Search results for: logistic regression models
8925 Identifying Factors Contributing to the Spread of Lyme Disease: A Regression Analysis of Virginia’s Data
Authors: Fatemeh Valizadeh Gamchi, Edward L. Boone
Abstract:
This research focuses on Lyme disease, a widespread infectious condition in the United States caused by the bacterium Borrelia burgdorferi sensu stricto. It is critical to identify environmental and economic elements that are contributing to the spread of the disease. This study examined data from Virginia to identify a subset of explanatory variables significant for Lyme disease case numbers. To identify relevant variables and avoid overfitting, linear poisson, and regularization regression methods such as a ridge, lasso, and elastic net penalty were employed. Cross-validation was performed to acquire tuning parameters. The methods proposed can automatically identify relevant disease count covariates. The efficacy of the techniques was assessed using four criteria on three simulated datasets. Finally, using the Virginia Department of Health’s Lyme disease data set, the study successfully identified key factors, and the results were consistent with previous studies.Keywords: lyme disease, Poisson generalized linear model, ridge regression, lasso regression, elastic net regression
Procedia PDF Downloads 1378924 Diabetes Mellitus and Blood Glucose Variability Increases the 30-day Readmission Rate after Kidney Transplantation
Authors: Harini Chakkera
Abstract:
Background: Inpatient hyperglycemia is an established independent risk factor among several patient cohorts with hospital readmission. This has not been studied after kidney transplantation. Nearly one-third of patients who have undergone a kidney transplant reportedly experience 30-day readmission. Methods: Data on first-time solitary kidney transplantations were retrieved between September 2015 to December 2018. Information was linked to the electronic health record to determine a diagnosis of diabetes mellitus and extract glucometeric and insulin therapy data. Univariate logistic regression analysis and the XGBoost algorithm were used to predict 30-day readmission. We report the average performance of the models on the testing set on five bootstrapped partitions of the data to ensure statistical significance. Results: The cohort included 1036 patients who received kidney transplantation, and 224 (22%) experienced 30-day readmission. The machine learning algorithm was able to predict 30-day readmission with an average AUC of 77.3% (95% CI 75.30-79.3%). We observed statistically significant differences in the presence of pretransplant diabetes, inpatient-hyperglycemia, inpatient-hypoglycemia, and minimum and maximum glucose values among those with higher 30-day readmission rates. The XGBoost model identified the index admission length of stay, presence of hyper- and hypoglycemia and recipient and donor BMI values as the most predictive risk factors of 30-day readmission. Additionally, significant variations in the therapeutic management of blood glucose by providers were observed. Conclusions: Suboptimal glucose metrics during hospitalization after kidney transplantation is associated with an increased risk for 30-day hospital readmission. Optimizing the hospital blood glucose management, a modifiable factor, after kidney transplantation may reduce the risk of 30-day readmission.Keywords: kidney, transplant, diabetes, insulin
Procedia PDF Downloads 908923 Evaluating the Impact of Nursing Protocols on External Ventricular Drain Infection Control in Adult Neurosurgery Patients with External Ventricular Drainage at Directorate General of Khoula Hospital ICU, Oman: A Cluster-Randomized Trial
Authors: Shamsa Al Sharji, Athar Al Jabri, Haitham Al Dughaishi, Mirfat Al Barwani, Raja Al Rawahi, Raiya Al Rajhi, Shurooq Al Ruqaishi, Thamreen Al Zadjali, Iman Al Humaidi
Abstract:
Background: External Ventricular Drains (EVDs) are critical in managing traumatic brain injuries and hydrocephalus by controlling intracranial pressure, but they carry a high risk of infection. Infection rates vary globally, ranging from 5% to 45%, leading to increased morbidity, prolonged hospital stays, and higher healthcare costs. Nursing protocols play a pivotal role in reducing these infection rates. This study investigates the impact of a structured nursing protocol on EVD-associated infections in adult neurosurgery patients at the Directorate General of Khoula Hospital, Oman, from January to September 2024. Methods: A cluster-randomized trial was conducted across neurosurgery wards and the ICU. The intervention group followed a comprehensive nursing protocol, including strict sterile insertion, standardized dressing changes, infection control training, and regular clinical audits. The control group received standard care. The primary outcome was the incidence of EVD-associated infections, with secondary outcomes including protocol compliance, infection severity, recovery times, length of stay, and 30-day mortality. Statistical analysis was conducted using Chi-square tests, paired t-tests, and logistic regression to assess the differences between groups. Results: The study involved 75 patients, with an overall infection rate of 13.3%. The intervention group showed a reduced infection rate of 8.9% compared to 20% in the control group. Compliance rates for key nursing actions were high, with 89.7% for hand hygiene and 86.2% for wound dressing. The relative risk of infection was 0.44 in the intervention group, reflecting a 55.6% reduction. Logistic regression identified obesity as a significant predictor of EVD infections. Although mortality rates were slightly higher in the intervention group, the number needed to treat (NNT) of 9 suggests that the nursing protocol may improve survival outcomes. Conclusion: This study demonstrates that structured nursing protocols can reduce EVD-related infections and improve patient outcomes in neurosurgery. While the findings are promising, further research with larger sample sizes is needed to confirm these results and optimize infection control strategies in neurosurgical care.Keywords: EVD, CSF, nursing protocol, EVD infection
Procedia PDF Downloads 238922 An Analysis of the Effect of Sharia Financing and Work Relation Founding towards Non-Performing Financing in Islamic Banks in Indonesia
Authors: Muhammad Bahrul Ilmi
Abstract:
The purpose of this research is to analyze the influence of Islamic financing and work relation founding simultaneously and partially towards non-performing financing in Islamic banks. This research was regression quantitative field research, and had been done in Muammalat Indonesia Bank and Islamic Danamon Bank in 3 months. The populations of this research were 15 account officers of Muammalat Indonesia Bank and Islamic Danamon Bank in Surakarta, Indonesia. The techniques of collecting data used in this research were documentation, questionnaire, literary study and interview. Regression analysis result shows that Islamic financing and work relation founding simultaneously has positive and significant effect towards non performing financing of two Islamic Banks. It is obtained with probability value 0.003 which is less than 0.05 and F value 9.584. The analysis result of Islamic financing regression towards non performing financing shows the significant effect. It is supported by double linear regression analysis with probability value 0.001 which is less than 0.05. The regression analysis of work relation founding effect towards non-performing financing shows insignificant effect. This is shown in the double linear regression analysis with probability value 0.161 which is bigger than 0.05.Keywords: Syariah financing, work relation founding, non-performing financing (NPF), Islamic Bank
Procedia PDF Downloads 4318921 Knowledge, Attitude, Practice and Contributing Factors on Menstrual Hygiene Among High School Students, Ethiopia: Cross-Sectional Study
Authors: Getnet Gedefaw, Fentanesh Endalew, Bitewush Azmeraw, Bethelhem Walelign, Eyob Shitie
Abstract:
Introduction: The issue of menstrual hygiene is often overlooked and has not been sufficiently addressed in the fields of reproductive health in low and middle-income countries. Inadequate menstrual hygiene practices can increase the risk of various infectious and chronic obstetric and gynaecological complications for girls and adolescents. Hence, this study seeks to investigate the knowledge, attitudes, and practices related to menstrual hygiene, along with the factors influencing them, among high school students. Methods: A facility based cross-sectional study was conducted involving a total of 423 study subjects. A systematic random sampling technique was utilized. Data was entered and analyzed through Epi data 3.1 and SPSS 22, respectively. Both univariable and multivariable logistic regression models were employed. A p-value of less than 0.05 was considered statistically significant. Results: This study revealed that 365(89.2%), 200(48.9%) and 196(47.9%) of the study participants have good knowledge, good practice, and good attitudes about menstrual hygiene, respectively. Being higher grade students (grade 10) [AOR=3.96, 95% CI =2.0-7.8] and having good practice of menstrual hygiene (AOR=2.52, 95% CI= 1.26-5) had a positive association with menstrual hygiene knowledge. Whereas maternal education level (AOR=1.86, 95% CI=1.18-2.9) and being a grade 10 student (AOR=2.3, 95% CI=1.48-3.56) were associated factors for practising menstrual hygiene. Additionally, being higher grade students (AOR=1.9, 95% CI=1.2-2.8), age ≥18 years (AOR=1.67, 95% CI=1.09-2.55) were statistically and positively associated with the attitude of menstrual hygiene. Conclusion: The study findings indicated that the knowledge of the study participants regarding menstrual hygiene was high, while their attitudes and practices towards menstrual hygiene were low. It is suggested that raising awareness among reproductive health groups and educating their families and parents could potentially lead to a positive change in their poor practices and attitudes towards menstrual hygiene.Keywords: menstrual hygiene, menstruation, students, reproductive health
Procedia PDF Downloads 608920 Quantitative Structure-Property Relationship Study of Base Dissociation Constants of Some Benzimidazoles
Authors: Sanja O. Podunavac-Kuzmanović, Lidija R. Jevrić, Strahinja Z. Kovačević
Abstract:
Benzimidazoles are a group of compounds with significant antibacterial, antifungal and anticancer activity. The studied compounds consist of the main benzimidazole structure with different combinations of substituens. This study is based on the two-dimensional and three-dimensional molecular modeling and calculation of molecular descriptors (physicochemical and lipophilicity descriptors) of structurally diverse benzimidazoles. Molecular modeling was carried out by using ChemBio3D Ultra version 14.0 software. The obtained 3D models were subjected to energy minimization using molecular mechanics force field method (MM2). The cutoff for structure optimization was set at a gradient of 0.1 kcal/Åmol. The obtained set of molecular descriptors was used in principal component analysis (PCA) of possible similarities and dissimilarities among the studied derivatives. After the molecular modeling, the quantitative structure-property relationship (QSPR) analysis was applied in order to get the mathematical models which can be used in prediction of pKb values of structurally similar benzimidazoles. The obtained models are based on statistically valid multiple linear regression (MLR) equations. The calculated cross-validation parameters indicate the high prediction ability of the established QSPR models. This study is financially supported by COST action CM1306 and the project No. 114-451-347/2015-02, financially supported by the Provincial Secretariat for Science and Technological Development of Vojvodina.Keywords: benzimidazoles, chemometrics, molecular modeling, molecular descriptors, QSPR
Procedia PDF Downloads 2878919 Comparison of Machine Learning-Based Models for Predicting Streptococcus pyogenes Virulence Factors and Antimicrobial Resistance
Authors: Fernanda Bravo Cornejo, Camilo Cerda Sarabia, Belén Díaz Díaz, Diego Santibañez Oyarce, Esteban Gómez Terán, Hugo Osses Prado, Raúl Caulier-Cisterna, Jorge Vergara-Quezada, Ana Moya-Beltrán
Abstract:
Streptococcus pyogenes is a gram-positive bacteria involved in a wide range of diseases and is a major-human-specific bacterial pathogen. In Chile, this year the 'Ministerio de Salud' declared an alert due to the increase in strains throughout the year. This increase can be attributed to the multitude of factors including antimicrobial resistance (AMR) and Virulence Factors (VF). Understanding these VF and AMR is crucial for developing effective strategies and improving public health responses. Moreover, experimental identification and characterization of these pathogenic mechanisms are labor-intensive and time-consuming. Therefore, new computational methods are required to provide robust techniques for accelerating this identification. Advances in Machine Learning (ML) algorithms represent the opportunity to refine and accelerate the discovery of VF associated with Streptococcus pyogenes. In this work, we evaluate the accuracy of various machine learning models in predicting the virulence factors and antimicrobial resistance of Streptococcus pyogenes, with the objective of providing new methods for identifying the pathogenic mechanisms of this organism.Our comprehensive approach involved the download of 32,798 genbank files of S. pyogenes from NCBI dataset, coupled with the incorporation of data from Virulence Factor Database (VFDB) and Antibiotic Resistance Database (CARD) which contains sequences of AMR gene sequence and resistance profiles. These datasets provided labeled examples of both virulent and non-virulent genes, enabling a robust foundation for feature extraction and model training. We employed preprocessing, characterization and feature extraction techniques on primary nucleotide/amino