Search results for: epoxy insulation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 655

Search results for: epoxy insulation

175 The Effect of Honeycomb Core Thickness on the Repeated Low-Velocity Impact Behavior of Sandwich Beams

Authors: S. H. Abo Sabah, A. B. H. Kueh, M. A. Megat Johari, T. A. Majid

Abstract:

In a recent study, a new bio-inspired honeycomb sandwich beam (BHSB) mimicking the head configuration of the woodpecker was developed. The beam consists of two carbon/epoxy composite face sheets, aluminum honeycomb core, and rubber core to enhance the repeated low-velocity impact resistance of sandwich structures. This paper aims to numerically enhance the repeated low-velocity impact resistance of the BHSB via optimizing the aluminum honeycomb core thickness. The beam was investigated employing three core thicknesses: 20 mm, 25 mm, and 30 mm at three impact energy levels (13.5 J, 15.55 J, 21.43 J). The results revealed that increasing the thickness of the aluminum honeycomb core to a certain level enhances the sandwich beam stiffness. The beam with the 25 mm honeycomb core thickness was the only beam that can sustain five repeated impacts achieving the highest impact resistance efficiency index, especially at high energy levels. Furthermore, the bottom face sheet of this beam developed the lowest stresses indicating that this thickness has a relatively better performance during impact events since it allowed minimal stress to reach the bottom face sheet. Overall, increasing the aluminum core thickness will increase the height of its cells subjecting it to buckling phenomenon. Therefore, this study suggests that the optimal thickness of the aluminum honeycomb core should be 65 % of the overall thickness of the sandwich beam to have the best impact resistance.

Keywords: sandwich beams, core thickness, impact behavior, finite element analysis, modeling

Procedia PDF Downloads 135
174 Development and Characterization of Ethiopian Bamboo Fiber Polypropylene Composite

Authors: Tigist Girma Kedane

Abstract:

The purpose of this paper is to evaluate the properties of Ethiopian bamboo fiber polymer composites for headliner materials in the automobile industry. Accurate evaluation of its mechanical properties is thus critical for predicting its behavior during a vehicle's interior impact assessment. Conventional headliner materials are higher in weight, nonbiodegradable, expensive in cost, and unecofriendly during processing compared to the current researched materials. Three representatives of bamboo plants are harvested in three regions of bamboo species, three groups of ages, and two harvesting months. The statistical analysis was performed to validate the significant difference between the mean strength of bamboo ages, harvesting seasons, and bamboo species. Two-year-old bamboo fibers have the highest mechanical properties in all ages and November has higher mechanical properties compared to February. Injibara and Kombolcha have the highest and the lowest mechanical properties of bamboo fibers, respectively. Bamboo fiber epoxy composites have higher mechanical properties compared to bamboo fiber polypropylene composites. The flexural strength of bamboo fibre polymer composites has higher properties compared to tensile strength. Ethiopian bamboo fibers and their polymer composites have the best mechanical properties for the composite industry, which is used for headliner materials in the automobile industry compared to conventional headliner materials.

Keywords: bampoo species, culm age, harvesting seasons, mechanical properties, polymer composite

Procedia PDF Downloads 39
173 Thermodynamic Performance Tests for 3D Printed Steel Slag Powder Concrete Walls

Authors: Li Guoyou, Zhang Tao, Ji Wenzhan, Huo Liang, Lin Xiqiang, Zhang Nan

Abstract:

The three dimensional (3D) printing technology has undergone rapid development in the last few years and it is possible to print engineering structures. 3D printing buildings use wastes from constructions, industries and mine tailings as “ink”, and mix it with property improved materials, such as cement, fiber etc. This paper presents a study of the Thermodynamic performance of 3D printed walls using cement and steel slag powder. Analyses the thermal simulation regarding 3D printed walls and solid brick wall by the way of the hot-box methods and the infrared technology, and the results were contrasted with theoretical calculation. The results show that the excellent thermodynamic performance of 3D printed concrete wall made it suitable as the partial materials for self-thermal insulation walls in residential buildings. The thermodynamic performance of 3D printed concrete walls depended on the density of materials, distribution of holes, and the filling materials. Decreasing the density of materials, increasing the number of holes or replacing the filling materials with foamed concrete could improve its thermodynamic performance significantly. The average of heat transfer coefficient and thermal inertia index of 3D printed steel slag powder concrete wall all better than the traditional solid brick wall with a thickness of 240mm.

Keywords: concrete, 3D printed walls, thermodynamic performance, steel slag powder

Procedia PDF Downloads 162
172 Polysorb®-A Versatile Monomer for Improving Thermoplastics and Thermosetting Properties: Case Study of Polyesters

Authors: R. Saint-Loup, H. Amedro, N. Jacquel, S. Legrand, F. Fenouillot, J. P. Pascault, A. Rousseau

Abstract:

Isosorbide or 1,4-3,6 dianhydrohexitol has been developped for several years as a new biobased monomer. It is commercially available as a starch derivative, more precisely obtained derivated from starch and more precisely from sorbitol. Isosorbide can find several applications, directly as a monomer or after chemical modification, in different polymer fields like thermoplastics (obtained from polycondensation or from radical polymerization of unsaturated monomers) or like Thermosetting resins (like cross linked PU, or after modification like acrylates or epoxy coatings) Concerning aliphatic or semi-aromatic polyesters, the addition of isosorbide improves thermal stability an,d optical properties, allowing a large range of applications as semi-crystalline or amorphous polymers. The preparation of poly (ethylene-co-isosorbide) terephthalate with different ratios of isosorbide will be particularly detailed. The structure – properties relationship will permit a focus on the obtention of polyesters with semi-crystalline or amorphous structures. The influence of isosorbide on the polymerization, on the processing of the resulting polyester as well as the modification of the final properties will be enlightened. The properties of Poly (ethylene-co-isosorbide) terephthlate will be emphasized and related to their applications. The evolutions related to Isosorbide with the replacement of ethylene glycol by Cyclohexanedimethanol allowed to drastically change the properties of the resulting polyester, with a large gap on the properties and new potential applications.

