Search results for: indicator estimation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2746

Search results for: indicator estimation

2266 Estimation of Energy Losses of Photovoltaic Systems in France Using Real Monitoring Data

Authors: Mohamed Amhal, Jose Sayritupac

Abstract:

Photovoltaic (PV) systems have risen as one of the modern renewable energy sources that are used in wide ranges to produce electricity and deliver it to the electrical grid. In parallel, monitoring systems have been deployed as a key element to track the energy production and to forecast the total production for the next days. The reliability of the PV energy production has become a crucial point in the analysis of PV systems. A deeper understanding of each phenomenon that causes a gain or a loss of energy is needed to better design, operate and maintain the PV systems. This work analyzes the current losses distribution in PV systems starting from the available solar energy, going through the DC side and AC side, to the delivery point. Most of the phenomena linked to energy losses and gains are considered and modeled, based on real time monitoring data and datasheets of the PV system components. An analysis of the order of magnitude of each loss is compared to the current literature and commercial software. To date, the analysis of PV systems performance based on a breakdown structure of energy losses and gains is not covered enough in the literature, except in some software where the concept is very common. The cutting-edge of the current analysis is the implementation of software tools for energy losses estimation in PV systems based on several energy losses definitions and estimation technics. The developed tools have been validated and tested on some PV plants in France, which are operating for years. Among the major findings of the current study: First, PV plants in France show very low rates of soiling and aging. Second, the distribution of other losses is comparable to the literature. Third, all losses reported are correlated to operational and environmental conditions. For future work, an extended analysis on further PV plants in France and abroad will be performed.

Keywords: energy gains, energy losses, losses distribution, monitoring, photovoltaic, photovoltaic systems

Procedia PDF Downloads 176
2265 How Different Perceived Affordances of Game Elements Shape Motivation and Performance in Gamified Learning: A Cognitive Evaluation Theory Perspective

Authors: Kibbeum Na

Abstract:

Previous gamification research has produced mixed results regarding the effectiveness of gamified learning. One possible explanation for this is that individuals perceive the game elements differently. Cognitive Evaluation Theory posits that external rewards can boost or undermine intrinsic motivation, depending on whether the rewards are perceived as informational or controlling. This research tested the hypothesis that game elements can be perceived as either informational feedback or external reward, and the motivational impact differ accordingly. An experiment was conducted using an educational math puzzle to compare the motivation and performance as a result of different perceived affordances game elements. Participants were primed to perceive the game elements as either informational feedback or external reward, and the duration of an attempt to solve the unsolvable puzzle – amotivation indicator – and the puzzle score – a performance indicator–were measured with the game elements incorporated and then without the game elements. Badges and points were deployed as the main game elements. Results showed that, regardless of priming, a significant decrease in performance occurred when the game elements were removed, whereas the control group who solved non-gamified math puzzles maintained their performance. The undermined performance with gamification removal indicates that learners may perceive some game elements as controlling factors irrespective of the way they are presented. The results of the current study also imply that some game elements are better not being implemented to preserve long-term performance. Further research delving into the extrinsic reward-like nature of game elements and its impact on learning motivation is called for.

Keywords: cognitive Evaluation Theory, game elements, gamification, motivation, motivational affordance, performance

Procedia PDF Downloads 106
2264 SNR Classification Using Multiple CNNs

Authors: Thinh Ngo, Paul Rad, Brian Kelley

Abstract:

Noise estimation is essential in today wireless systems for power control, adaptive modulation, interference suppression and quality of service. Deep learning (DL) has already been applied in the physical layer for modulation and signal classifications. Unacceptably low accuracy of less than 50% is found to undermine traditional application of DL classification for SNR prediction. In this paper, we use divide-and-conquer algorithm and classifier fusion method to simplify SNR classification and therefore enhances DL learning and prediction. Specifically, multiple CNNs are used for classification rather than a single CNN. Each CNN performs a binary classification of a single SNR with two labels: less than, greater than or equal. Together, multiple CNNs are combined to effectively classify over a range of SNR values from −20 ≤ SNR ≤ 32 dB.We use pre-trained CNNs to predict SNR over a wide range of joint channel parameters including multiple Doppler shifts (0, 60, 120 Hz), power-delay profiles, and signal-modulation types (QPSK,16QAM,64-QAM). The approach achieves individual SNR prediction accuracy of 92%, composite accuracy of 70% and prediction convergence one order of magnitude faster than that of traditional estimation.

Keywords: classification, CNN, deep learning, prediction, SNR

Procedia PDF Downloads 134
2263 Integrative System of GDP, Emissions, Health Services and Population Health in Vietnam: Dynamic Panel Data Estimation

Authors: Ha Hai Duong, Amnon Levy Livermore, Kankesu Jayanthakumaran, Oleg Yerokhin

Abstract:

The issues of economic development, the environment and human health have been investigated since 1990s. Previous researchers have found different empirical evidences of the relationship between income and environmental pollution, health as determinant of economic growth, and the effects of income and environmental pollution on health in various regions of the world. This paper concentrates on integrative relationship analysis of GDP, carbon dioxide emissions, and health services and population health in context of Vietnam. We applied the dynamic generalized method of moments (GMM) estimation on datasets of Vietnam’s sixty-three provinces for the years 2000-2010. Our results show the significant positive effect of GDP on emissions and the dependence of population health on emissions and health services. We find the significant relationship between population health and GDP. Additionally, health services are significantly affected by population health and GDP. Finally, the population size too is other important determinant of both emissions and GDP.

Keywords: economic development, emissions, environmental pollution, health

Procedia PDF Downloads 626
2262 Uncertainty Estimation in Neural Networks through Transfer Learning

Authors: Ashish James, Anusha James

Abstract:

The impressive predictive performance of deep learning techniques on a wide range of tasks has led to its widespread use. Estimating the confidence of these predictions is paramount for improving the safety and reliability of such systems. However, the uncertainty estimates provided by neural networks (NNs) tend to be overconfident and unreasonable. Ensemble of NNs typically produce good predictions but uncertainty estimates tend to be inconsistent. Inspired by these, this paper presents a framework that can quantitatively estimate the uncertainties by leveraging the advances in transfer learning through slight modification to the existing training pipelines. This promising algorithm is developed with an intention of deployment in real world problems which already boast a good predictive performance by reusing those pretrained models. The idea is to capture the behavior of the trained NNs for the base task by augmenting it with the uncertainty estimates from a supplementary network. A series of experiments with known and unknown distributions show that the proposed approach produces well calibrated uncertainty estimates with high quality predictions.

