardness have been compared. It is found that there is a combined length scale effect that improves mechanical properties in Ni/Cu multilayer structures.Keywords: nano-indentation, size effect, multilayers, electrodeposition
Procedia PDF Downloads 1535403 Gas Network Noncooperative Game
Authors: Teresa Azevedo PerdicoúLis, Paulo Lopes Dos Santos
Abstract:
The conceptualisation of the problem of network optimisation as a noncooperative game sets up a holistic interactive approach that brings together different network features (e.g., com-pressor stations, sources, and pipelines, in the gas context) where the optimisation objectives are different, and a single optimisation procedure becomes possible without having to feed results from diverse software packages into each other. A mathematical model of this type, where independent entities take action, offers the ideal modularity and subsequent problem decomposition in view to design a decentralised algorithm to optimise the operation and management of the network. In a game framework, compressor stations and sources are under-stood as players which communicate through network connectivity constraints–the pipeline model. That is, in a scheme similar to tatonnementˆ, the players appoint their best settings and then interact to check for network feasibility. The devolved degree of network unfeasibility informs the players about the ’quality’ of their settings, and this two-phase iterative scheme is repeated until a global optimum is obtained. Due to network transients, its optimisation needs to be assessed at different points of the control interval. For this reason, the proposed approach to optimisation has two stages: (i) the first stage computes along the period of optimisation in order to fulfil the requirement just mentioned; (ii) the second stage is initialised with the solution found by the problem computed at the first stage, and computes in the end of the period of optimisation to rectify the solution found at the first stage. The liability of the proposed scheme is proven correct on an abstract prototype and three example networks.Keywords: connectivity matrix, gas network optimisation, large-scale, noncooperative game, system decomposition
Procedia PDF Downloads 1575402 Polysaccharide-Based Oral Delivery Systems for Site Specific Delivery in Gastro-Intestinal Tract
Authors: Kaarunya Sampathkumar, Say Chye Joachim Loo
Abstract:
Oral delivery is regarded as the facile method for the administration of active pharmaceutical ingredients (API) and drug carriers. In an initiative towards sustainable nanotechnology, an oral nano-delivery system has been developed that is made entirely of food-based materials and can also act as a site-specific delivery device depending on the stimulus encountered in different parts of the gastrointestinal tract (GIT). The delivery system has been fabricated from food grade polysaccharide materials like chitosan and starch through electrospraying technique without the use of any organic solvents. A nutraceutical extracted from an Indian medicinal plant, has been loaded into the nano carrier to test its efficacy in encapsulation and stimuli based release of the active ingredient. The release kinetics of the nutraceutical from the carrier was evaluated in simulated gastric, intestinal and colonic fluid and was found to be triggered both by the enzymes and the pH in each part of the intestinal tract depending on the polysaccharide being used. The toxicity of the nanoparticles on the intestinal epithelial cells was tested and found to be relatively safe for up to 24 hours at a concentration of 0.2 mg/mL with cellular uptake also being observed. The developed nano carrier thus serves as a promising delivery vehicle for targeted delivery to different parts of the GIT with the inherent conditions of the GIT itself acting as the stimulus. In addition, being fabricated from food grade materials, the carrier could be potentially used for the targeted delivery of nutrients through functional foods.Keywords: bioavailability, chitosan, delivery systems, encapsulation
Procedia PDF Downloads 2175401 Cell Adhesion, Morphology and Cytokine Expression of Synoviocytes Can Be Altered on Different Nano-Topographic Oxidized Silicon Nanosponges
Authors: Hung-Chih Hsu, Pey-Jium Chang, Ching-Hsein Chen, Jer-Liang Andrew Yeh
Abstract:
Osteoarthritis (OA) is a common disorder in rehabilitation clinic. The main characteristics include joint pain, localized tenderness and enlargement, joint effusion, cartilage destruction, loss of adhesion of perichondrium, synovium hyperplasia. Synoviocytes inflammation might be a cause of local tenderness and effusion. Inflammation cytokines might also play an important role in joint pain, cartilage destruction, decrease adhesion of perichondrium to the bone. Treatments of osteoarthritis include non-steroid anti-inflammation drugs (NSAID), glucosamine supplementation, hyaluronic acid, arthroscopic debridement, and total joint replacement. Total joint replacement is commonly used in patients with severe OA who failed respond to pharmacological treatment. However, some patients received surgery had serious adverse events, including instability of the implants due to insufficient adhesion to the adjacent bony tissue or synovial inflammation. We tried to develop ideal nano-topographic oxidized silicon nanosponges by using with various chemicals to produce thickness difference in nanometers in order to study more about the cell-environment interactions in vitro like the alterations of cell adhesion, morphology, extracellular matrix secretions in the pathogenesis of osteoarthritis. Cytokines studies like growth factor, reactive oxygen species, reactive inflammatory materials (Like nitrous oxide and prostaglandin E2), extracellular matrix (ECM) degradation enzymes, and synthesis of collagen will also be observed and discussed. Extracellular and intracellular expression transforming growth factor beta (TGF-β) will be studied by reverse transcription-polymerase chain reaction (RT-PCR). The degradation of ECM will be observed by the bioactivity ratio of matrix metalloproteinase (MMP) and tissue inhibitors of metalloproteinase by ELISA (Enzyme-linked immunosorbent assay). When rabbit synoviocytes were cultured on these nano-topographic structures, they demonstrate better cell adhesion rate, decreased expression of MMP-2,9 and PGE2, and increased expression of TGF-β when cultured in nano-topographic oxidized silicon nanosponges than in the planar oxidized silicon ones. These results show cell behavior, cytokine production can be influenced by physical characteristics from different nano-topographic structures. Our study demonstrates the possibility of manipulating cell behavior in these nano-topographic biomaterials.Keywords: osteoarthritis, synoviocyte, oxidized silicon surfaces, reactive oxygen species
Procedia PDF Downloads 3905400 Comparison between Continuous Genetic Algorithms and Particle Swarm Optimization for Distribution Network Reconfiguration
Authors: Linh Nguyen Tung, Anh Truong Viet, Nghien Nguyen Ba, Chuong Trinh Trong
Abstract:
This paper proposes a reconfiguration methodology based on a continuous genetic algorithm (CGA) and particle swarm optimization (PSO) for minimizing active power loss and minimizing voltage deviation. Both algorithms are adapted using graph theory to generate feasible individuals, and the modified crossover is used for continuous variable of CGA. To demonstrate the performance and effectiveness of the proposed methods, a comparative analysis of CGA with PSO for network reconfiguration, on 33-node and 119-bus radial distribution system is presented. The simulation results have shown that both CGA and PSO can be used in the distribution network reconfiguration and CGA outperformed PSO with significant success rate in finding optimal distribution network configuration.Keywords: distribution network reconfiguration, particle swarm optimization, continuous genetic algorithm, power loss reduction, voltage deviation
Procedia PDF Downloads 1945399 Development of Partial Sulphonated Poly(Vinylidene Fluoride - Hexafluoro Propylene)–Montmorillonite Nano-Composites as Proton Exchange Membranes
Authors: K. Selvakumar, J. Kalaiselvimary, B. Jansirani, M. Ramesh Prabhu
Abstract:
Proton conducting sulphonated poly (vinylidene fluoride- hexafluoro propylene) PVdF-HFP membranes were modified with nano – sized montmorillonite (MMT) through homogeneous dispersive mixing and solution casting technique for fuel cell applications. The prepared composite membranes were characterized using Fourier Transform Infrared Spectroscopy and 1HNMR technique. The suitability of the composite membranes for fuel cell application was evaluated in terms of water uptake, swelling behavior, and proton conductivity. These composites showed good conductivities and durability and expected to be used in the development of proton exchange membrane for fuel cells.Keywords: composite, proton conduction, sulphonation, water uptake
Procedia PDF Downloads 2515398 Secure Network Coding against Content Pollution Attacks in Named Data Network
Authors: Tao Feng, Xiaomei Ma, Xian Guo, Jing Wang
Abstract:
Named Data Network (NDN) is one of the future Internet architecture, all nodes (i.e., hosts, routers) are allowed to have a local cache, used to satisfy incoming requests for content. However, depending on caching allows an adversary to perform attacks that are very effective and relatively easy to implement, such as content pollution attack. In this paper, we use a method of secure network coding based on homomorphic signature system to solve this problem. Firstly ,we use a dynamic public key technique, our scheme for each generation authentication without updating the initial secret key used. Secondly, employing the homomorphism of hash function, intermediate node and destination node verify the signature of the received message. In addition, when the network topology of NDN is simple and fixed, the code coefficients in our scheme are generated in a pseudorandom number generator in each node, so the distribution of the coefficients is also avoided. In short, our scheme not only can efficiently prevent against Intra/Inter-GPAs, but also can against the content poisoning attack in NDN.Keywords: named data networking, content polloution attack, network coding signature, internet architecture
Procedia PDF Downloads 3405397 An Integrated Approach to Find the Effect of Strain Rate on Ultimate Tensile Strength of Randomly Oriented Short Glass Fiber Composite in Combination with Artificial Neural Network
Authors: Sharad Shrivastava, Arun Jalan
Abstract:
In this study tensile testing was performed on randomly oriented short glass fiber/epoxy resin composite specimens which were prepared using hand lay-up method. Samples were tested over a wide range of strain rate/loading rate from 2mm/min to 40mm/min to see the effect on ultimate tensile strength of the composite. A multi layered 'back propagation artificial neural network of supervised learning type' was used to analyze and predict the tensile properties with strain rate and temperature as given input and output as UTS to predict. Various network structures were designed and investigated with varying parameters and network sizes, and an optimized network structure was proposed to predict the UTS of short glass fiber/epoxy resin composite specimens with reasonably good accuracy.Keywords: glass fiber composite, mechanical properties, strain rate, artificial neural network
Procedia PDF Downloads 4405396 Addressing Scheme for IOT Network Using IPV6
Authors: H. Zormati, J. Chebil, J. Bel Hadj Taher
Abstract:
The goal of this paper is to present an addressing scheme that allows for assigning a unique IPv6 address to each node in the Internet of Things (IoT) network. This scheme guarantees uniqueness by extracting the clock skew of each communication device and converting it into an IPv6 address. Simulation analysis confirms that the presented scheme provides reductions in terms of energy consumption, communication overhead and response time as compared to four studied addressing schemes Strong DAD, LEADS, SIPA and CLOSA.Keywords: addressing, IoT, IPv6, network, nodes
Procedia PDF Downloads 2985395 Clustering Using Cooperative Multihop Mini-Groups in Wireless Sensor Network: A Novel Approach
Authors: Virender Ranga, Mayank Dave, Anil Kumar Verma
Abstract:
Recently wireless sensor networks (WSNs) are used in many real life applications like environmental monitoring, habitat monitoring, health monitoring etc. Due to power constraint cheaper devices used in these applications, the energy consumption of each device should be kept as low as possible such that network operates for longer period of time. One of the techniques to prolong the network lifetime is an intelligent grouping of sensor nodes such that they can perform their operation in cooperative and energy efficient manner. With this motivation, we propose a novel approach by organize the sensor nodes in cooperative multihop mini-groups so that the total global energy consumption of the network can be reduced and network lifetime can be improved. Our proposed approach also reduces the number of transmitted messages inside the WSNs, which further minimizes the energy consumption of the whole network. The experimental simulations show that our proposed approach outperforms over the state-of-the-art approach in terms of stability period and aggregated data.Keywords: clustering, cluster-head, mini-group, stability period
Procedia PDF Downloads 3605394 Facial Emotion Recognition with Convolutional Neural Network Based Architecture
Authors: Koray U. Erbas
Abstract:
Neural networks are appealing for many applications since they are able to learn complex non-linear relationships between input and output data. As the number of neurons and layers in a neural network increase, it is possible to represent more complex relationships with automatically extracted features. Nowadays Deep Neural Networks (DNNs) are widely used in Computer Vision problems such as; classification, object detection, segmentation image editing etc. In this work, Facial Emotion Recognition task is performed by proposed Convolutional Neural Network (CNN)-based DNN architecture using FER2013 Dataset. Moreover, the effects of different hyperparameters (activation function, kernel size, initializer, batch size and network size) are investigated and ablation study results for Pooling Layer, Dropout and Batch Normalization are presented.Keywords: convolutional neural network, deep learning, deep learning based FER, facial emotion recognition
Procedia PDF Downloads 2825393 Design of Nanoreinforced Polyacrylamide-Based Hybrid Hydrogels for Bone Tissue Engineering
Authors: Anuj Kumar, Kummara M. Rao, Sung S. Han
Abstract:
Bone tissue engineering has emerged as a potentially alternative method for localized bone defects or diseases, congenital deformation, and surgical reconstruction. The designing and the fabrication of the ideal scaffold is a great challenge, in restoring of the damaged bone tissues via cell attachment, proliferation, and differentiation under three-dimensional (3D) biological micro-/nano-environment. In this case, hydrogel system composed of high hydrophilic 3D polymeric-network that is able to mimic some of the functional physical and chemical properties of the extracellular matrix (ECM) and possibly may provide a suitable 3D micro-/nano-environment (i.e., resemblance of native bone tissues). Thus, this proposed hydrogel system is highly permeable and facilitates the transport of the nutrients and metabolites. However, the use of hydrogels in bone tissue engineering is limited because of their low mechanical properties (toughness and stiffness) that continue to posing challenges in designing and fabrication of tough and stiff hydrogels along with improved bioactive properties. For this purpose, in our lab, polyacrylamide-based hybrid hydrogels were synthesized by involving sodium alginate, cellulose nanocrystals and silica-based glass using one-step free-radical polymerization. The results showed good in vitro apatite-forming ability (biomineralization) and improved mechanical properties (under compression in the form of strength and stiffness in both wet and dry conditions), and in vitro osteoblastic (MC3T3-E1 cells) cytocompatibility. For in vitro cytocompatibility assessment, both qualitative (attachment and spreading of cells using FESEM) and quantitative (cell viability and proliferation using MTT assay) analyses were performed. The obtained hybrid hydrogels may potentially be used in bone tissue engineering applications after establishment of in vivo characterization.Keywords: bone tissue engineering, cellulose nanocrystals, hydrogels, polyacrylamide, sodium alginate
Procedia PDF Downloads 1555392 Efficient Delivery of Biomaterials into Living Organism by Using Noble Metal Nanowire Injector
Authors: Kkochorong Park, Keun Cheon Kim, Hyoban Lee, Eun Ju Lee, Bongsoo Kim
Abstract:
Introduction of biomaterials such as DNA, RNA, proteins is important for many research areas. There are many methods to introduce biomaterials into living organisms like tissue and cells. To introduce biomaterials, several indirect methods including virus‐mediated delivery, chemical reagent (i.e., lipofectamine), electrophoresis have been used. Such methods are passive delivery using an endocytosis process of cell, reducing an efficiency of delivery. Unlike the indirect delivery method, it has been reported that a direct delivery of exogenous biomolecules into nucleus have been more efficient to expression or integration of biomolecules. Nano-sized material is beneficial for detect signal from cell or deliver stimuli/materials into the cell at cellular and molecular levels, due to its similar physical scale. Especially, because 1 dimensional (1D) nanomaterials such as nanotube, nanorod and nanowire with high‐aspect ratio have nanoscale geometry and excellent mechanical, electrical, and chemical properties, they could play an important role in molecular and cellular biology. In this study, by using single crystalline 1D noble metal nanowire, we fabricated nano-sized 1D injector which can successfully interface with living cells and directly deliver biomolecules into several types of cell line (i.e., stem cell, mammalian embryo) without inducing detrimental damages on living cell. This nano-bio technology could be a promising and robust tool for introducing exogenous biomaterials into living organism.Keywords: DNA, gene delivery, nanoinjector, nanowire