Keywords: modified PET, poly(ethylene-co-isosorbide)terephthalate, specialy polyester, poly(isosorbide_co_cyclohexanediol)terephthalate

Procedia PDF Downloads 42
171 Modular Harmonic Cancellation in a Multiplier High Voltage Direct Current Generator

Authors: Ahmad Zahran, Ahmed Herzallah, Ahmad Ahmad, Mahran Quraan

Abstract:

Generation of high DC voltages is necessary for testing the insulation material of high voltage AC transmission lines with long lengths. The harmonic and ripple contents of the output DC voltage supplied by high voltage DC circuits require the use of costly capacitors to smooth the output voltage after rectification. This paper proposes a new modular multiplier high voltage DC generator with embedded Cockcroft-Walton circuits that achieve a negligible harmonic and ripple contents of the output DC voltage without the need for costly filters to produce a nearly constant output voltage. In this new topology, Cockcroft-Walton modules are connected in series to produce a high DC output voltage. The modules are supplied by low input AC voltage sources that have the same magnitude and frequency and shifted from each other by a certain angle to eliminate the harmonics from the output voltage. The small ripple factor is provided by the smoothing column capacitors and the phase shifted input voltages of the cascaded modules. The constituent harmonics within each module are determined using Fourier analysis. The viability of the proposed DC generator for testing purposes and the effectiveness of the cascaded connection are confirmed by numerical simulations using MATLAB/Simulink.

Keywords: Cockcroft-Walton circuit, harmonics, ripple factor, HVDC generator

Procedia PDF Downloads 342
170 Investigation of Mode II Fracture Toughness in Orthotropic Materials

Authors: Mahdi Fakoor, Nabi Mehri Khansari, Ahmadreza Farokhi

Abstract:

Evaluation of mode II fracture toughness (KIIC) in composite materials is very hard problem to be solved, since it can be affected by many mechanisms of dissipation. Furthermore, non-linearity in its behavior can offer an extra difficulty to obtain accuracy in the results. Different reported values for KIIC in various references can prove the mentioned assertion. In this research, some solutions proposed based on the form of necessary corrections that should be executed on the common test fixtures. Due to the fact that the common test fixtures are not able to active toughening mechanisms in pure Mode II correctly, we have employed some structural modifications on common fixtures. Particularly, the Iosipescu test is used as start point. The tests are applied on graphite/epoxy; PMMA and Western White Pine Wood. Also, mixed mode I/II fracture limit curves are used to indicate the scattering in test results are really relevant to the creation of Fracture Process Zone (FPZ). In the present paper, shear load consideration applied at the predicted shear zone by considering some significant structural amendments that can active mode II toughening mechanisms. Indeed, the employed empirical method causes significant developing in repeatability and reproducibility as well. Moreover, a 3D Finite Element (FE) is performed for verification of the obtained results. Eventually, it is figured out that, a remarkable precision can be obtained in common test fixture in comparison with the previous one.

Keywords: FPZ, shear test fixture, mode II fracture toughness, composite material, FEM

Procedia PDF Downloads 340
169 Biobased Facade: Illuminated Natural Fibre Polymer with Cardboard Core

Authors: Ralf Gliniorz, Carolin Petzoldt, Andreas Ehrlich, Sandra Gelbrich, Lothar Kroll

Abstract:

The building envelope is integral part of buildings, and renewable resources have a key role in energy consumption. So our aim was the development and implementation of a free forming facade system, consisting of fibre-reinforced polymer, which is built up of commercial biobased resin systems and natural fibre reinforcement. The field of application is aimed in modern architecture, like the office block 'Fachagentur Nachwachsende Rohstoffe e.V.' with its oak wood recyclate facade. The build-up of our elements is a classically sandwich-structured composite: face sheets as fibre-reinforced composite using polymer matrix, here a biobased epoxy, and natural fibres. The biobased core consists of stuck cardboard structure (BC-flute). Each element is manufactured from two shells in a counterpart, via hand lay-up laminate. These natural fibre skins and cardboard core have adhered 'wet-on-wet'. As a result, you get the effect of translucent face sheets with matrix illumination. Each created pixel can be controlled in RGB-colours and form together a screen at buildings. A 10 x 5 m² area 'NFP-BIO' with 25 elements is planned as a reference object in Chemnitz. The resolution is about 100 x 50 pixels. Specials are also the efficient technology of production and the possibility to extensively 3D-formed elements for buildings, replacing customary facade systems, which can give out information or advertising.

Keywords: biobased facade, cardboard core, natural fibre skins, sandwich element

Procedia PDF Downloads 191
168 Development and Characterization of Re-Entrant Auxetic Fibrous Structures for Application in Ballistic Composites

Authors: Rui Magalhães, Sohel Rana, Raul Fangueiro, Clara Gonçalves, Pedro Nunes, Gustavo Dias

Abstract:

Auxetic fibrous structures and composites with negative Poisson’s ratio (NPR) have huge potential for application in ballistic protection due to their high energy absorption and excellent impact resistance. In the present research, re-entrant lozenge auxetic fibrous structures were produced through weft knitting technology using high performance polyamide and para-aramid fibres. Fabric structural parameters (e.g. loop length) and machine parameters (e.g. take down load) were varied in order to investigate their influence on the auxetic behaviours of the produced structures. These auxetic structures were then impregnated with two types of polymeric resins (epoxy and polyester) to produce composite materials, which were subsequently characterized for the auxetic behaviour. It was observed that the knitted fabrics produced using the polyamide yarns exhibited NPR over a wide deformation range, which was strongly dependant on the loop length and take down load. The polymeric composites produced from the auxetic fabrics also showed good auxetic property, which was superior in case of the polyester matrix. The experimental results suggested that these composites made from the auxetic fibrous structures can be properly designed to find potential use in the body amours for personal protection applications.