Keywords: uncertainty estimation, neural networks, transfer learning, regression

Procedia PDF Downloads 135
2261 Investigating the Impact of Task Demand and Duration on Passage of Time Judgements and Duration Estimates

Authors: Jesika A. Walker, Mohammed Aswad, Guy Lacroix, Denis Cousineau

Abstract:

There is a fundamental disconnect between the experience of time passing and the chronometric units by which time is quantified. Specifically, there appears to be no relationship between the passage of time judgments (PoTJs) and verbal duration estimates at short durations (e.g., < 2000 milliseconds). When a duration is longer than several minutes, however, evidence suggests that a slower feeling of time passing is predictive of overestimation. Might the length of a task moderate the relation between PoTJs and duration estimates? Similarly, the estimation paradigm (prospective vs. retrospective) and the mental effort demanded of a task (task demand) have both been found to influence duration estimates. However, only a handful of experiments have investigated these effects for tasks of long durations, and the results have been mixed. Thus, might the length of a task also moderate the effects of the estimation paradigm and task demand on duration estimates? To investigate these questions, 273 participants performed either an easy or difficult visual and memory search task for either eight or 58 minutes, under prospective or retrospective instructions. Afterward, participants provided a duration estimate in minutes, followed by a PoTJ on a Likert scale (1 = very slow, 7 = very fast). A 2 (prospective vs. retrospective) × 2 (eight minutes vs. 58 minutes) × 2 (high vs. low difficulty) between-subjects ANOVA revealed a two-way interaction between task demand and task duration on PoTJs, p = .02. Specifically, time felt faster in the more challenging task, but only in the eight-minute condition, p < .01. Duration estimates were transformed into RATIOs (estimate/actual duration) to standardize estimates across durations. An ANOVA revealed a two-way interaction between estimation paradigm and task duration, p = .03. Specifically, participants overestimated the task more if they were given prospective instructions, but only in the eight-minute task. Surprisingly, there was no effect of task difficulty on duration estimates. Thus, the demands of a task may influence ‘feeling of time’ and ‘estimation time’ differently, contributing to the existing theory that these two forms of time judgement rely on separate underlying cognitive mechanisms. Finally, a significant main effect of task duration was found for both PoTJs and duration estimates (ps < .001). Participants underestimated the 58-minute task (m = 42.5 minutes) and overestimated the eight-minute task (m = 10.7 minutes). Yet, they reported the 58-minute task as passing significantly slower on a Likert scale (m = 2.5) compared to the eight-minute task (m = 4.1). In fact, a significant correlation was found between PoTJ and duration estimation (r = .27, p <.001). This experiment thus provides evidence for a compensatory effect at longer durations, in which people underestimate a ‘slow feeling condition and overestimate a ‘fast feeling condition. The results are discussed in relation to heuristics that might alter the relationship between these two variables when conditions range from several minutes up to almost an hour.

Keywords: duration estimates, long durations, passage of time judgements, task demands

Procedia PDF Downloads 130
2260 Poster : Incident Signals Estimation Based on a Modified MCA Learning Algorithm

Authors: Rashid Ahmed , John N. Avaritsiotis

Abstract:

Many signal subspace-based approaches have already been proposed for determining the fixed Direction of Arrival (DOA) of plane waves impinging on an array of sensors. Two procedures for DOA estimation based neural networks are presented. First, Principal Component Analysis (PCA) is employed to extract the maximum eigenvalue and eigenvector from signal subspace to estimate DOA. Second, minor component analysis (MCA) is a statistical method of extracting the eigenvector associated with the smallest eigenvalue of the covariance matrix. In this paper, we will modify a Minor Component Analysis (MCA(R)) learning algorithm to enhance the convergence, where a convergence is essential for MCA algorithm towards practical applications. The learning rate parameter is also presented, which ensures fast convergence of the algorithm, because it has direct effect on the convergence of the weight vector and the error level is affected by this value. MCA is performed to determine the estimated DOA. Preliminary results will be furnished to illustrate the convergences results achieved.

Keywords: Direction of Arrival, neural networks, Principle Component Analysis, Minor Component Analysis

Procedia PDF Downloads 451
2259 Sensor Fault-Tolerant Model Predictive Control for Linear Parameter Varying Systems

Authors: Yushuai Wang, Feng Xu, Junbo Tan, Xueqian Wang, Bin Liang

Abstract:

In this paper, a sensor fault-tolerant control (FTC) scheme using robust model predictive control (RMPC) and set theoretic fault detection and isolation (FDI) is extended to linear parameter varying (LPV) systems. First, a group of set-valued observers are designed for passive fault detection (FD) and the observer gains are obtained through minimizing the size of invariant set of state estimation-error dynamics. Second, an input set for fault isolation (FI) is designed offline through set theory for actively isolating faults after FD. Third, an RMPC controller based on state estimation for LPV systems is designed to control the system in the presence of disturbance and measurement noise and tolerate faults. Besides, an FTC algorithm is proposed to maintain the plant operate in the corresponding mode when the fault occurs. Finally, a numerical example is used to show the effectiveness of the proposed results.