acid sequences and selected the optimal more for model training. The feature set was constructed using sequence-based descriptors (e.g., k-mers and One-hot encoding), and functional annotations based on database prediction. The ML models compared are logistic regression, decision trees, support vector machines, neural networks among others. The results of this work show some differences in accuracy between the algorithms, these differences allow us to identify different aspects that represent unique opportunities for a more precise and efficient characterization and identification of VF and AMR. This comparative analysis underscores the value of integrating machine learning techniques in predicting S. pyogenes virulence and AMR, offering potential pathways for more effective diagnostic and therapeutic strategies. Future work will focus on incorporating additional omics data, such as transcriptomics, and exploring advanced deep learning models to further enhance predictive capabilities.Keywords: antibiotic resistance, streptococcus pyogenes, virulence factors., machine learning
Procedia PDF Downloads 308918 A Study on Inference from Distance Variables in Hedonic Regression
Authors: Yan Wang, Yasushi Asami, Yukio Sadahiro
Abstract:
In urban area, several landmarks may affect housing price and rents, hedonic analysis should employ distance variables corresponding to each landmarks. Unfortunately, the effects of distances to landmarks on housing prices are generally not consistent with the true price. These distance variables may cause magnitude error in regression, pointing a problem of spatial multicollinearity. In this paper, we provided some approaches for getting the samples with less bias and method on locating the specific sampling area to avoid the multicollinerity problem in two specific landmarks case.Keywords: landmarks, hedonic regression, distance variables, collinearity, multicollinerity
Procedia PDF Downloads 4528917 Forecasting of Grape Juice Flavor by Using Support Vector Regression
Authors: Ren-Jieh Kuo, Chun-Shou Huang
Abstract:
The research of juice flavor forecasting has become more important in China. Due to the fast economic growth in China, many different kinds of juices have been introduced to the market. If a beverage company can understand their customers’ preference well, the juice can be served more attractively. Thus, this study intends to introduce the basic theory and computing process of grapes juice flavor forecasting based on support vector regression (SVR). Applying SVR, BPN and LR to forecast the flavor of grapes juice in real data, the result shows that SVR is more suitable and effective at predicting performance.Keywords: flavor forecasting, artificial neural networks, Support Vector Regression, China
Procedia PDF Downloads 4928916 Using Historical Data for Stock Prediction
Authors: Sofia Stoica
Abstract:
In this paper, we use historical data to predict the stock price of a tech company. To this end, we use a dataset consisting of the stock prices in the past five years of ten major tech companies – Adobe, Amazon, Apple, Facebook, Google, Microsoft, Netflix, Oracle, Salesforce, and Tesla. We experimented with a variety of models– a linear regressor model, K nearest Neighbors (KNN), a sequential neural network – and algorithms - Multiplicative Weight Update, and AdaBoost. We found that the sequential neural network performed the best, with a testing error of 0.18%. Interestingly, the linear model performed the second best with a testing error of 0.73%. These results show that using historical data is enough to obtain high accuracies, and a simple algorithm like linear regression has a performance similar to more sophisticated models while taking less time and resources to implement.Keywords: finance, machine learning, opening price, stock market
Procedia PDF Downloads 1898915 Estimation of a Finite Population Mean under Random Non Response Using Improved Nadaraya and Watson Kernel Weights
Authors: Nelson Bii, Christopher Ouma, John Odhiambo
Abstract:
Non-response is a potential source of errors in sample surveys. It introduces bias and large variance in the estimation of finite population parameters. Regression models have been recognized as one of the techniques of reducing bias and variance due to random non-response using auxiliary data. In this study, it is assumed that random non-response occurs in the survey variable in the second stage of cluster sampling, assuming full auxiliary information is available throughout. Auxiliary information is used at the estimation stage via a regression model to address the problem of random non-response. In particular, the auxiliary information is used via an improved Nadaraya-Watson kernel regression technique to compensate for random non-response. The asymptotic bias and mean squared error of the estimator proposed are derived. Besides, a simulation study conducted indicates that the proposed estimator has smaller values of the bias and smaller mean squared error values compared to existing estimators of finite population mean. The proposed estimator is also shown to have tighter confidence interval lengths at a 95% coverage rate. The results obtained in this study are useful, for instance, in choosing efficient estimators of the finite population mean in demographic sample surveys.Keywords: mean squared error, random non-response, two-stage cluster sampling, confidence interval lengths
Procedia PDF Downloads 1378914 Potential Risk Factors Associated with Sole Hemorrhages Causing Lameness in Egyptian Water Buffaloes and Native Breed Cows
Authors: Waleed El-Said Abou El-Amaiem
Abstract:
Sole hemorrhages are considered as a main cause for sub clinical laminitis. In this study we aimed at discussing the most prominent risk factors associated with sole hemorrhages causing lameness in Egyptian water buffaloes and native breed cows. The final multivariate logistic regression model showed, a significant association between sub acute ruminal acidosis (P< 0.05), limb affected (P< 0.05) and weight (P< 0.05) and sole hemorrhages causing lameness in Egyptian water buffaloes and native breed cows. According to our knowledge, this is the first paper to discuss the risk factors associated with sole hemorrhages causing lameness in Egyptian water buffaloes and native breed cows.Keywords: lameness, buffalo, sole hemorrhages, breed cows
Procedia PDF Downloads 4508913 Estimation of Coefficients of Ridge and Principal Components Regressions with Multicollinear Data
Authors: Rajeshwar Singh
Abstract:
The presence of multicollinearity is common in handling with several explanatory variables simultaneously due to exhibiting a linear relationship among them. A great problem arises in understanding the impact of explanatory variables on the dependent variable. Thus, the method of least squares estimation gives inexact estimates. In this case, it is advised to detect its presence first before proceeding further. Using the ridge regression degree of its occurrence is reduced but principal components regression gives good estimates in this situation. This paper discusses well-known techniques of the ridge and principal components regressions and applies to get the estimates of coefficients by both techniques. In addition to it, this paper also discusses the conflicting claim on the discovery of the method of ridge regression based on available documents.Keywords: conflicting claim on credit of discovery of ridge regression, multicollinearity, principal components and ridge regressions, variance inflation factor