Keywords: auxetic fabrics, high performance, composites, energy absorption, impact resistance

Procedia PDF Downloads 231
167 The Effect of Molecular Weight on the Cross-Linking of Two Different Molecular Weight LLDPE Samples

Authors: Ashkan Forootan, Reza Rashedi

Abstract:

Polyethylene has wide usage areas such as blow molding, pipe, film, cable insulation. However, regardless to its growing applications, it has some constraints such as the limited 70C operating temperature. Polyethylene thermo setting procedure whose molecules are knotted and 3D-molecular-network formed , is developed to conquer the above problem and to raise the applicable temperature of the polymer. This paper reports the cross-linking for two different molecular weight grades of LLDPE by adding 0.5, 1, and 2% of DCP (Dicumyl Peroxide). DCP was chosen for its prevalence among various cross-linking agents. Structural parameters such as molecular weight, melt flow index, comonomer, number of branches,etc. were obtained through the use of relative tests as Gel Permeation Chromatography and Fourier Transform Infra Red spectrometer. After calculating the percentage of gel content, properties of the pure and cross-linked samples were compared by thermal and mechanical analysis with DMTA and FTIR and the effects of cross-linking like viscous and elastic modulus were discussed by using various structural paprameters such as MFI, molecular weight, short chain branches, etc. Studies showed that cross-linked polymer, unlike the pure one, had a solid state with thermal mechanical properties in the range of 110 to 120C and this helped overcome the problem of using polyethylene in temperatures near the melting point.

Keywords: LLDPE, cross-link, structural parameters, DCP, DMTA, GPC

Procedia PDF Downloads 278
166 A Finite Element Model to Study the Behaviour of Corroded Reinforced Concrete Beams Repaired with near Surface Mounted Technique

Authors: B. Almassri, F. Almahmoud, R. Francois

Abstract:

Near surface mounted reinforcement (NSM) technique is one of the promising techniques used nowadays to strengthen reinforced concrete (RC) structures. In the NSM technique, the Carbon Fibre Reinforced Polymer (CFRP) rods are placed inside pre-cut grooves and are bonded to the concrete with epoxy adhesive. This paper studies the non-classical mode of failure ‘the separation of concrete cover’ according to experimental and numerical FE modelling results. Experimental results and numerical modelling results of a 3D finite element (FE) model using the commercial software Abaqus and 2D FE model FEMIX were obtained on two beams, one corroded (25 years of corrosion procedure) and one control (A1CL3-R and A1T-R) were each repaired in bending using NSM CFRP rod and were then tested up to failure. The results showed that the NSM technique increased the overall capacity of control and corroded beams despite a non-classical mode of failure with separation of the concrete cover occurring in the corroded beam due to damage induced by corrosion. Another FE model used external steel stirrups around the repaired corroded beam A1CL3-R which failed with the separation of concrete cover, this model showed a change in the mode of failure form a non-classical mode of failure by the separation of concrete cover to the same mode of failure of the repaired control beam by the crushing of compressed concrete.

Keywords: corrosion, repair, Reinforced Concrete, FEM, CFRP, FEMIX

Procedia PDF Downloads 145
165 Determination of Foaming Behavior in Thermoplastic Composite Nonwoven Structures for Automotive Applications

Authors: Zulfiye Ahan, Mustafa Dogu, Elcin Yilmaz

Abstract:

The use of nonwoven textile materials in many application areas is rapidly increasing thanks to their versatile performance properties. The automotive industry is one of the largest sectors in the world with a potential market of more than 2 billion euros for nonwoven textile materials applications. Lightweight materials having higher mechanical performance, better sound and heat insulation properties are of interest in many applications. Since the usage of nonwoven surfaces provides many of these advantages, the demand for this kind of materials is gradually growing especially in the automotive industry. Nonwoven materials used in lightweight vehicles can contain economical and high strength thermoplastics as well as durable components such as glass fiber. By bringing these composite materials into foam structure containing micro or nanopores, products with high absorption ability, light and mechanically stronger can be fabricated. In this respect, our goal is to produce thermoplastic composite nonwoven by using nonwoven glass fiber fabric reinforced polypropylene (PP). Azodicarbonamide (ADC) was selected as a foaming agent and a thermal process was applied to obtain porous structure. Various foaming temperature ranges and residence times were studied to examine the foaming behaviour of the thermoplastic composite nonwoven. Physicochemical and mechanical tests were applied in order to analyze the characteristics of composite foams.

Keywords: composite nonwoven, thermoplastic foams, foaming agent, foaming behavior

Procedia PDF Downloads 209
164 Determination of Foaming Behavior in thermoplastic Composite Nonwoven Structures for Automotive Applications

Authors: Zulfiye Ahan, Mustafa Dogu, Elcin Yilmaz

Abstract:

The use of nonwoven textile materials in many application areas is rapidly increasing thanks to their versatile performance properties. The automotive industry is one of the largest sectors in the world, with a potential market of more than 2 billion euros for nonwoven textile materials applications. Lightweight materials having higher mechanical performance, better sound and heat insulation properties are of interest in many applications. Since the usage of nonwoven surfaces provides many of these advantages, the demand for this kind of material is gradually growing, especially in the automotive industry. Nonwoven materials used in lightweight vehicles can contain economical and high strength thermoplastics as well as durable components such as glass fiber. By bringing these composite materials into foam structure containing micro or nanopores, products with high absorption ability, light and mechanically stronger can be fabricated. In this respect, our goal is to produce thermoplastic composite nonwoven by using nonwoven glass fiber fabric reinforced polypropylene (PP). Azodicarbonamide (ADC) was selected as a foaming agent, and a thermal process was applied to obtain a porous structure. Various foaming temperature ranges and residence times were studied to examine the foaming behaviour of the thermoplastic composite nonwoven. Physicochemical and mechanical tests were applied in order to analyze the characteristics of composite foams.