Keywords: fault detection, linear parameter varying, model predictive control, set theory

Procedia PDF Downloads 252
2258 Airborne SAR Data Analysis for Impact of Doppler Centroid on Image Quality and Registration Accuracy

Authors: Chhabi Nigam, S. Ramakrishnan

Abstract:

This paper brings out the analysis of the airborne Synthetic Aperture Radar (SAR) data to study the impact of Doppler centroid on Image quality and geocoding accuracy from the perspective of Stripmap mode of data acquisition. Although in Stripmap mode of data acquisition radar beam points at 90 degrees broad side (side looking), shift in the Doppler centroid is invariable due to platform motion. In-accurate estimation of Doppler centroid leads to poor image quality and image miss-registration. The effect of Doppler centroid is analyzed in this paper using multiple sets of data collected from airborne platform. Occurrences of ghost (ambiguous) targets and their power levels have been analyzed that impacts appropriate choice of PRF. Effect of aircraft attitudes (roll, pitch and yaw) on the Doppler centroid is also analyzed with the collected data sets. Various stages of the RDA (Range Doppler Algorithm) algorithm used for image formation in Stripmap mode, range compression, Doppler centroid estimation, azimuth compression, range cell migration correction are analyzed to find the performance limits and the dependence of the imaging geometry on the final image. The ability of Doppler centroid estimation to enhance the imaging accuracy for registration are also illustrated in this paper. The paper also tries to bring out the processing of low squint SAR data, the challenges and the performance limits imposed by the imaging geometry and the platform dynamics on the final image quality metrics. Finally, the effect on various terrain types, including land, water and bright scatters is also presented.

Keywords: ambiguous target, Doppler Centroid, image registration, Airborne SAR

Procedia PDF Downloads 218
2257 Chemometric Estimation of Phytochemicals Affecting the Antioxidant Potential of Lettuce

Authors: Milica Karadzic, Lidija Jevric, Sanja Podunavac-Kuzmanovic, Strahinja Kovacevic, Aleksandra Tepic-Horecki, Zdravko Sumic

Abstract:

In this paper, the influence of six different phytochemical content (phenols, carotenoids, chlorophyll a, chlorophyll b, chlorophyll a + b and vitamin C) on antioxidant potential of Murai and Levistro lettuce varieties was evaluated. Variable selection was made by generalized pair correlation method (GPCM) as a novel ranking method. This method is used for the discrimination between two variables that almost equal correlate to a dependent variable. Fisher’s conditional exact and McNemar’s test were carried out. Established multiple linear (MLR) models were statistically evaluated. As the best phytochemicals for the antioxidant potential prediction, chlorophyll a, chlorophyll a + b and total carotenoids content stand out. This was confirmed through both GPCM and MLR, predictive ability of obtained MLR can be used for antioxidant potential estimation for similar lettuce samples. This article is based upon work from the project of the Provincial Secretariat for Science and Technological Development of Vojvodina (No. 114-451-347/2015-02).

Keywords: antioxidant activity, generalized pair correlation method, lettuce, regression analysis

Procedia PDF Downloads 387
2256 Estimation of Fouling in a Cross-Flow Heat Exchanger Using Artificial Neural Network Approach

Authors: Rania Jradi, Christophe Marvillet, Mohamed Razak Jeday

Abstract:

One of the most frequently encountered problems in industrial heat exchangers is fouling, which degrades the thermal and hydraulic performances of these types of equipment, leading thus to failure if undetected. And it occurs due to the accumulation of undesired material on the heat transfer surface. So, it is necessary to know about the heat exchanger fouling dynamics to plan mitigation strategies, ensuring a sustainable and safe operation. This paper proposes an Artificial Neural Network (ANN) approach to estimate the fouling resistance in a cross-flow heat exchanger by the collection of the operating data of the phosphoric acid concentration loop. The operating data of 361 was used to validate the proposed model. The ANN attains AARD= 0.048%, MSE= 1.811x10⁻¹¹, RMSE= 4.256x 10⁻⁶ and r²=99.5 % of accuracy which confirms that it is a credible and valuable approach for industrialists and technologists who are faced with the drawbacks of fouling in heat exchangers.

Keywords: cross-flow heat exchanger, fouling, estimation, phosphoric acid concentration loop, artificial neural network approach

Procedia PDF Downloads 198
2255 Prediction of Seismic Damage Using Scalar Intensity Measures Based on Integration of Spectral Values

Authors: Konstantinos G. Kostinakis, Asimina M. Athanatopoulou

Abstract:

A key issue in seismic risk analysis within the context of Performance-Based Earthquake Engineering is the evaluation of the expected seismic damage of structures under a specific earthquake ground motion. The assessment of the seismic performance strongly depends on the choice of the seismic Intensity Measure (IM), which quantifies the characteristics of a ground motion that are important to the nonlinear structural response. Several conventional IMs of ground motion have been used to estimate their damage potential to structures. Yet, none of them has been proved to be able to predict adequately the seismic damage. Therefore, alternative, scalar intensity measures, which take into account not only ground motion characteristics but also structural information have been proposed. Some of these IMs are based on integration of spectral values over a range of periods, in an attempt to account for the information that the shape of the acceleration, velocity or displacement spectrum provides. The adequacy of a number of these IMs in predicting the structural damage of 3D R/C buildings is investigated in the present paper. The investigated IMs, some of which are structure specific and some are nonstructure-specific, are defined via integration of spectral values. To achieve this purpose three symmetric in plan R/C buildings are studied. The buildings are subjected to 59 bidirectional earthquake ground motions. The two horizontal accelerograms of each ground motion are applied along the structural axes. The response is determined by nonlinear time history analysis. The structural damage is expressed in terms of the maximum interstory drift as well as the overall structural damage index. The values of the aforementioned seismic damage measures are correlated with seven scalar ground motion IMs. The comparative assessment of the results revealed that the structure-specific IMs present higher correlation with the seismic damage of the three buildings. However, the adequacy of the IMs for estimation of the structural damage depends on the response parameter adopted. Furthermore, it was confirmed that the widely used spectral acceleration at the fundamental period of the structure is a good indicator of the expected earthquake damage level.

Keywords: damage measures, bidirectional excitation, spectral based IMs, R/C buildings

Procedia PDF Downloads 328
2254 BER of the Leaky Feeder under Rayleigh Fading Multichannel Reception with Imperfect Phase Estimation

Authors: Hasan Farahneh, Xavier Fernando

Abstract:

Leaky Feeder (LF) has been a proven technology for many decades and its promises broadband wireless access in short range but being overlooked until now. The LF is a natural MIMO transceiver ideal for micro and pico cells. In this work, the LF is considered as a linear antenna array MultiInput-Single-Output (MISO) and derive the average bit error rate (BER) in Rayleigh fading channel considering ideal and independent paths (iid) which consider there is no correlation and mutual coupling between transmit antennas (slots) or receiver antenna considering QPSK modulation with imperfect phase estimation. We consider maximal ratio transmission (MRT) at the transmit end and maximal ratio combining (MRC) at the receiving end. Analytical expressions are derived for the BER with radiating cable transmitters. The effects of slot spacing and carrier frequency on the BER are also studied. Numerical evaluations show the radiating cable transmitter offer much lower BER than a single antenna transmitter with same SNR.