Procedia PDF Downloads 4188912 Daily Probability Model of Storm Events in Peninsular Malaysia
Authors: Mohd Aftar Abu Bakar, Noratiqah Mohd Ariff, Abdul Aziz Jemain
Abstract:
Storm Event Analysis (SEA) provides a method to define rainfalls events as storms where each storm has its own amount and duration. By modelling daily probability of different types of storms, the onset, offset and cycle of rainfall seasons can be determined and investigated. Furthermore, researchers from the field of meteorology will be able to study the dynamical characteristics of rainfalls and make predictions for future reference. In this study, four categories of storms; short, intermediate, long and very long storms; are introduced based on the length of storm duration. Daily probability models of storms are built for these four categories of storms in Peninsular Malaysia. The models are constructed by using Bernoulli distribution and by applying linear regression on the first Fourier harmonic equation. From the models obtained, it is found that daily probability of storms at the Eastern part of Peninsular Malaysia shows a unimodal pattern with high probability of rain beginning at the end of the year and lasting until early the next year. This is very likely due to the Northeast monsoon season which occurs from November to March every year. Meanwhile, short and intermediate storms at other regions of Peninsular Malaysia experience a bimodal cycle due to the two inter-monsoon seasons. Overall, these models indicate that Peninsular Malaysia can be divided into four distinct regions based on the daily pattern for the probability of various storm events.Keywords: daily probability model, monsoon seasons, regions, storm events
Procedia PDF Downloads 3438911 Disadvantaged Adolescents and Educational Delay in South Africa: Impacts of Personal, Family, and School Characteristics
Authors: Rocio Herrero Romero, Lucie Cluver, James Hall, Janina Steinert
Abstract:
Educational delay and non-completion are major policy concerns in South Africa. However, little research has focused on predictors for educational delay amongst adolescents in disadvantaged areas. This study has two aims: first, to use data integration approaches to compare the educational delay of 599 adolescents aged 16 to 18 from disadvantaged communities to national and provincial representative estimates in South Africa. Second, the paper also explores predictors for educational delay by comparing adolescents out of school (n=64) and at least one year behind (n=380), with adolescents in the age-appropriate grade or higher (n=155). Multinomial logistic regression models using self-report and administrative data were applied to look for significant associations of risk and protective factors. Significant risk factors for being behind (rather than in age-appropriate grade) were: male gender, past grade repetition, rural location and larger school size. Risk factors for being out of school (rather than in the age-appropriate grade) were: past grade repetition, having experienced problems concentrating at school, household poverty, and food insecurity. Significant protective factors for being in the age-appropriate grade (rather than out of school) were: living with biological parents or grandparents and access to school counselling. Attending school in wealthier communities was a significant protective factor for being in the age-appropriate grade (rather than behind). Our results suggest that both personal and contextual factors –family and school- predicted educational delay. This study provides new evidence to the significant effects of personal, family, and school characteristics on the educational outcomes of adolescents from disadvantaged communities in South Africa. This is the first longitudinal and quantitative study to systematically investigate risk and protective factors for post-compulsory educational outcomes amongst South African adolescents living in disadvantaged communities.Keywords: disadvantaged communities, quantitative analysis, school delay, South Africa
Procedia PDF Downloads 3488910 Performance of the Cmip5 Models in Simulation of the Present and Future Precipitation over the Lake Victoria Basin
Authors: M. A. Wanzala, L. A. Ogallo, F. J. Opijah, J. N. Mutemi
Abstract:
The usefulness and limitations in climate information are due to uncertainty inherent in the climate system. For any given region to have sustainable development it is important to apply climate information into its socio-economic strategic plans. The overall objective of the study was to assess the performance of the Coupled Model Inter-comparison Project (CMIP5) over the Lake Victoria Basin. The datasets used included the observed point station data, gridded rainfall data from Climate Research Unit (CRU) and hindcast data from eight CMIP5. The methodology included trend analysis, spatial analysis, correlation analysis, Principal Component Analysis (PCA) regression analysis, and categorical statistical skill score. Analysis of the trends in the observed rainfall records indicated an increase in rainfall variability both in space and time for all the seasons. The spatial patterns of the individual models output from the models of MPI, MIROC, EC-EARTH and CNRM were closest to the observed rainfall patterns.Keywords: categorical statistics, coupled model inter-comparison project, principal component analysis, statistical downscaling
Procedia PDF Downloads 3688909 The Communication of Audit Report: Key Audit Matters in United Kingdom
Authors: L. Sierra, N. Gambetta, M. A. Garcia-Benau, M. Orta
Abstract:
Financial scandals and financial crisis have led to an international debate on the value of auditing. In recent years there have been significant legislative reforms aiming to increase markets’ confidence in audit services. In particular, there has been a significant debate on the need to improve the communication of auditors with audit reports users as a way to improve its informative value and thus, to improve audit quality. The International Auditing and Assurance Standards Board (IAASB) has proposed changes to the audit report standards. The International Standard on Auditing 701, Communicating Key Audit Matters (KAM) in the Independent Auditor's Report, has introduced new concepts that go beyond the auditor's opinion and requires to disclose the risks that, from the auditor's point of view, are more significant in the audited company information. Focusing on the companies included in the Financial Times Stock Exchange 100 index, this study aims to focus on the analysis of the determinants of the number of KAM disclosed by the auditor in the audit report and moreover, the analysis of the determinants of the different type of KAM reported during the period 2013-2015. To test the hypotheses in the empirical research, two different models have been used. The first one is a linear regression model to identify the client’s characteristics, industry sector and auditor’s characteristics that are related to the number of KAM disclosed in the audit report. Secondly, a logistic regression model is used to identify the determinants of the number of each KAM type disclosed in the audit report; in line with the risk-based approach to auditing financial statements, we categorized the KAM in 2 groups: Entity-level KAM and Accounting-level KAM. Regarding the auditor’s characteristics impact on the KAM disclosure, the results show that PwC tends to report a larger number of KAM while KPMG tends to report less KAM in the audit report. Further, PwC reports a larger number of entity-level risk KAM while KPMG reports less account-level risk KAM. The results also show that companies paying higher fees tend to have more entity-level risk KAM and less account-level risk KAM. The materiality level is positively related to the number of account-level risk KAM. Additionally, these study results show that the relationship between client’s characteristics and number of KAM is more evident in account-level risk KAM than in entity-level risk KAM. A highly leveraged company carries a great deal of risk, but due to this, they are usually subject to strong capital providers monitoring resulting in less account-level risk KAM. The results reveal that the number of account-level risk KAM is strongly related to the industry sector in which the company operates assets. This study helps to understand the UK audit market, provides information to auditors and finally, it opens new research avenues in the academia.Keywords: FTSE 100, IAS 701, key audit matters, auditor’s characteristics, client’s characteristics
Procedia PDF Downloads 2318908 Analysis of Tactile Perception of Textiles by Fingertip Skin Model
Authors: Izabela L. Ciesielska-Wrόbel
Abstract:
This paper presents finite element models of the fingertip skin which have been created to simulate the contact of textile objects with the skin to gain a better understanding of the perception of textiles through the skin, so-called Hand of Textiles (HoT). Many objective and subjective techniques have been developed to analyze HoT, however none of them provide exact overall information concerning the sensation of textiles through the skin. As the human skin is a complex heterogeneous hyperelastic body composed of many particles, some simplifications had to be made at the stage of building the models. The same concerns models of woven structures, however their utilitarian value was maintained. The models reflect only friction between skin and woven textiles, deformation of the skin and fabrics when “touching” textiles and heat transfer from the surface of the skin into direction of textiles.Keywords: fingertip skin models, finite element models, modelling of textiles, sensation of textiles through the skin
Procedia PDF Downloads 4658907 Generalized Correlation Coefficient in Genome-Wide Association Analysis of Cognitive Ability in Twins
Authors: Afsaneh Mohammadnejad, Marianne Nygaard, Jan Baumbach, Shuxia Li, Weilong Li, Jesper Lund, Jacob v. B. Hjelmborg, Lene Christensen, Qihua Tan
Abstract:
Cognitive impairment in the elderly is a key issue affecting the quality of life. Despite a strong genetic background in cognition, only a limited number of single nucleotide polymorphisms (SNPs) have been found. These explain a small proportion of the genetic component of cognitive function, thus leaving a large proportion unaccounted for. We hypothesize that one reason for this missing heritability is the misspecified modeling in data analysis concerning phenotype distribution as well as the relationship between SNP dosage and the phenotype of interest. In an attempt to overcome these issues, we introduced a model-free method based on the generalized correlation coefficient (GCC) in a genome-wide association study (GWAS) of cognitive function in twin samples and compared its performance with two popular linear regression models. The GCC-based GWAS identified two genome-wide significant (P-value < 5e-8) SNPs; rs2904650 near ZDHHC2 on chromosome 8 and rs111256489 near CD6 on chromosome 11. The kinship model also detected two genome-wide significant SNPs, rs112169253 on chromosome 4 and rs17417920 on chromosome 7, whereas no genome-wide significant SNPs were found by the linear mixed model (LME). Compared to the linear models, more meaningful biological pathways like GABA receptor activation, ion channel transport, neuroactive ligand-receptor interaction, and the renin-angiotensin system were found to be enriched by SNPs from GCC. The GCC model outperformed the linear regression models by identifying more genome-wide significant genetic variants and more meaningful biological pathways related to cognitive function. Moreover, GCC-based GWAS was robust in handling genetically related twin samples, which is an important feature in handling genetic confounding in association studies.Keywords: cognition, generalized correlation coefficient, GWAS, twins
Procedia PDF Downloads 1248906 The Effect of Geographical Differentials of Epidemiological Transition on Health-Seeking Behavior in India
Authors: Sumit Kumar Das, Laishram Ladusingh
Abstract:
Aim: The aim of the study is to examine the differential of epidemiological transition across fifteen agro-climatic zones of India and its effect on health-seeking behavior. Data and Methods: Unit level data on consumption expenditure on health of India from three decadal rounds conducted by National Sample Survey Organization are used for the analysis. These three rounds are 52nd (1995-96), 60th (2004-05) and 71st (2014-15). The age-adjusted prevalence rate for communicable diseases and non-communicable diseases are estimated for fifteen agro-climatic zones of India for three time periods. Bivariate analysis is used to find out determinants of health-seeking behavior. Multilevel logistic regression is used to examine factors effecting on household health-seeking behavior. Result: The prevalence of communicable diseases is increasing in most of the zones of India. Every South Indian zones, Gujarat plains, and lower Gangetic plain are facing the severe attack of dual burden of diseases. Demand for medical advice has increased in southern zones, and east zones, reliance on private healthcare facilities are increasing in most of the zone. Demographic characteristics of the household head have a significant impact on health-seeking behavior. Conclusion: Proper program implementation is required considering the disease prevalence and differential in the pattern of health seeking behavior. Along with initiation and strengthening of programs for non-communicable, existing programs for communicable diseases need to monitor and supervised strictly.Keywords: agro-climatic zone, epidemiological transition, health-seeking behavior, multilevel regression