Keywords: composite nonwoven, thermoplastic foams, foaming agent, foaming behavior

Procedia PDF Downloads 213
163 A Theoretical Study of and Phase Change Material Layered Roofs under Specific Climatic Regions in Turkey and the United Kingdom

Authors: Tugba Gurler, Irfan Kurtbas

Abstract:

Roof influences considerably energy demand of buildings. In order to reduce this energy demand, various solutions have been proposed, such as roofs with variable thermal insulation, cool roofs, green roofs, heat exchangers and ventilated roofs, and phase change material (PCM) layered roofs. PCMs suffer from relatively low thermal conductivity despite of their promise of the energy-efficiency initiatives for thermal energy storage (TES). This study not only presents the thermal performance of the concrete roof with PCM layers but also evaluates the products with different design configurations and thicknesses under Central Anatolia Region, Turkey and Nottinghamshire, UK weather conditions. System design limitations and proposed prediction models are discussed in this study. A two-dimensional numerical model has been developed, and governing equations have been solved at each time step. Upper surfaces of the roofs have been modelled with heat flux conditions, while lower surfaces of the roofs with boundary conditions. In addition, suitable roofs have been modeled under symmetry boundary conditions. The results of the designed concrete roofs with PCM layers have been compared with common concrete roofs in Turkey. The UK and the numerical modeling results have been validated with the data given in the literature.

Keywords: phase change material, regional energy demand, roof layers, thermal energy storage

Procedia PDF Downloads 80
162 Behavior of Composite Construction Precast Reactive Powder RC Girder and Ordinary RC Deck Slab

Authors: Nameer A. Alwash, Dunia A. Abd AlRadha, Arshed M. Aljanaby

Abstract:

This study present an experimental investigation of composite behavior for hybrid reinforced concrete slab on girder from locale material in Iraq, ordinary concrete, NC, in slab and reactive powder concrete in girder ,RPC, with steel fibers of different types(straight, hook, and mix between its), tested as simply supported span subjected under two point loading, also study effects on overall behavior such as the ultimate load, crack width and deflection. The result shows that the most suitable for production girder from RPC by using 2% micro straight steel fiber, in terms of ultimate strength and min crack width. Also the results shows that using RPC in girder of composite section increased ultimate load by 79% when compared with same section made of NC, and increased the shear strength which erased the effect of changing reinforcement in shear, and using RPC in girder and epoxy (in shear transfer between composite section) (meaning no stirrups) equivalent presence of shear reinforcement by 90% when compared with same section using Φ8@100 as shear reinforcement. And the result shows that changing the cross section girder shape of the composite section to inverted T, with same section area, increased the ultimate load by 5% when compared with same section of rectangular shape girder.

Keywords: reactive powder concrete, RPC, hybrid concrete, composite section, RC girder, RC slab, shear connecters, inverted T section, shear reinforcment, shear span over effective depth

Procedia PDF Downloads 334
161 Severity Index Level in Effectively Managing Medium Voltage Underground Power Cable

Authors: Mohd Azraei Pangah Pa'at, Mohd Ruzlin Mohd Mokhtar, Norhidayu Rameli, Tashia Marie Anthony, Huzainie Shafi Abd Halim

Abstract:

Partial Discharge (PD) diagnostic mapping testing is one of the main diagnostic testing techniques that are widely used in the field or onsite testing for underground power cable in medium voltage level. The existence of PD activities is an early indication of insulation weakness hence early detection of PD activities can be determined and provides an initial prediction on the condition of the cable. To effectively manage the results of PD Mapping test, it is important to have acceptable criteria to facilitate prioritization of mitigation action. Tenaga Nasional Berhad (TNB) through Distribution Network (DN) division have developed PD severity model name Severity Index (SI) for offline PD mapping test since 2007 based on onsite test experience. However, this severity index recommendation action had never been revised since its establishment. At presence, PD measurements data have been extensively increased, hence the severity level indication and the effectiveness of the recommendation actions can be analyzed and verified again. Based on the new revision, the recommended action to be taken will be able to reflect the actual defect condition. Hence, will be accurately prioritizing preventive action plan and minimizing maintenance expenditure.

Keywords: partial discharge, severity index, diagnostic testing, medium voltage, power cable

Procedia PDF Downloads 156
160 A Concept to Assess the Economic Importance of the On-Site Activities of ETICS

Authors: V. Sulakatko, F. U. Vogdt, I. Lill

Abstract:

Construction technology and on-site construction activities have a direct influence on the life cycle costs of energy efficiently renovated apartment buildings. The systematic inadequacies of the External Thermal Insulation Composite System (ETICS) which occur during the construction phase increase the risk for all stakeholders, reduce mechanical durability and increase the life cycle costs of the building. The economic effect of these shortcomings can be minimised if the risk of the most significant on-site activities is recognised. The objective of the presented ETICS economic assessment concept is to evaluate the economic influence of on-site shortcomings and reveal their significance to the foreseeable future repair costs. The model assembles repair techniques, discusses their direct cost calculation methods, argues over the proper usage of net present value over the life cycle of the building, and proposes a simulation tool to evaluate the risk of on-site activities. As the technique is dependent on the selected real interest rate, a sensitivity analysis is anticipated to determine the validity of the recommendations. After the verification of the model on the sample buildings by the industry, it is expected to increase economic rationality of resource allocation and reduce high-risk systematic shortcomings during the construction process of ETICS.