Keywords: leaky feeder, BER, QPSK, rayleigh fading, channel gain, phase mismatch

Procedia PDF Downloads 381
2253 Process for Analyzing Information Security Risks Associated with the Incorporation of Online Dispute Resolution Systems in the Context of Conciliation in Colombia

Authors: Jefferson Camacho Mejia, Jenny Paola Forero Pachon, Luis Carlos Gomez Florez

Abstract:

The innumerable possibilities offered by the use of Information Technology (IT) in the development of different socio-economic activities has made a change in the social paradigm and the emergence of the so-called information and knowledge society. The Colombian government, aware of this reality, has been promoting the use of IT as part of the E-government strategy adopted in the country. However, it is well known that the use of IT implies the existence of certain threats that put the security of information in the digital environment at risk. One of the priorities of the Colombian government is to improve access to alternative justice through IT, in particular, access to Alternative Dispute Resolution (ADR): conciliation, arbitration and friendly composition; by means of which it is sought that the citizens directly resolve their differences. To this end, a trend has been identified in the use of Online Dispute Resolution (ODR) systems, which extend the benefits of ADR to the digital environment through the use of IT. This article presents a process for the analysis of information security risks associated with the incorporation of ODR systems in the context of conciliation in Colombia, based on four fundamental stages identified in the literature: (I) Identification of assets, (II) Identification of threats and vulnerabilities (III) Estimation of the impact and 4) Estimation of risk levels. The methodological design adopted for this research was the grounded theory, since it involves interactions that are applied to a specific context and from the perspective of diverse participants. As a result of this investigation, the activities to be followed are defined to carry out an analysis of information security risks, in the context of the conciliation in Colombia supported by ODR systems, thus contributing to the estimation of the risks to make possible its subsequent treatment.

Keywords: alternative dispute resolution, conciliation, information security, online dispute resolution systems, process, risk analysis

Procedia PDF Downloads 239
2252 A Game of Information in Defense/Attack Strategies: Case of Poisson Attacks

Authors: Asma Ben Yaghlane, Mohamed Naceur Azaiez

Abstract:

In this paper, we briefly introduce the concept of Poisson attacks in the case of defense/attack strategies where attacks are assumed to be continuous. We suggest a game model in which the attacker will combine both criteria of a sufficient confidence level of a successful attack and a reasonably small size of the estimation error in order to launch an attack. Here, estimation error arises from assessing the system failure upon attack using aggregate data at the system level. The corresponding error is referred to as aggregation error. On the other hand, the defender will attempt to deter attack by making one or both criteria inapplicable. The defender will build his/her strategy by both strengthening the targeted system and increasing the size of error. We will formulate the defender problem based on appropriate optimization models. The attacker will opt for a Bayesian updating in assessing the impact on the improvement made by the defender. Then, the attacker will evaluate the feasibility of the attack before making the decision of whether or not to launch it. We will provide illustrations to better explain the process.

Keywords: attacker, defender, game theory, information

Procedia PDF Downloads 468
2251 Measuring the Visibility of the European Open Access Journals with Bibliometric Indicators

Authors: Maja Jokić, Andrea Mervar, Stjepan Mateljan

Abstract:

Peer review journals, as the main communication channel among researchers, fully achieve their objective if they are available to the global research community, which is accomplished through open access. In the EU countries, the idea of open access has spread over the years through various projects, initiatives, and strategic documents. Consequently, in this paper we want to analyze, using various bibliometric indicators, visibility, and significance of open access peer review journals compared to the conventional (non-open access) ones. We examine the sample of open access (OA) journals in 28 EU countries in addition to open access journals in three EU candidate countries (Bosnia and Herzegovina, FYR Macedonia and Serbia), all indexed by Scopus (N=1,522). These journals comprise 42% of the total number of OA journals indexed by Scopus. The distribution of OA journals in our sample according to the subject fields indicates that the largest share has OA journals in Health Sciences, 29% followed by Social Sciences and Physical Sciences with 25%, and 21% in Life Sciences. At the same time, the distribution according to countries (N=31) shows the dominance of EU15 countries with the share of 68.3% (N=1041) while post-socialist European countries (EU11 plus three candidate EU countries) have the share of 31.6% (N=481). Bibliometric indicators are derived from the SCImago Journal Ranking database. The analysis of OA journals according to their quartile scores (that reflect the relation between number of articles and their citations) shows that the largest number of OA journals from our sample was in the third quartile in 2015. For comparison, the majority of all academic journals indexed in Scopus from the countries in our sample were in the same year in the first quartile. The median of SJR indicator (SCImago Journal Rankings) for 2015 that measures the journal's prestige, amounted 0.297 for OA journals from the sample, while it was modestly lower for all OA journals, 0.284. The value of the same indicator for all journals indexed by Scopus (N=11,086) from our group of countries was 0.358, which is significantly different from the one for OA journals. Apart from the number of OA journals we also confirm significant differences between EU15 and post-socialist countries in bibliometric status of OA journals. The median SJR indicator for 2015 for EU15 countries was 0.394, while for post-socialist countries it amounted to 0.226. The changes in bibliometric indicators: quartile score, SJR (SCImago Journal Rankings), SNIP (Sources Normalised Impact by Paper) and IPP (Impact per Publication) of OA journals during 2012-2015 period, as well as H-index for the main four subject fields (Life Sciences, Physical Sciences, Social Sciences and Health Sciences) in the whole sample as well as in two main groups of European countries, show increasing trend of acceptance and visibility of OA journals within the academic community. More comprehensive insights into the visibility of OA journals could be reached by using additional qualitative research methods such as for example, interviews with researchers.