Procedia PDF Downloads 2775391 A Video Surveillance System Using an Ensemble of Simple Neural Network Classifiers
Authors: Rodrigo S. Moreira, Nelson F. F. Ebecken
Abstract:
This paper proposes a maritime vessel tracker composed of an ensemble of WiSARD weightless neural network classifiers. A failure detector analyzes vessel movement with a Kalman filter and corrects the tracking, if necessary, using FFT matching. The use of the WiSARD neural network to track objects is uncommon. The additional contributions of the present study include a performance comparison with four state-of-art trackers, an experimental study of the features that improve maritime vessel tracking, the first use of an ensemble of classifiers to track maritime vessels and a new quantization algorithm that compares the values of pixel pairs.Keywords: ram memory, WiSARD weightless neural network, object tracking, quantization
Procedia PDF Downloads 3165390 Using Deep Learning Neural Networks and Candlestick Chart Representation to Predict Stock Market
Authors: Rosdyana Mangir Irawan Kusuma, Wei-Chun Kao, Ho-Thi Trang, Yu-Yen Ou, Kai-Lung Hua
Abstract:
Stock market prediction is still a challenging problem because there are many factors that affect the stock market price such as company news and performance, industry performance, investor sentiment, social media sentiment, and economic factors. This work explores the predictability in the stock market using deep convolutional network and candlestick charts. The outcome is utilized to design a decision support framework that can be used by traders to provide suggested indications of future stock price direction. We perform this work using various types of neural networks like convolutional neural network, residual network and visual geometry group network. From stock market historical data, we converted it to candlestick charts. Finally, these candlestick charts will be feed as input for training a convolutional neural network model. This convolutional neural network model will help us to analyze the patterns inside the candlestick chart and predict the future movements of the stock market. The effectiveness of our method is evaluated in stock market prediction with promising results; 92.2% and 92.1 % accuracy for Taiwan and Indonesian stock market dataset respectively.Keywords: candlestick chart, deep learning, neural network, stock market prediction
Procedia PDF Downloads 4575389 Optimizing the Capacity of a Convolutional Neural Network for Image Segmentation and Pattern Recognition
Authors: Yalong Jiang, Zheru Chi
Abstract:
In this paper, we study the factors which determine the capacity of a Convolutional Neural Network (CNN) model and propose the ways to evaluate and adjust the capacity of a CNN model for best matching to a specific pattern recognition task. Firstly, a scheme is proposed to adjust the number of independent functional units within a CNN model to make it be better fitted to a task. Secondly, the number of independent functional units in the capsule network is adjusted to fit it to the training dataset. Thirdly, a method based on Bayesian GAN is proposed to enrich the variances in the current dataset to increase its complexity. Experimental results on the PASCAL VOC 2010 Person Part dataset and the MNIST dataset show that, in both conventional CNN models and capsule networks, the number of independent functional units is an important factor that determines the capacity of a network model. By adjusting the number of functional units, the capacity of a model can better match the complexity of a dataset.Keywords: CNN, convolutional neural network, capsule network, capacity optimization, character recognition, data augmentation, semantic segmentation
Procedia PDF Downloads 1595388 Analysis of Spatiotemporal Efficiency and Fairness of Railway Passenger Transport Network Based on Space Syntax: Taking Yangtze River Delta as an Example
Abstract:
Based on the railway network and the principles of space syntax, the study attempts to reconstruct the spatial relationship of the passenger network connections from space and time perspective. According to the travel time data of main stations in the Yangtze River Delta urban agglomeration obtained by the Internet, the topological drawing of railway network under different time sections is constructed. With the comprehensive index composed of connection and integration, the accessibility and network operation efficiency of the railway network in different time periods is calculated, while the fairness of the network is analyzed by the fairness indicators constructed with the integration and location entropy from the perspective of horizontal and vertical fairness respectively. From the analysis of the efficiency and fairness of the railway passenger transport network, the study finds: (1) There is a strong regularity in regional system accessibility change; (2) The problems of efficiency and fairness are different in different time periods; (3) The improvement of efficiency will lead to the decline of horizontal fairness to a certain extent, while from the perspective of vertical fairness, the supply-demand situation has changed smoothly with time; (4) The network connection efficiency of Shanghai, Jiangsu and Zhejiang regions is higher than that of the western regions such as Anqing and Chizhou; (5) The marginalization of Nantong, Yancheng, Yangzhou, Taizhou is obvious. The study explores the application of spatial syntactic theory in regional traffic analysis, in order to provide a reference for the development of urban agglomeration transportation network.Keywords: spatial syntax, the Yangtze River Delta, railway passenger time, efficiency and fairness
Procedia PDF Downloads 1395387 An Enhanced Distributed Weighted Clustering Algorithm for Intra and Inter Cluster Routing in MANET
Authors: K. Gomathi
Abstract:
Mobile Ad hoc Networks (MANET) is defined as collection of routable wireless mobile nodes with no centralized administration and communicate each other using radio signals. Especially MANETs deployed in hostile environments where hackers will try to disturb the secure data transfer and drain the valuable network resources. Since MANET is battery operated network, preserving the network resource is essential one. For resource constrained computation, efficient routing and to increase the network stability, the network is divided into smaller groups called clusters. The clustering architecture consists of Cluster Head(CH), ordinary node and gateway. The CH is responsible for inter and intra cluster routing. CH election is a prominent research area and many more algorithms are developed using many different metrics. The CH with longer life sustains network lifetime, for this purpose Secondary Cluster Head(SCH) also elected and it is more economical. To nominate efficient CH, a Enhanced Distributed Weighted Clustering Algorithm (EDWCA) has been proposed. This approach considers metrics like battery power, degree difference and speed of the node for CH election. The proficiency of proposed one is evaluated and compared with existing algorithm using Network Simulator(NS-2).Keywords: MANET, EDWCA, clustering, cluster head
Procedia PDF Downloads 4025386 Synthesis and Properties of Photocured Surface Modified Polyaniline Hybrid Composites
Authors: Asli Beyler Çi̇ği̇l, Memet Vezi̇r Kahraman
Abstract:
Organic–inorganic hybrids have become an effective source of advanced materials because they combine the advantages of both the organic moiety such as flexibility, low dielectric constant, and processability, and inorganic moiety as rigidity, strength, durability, and thermal stability. By incorporating cross-linkable side chains, the hybrid materials can be made photosensitive and UV curable, which offers many advantages including low processing temperature, low equipment cost and compatibility. In this study, uv-curable organic-inorganic hybrid material, which was contained surface modified polyaniline particles (PANI), was prepared. PANI surface photografted with hydroxy ethyl methacrylate (HEMA) to produce hydroxyl groups. Hydroxyl functionalized PANI/HEMA was acrylated using isocyanato ethyl methacrylate (IEM) in order to improve the dispersion and interfacial interaction in composites. UV-curable formulation was prepared by mixing the surface modified PANI, polyethylene glycol diacrylate (PEGDA), trimethylolpropane triacrylate (TMPTA), hydrolized 3- methacryloxypropyltrimethoxysilane (hyd. MEMO) and photoinitiator. Chemical structure of nano-hybrid material was characterized by FTIR. FTIR spectra showed that the photografting of PANI was prepared successfully. Thermal properties of the nano-hybrid material were determined by thermogravimetric analysis (TGA). The morphology of the nano-hybrid material was performed by scanning electron microscopy (SEM).Keywords: polyaniline, photograft, sol-gel, uv-curable polymer
Procedia PDF Downloads 3075385 A Study of Electrowetting-Assisted Mold Filling in Nanoimprint Lithography