Procedia PDF Downloads 1838905 Estimate of Maximum Expected Intensity of One-Half-Wave Lines Dancing
Authors: A. Bekbaev, M. Dzhamanbaev, R. Abitaeva, A. Karbozova, G. Nabyeva
Abstract:
In this paper, the regression dependence of dancing intensity from wind speed and length of span was established due to the statistic data obtained from multi-year observations on line wires dancing accumulated by power systems of Kazakhstan and the Russian Federation. The lower and upper limitations of the equations parameters were estimated, as well as the adequacy of the regression model. The constructed model will be used in research of dancing phenomena for the development of methods and means of protection against dancing and for zoning plan of the territories of line wire dancing.Keywords: power lines, line wire dancing, dancing intensity, regression equation, dancing area intensity
Procedia PDF Downloads 3118904 The Effect of Slum Neighborhoods on Pregnancy Outcomes in Tanzania: Secondary Analysis of the 2015-2016 Tanzania Demographic and Health Survey Data
Authors: Luisa Windhagen, Atsumi Hirose, Alex Bottle
Abstract:
Global urbanization has resulted in the expansion of slums, leaving over 10 million Tanzanians in urban poverty and at risk of poor health. Whilst rural residence has historically been associated with an increased risk of adverse pregnancy outcomes, recent studies found higher perinatal mortality rates in urban Tanzania. This study aims to understand to what extent slum neighborhoods may account for the spatial disparities seen in Tanzania. We generated a slum indicator based on UN-HABITAT criteria to identify slum clusters within the 2015-2016 Tanzania Demographic and Health Survey. Descriptive statistics, disaggregated by urban slum, urban non-slum, and rural areas, were produced. Simple and multivariable logistic regression examined the association between cluster residence type and neonatal mortality and stillbirth. For neonatal mortality, we additionally built a multilevel logistic regression model, adjusting for confounding and clustering. The neonatal mortality ratio was highest in slums (38.3 deaths per 1000 live births); the stillbirth rate was three times higher in slums (32.4 deaths per 1000 births) than in urban non-slums. Neonatal death was more likely to occur in slums than in urban non-slums (aOR=2.15, 95% CI=1.02-4.56) and rural areas (aOR=1.78, 95% CI=1.15-2.77). Odds of stillbirth were over five times higher among rural than urban non-slum residents (aOR=5.25, 95% CI=1.31-20.96). The results suggest that slums contribute to the urban disadvantage in Tanzanian neonatal health. Higher neonatal mortality in slums may be attributable to lack of education, lower socioeconomic status, poor healthcare access, and environmental factors, including indoor and outdoor air pollution and unsanitary conditions from inadequate housing. However, further research is required to ascertain specific causalities as well as significant associations between residence type and other pregnancy outcomes. The high neonatal mortality, stillbirth, and slum formation rates in Tanzania signify that considerable change is necessary to achieve international goals for health and human settlements. Disparities in access to adequate housing, safe water and sanitation, high standard antenatal, intrapartum, and neonatal care, and maternal education need to urgently be addressed. This study highlights the spatial neonatal mortality shift from rural settings to urban informal settlements in Tanzania. Importantly, other low- and middle-income countries experiencing overwhelming urbanization and slum expansion may also be at risk of a reversing trend in residential neonatal health differences.Keywords: urban health, slum residence, neonatal mortality, stillbirth, global urbanisation
Procedia PDF Downloads 648903 Factors Contributing to Delayed Diagnosis and Treatment of Breast Cancer and Its Outcome in Jamhoriat Hospital Kabul, Afghanistan
Authors: Ahmad Jawad Fardin
Abstract:
Over 60% of patients with breast cancer in Afghanistan present late with advanced stage III and IV, a major cause for the poor survival rate. The objectives of this study were to identify the contributing factors for the diagnosis and treatment delay and its outcome. This cross-sectional study was conducted on 318 patients with histologically confirmed breast cancer in the oncology department of Jamhoriat hospital, which is the first and only national cancer center in Afghanistan; data were collected from medical records and interviews conducted with women diagnosed with breast cancer, linear regression and logistic regression were used for analysis. Patient delay was defined as the time from first recognition of symptoms until first medical consultation and doctor form first consultation with a health care provider until histological confirmation of breast cancer. The mean age of patients was 49.2+_ 11.5years. The average time for the final diagnosis of breast cancer was 8.5 months; most patients had ductal carcinoma 260.7 (82%). Factors associated with delay were low education level 76% poor socioeconomic and cultural conditions 81% lack of cancer center 73% lack of screening 19%. The stage distribution was as follows stage IV 4 22% stage III 44.4% stage II 29.3% stage I 4.3%. Complex associated factors were identified to delayed the diagnosis of breast cancer and increased adverse outcomes consequently. Raising awareness and education in women, the establishment of cancer centers and providing accessible diagnosis service and screening, training of general practitioners; required to promote early detection, diagnosis and treatment.Keywords: delayed diagnosis and poor outcome, breast cancer in Afghanistan, poor outcome of delayed breast cancer treatment, breast cancer delayed diagnosis and treatment in Afghanistan
Procedia PDF Downloads 1828902 Bullying Rates Among Students with Special Needs in the United States
Authors: Kaycee Bills
Abstract:
Past studies have indicated students who have disabilities are at a higher risk of experiencing bullying victimization in comparison to other student groups. Extracurricular activity participation has been shown to establish better social outcomes for students. These positive social outcomes indirectly decrease the number of times a student is bullied. The following study uses the National Crime Victimization Survey – School Crime Supplement (NCVS/SCS) to analyze the bullying concurrences experienced among students, with disabilities being a focal variable. To explore the relationship between extracurricular involvement and bullying occurrence rates, this study employs a binary logistic regression to determine if athletic and non-athletic extracurricular activities have an impact on the number of times a student with disabilities experiences bullying. Implications for future social welfare practice and research are discussed.Keywords: disability, bullying, extracurricular activities, athletics