Keywords: bibliometric analysis, European countries, journal evaluation, open access journals

Procedia PDF Downloads 222
2250 Thermodynamics of Aqueous Solutions of Organic Molecule and Electrolyte: Use Cloud Point to Obtain Better Estimates of Thermodynamic Parameters

Authors: Jyoti Sahu, Vinay A. Juvekar

Abstract:

Electrolytes are often used to bring about salting-in and salting-out of organic molecules and polymers (e.g. polyethylene glycols/proteins) from the aqueous solutions. For quantification of these phenomena, a thermodynamic model which can accurately predict activity coefficient of electrolyte as a function of temperature is needed. The thermodynamics models available in the literature contain a large number of empirical parameters. These parameters are estimated using lower/upper critical solution temperature of the solution in the electrolyte/organic molecule at different temperatures. Since the number of parameters is large, inaccuracy can bethe creep in during their estimation, which can affect the reliability of prediction beyond the range in which these parameters are estimated. Cloud point of solution is related to its free energy through temperature and composition derivative. Hence, the Cloud point measurement can be used for accurate estimation of the temperature and composition dependence of parameters in the model for free energy. Hence, if we use a two pronged procedure in which we first use cloud point of solution to estimate some of the parameters of the thermodynamic model and determine the rest using osmotic coefficient data, we gain on two counts. First, since the parameters, estimated in each of the two steps, are fewer, we achieve higher accuracy of estimation. The second and more important gain is that the resulting model parameters are more sensitive to temperature. This is crucial when we wish to use the model outside temperatures window within which the parameter estimation is sought. The focus of the present work is to prove this proposition. We have used electrolyte (NaCl/Na2CO3)-water-organic molecule (Iso-propanol/ethanol) as the model system. The model of Robinson-Stokes-Glukauf is modified by incorporating the temperature dependent Flory-Huggins interaction parameters. The Helmholtz free energy expression contains, in addition to electrostatic and translational entropic contributions, three Flory-Huggins pairwise interaction contributions viz., and (w-water, p-polymer, s-salt). These parameters depend both on temperature and concentrations. The concentration dependence is expressed in the form of a quadratic expression involving the volume fractions of the interacting species. The temperature dependence is expressed in the form .To obtain the temperature-dependent interaction parameters for organic molecule-water and electrolyte-water systems, Critical solution temperature of electrolyte -water-organic molecules is measured using cloud point measuring apparatus The temperature and composition dependent interaction parameters for electrolyte-water-organic molecule are estimated through measurement of cloud point of solution. The model is used to estimate critical solution temperature (CST) of electrolyte water-organic molecules solution. We have experimentally determined the critical solution temperature of different compositions of electrolyte-water-organic molecule solution and compared the results with the estimates based on our model. The two sets of values show good agreement. On the other hand when only osmotic coefficients are used for estimation of the free energy model, CST predicted using the resulting model show poor agreement with the experiments. Thus, the importance of the CST data in the estimation of parameters of the thermodynamic model is confirmed through this work.

Keywords: concentrated electrolytes, Debye-Hückel theory, interaction parameters, Robinson-Stokes-Glueckauf model, Flory-Huggins model, critical solution temperature

Procedia PDF Downloads 391
2249 Defining Priority Areas for Biodiversity Conservation to Support for Zoning Protected Areas: A Case Study from Vietnam

Authors: Xuan Dinh Vu, Elmar Csaplovics

Abstract:

There has been an increasing need for methods to define priority areas for biodiversity conservation since the effectiveness of biodiversity conservation in protected areas largely depends on the availability of material resources. The identification of priority areas requires the integration of biodiversity data together with social data on human pressures and responses. However, the deficit of comprehensive data and reliable methods becomes a key challenge in zoning where the demand for conservation is most urgent and where the outcomes of conservation strategies can be maximized. In order to fill this gap, the study applied an environmental model Condition–Pressure–Response to suggest a set of criteria to identify priority areas for biodiversity conservation. Our empirical data has been compiled from 185 respondents, categorizing into three main groups: governmental administration, research institutions, and protected areas in Vietnam by using a well - designed questionnaire. Then, the Analytic Hierarchy Process (AHP) theory was used to identify the weight of all criteria. Our results have shown that priority level for biodiversity conservation could be identified by three main indicators: condition, pressure, and response with the value of the weight of 26%, 41%, and 33%, respectively. Based on the three indicators, 7 criteria and 15 sub-criteria were developed to support for defining priority areas for biodiversity conservation and zoning protected areas. In addition, our study also revealed that the groups of governmental administration and protected areas put a focus on the 'Pressure' indicator while the group of Research Institutions emphasized the importance of 'Response' indicator in the evaluation process. Our results provided recommendations to apply the developed criteria for identifying priority areas for biodiversity conservation in Vietnam.

Keywords: biodiversity conservation, condition–pressure–response model, criteria, priority areas, protected areas

Procedia PDF Downloads 170
2248 Performance Evaluation of a Minimum Mean Square Error-Based Physical Sidelink Share Channel Receiver under Fading Channel

Authors: Yang Fu, Jaime Rodrigo Navarro, Jose F. Monserrat, Faiza Bouchmal, Oscar Carrasco Quilis

Abstract:

Cellular Vehicle to Everything (C-V2X) is considered a promising solution for future autonomous driving. From Release 16 to Release 17, the Third Generation Partnership Project (3GPP) has introduced the definitions and services for 5G New Radio (NR) V2X. Experience from previous generations has shown that establishing a simulator for C-V2X communications is an essential preliminary step to achieve reliable and stable communication links. This paper proposes a complete framework of a link-level simulator based on the 3GPP specifications for the Physical Sidelink Share Channel (PSSCH) of the 5G NR Physical Layer (PHY). In this framework, several algorithms in the receiver part, i.e., sliding window in channel estimation and Minimum Mean Square Error (MMSE)-based equalization, are developed. Finally, the performance of the developed PSSCH receiver is validated through extensive simulations under different assumptions.