Keywords: activity-based cost estimating, cost estimation, ETICS, life cycle costing

Procedia PDF Downloads 274
159 Defect Identification in Partial Discharge Patterns of Gas Insulated Switchgear and Straight Cable Joint

Authors: Chien-Kuo Chang, Yu-Hsiang Lin, Yi-Yun Tang, Min-Chiu Wu

Abstract:

With the trend of technological advancement, the harm caused by power outages is substantial, mostly due to problems in the power grid. This highlights the necessity for further improvement in the reliability of the power system. In the power system, gas-insulated switches (GIS) and power cables play a crucial role. Long-term operation under high voltage can cause insulation materials in the equipment to crack, potentially leading to partial discharges. If these partial discharges (PD) can be analyzed, preventative maintenance and replacement of equipment can be carried out, there by improving the reliability of the power grid. This research will diagnose defects by identifying three different defects in GIS and three different defects in straight cable joints, for a total of six types of defects. The partial discharge data measured will be converted through phase analysis diagrams and pulse sequence analysis. Discharge features will be extracted using convolutional image processing, and three different deep learning models, CNN, ResNet18, and MobileNet, will be used for training and evaluation. Class Activation Mapping will be utilized to interpret the black-box problem of deep learning models, with each model achieving an accuracy rate of over 95%. Lastly, the overall model performance will be enhanced through an ensemble learning voting method.

Keywords: partial discharge, gas-insulated switches, straight cable joint, defect identification, deep learning, ensemble learning

Procedia PDF Downloads 52
158 Studies on Toxicity and Mechanical Properties of Nonmetallic Printed Circuit Boards Waste in Recycled HDPE Composites

Authors: Shantha Kumari Muniyandi, Johan Sohaili, Siti Suhaila Mohamad

Abstract:

The aim of this study was to investigate the suitability of reusing nonmetallic printed circuit boards (PCBs) waste in recycled HDPE (rHDPE) in terms of toxicity and mechanical properties. A series of X-ray Fluorescence Spectrometry (XRF) analysis tests have been conducted on raw nonmetallic PCBs waste to determine the chemical compositions. It can be seen that the nonmetallic PCBs approximately 72% of glass fiber reinforced epoxy resin materials such as SiO2, Al2O3, CaO, MgO, BaO, Na2O, and SrO, 9.4% of metallic materials such as CuO, SnO2, and Fe2O3, and 6.53% of Br. Total Threshold Limit Concentration (TTLC) and Toxicity Characteristic Leaching Procedure (TCLP) tests also have been done to study the toxicity characteristics of raw nonmetallic PCB powders, rHDPE/PCB and virgin HDPE for comparison purposes. For both of the testing, Cu was identified as the highest metal element contained in raw PCBs with the concentration of 905 mg/kg and 59.09 mg/L for TTLC and TCLP, respectively. However, once the nonmetallic PCB was filled in rHDPE composites, the concentrations of Cu were reduced to 134 mg/kg for TTLC and to 3 mg/L for TCLP testing. For mechanical properties testing, incorporation of 40 wt% nonmetallic PCB into rHDPE has increased the flexural modulus and flexural strength by 140% and 36%, respectively. While, Izod Impact strength decreased steadily with incorporation of 10 – 40 wt% nonmetallic PCBs.

Keywords: nonmetallic printed circuit board, recycled HDPE, composites, mechanical properties, total threshold limit concentration, toxicity characteristic leaching procedure

Procedia PDF Downloads 319
157 Surface Modified Nano-Diamond/Polyimide Hybrid Composites

Authors: Hati̇ce Bi̇rtane, Asli Beyler Çi̇ği̇l, Memet Vezi̇r Kahraman

Abstract:

Polyimide (PI) is one of the most important super-engineering materials because of its mechanical properties and its thermal stability. Electronic industry is the typical extensive applications of polyimides including interlayer insulation films, buffer coating, films, alpha-ray shielding films, and alignment films for liquid crystal displays. The mechanical and thermal properties of polymers are generally improved by the addition of inorganic additives. The challenges in this area of high-performance organic/inorganic hybrid materials are to obtain significant improvements in the interfacial adhesion between the polymer matrix and the reinforcing material since the organic matrix is relatively incompatible with the inorganic phase. In this study, modified nanodiamond was prepared from the reaction of nanodiamond and (3-Mercaptopropyl)trimethoxysilane. Poly(amic acid) was prepared from the reaction of 3,3',4,4'-Benzophenonetetracarboxylic dianhydride (BTDA) and 4,4'-Oxydianiline (ODA). Polyimide/modified nanodiamond hybrids were prepared by blending of poly(amic acid) and organically modified nanodiamond. The morphology of the Polyimide/ modified nanodiamond hybrids was characterized by scanning electron microscopy (SEM). Chemical structure of polyimide and Polyimide/modified nanodiamond hybrids was characterized by FTIR. FTIR results showed that the Polyimide/modified nanodiamond hybrids were successfully prepared. A thermal property of the Polyimide/modified nanodiamond hybrids was characterized by thermogravimetric analysis (TGA).