Authors: Wei-Hsuan Hsu, Yi-Xuan Huang
Abstract:
Nanoimprint lithography (NIL) possesses the advantages of sub-10-nm feature and low cost. NIL patterns the resist with physical deformation using a mold, which can easily reproduce the required nano-scale pattern. However, the variation of process parameters and environmental conditions seriously affect reproduction quality. How to ensure the quality of imprinted pattern is essential for industry. In this study, the authors used the electrowetting technology to assist mold filling in the NIL process. A special mold structure was designed to cause electrowetting. During the imprinting process, when a voltage was applied between the mold and substrate, the hydrophilicity/hydrophobicity of the surface of the mold can be converted. Both simulation and experiment confirmed that the electrowetting technology can assist mold filling and avoid incomplete filling rate. The proposed method can also reduce the crack formation during the de-molding process. Therefore, electrowetting technology can improve the process quality of NIL.Keywords: electrowetting, mold filling, nano-imprint, surface modification
Procedia PDF Downloads 1765384 SOM Map vs Hopfield Neural Network: A Comparative Study in Microscopic Evacuation Application
Authors: Zouhour Neji Ben Salem
Abstract:
Microscopic evacuation focuses on the evacuee behavior and way of search of safety place in an egress situation. In recent years, several models handled microscopic evacuation problem. Among them, we have proposed Artificial Neural Network (ANN) as an alternative to mathematical models that can deal with such problem. In this paper, we present two ANN models: SOM map and Hopfield Network used to predict the evacuee behavior in a disaster situation. These models are tested in a real case, the second floor of Tunisian children hospital evacuation in case of fire. The two models are studied and compared in order to evaluate their performance.Keywords: artificial neural networks, self-organization map, hopfield network, microscopic evacuation, fire building evacuation
Procedia PDF Downloads 4085383 Impact of the Photovoltaic Integration in Power Distribution Network: Case Study in Badak Liquefied Natural Gas (LNG)
Authors: David Hasurungan
Abstract:
This paper objective is to analyze the impact from photovoltaic system integration to power distribution network. The case study in Badak Liquefied Natural Gas (LNG) plant is presented in this paper. Badak LNG electricity network is operated in islanded mode. The total power generation in Badak LNG plant is significantly affected to feed gas supply. Meanwhile, to support the Government regulation, Badak LNG continuously implemented the grid-connected photovoltaic system in existing power distribution network. The impact between train operational mode change in Badak LNG plant and the growth of photovoltaic system is also encompassed in analysis. The analysis and calculation are performed using software Power Factory 15.1.Keywords: power quality, distribution network, grid-connected photovoltaic system, power management system
Procedia PDF Downloads 3635382 Nest-Building Using Place Cells for Spatial Navigation in an Artificial Neural Network
Authors: Thomas E. Portegys
Abstract:
An animal behavior problem is presented in the form of a nest-building task that involves two cooperating virtual birds, a male and female. The female builds a nest into which she lays an egg. The male's job is to forage in a forest for food for both himself and the female. In addition, the male must fetch stones from a nearby desert for the female to use as nesting material. The task is completed when the nest is built, and an egg is laid in it. A goal-seeking neural network and a recurrent neural network were trained and tested with little success. The goal-seeking network was then enhanced with “place cells”, allowing the birds to spatially navigate the world, building the nest while keeping themselves fed. Place cells are neurons in the hippocampus that map space.Keywords: artificial animal intelligence, artificial life, goal-seeking neural network, nest-building, place cells, spatial navigation
Procedia PDF Downloads 635381 Valorization of Natural Vegetable Substances from Tunisia: Purification of Two Food Additives, Anthocyanins and Locust Bean Gum
Authors: N. Bouzouita, A. Snoussi , H. Ben Haj Koubaier, I. Essaidi, M. M. Chaabouni, S. Zgoulli, P. Thonart
Abstract:
Color is one of the most important quality attributes for the food industry. Grape marc, a complex lignocellulosic material is one of the most abundant and worth less byproduct, generated after the pressing process. The development of the process of purification by micro filtration, ultra filtration, nano filtration and drying by atomization of the anthocyanins of Tunisian origin is the aim of this work. Locust bean gum is the ground endosperm of the seeds of carob fruit; owing to its remarkable water-binding properties, it is widely used to improve the texture of food and largely employed in food industry. The purification of LGB causes drastically reduced ash and proteins contents but important increase for galactomannan.Keywords: Carob, food additives, grape pomace, locust bean gum, natural colorant, nano filtration, thickener, ultra filtration
Procedia PDF Downloads 3375380 Mechanical Properties of Nanocomposites Cobalt Matrix with Nano SiC Particles
Authors: Dhuha Albusalih, David Weston, Simon Gill
Abstract:
Nanocomposites Co-SiC with well dispersed nanoparticles and Co nano grain size has produced using Pulse Reverse Plating (PRP) and using anionic surfactant. Different particle contents of nanocomposites were produced by altering the plating parameters. The method allows great control over the level of nanoparticles in the coating, without changing bath chemistry. Examination by Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDX), TEM and X-Ray Diffraction (XRD) analysis was performed to characterize and study the strengthening mechanisms of these nanocomposites. The primary strengthening mechanisms were shown to be grain refinement and dispersion strengthening. Tribological performances of the produced electroplated nanocomposite Co-SiC coatings were examined. Results showed that the coating with the higher volume fraction (vol. %) of SiC and the smallest grain size has the higher hardness and low wear rate.Keywords: nanocomposites, pulse reverse plating, tribological performance of cobalt nanocomposites
Procedia PDF Downloads 3115379 A Model for Diagnosis and Prediction of Coronavirus Using Neural Network
Authors: Sajjad Baghernezhad
Abstract:
Meta-heuristic and hybrid algorithms have high adeer in modeling medical problems. In this study, a neural network was used to predict covid-19 among high-risk and low-risk patients. This study was conducted to collect the applied method and its target population consisting of 550 high-risk and low-risk patients from the Kerman University of medical sciences medical center to predict the coronavirus. In this study, the memetic algorithm, which is a combination of a genetic algorithm and a local search algorithm, has been used to update the weights of the neural network and develop the accuracy of the neural network. The initial study showed that the accuracy of the neural network was 88%. After updating the weights, the memetic algorithm increased by 93%. For the proposed model, sensitivity, specificity, positive predictivity value, value/accuracy to 97.4, 92.3, 95.8, 96.2, and 0.918, respectively; for the genetic algorithm model, 87.05, 9.20 7, 89.45, 97.30 and 0.967 and for logistic regression model were 87.40, 95.20, 93.79, 0.87 and 0.916. Based on the findings of this study, neural network models have a lower error rate in the diagnosis of patients based on individual variables and vital signs compared to the regression model. The findings of this study can help planners and health care providers in signing programs and early diagnosis of COVID-19 or Corona.Keywords: COVID-19, decision support technique, neural network, genetic algorithm, memetic algorithm
Procedia PDF Downloads 735378 Sampling Effects on Secondary Voltage Control of Microgrids Based on Network of Multiagent
Authors: M. J. Park, S. H. Lee, C. H. Lee, O. M. Kwon
Abstract:
This paper studies a secondary voltage control framework of the microgrids based on the consensus for a communication network of multiagent. The proposed control is designed by the communication network with one-way links. The communication network is modeled by a directed graph. At this time, the concept of sampling is considered as the communication constraint among each distributed generator in the microgrids. To analyze the sampling effects on the secondary voltage control of the microgrids, by using Lyapunov theory and some mathematical techniques, the sufficient condition for such problem will be established regarding linear matrix inequality (LMI). Finally, some simulation results are given to illustrate the necessity of the consideration of the sampling effects on the secondary voltage control of the microgrids.Keywords: microgrids, secondary control, multiagent, sampling, LMI
Procedia PDF Downloads 336