Keywords: C-V2X, channel estimation, link-level simulator, sidelink, 3GPP

Procedia PDF Downloads 130
2247 R Software for Parameter Estimation of Spatio-Temporal Model

Authors: Budi Nurani Ruchjana, Atje Setiawan Abdullah, I. Gede Nyoman Mindra Jaya, Eddy Hermawan

Abstract:

In this paper, we propose the application package to estimate parameters of spatiotemporal model based on the multivariate time series analysis using the R open-source software. We build packages mainly to estimate the parameters of the Generalized Space Time Autoregressive (GSTAR) model. GSTAR is a combination of time series and spatial models that have parameters vary per location. We use the method of Ordinary Least Squares (OLS) and use the Mean Average Percentage Error (MAPE) to fit the model to spatiotemporal real phenomenon. For case study, we use oil production data from volcanic layer at Jatibarang Indonesia or climate data such as rainfall in Indonesia. Software R is very user-friendly and it is making calculation easier, processing the data is accurate and faster. Limitations R script for the estimation of model parameters spatiotemporal GSTAR built is still limited to a stationary time series model. Therefore, the R program under windows can be developed either for theoretical studies and application.

Keywords: GSTAR Model, MAPE, OLS method, oil production, R software

Procedia PDF Downloads 242
2246 Hybrid Deep Learning and FAST-BRISK 3D Object Detection Technique for Bin-Picking Application

Authors: Thanakrit Taweesoontorn, Sarucha Yanyong, Poom Konghuayrob

Abstract:

Robotic arms have gained popularity in various industries due to their accuracy and efficiency. This research proposes a method for bin-picking tasks using the Cobot, combining the YOLOv5 CNNs model for object detection and pose estimation with traditional feature detection (FAST), feature description (BRISK), and matching algorithms. By integrating these algorithms and utilizing a small-scale depth sensor camera for capturing depth and color images, the system achieves real-time object detection and accurate pose estimation, enabling the robotic arm to pick objects correctly in both position and orientation. Furthermore, the proposed method is implemented within the ROS framework to provide a seamless platform for robotic control and integration. This integration of robotics, cameras, and AI technology contributes to the development of industrial robotics, opening up new possibilities for automating challenging tasks and improving overall operational efficiency.

Keywords: robotic vision, image processing, applications of robotics, artificial intelligent

Procedia PDF Downloads 97
2245 Estimation of the Temperatures in an Asynchronous Machine Using Extended Kalman Filter

Authors: Yi Huang, Clemens Guehmann

Abstract:

In order to monitor the thermal behavior of an asynchronous machine with squirrel cage rotor, a 9th-order extended Kalman filter (EKF) algorithm is implemented to estimate the temperatures of the stator windings, the rotor cage and the stator core. The state-space equations of EKF are established based on the electrical, mechanical and the simplified thermal models of an asynchronous machine. The asynchronous machine with simplified thermal model in Dymola is compiled as DymolaBlock, a physical model in MATLAB/Simulink. The coolant air temperature, three-phase voltages and currents are exported from the physical model and are processed by EKF estimator as inputs. Compared to the temperatures exported from the physical model of the machine, three parts of temperatures can be estimated quite accurately by the EKF estimator. The online EKF estimator is independent from the machine control algorithm and can work under any speed and load condition if the stator current is nonzero current system.

Keywords: asynchronous machine, extended Kalman filter, resistance, simulation, temperature estimation, thermal model

Procedia PDF Downloads 285
2244 Comparison Approach for Wind Resource Assessment to Determine Most Precise Approach

Authors: Tasir Khan, Ishfaq Ahmad, Yejuan Wang, Muhammad Salam

Abstract:

Distribution models of the wind speed data are essential to assess the potential wind speed energy because it decreases the uncertainty to estimate wind energy output. Therefore, before performing a detailed potential energy analysis, the precise distribution model for data relating to wind speed must be found. In this research, material from numerous criteria goodness-of-fits, such as Kolmogorov Simonov, Anderson Darling statistics, Chi-Square, root mean square error (RMSE), AIC and BIC were combined finally to determine the wind speed of the best-fitted distribution. The suggested method collectively makes each criterion. This method was useful in a circumstance to fitting 14 distribution models statistically with the data of wind speed together at four sites in Pakistan. The consequences show that this method provides the best source for selecting the most suitable wind speed statistical distribution. Also, the graphical representation is consistent with the analytical results. This research presents three estimation methods that can be used to calculate the different distributions used to estimate the wind. In the suggested MLM, MOM, and MLE the third-order moment used in the wind energy formula is a key function because it makes an important contribution to the precise estimate of wind energy. In order to prove the presence of the suggested MOM, it was compared with well-known estimation methods, such as the method of linear moment, and maximum likelihood estimate. In the relative analysis, given to several goodness-of-fit, the presentation of the considered techniques is estimated on the actual wind speed evaluated in different time periods. The results obtained show that MOM certainly provides a more precise estimation than other familiar approaches in terms of estimating wind energy based on the fourteen distributions. Therefore, MOM can be used as a better technique for assessing wind energy.

Keywords: wind-speed modeling, goodness of fit, maximum likelihood method, linear moment

Procedia PDF Downloads 84
2243 Estimation of Uncertainty of Thermal Conductivity Measurement with Single Laboratory Validation Approach

Authors: Saowaluck Ukrisdawithid

Abstract:

The thermal conductivity of thermal insulation materials are measured by Heat Flow Meter (HFM) apparatus. The components of uncertainty are complex and difficult on routine measurement by modelling approach. In this study, uncertainty of thermal conductivity measurement was estimated by single laboratory validation approach. The within-laboratory reproducibility was 1.1%. The standard uncertainty of method and laboratory bias by using SRM1453 expanded polystyrene board was dominant at 1.4%. However, it was assessed that there was no significant bias. For sample measurement, the sources of uncertainty were repeatability, density of sample and thermal conductivity resolution of HFM. From this approach to sample measurements, the combined uncertainty was calculated. In summary, the thermal conductivity of sample, polystyrene foam, was reported as 0.03367 W/m·K ± 3.5% (k = 2) at mean temperature 23.5 °C. The single laboratory validation approach is simple key of routine testing laboratory for estimation uncertainty of thermal conductivity measurement by using HFM, according to ISO/IEC 17025-2017 requirements. These are meaningful for laboratory competent improvement, quality control on products, and conformity assessment.