Keywords: hybrid materials, nanodiamond, polyimide, polymer

Procedia PDF Downloads 219
156 Structural Analysis and Strengthening of the National Youth Foundation Building in Igoumenitsa, Greece

Authors: Chrysanthos Maraveas, Argiris Plesias, Garyfalia G. Triantafyllou, Konstantinos Petronikolos

Abstract:

The current paper presents a structural assessment and proposals for retrofit of the National Youth Foundation Building, an existing reinforced concrete (RC) building in the city of Igoumenitsa, Greece. The building is scheduled to be renovated in order to create a Municipal Cultural Center. The bearing capacity and structural integrity have been investigated in relation to the provisions and requirements of the Greek Retrofitting Code (KAN.EPE.) and European Standards (Eurocodes). The capacity of the existing concrete structure that makes up the two central buildings in the complex (buildings II and IV) has been evaluated both in its present form and after including several proposed architectural interventions. The structural system consists of spatial frames of columns and beams that have been simulated using beam elements. Some RC elements of the buildings have been strengthened in the past by means of concrete jacketing and have had cracks sealed with epoxy injections. Static-nonlinear analysis (Pushover) has been used to assess the seismic performance of the two structures with regard to performance level B1 from KAN.EPE. Retrofitting scenarios are proposed for the two buildings, including type Λ steel bracings and placement of concrete shear walls in the transverse direction in order to achieve the design-specification deformation in each applicable situation, improve the seismic performance, and reduce the number of interventions required.

Keywords: earthquake resistance, pushover analysis, reinforced concrete, retrofit, strengthening

Procedia PDF Downloads 273
155 Finite Volume Method for Flow Prediction Using Unstructured Meshes

Authors: Juhee Lee, Yongjun Lee

Abstract:

In designing a low-energy-consuming buildings, the heat transfer through a large glass or wall becomes critical. Multiple layers of the window glasses and walls are employed for the high insulation. The gravity driven air flow between window glasses or wall layers is a natural heat convection phenomenon being a key of the heat transfer. For the first step of the natural heat transfer analysis, in this study the development and application of a finite volume method for the numerical computation of viscous incompressible flows is presented. It will become a part of the natural convection analysis with high-order scheme, multi-grid method, and dual-time step in the future. A finite volume method based on a fully-implicit second-order is used to discretize and solve the fluid flow on unstructured grids composed of arbitrary-shaped cells. The integrations of the governing equation are discretised in the finite volume manner using a collocated arrangement of variables. The convergence of the SIMPLE segregated algorithm for the solution of the coupled nonlinear algebraic equations is accelerated by using a sparse matrix solver such as BiCGSTAB. The method used in the present study is verified by applying it to some flows for which either the numerical solution is known or the solution can be obtained using another numerical technique available in the other researches. The accuracy of the method is assessed through the grid refinement.

Keywords: finite volume method, fluid flow, laminar flow, unstructured grid

Procedia PDF Downloads 259
154 Development and Characterization of a Composite Material for Ceiling Board Construction Applications in Ethiopia

Authors: Minase Yitbarek Mengistu, Abrham Melkamu, Dawit Yisfaw, Bisrat Belihu, Abdulhakim Lalega

Abstract:

This research was aimed at reducing and recycling waste paper and sawdust from our environment, thereby reducing environmental pollution resulting from the management/disposal of these waste materials. In this research, some mechanical properties of composite ceiling board materials made from waste paper, sawdust, and pineapple leaf fibers were investigated to determine their suitability for use in low-cost construction work. The ceiling board was obtained from the waste of paper, sawdust chips, and pineapple leaf fibers by manual mechanical bonding techniques using dissolved polystyrene films as a binding agent. The results obtained showed that the water absorption values of between 6 % and 8.1 %; as well as density values of 500 kg/mm3 and 611.1 kg/mm3.From our result, the better one is a ratio of pineapple leaf fiber 25%, sawdust 40%, binder 25%, and waste paper 10%. The composite ceiling boards were successfully nailed with firm grips. These values obtained were compared with those of the conventional ceiling boards and it was observed that these composite materials can be used for internal low-cost construction work and Insulation (acoustic and thermal) performance. It is highly recommended that small and medium enterprises be encouraged to venture into waste recycling and the production of these composite ceiling materials to create jobs for skilled and unskilled labor that are locally available.

Keywords: composite material, environment, textile, ceiling board

Procedia PDF Downloads 40
153 Synthesis of Bisphenols Containing Pendant Furyl Group Based on Chemicals Derived from Lignocellulose and Their Utilization for Preparation of Clickable Poly(Arylene Ether Sulfone)s

Authors: Samadhan S. Nagane, Sachin S. Kuhire, Prakash P. Wadgaonkar

Abstract:

Lignocellulose-derived chemicals such as furfural, furandicarboxylic acid, syringol, guaiacol, etc are highly attractive as sustainable alternatives to petrochemicals for the synthesis of monomers and polymers. We wish to report herein the facile synthesis of fully bio-based bisphenols containing pendant furyl group by base-catalyzed condensation of furfural with guaiacol. Bisphenols possessing pendant furyl group represent valuable monomers for the synthesis of a range of polymers which include epoxy resins, polyesters, polycarbonates, poly(aryl ether)s, etc. Several new homo/co-poly(arylene ether sulfone)s have been prepared by the reaction of 4,4(-fluorodiphenyl sulfone (FDS) with 4,4'-(furan-2-ylmethylene)bis(2-methoxyphenol) (BPF) and 4,4(-isopropylidenediphenol (BPA) using different molar ratios of bisphenols. Poly(arylene ether sulfone)s showed inherent viscosities in the range 0.92-1.47 dLg-1 and number average molecular weights (Mn), obtained from gel permeation chromatography (GPC), were in the range 91,300 – 1,31,000. Poly(arylene ether sulfone)s could be cast into tough, transparent and flexible films from chloroform solutions. X-Ray diffraction studies indicated amorphous nature of poly(arylene ether sulfone)s. Poly(arylene ether sulfone)s showed Tg values in the range 179-191 oC. Additionally, the pendant furyl groups in poly(arylene ether sulfone)s provide reactive sites for chemical modifications and cross-linking via Diels-Alder reaction with maleimides and bismaleimides, respectively.