Procedia PDF Downloads 1618901 Analysis of Atomic Models in High School Physics Textbooks
Authors: Meng-Fei Cheng, Wei Fneg
Abstract:
New Taiwan high school standards emphasize employing scientific models and modeling practices in physics learning. However, to our knowledge. Few studies address how scientific models and modeling are approached in current science teaching, and they do not examine the views of scientific models portrayed in the textbooks. To explore the views of scientific models and modeling in textbooks, this study investigated the atomic unit in different textbook versions as an example and provided suggestions for modeling curriculum. This study adopted a quantitative analysis of qualitative data in the atomic units of four mainstream version of Taiwan high school physics textbooks. The models were further analyzed using five dimensions of the views of scientific models (nature of models, multiple models, purpose of the models, testing models, and changing models); each dimension had three levels (low, medium, high). Descriptive statistics were employed to compare the frequency of describing the five dimensions of the views of scientific models in the atomic unit to understand the emphasis of the views and to compare the frequency of the eight scientific models’ use to investigate the atomic model that was used most often in the textbooks. Descriptive statistics were further utilized to investigate the average levels of the five dimensions of the views of scientific models to examine whether the textbooks views were close to the scientific view. The average level of the five dimensions of the eight atomic models were also compared to examine whether the views of the eight atomic models were close to the scientific views. The results revealed the following three major findings from the atomic unit. (1) Among the five dimensions of the views of scientific models, the most portrayed dimension was the 'purpose of models,' and the least portrayed dimension was 'multiple models.' The most diverse view was the 'purpose of models,' and the most sophisticated scientific view was the 'nature of models.' The least sophisticated scientific view was 'multiple models.' (2) Among the eight atomic models, the most mentioned model was the atomic nucleus model, and the least mentioned model was the three states of matter. (3) Among the correlations between the five dimensions, the dimension of 'testing models' was highly related to the dimension of 'changing models.' In short, this study examined the views of scientific models based on the atomic units of physics textbooks to identify the emphasized and disregarded views in the textbooks. The findings suggest how future textbooks and curriculum can provide a thorough view of scientific models to enhance students' model-based learning.Keywords: atomic models, textbooks, science education, scientific model
Procedia PDF Downloads 1588900 Incorporating Anomaly Detection in a Digital Twin Scenario Using Symbolic Regression
Authors: Manuel Alves, Angelica Reis, Armindo Lobo, Valdemar Leiras
Abstract:
In industry 4.0, it is common to have a lot of sensor data. In this deluge of data, hints of possible problems are difficult to spot. The digital twin concept aims to help answer this problem, but it is mainly used as a monitoring tool to handle the visualisation of data. Failure detection is of paramount importance in any industry, and it consumes a lot of resources. Any improvement in this regard is of tangible value to the organisation. The aim of this paper is to add the ability to forecast test failures, curtailing detection times. To achieve this, several anomaly detection algorithms were compared with a symbolic regression approach. To this end, Isolation Forest, One-Class SVM and an auto-encoder have been explored. For the symbolic regression PySR library was used. The first results show that this approach is valid and can be added to the tools available in this context as a low resource anomaly detection method since, after training, the only requirement is the calculation of a polynomial, a useful feature in the digital twin context.Keywords: anomaly detection, digital twin, industry 4.0, symbolic regression
Procedia PDF Downloads 1208899 Identifying and Quantifying Factors Affecting Traffic Crash Severity under Heterogeneous Traffic Flow
Authors: Praveen Vayalamkuzhi, Veeraragavan Amirthalingam
Abstract:
Studies on safety on highways are becoming the need of the hour as over 400 lives are lost every day in India due to road crashes. In order to evaluate the factors that lead to different levels of crash severity, it is necessary to investigate the level of safety of highways and their relation to crashes. In the present study, an attempt is made to identify the factors that contribute to road crashes and to quantify their effect on the severity of road crashes. The study was carried out on a four-lane divided rural highway in India. The variables considered in the analysis includes components of horizontal alignment of highway, viz., straight or curve section; time of day, driveway density, presence of median; median opening; gradient; operating speed; and annual average daily traffic. These variables were considered after a preliminary analysis. The major complexities in the study are the heterogeneous traffic and the speed variation between different classes of vehicles along the highway. To quantify the impact of each of these factors, statistical analyses were carried out using Logit model and also negative binomial regression. The output from the statistical models proved that the variables viz., horizontal components of the highway alignment; driveway density; time of day; operating speed as well as annual average daily traffic show significant relation with the severity of crashes viz., fatal as well as injury crashes. Further, the annual average daily traffic has significant effect on the severity compared to other variables. The contribution of highway horizontal components on crash severity is also significant. Logit models can predict crashes better than the negative binomial regression models. The results of the study will help the transport planners to look into these aspects at the planning stage itself in the case of highways operated under heterogeneous traffic flow condition.Keywords: geometric design, heterogeneous traffic, road crash, statistical analysis, level of safety
Procedia PDF Downloads 3028898 Calculation of Pressure-Varying Langmuir and Brunauer-Emmett-Teller Isotherm Adsorption Parameters
Authors: Trevor C. Brown, David J. Miron
Abstract:
Gas-solid physical adsorption methods are central to the characterization and optimization of the effective surface area, pore size and porosity for applications such as heterogeneous catalysis, and gas separation and storage. Properties such as adsorption uptake, capacity, equilibrium constants and Gibbs free energy are dependent on the composition and structure of both the gas and the adsorbent. However, challenges remain, in accurately calculating these properties from experimental data. Gas adsorption experiments involve measuring the amounts of gas adsorbed over a range of pressures under isothermal conditions. Various constant-parameter models, such as Langmuir and Brunauer-Emmett-Teller (BET) theories are used to provide information on adsorbate and adsorbent properties from the isotherm data. These models typically do not provide accurate interpretations across the full range of pressures and temperatures. The Langmuir adsorption isotherm is a simple approximation for modelling equilibrium adsorption data and has been effective in estimating surface areas and catalytic rate laws, particularly for high surface area solids. The Langmuir isotherm assumes the systematic filling of identical adsorption sites to a monolayer coverage. The BET model is based on the Langmuir isotherm and allows for the formation of multiple layers. These additional layers do not interact with the first layer and the energetics are equal to the adsorbate as a bulk liquid. This BET method is widely used to measure the specific surface area of materials. Both Langmuir and BET models assume that the affinity of the gas for all adsorption sites are identical and so the calculated adsorbent uptake at the monolayer and equilibrium constant are independent of coverage and pressure. Accurate representations of adsorption data have been achieved by extending the Langmuir and BET models to include pressure-varying uptake capacities and equilibrium constants. These parameters are determined using a novel regression technique called flexible least squares for time-varying linear regression. For isothermal adsorption the adsorption parameters are assumed to vary slowly and smoothly with increasing pressure. The flexible least squares for pressure-varying linear regression (FLS-PVLR) approach assumes two distinct types of discrepancy terms, dynamic and measurement for all parameters in the linear equation used to simulate the data. Dynamic terms account for pressure variation in successive parameter vectors, and measurement terms account for differences between observed and theoretically predicted outcomes via linear regression. The resultant pressure-varying parameters are optimized by minimizing both dynamic and measurement residual squared errors. Validation of this methodology has been achieved by simulating adsorption data for n-butane and isobutane on activated carbon at 298 K, 323 K and 348 K and for nitrogen on mesoporous alumina at 77 K with pressure-varying Langmuir and BET adsorption parameters (equilibrium constants and uptake capacities). This modeling provides information on the adsorbent (accessible surface area and micropore volume), adsorbate (molecular areas and volumes) and thermodynamic (Gibbs free energies) variations of the adsorption sites.Keywords: Langmuir adsorption isotherm, BET adsorption isotherm, pressure-varying adsorption parameters, adsorbate and adsorbent properties and energetics
Procedia PDF Downloads 2338897 Evaluation of the CRISP-DM Business Understanding Step: An Approach for Assessing the Predictive Power of Regression versus Classification for the Quality Prediction of Hydraulic Test Results
Authors: Christian Neunzig, Simon Fahle, Jürgen Schulz, Matthias Möller, Bernd Kuhlenkötter
Abstract:
Digitalisation in production technology is a driver for the application of machine learning methods. Through the application of predictive quality, the great potential for saving necessary quality control can be exploited through the data-based prediction of product quality and states. However, the serial use of machine learning applications is often prevented by various problems. Fluctuations occur in real production data sets, which are reflected in trends and systematic shifts over time. To counteract these problems, data preprocessing includes rule-based data cleaning, the application of dimensionality reduction techniques, and the identification of comparable data subsets to extract stable features. Successful process control of the target variables aims to centre the measured values around a mean and minimise variance. Competitive leaders claim to have mastered their processes. As a result, much of the real data has a relatively low variance. For the training of prediction models, the highest possible generalisability is required, which is at least made more difficult by this data availability. The implementation of a machine learning application can be interpreted as a production process. The CRoss Industry Standard Process for Data Mining (CRISP-DM) is a process model with six phases that describes the life cycle of data science. As in any process, the costs to eliminate errors increase significantly with each advancing process phase. For the quality prediction of hydraulic test steps of directional control valves, the question arises in the initial phase whether a regression or a classification is more suitable. In the context of this work, the initial phase of the CRISP-DM, the business understanding, is critically compared for the use case at Bosch Rexroth with regard to regression and classification. The use of cross-process production data along the value chain of hydraulic valves is a promising approach to predict the quality characteristics of workpieces. Suitable methods for leakage volume flow regression and classification for inspection decision are applied. Impressively, classification is clearly superior to regression and achieves promising accuracies.Keywords: classification, CRISP-DM, machine learning, predictive quality, regression
Procedia PDF Downloads 1448896 Impact of Infrastructural Development on Socio-Economic Growth: An Empirical Investigation in India
Authors: Jonardan Koner
Abstract:
The study attempts to find out the impact of infrastructural investment on state economic growth in India. It further tries to determine the magnitude of the impact of infrastructural investment on economic indicator, i.e., per-capita income (PCI) in Indian States. The study uses panel regression technique to measure the impact of infrastructural investment on per-capita income (PCI) in Indian States. Panel regression technique helps incorporate both the cross-section and time-series aspects of the dataset. In order to analyze the difference in impact of the explanatory variables on the explained variables across states, the study uses Fixed Effect Panel Regression Model. The conclusions of the study are that infrastructural investment has a desirable impact on economic development and that the impact is different for different states in India. We analyze time series data (annual frequency) ranging from 1991 to 2010. The study reveals that the infrastructural investment significantly explains the variation of economic indicators.Keywords: infrastructural investment, multiple regression, panel regression techniques, economic development, fixed effect dummy variable model
Procedia PDF Downloads 371