Keywords: single laboratory validation approach, within-laboratory reproducibility, method and laboratory bias, certified reference material

Procedia PDF Downloads 153
2242 The Impact of Bim Technology on the Whole Process Cost Management of Civil Engineering Projects in Kenya

Authors: Nsimbe Allan

Abstract:

The study examines the impact of Building Information Modeling (BIM) on the cost management of engineering projects, focusing specifically on the Mombasa Port Area Development Project. The objective of this research venture is to determine the mechanisms through which Building Information Modeling (BIM) facilitates stakeholder collaboration, reduces construction-related expenses, and enhances the precision of cost estimation. Furthermore, the study investigates barriers to execution, assesses the impact on the project's transparency, and suggests approaches to maximize resource utilization. The study, selected for its practical significance and intricate nature, conducted a Systematic Literature Review (SLR) using credible databases, including ScienceDirect and IEEE Xplore. To constitute the diverse sample, 69 individuals, including project managers, cost estimators, and BIM administrators, were selected via stratified random sampling. The data were obtained using a mixed-methods approach, which prioritized ethical considerations. SPSS and Microsoft Excel were applied to the analysis. The research emphasizes the crucial role that project managers, architects, and engineers play in the decision-making process (47% of respondents). Furthermore, a significant improvement in cost estimation accuracy was reported by 70% of the participants. It was found that the implementation of BIM resulted in enhanced project visibility, which in turn optimized resource allocation and facilitated the process of budgeting. In brief, the study highlights the positive impacts of Building Information Modeling (BIM) on collaborative decision-making and cost estimation, addresses challenges related to implementation, and provides solutions for the efficient assimilation and understanding of BIM principles.

Keywords: cost management, resource utilization, stakeholder collaboration, project transparency

Procedia PDF Downloads 67
2241 Estimation of Gaseous Pollutants at Kalyanpur, Dhaka City

Authors: Farhana Tarannum

Abstract:

Ambient (outdoor) air pollution is now recognized as an important problem, both nationally and worldwide. The concentrations of gaseous pollutants (SOx, NOx, CO and O3) have been determined from samples collected at Kallyanpur along Shamoli corridor in Dhaka city. Pollutants were determined in a sample collected at ground level and a roof of a 7-storied building. These pollutants are emitted largely from stationary sources like fossil fuel fired power plants, industrial plants, and manufacturing facilities as well as mobile sources. The incomplete combustion of fuel, wood and the Sulphur containing fuel used in the vehicles are one of the main causes of CO and SOx respectively in our natural environment. When the temperature of combustion in high enough and some of that nitrogen reacts with oxygen in the air, various nitrogen oxides (NOx) are then formed. The VOCs react with NOx in the presence of sunlight to form O3. UV Visible spectrophotometric method has been used for the determination of SOx, NOx and O3. The sensor type device was used for the estimation of CO. It was found that the air pollutants (CO, SOx, NOx and O3) of a sample collected at the roof of a building were lower compared to the ground level; it indicated that ground level people are mostly affected by the gaseous pollutants.

Keywords: gaseous pollutants, UV-visible spectrophotometry, ambient air quality, Dhaka city

Procedia PDF Downloads 347
2240 Remote Sensing of Urban Land Cover Change: Trends, Driving Forces, and Indicators

Authors: Wei Ji

Abstract:

This study was conducted in the Kansas City metropolitan area of the United States, which has experienced significant urban sprawling in recent decades. The remote sensing of land cover changes in this area spanned over four decades from 1972 through 2010. The project was implemented in two stages: the first stage focused on detection of long-term trends of urban land cover change, while the second one examined how to detect the coupled effects of human impact and climate change on urban landscapes. For the first-stage study, six Landsat images were used with a time interval of about five years for the period from 1972 through 2001. Four major land cover types, built-up land, forestland, non-forest vegetation land, and surface water, were mapped using supervised image classification techniques. The study found that over the three decades the built-up lands in the study area were more than doubled, which was mainly at the expense of non-forest vegetation lands. Surprisingly and interestingly, the area also saw a significant gain in surface water coverage. This observation raised questions: How have human activities and precipitation variation jointly impacted surface water cover during recent decades? How can we detect such coupled impacts through remote sensing analysis? These questions led to the second stage of the study, in which we designed and developed approaches to detecting fine-scale surface waters and analyzing coupled effects of human impact and precipitation variation on the waters. To effectively detect urban landscape changes that might be jointly shaped by precipitation variation, our study proposed “urban wetscapes” (loosely-defined urban wetlands) as a new indicator for remote sensing detection. The study examined whether urban wetscape dynamics was a sensitive indicator of the coupled effects of the two driving forces. To better detect this indicator, a rule-based classification algorithm was developed to identify fine-scale, hidden wetlands that could not be appropriately detected based on their spectral differentiability by a traditional image classification. Three SPOT images for years 1992, 2008, and 2010, respectively were classified with this technique to generate the four types of land cover as described above. The spatial analyses of remotely-sensed wetscape changes were implemented at the scales of metropolitan, watershed, and sub-watershed, as well as based on the size of surface water bodies in order to accurately reveal urban wetscape change trends in relation to the driving forces. The study identified that urban wetscape dynamics varied in trend and magnitude from the metropolitan, watersheds, to sub-watersheds in response to human impacts at different scales. The study also found that increased precipitation in the region in the past decades swelled larger wetlands in particular while generally smaller wetlands decreased mainly due to human development activities. These results confirm that wetscape dynamics can effectively reveal the coupled effects of human impact and climate change on urban landscapes. As such, remote sensing of this indicator provides new insights into the relationships between urban land cover changes and driving forces.