Keywords: bio-based, bisphenols, Diels-Alder reaction, poly(arylene ether sulfone)s

Procedia PDF Downloads 233
152 Material Choice Driving Sustainability of 3D Printing

Authors: Jeremy Faludi, Zhongyin Hu, Shahd Alrashed, Christopher Braunholz, Suneesh Kaul, Leulekal Kassaye

Abstract:

Environmental impacts of six 3D printers using various materials were compared to determine if material choice drove sustainability, or if other factors such as machine type, machine size, or machine utilization dominate. Cradle-to-grave life-cycle assessments were performed, comparing a commercial-scale FDM machine printing in ABS plastic, a desktop FDM machine printing in ABS, a desktop FDM machine printing in PET and PLA plastics, a polyjet machine printing in its proprietary polymer, an SLA machine printing in its polymer, and an inkjet machine hacked to print in salt and dextrose. All scenarios were scored using ReCiPe Endpoint H methodology to combine multiple impact categories, comparing environmental impacts per part made for several scenarios per machine. Results showed that most printers’ ecological impacts were dominated by electricity use, not materials, and the changes in electricity use due to different plastics was not significant compared to variation from one machine to another. Variation in machine idle time determined impacts per part most strongly. However, material impacts were quite important for the inkjet printer hacked to print in salt: In its optimal scenario, it had up to 1/38th the impacts coreper part as the worst-performing machine in the same scenario. If salt parts were infused with epoxy to make them more physically robust, then much of this advantage disappeared, and material impacts actually dominated or equaled electricity use. Future studies should also measure DMLS and SLS processes / materials.

Keywords: 3D printing, additive manufacturing, sustainability, life-cycle assessment, design for environment

Procedia PDF Downloads 469
151 Sustainable Development of HV Substation in Urban Areas Considering Environmental Aspects

Authors: Mahdi Naeemi Nooghabi, Mohammad Tofiqu Arif

Abstract:

Gas Insulated Switchgears by using an insulation material named SF6 (Sulphur Hexafluoride) and its significant dielectric properties have been the only choice in urban areas and other polluted industries. However, the initial investment of GIS is more than conventional AIS substation, its total life cycle costs caused to reach huge amounts of electrical market share. SF6 environmental impacts on global warming, atmosphere depletion, and decomposing to toxic gases in high temperature situation, and highest rate in Global Warming Potential (GWP) with 23900 times of CO2e and a 3200-year period lifetime was the only undeniable concern of GIS substation. Efforts of international environmental institute and their politic supports have been able to lead SF6 emission reduction legislation. This research targeted to find an appropriate alternative for GIS substations to meet all advantages in land occupation area and to improve SF6 environmental impacts due to its leakage and emission. An innovative new conceptual design named Multi-Storey prepared a new AIS design similar in land occupation, extremely low Sf6 emission, and maximum greenhouse gas emission reduction. Surprisingly, by considering economic benefits due to carbon price saving, it can earn more than $675 million during the 30-year life cycle by replacing of just 25% of total annual worldly additional GIS switchgears.

Keywords: AIS substation, GIS substation, SF6, greenhouse gas, global warming potential, carbon price, emission

Procedia PDF Downloads 284
150 Biodegradable Polymeric Composites of Polylactide and Epoxidized Natural Rubber

Authors: Masek A., Diakowska K., Zaborski M.

Abstract:

Polymeric materials have found their use almost in every branch of industry worldwide. Most of them constitute so-called “petropolymers" obtained from crude oil. However literature information sounds a warning that its global sources are running out. Thus, it seems that one should search for polymeric materials from renewable raw materials belonging to the group of green polymers. Therefore on account of environmental protection and the issue of sustainable technologies, nowadays greater and greater achievements have been observed in the field of green technology using engineering sciences to develop composite materials. The main aim of this study was to research what is the influence of biofillers on the properties. We used biofillers like : cellulose with different length of fiber, cellulose UFC100, silica and montmorillonite. In our research, we reported on biodegradable composites exhibitingspecificity properties by melt blending of polylactide (PLA), one of the commercially available biodegradable material, and epoxidized natural rubber (ENR) containing 50 mol.%epoxy group. Blending hydrophilic natural polymers and aliphatic polyesters is of significant interest, since it could lead to the development of a new range of biodegradable polymeric materials. We research the degradation of composites on the basis epoxidized natural rubber and poly(lactide). The addition of biofillers caused far-reaching degradation processes. The greatest resistance to biodegradation showed a montmorillonite-based mixtures, the smallest inflated cellulose fibers of varying length.The final aim in the present study is to use ENR and poly(lactide) to design composite from renewable resources with controlled degradation.