Keywords: urban land cover, human impact, climate change, rule-based classification, across-scale analysis

Procedia PDF Downloads 308
2239 Brazilian Transmission System Efficient Contracting: Regulatory Impact Analysis of Economic Incentives

Authors: Thelma Maria Melo Pinheiro, Guilherme Raposo Diniz Vieira, Sidney Matos da Silva, Leonardo Mendonça de Oliveira Queiroz, Mateus Sousa Pinheiro, Danyllo Wenceslau de Oliveira Lopes

Abstract:

The present article has the objective to describe the regulatory impact analysis (RIA) of the contracting efficiency of the Brazilian transmission system usage. This contracting is made by users connected to the main transmission network and is used to guide necessary investments to supply the electrical energy demand. Therefore, an inefficient contracting of this energy amount distorts the real need for grid capacity, affecting the sector planning accuracy and resources optimization. In order to provide this efficiency, the Brazilian Electricity Regulatory Agency (ANEEL) homologated the Normative Resolution (NR) No. 666, from July 23th of 2015, which consolidated the procedures for the contracting of transmission system usage and the contracting efficiency verification. Aiming for a more efficient and rational transmission system contracting, the resolution established economic incentives denominated as Inefficiency installment for excess (IIE) and inefficiency installment for over-contracting (IIOC). The first one, IIE, is verified when the contracted demand exceeds the established regulatory limit; it is applied to consumer units, generators, and distribution companies. The second one, IIOC, is verified when the distributors over-contract their demand. Thus, the establishment of the inefficiency installments IIE and IIOC intends to avoid the agent contract less energy than necessary or more than it is needed. Knowing that RIA evaluates a regulatory intervention to verify if its goals were achieved, the results from the application of the above-mentioned normative resolution to the Brazilian transmission sector were analyzed through indicators that were created for this RIA to evaluate the contracting efficiency transmission system usage, using real data from before and after the homologation of the normative resolution in 2015. For this, indicators were used as the efficiency contracting indicator (ECI), excess of demand indicator (EDI), and over-contracting of demand indicator (ODI). The results demonstrated, through the ECI analysis, a decrease of the contracting efficiency, a behaviour that was happening even before the normative resolution of 2015. On the other side, the EDI showed a considerable decrease in the amount of excess for the distributors and a small reduction for the generators; moreover, the ODI notable decreased, which optimizes the usage of the transmission installations. Hence, with the complete evaluation from the data and indicators, it was possible to conclude that IIE is a relevant incentive for a more efficient contracting, indicating to the agents that their contracting values are not adequate to keep their service provisions for their users. The IIOC also has its relevance, to the point that it shows to the distributors that their contracting values are overestimated.

Keywords: contracting, electricity regulation, evaluation, regulatory impact analysis, transmission power system

Procedia PDF Downloads 121
2238 Monitoring of Serological Test of Blood Serum in Indicator Groups of the Population of Central Kazakhstan

Authors: Praskovya Britskaya, Fatima Shaizadina, Alua Omarova, Nessipkul Alysheva

Abstract:

Planned preventive vaccination, which is carried out in the Republic of Kazakhstan, promoted permanent decrease in the incidence of measles and viral hepatitis B. In the structure of VHB patients prevail people of young, working age. Monitoring of infectious incidence, monitoring of coverage of immunization of the population, random serological control over the immunity enable well-timed identification of distribution of the activator, effectiveness of the taken measures and forecasting. The serological blood analysis was conducted in indicator groups of the population of Central Kazakhstan for the purpose of identification of antibody titre for vaccine preventable infections (measles, viral hepatitis B). Measles antibodies were defined by method of enzyme-linked assay (ELA) with test-systems "VektoKor" – Ig G ('Vektor-Best' JSC). Antibodies for HBs-antigen of hepatitis B virus in blood serum was identified by method of enzyme-linked assay (ELA) with VektoHBsAg test systems – antibodies ('Vektor-Best' JSC). The result of the analysis is positive, the concentration of IgG to measles virus in the studied sample is equal to 0.18 IU/ml or more. Protective level of concentration of anti-HBsAg makes 10 mIU/ml. The results of the study of postvaccinal measles immunity showed that the share of seropositive people made 87.7% of total number of surveyed. The level of postvaccinal immunity to measles in age groups differs. So, among people older than 56 the percentage of seropositive made 95.2%. Among people aged 15-25 were registered 87.0% seropositive, at the age of 36-45 – 86.6%. In age groups of 25-35 and 36-45 the share of seropositive people was approximately at the same level – 88.5% and 88.8% respectively. The share of people seronegative to a measles virus made 12.3%. The biggest share of seronegative people was found among people aged 36-45 – 13.4% and 15-25 – 13.0%. The analysis of results of the examined people for the existence of postvaccinal immunity to viral hepatitis B showed that from all surveyed only 33.5% have the protective level of concentration of anti-HBsAg of 10 mIU/ml and more. The biggest share of people protected from VHB virus is observed in the age group of 36-45 and makes 60%. In the indicator group – above 56 – seropositive people made 4.8%. The high percentage of seronegative people has been observed in all studied age groups from 40.0% to 95.2%. The group of people which is least protected from getting VHB is people above 56 (95.2%). The probability to get VHB is also high among young people aged 25-35, the percentage of seronegative people made 80%. Thus, the results of the conducted research testify to the need for carrying out serological monitoring of postvaccinal immunity for the purpose of operational assessment of the epidemiological situation, early identification of its changes and prediction of the approaching danger.

Keywords: antibodies, blood serum, immunity, immunoglobulin

Procedia PDF Downloads 255
2237 New Estimation in Autoregressive Models with Exponential White Noise by Using Reversible Jump MCMC Algorithm

Authors: Suparman Suparman

Abstract:

A white noise in autoregressive (AR) model is often assumed to be normally distributed. In application, the white noise usually do not follows a normal distribution. This paper aims to estimate a parameter of AR model that has a exponential white noise. A Bayesian method is adopted. A prior distribution of the parameter of AR model is selected and then this prior distribution is combined with a likelihood function of data to get a posterior distribution. Based on this posterior distribution, a Bayesian estimator for the parameter of AR model is estimated. Because the order of AR model is considered a parameter, this Bayesian estimator cannot be explicitly calculated. To resolve this problem, a method of reversible jump Markov Chain Monte Carlo (MCMC) is adopted. A result is a estimation of the parameter AR model can be simultaneously calculated.

Keywords: autoregressive (AR) model, exponential white Noise, bayesian, reversible jump Markov Chain Monte Carlo (MCMC)

Procedia PDF Downloads 355