Keywords: renewable resources, biopolymer, degradation, polylactide

Procedia PDF Downloads 354
149 Binderless Naturally-extracted Metal-free Electrocatalyst for Efficient NOₓ Reduction

Authors: Hafiz Muhammad Adeel Sharif, Tian Li, Changping Li

Abstract:

Recently, the emission of nitrogen-sulphur oxides (NOₓ, SO₂) has become a global issue and causing serious threats to health and the environment. Catalytic reduction of NOx and SOₓ gases into friendly gases is considered one of the best approaches. However, regeneration of the catalyst, higher bond-dissociation energy for NOx, i.e., 150.7 kcal/mol, escape of intermediate gas (N₂O, a greenhouse gas) with treated flue-gas, and limited activity of catalyst remains a great challenge. Here, a cheap, binderless naturally-extracted bass-wood thin carbon electrode (TCE) is presented, which shows excellent catalytic activity towards NOx reduction. The bass-wood carbonization at 900 ℃ followed by thermal activation in the presence of CO2 gas at 750 ℃. The thermal activation resulted in an increase in epoxy groups on the surface of the TCE and enhancement in the surface area as well as the degree of graphitization. The TCE unique 3D strongly inter-connected network through hierarchical micro/meso/macro pores that allow large electrode/electrolyte interface. Owing to these characteristics, the TCE exhibited excellent catalytic efficiency towards NOx (~83.3%) under ambient conditions and enhanced catalytic response under pH and sulphite exposure as well as excellent stability up to 168 hours. Moreover, a temperature-dependent activity trend was found where the highest catalytic activity was achieved at 80 ℃, beyond which the electrolyte became evaporative and resulted in a performance decrease. The designed electrocatalyst showed great potential for effective NOx-reduction, which is highly cost-effective, green, and sustainable.

Keywords: electrocatalyst, NOx-reduction, bass-wood electrode, integrated wet-scrubbing, sustainable

Procedia PDF Downloads 51
148 Performance Gap and near Zero Energy Buildings Compliance of Monitored Passivhaus in Northern Ireland, the Republic of Ireland and Italy

Authors: S. Colclough, V. Costanzo, K. Fabbri, S. Piraccini, P. Griffiths

Abstract:

The near Zero Energy Building (nZEB) standard is required for all buildings from 2020. The Passive House (PH) standard is a well-established low-energy building standard, having been designed over 25 years ago, and could potentially be used to achieve the nZEB standard in combination with renewables. By comparing measured performance with design predictions, this paper considers if there is a performance gap for a number of monitored properties and assesses if the nZEB standard can be achieved by following the well-established PH scheme. Analysis is carried out based on monitoring results from real buildings located in Northern Ireland, the Republic of Ireland and Italy respectively, with particular focus on the indoor air quality including the assumed and measured indoor temperature and heating periods for both standards as recorded during a full annual cycle. An analysis is carried out also on the energy performance certificates of each of the dwellings to determine if they meet the near Zero Energy Buildings primary energy consumption targets set in the respective jurisdictions. Each of the dwellings is certified as complying with the passive house standard, and accordingly have very good insulation levels, heat recovery and ventilation systems of greater than 75% efficiency and an airtightness of less than 0.6 air changes per hour at 50 Pa. It is found that indoor temperature and relative humidity were within the comfort boundaries set in the design stage, while carbon dioxide concentrations are sometimes higher than the values suggested by EN 15251 Standard for comfort class I especially in bedrooms.

Keywords: monitoring campaign, nZEB (near zero energy buildings), Passivhaus, performance gap

Procedia PDF Downloads 131
147 Bio Composites for Substituting Synthetic Packaging Materials

Authors: Menonjyoti Kalita, Pradip Baishya

Abstract:

In recent times, the world has been facing serious environmental concerns and issues, such as sustainability and cost, due to the overproduction of synthetic materials and their participation in degrading the environment by means of industrial waste and non-biodegradable characteristics. As such, biocomposites come in handy to ease such troubles. Bio-based composites are promising materials for future applications for substituting synthetic packaging materials. The challenge of making packaging materials lighter, safer and cheaper leads to investigating advanced materials with desired properties. Also, awareness of environmental issues forces researchers and manufacturers to spend effort on composite and bio-composite materials fields. This paper explores and tests some nature-friendly materials has been done which can replace low-density plastics. The materials selected included sugarcane bagasse, areca palm, and bamboo leaves. Sugarcane bagasse bamboo leaves and areca palm sheath are the primary material or natural fibre for testing. These products were processed, and the tensile strength of the processed parts was tested in Micro UTM; it was found that areca palm can be used as a good building material in replacement to polypropylene and even could be used in the production of furniture with the help of epoxy resin. And for bamboo leaves, it was found that bamboo and cotton, when blended in a 50:50 ratio, it has great tensile strength. For areca, it was found that areca fibres can be a good substitute for polypropylene, which can be used in building construction as binding material and also other products.

Keywords: biodegradable characteristics, bio-composites, areca palm sheath, polypropylene, micro UTM

Procedia PDF Downloads 68
146 Sustainable and Aesthetic Features of Traditional Architectures in Central Part of Iran

Authors: Azadeh Rezafar

Abstract:

Iran is one of the oldest countries with traditional culture in the world. All over the history Iranians had traditional architectural designs, which were at the same time sustainable, ecological, functional and environmental consistent. These human scale architectures were built for maximum use, comfort, climate adaptation with available resources and techniques. Climate variability of the country caused developing of variety design methods. More of these methods such as windcatchers in Yazd City or Panam (Insulation) were scientific solutions at the same time. Renewable energy resources were used in these methods that featured in them. While climate and ecological issues were dominant parts of these traditional designs, aesthetic and beauty issues were not ignored. Conformity with the community’s culture caused more compact designs that the visual aesthetics of them can be seen inside of them. Different organizations of space were used for these visual aesthetic issues inside the houses as well as historical urban designs. For example dry and hot climates in central parts of the country designed with centralized organization. Most central parts of these designs functioned as a courtyard for temperate the air in the summer. This paper will give summary descriptive information about traditional Iranian architectural style by figures all around the country with different climate conditions, while focus of the paper is traditional architectural design of the central part of the country, with dry and hot climate condition. This information may be useful for contemporary architectural designs, which are designed without noticing to the vernacular condition and caused cities look like each other.

Keywords: architectural design, traditional design, Iran, sustainability

Procedia PDF Downloads 197