Search results for: end-fire radiation mode
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3313

Search results for: end-fire radiation mode

2833 Performance Evaluation of Thermosiphon Based Solar Water Heater in India

Authors: Dnyandip K. Bhamare, Manish K Rathod, Jyotirmay Banerjee

Abstract:

This paper aims to study performance of a thermosiphon solar water heating system with the help of the proposed analytical model. This proposed model predicts the temperature and mass flow rate in a thermosiphon solar water heating system depending on radiation intensity and ambient temperature. The performance of the thermosiphon solar water heating system is evaluated in the Indian context. For this, eight cities in India are selected considering radiation intensity and geographical positions. Predicted performance at various cities reveals the potential for thermosiphon solar water in India.

Keywords: solar water heater, collector outlet temperature, thermosyphon, India

Procedia PDF Downloads 231
2832 Nondestructive Acoustic Microcharacterisation of Gamma Irradiation Effects on Sodium Oxide Borate Glass X2Na2O-X2B2O3 by Acoustic Signature

Authors: Ibrahim Al-Suraihy, Abdellaziz Doghmane, Zahia Hadjoub

Abstract:

We discuss in this work the elastic properties by using acoustic microscopes to measure Rayleigh and longitudinal wave velocities in a no radiated and radiated sodium borate glasses X2Na2O-X2B2O3 with 0 ≤ x ≤ 27 (mol %) at microscopic resolution. The acoustic material signatures were first measured, from which the characteristic surface velocities were determined.Longitudinal and shear ultrasonic velocities were measured in a different composition of sodium borate glass samples before and after irradiation with γ-rays. Results showed that the effect due to increasing sodium oxide content on the ultrasonic velocity appeared more clearly than due to γ-radiation. It was found that as Na2O composition increases, longitudinal velocities vary from 3832 to 5636 m/s in irradiated sample and it vary from 4010 to 5836 m/s in high radiated sample by 10 dose whereas shear velocities vary from 2223 to 3269 m/s in irradiated sample and it vary from 2326 m/s in low radiation to 3385 m/s in high radiated sample by 10 dose. The effect of increasing sodium oxide content on ultrasonic velocity was very clear. The increase of velocity was attributed to the gradual increase in the rigidity of glass and hence strengthening of network due to gradual change of boron atoms from the three-fold to the four-fold coordination of oxygen atoms. The ultrasonic velocities data of glass samples have been used to find the elastic modulus. It was found that ultrasonic velocity, elastic modulus and microhardness increase with increasing barium oxide content and increasing γ-radiation dose.

Keywords: mechanical properties X2Na2O-X2B2O3, acoustic signature, SAW velocities, additives, gamma-radiation dose

Procedia PDF Downloads 383
2831 Use of GIS and Remote Sensing for Calculating the Installable Photovoltaic and Thermal Power on All the Roofs of the City of Aix-en-Provence, France

Authors: Sofiane Bourchak, Sébastien Bridier

Abstract:

The objective of this study is to show how to calculate and map solar energy’s quantity (instantaneous and accumulated global solar radiation during the year) available on roofs in the city Aix-en-Provence which has a population of 140,000 inhabitants. The result is a geographic information system (GIS) layer, which represents hourly and monthly the production of solar energy on roofs throughout the year. Solar energy professionals can use it to optimize implementations and to size energy production systems. The results are presented as a set of maps, tables and histograms in order to determine the most effective costs in Aix-en-Provence in terms of photovoltaic power (electricity) and thermal power (hot water).

Keywords: geographic information system, photovoltaic, thermal, solar potential, solar radiation

Procedia PDF Downloads 407
2830 Factors That Influence Choice of Walking Mode in Work Trips: Case Study of Rasht, Iran

Authors: Nima Safaei, Arezoo Masoud, Babak Safaei

Abstract:

In recent years, there has been a growing emphasis on the role of urban planning in walking capability and the effects of individual and socioeconomic factors on the physical activity levels of city dwellers. Although considerable number of studies are conducted about walkability and for identifying the effective factors in walking mode choice in developed countries, to our best knowledge, literature lacks in the study of factors affecting choice of walking mode in developing countries. Due to the high importance of health aspects of human societies and in order to make insights and incentives for reducing traffic during rush hours, many researchers and policy makers in the field of transportation planning have devoted much attention to walkability studies; they have tried to improve the effective factors in the choice of walking mode in city neighborhoods. In this study, effective factors in walkability that have proven to have significant impact on the choice of walking mode, are studied at the same time in work trips. The data for the study is collected from the employees in their workplaces by well-instructed people using questionnaires; the statistical population of the study consists of 117 employed people who commute daily from work to home in Rasht city of Iran during the beginning of spring 2015. Results of the study which are found through the linear regression modeling, show that people who do not have freedom of choice for choosing their living locations and need to be present at their workplaces in certain hours have lower levels of walking. Additionally, unlike some of the previous studies which were conducted in developed countries, coincidental effects of Body Mass Index (BMI) and the income level of employees, do not have a significant effect on the walking level in work travels.

Keywords: BMI, linear regression, transportation, walking, work trips

Procedia PDF Downloads 170
2829 Power and Efficiency of Photovoltaic Module: Effect of Cell Temperature

Authors: R. Nasrin, M. Ferdows

Abstract:

Among the renewable energy sources, photovoltaic (PV) is a high potential, effective, and sustainable system. Irradiation intensity from 200 W/m2 to 1000 W/m2 has been considered to observe the performance of PV module. Generally, this module converts only about 15% - 20% of incident irradiation into electrical energy and the rest part is converted into heat energy. Finite element method has been used to solve the problem numerically. Simulation has been performed by considering the ambient temperature 30°C. Higher irradiation increase solar cell temperature and electrical power. The electrical efficiency of PV module decreases with the variation of solar radiation. The efficiency of PV module can be increased if cell temperature is reduced. Thus the effect of irradiation is significant to enhance the efficiency of PV module if the solar cell temperature is kept at a certain level.

Keywords: PV module, solar radiation, efficiency, cell temperature

Procedia PDF Downloads 341
2828 Feature Extraction and Classification Based on the Bayes Test for Minimum Error

Authors: Nasar Aldian Ambark Shashoa

Abstract:

Classification with a dimension reduction based on Bayesian approach is proposed in this paper . The first step is to generate a sample (parameter) of fault-free mode class and faulty mode class. The second, in order to obtain good classification performance, a selection of important features is done with the discrete karhunen-loeve expansion. Next, the Bayes test for minimum error is used to classify the classes. Finally, the results for simulated data demonstrate the capabilities of the proposed procedure.

Keywords: analytical redundancy, fault detection, feature extraction, Bayesian approach

Procedia PDF Downloads 507
2827 Parallel Asynchronous Multi-Splitting Methods for Differential Algebraic Systems

Authors: Malika Elkyal

Abstract:

We consider an iterative parallel multi-splitting method for differential algebraic equations. The main feature of the proposed idea is to use the asynchronous form. We prove that the multi-splitting technique can effectively accelerate the convergent performance of the iterative process. The main characteristic of an asynchronous mode is that the local algorithm does not have to wait at predetermined messages to become available. We allow some processors to communicate more frequently than others, and we allow the communication delays to be substantial and unpredictable. Accordingly, we note that synchronous algorithms in the computer science sense are particular cases of our formulation of asynchronous one.

Keywords: parallel methods, asynchronous mode, multisplitting, differential algebraic equations

Procedia PDF Downloads 535
2826 Quality Control Assessment of X-Ray Equipment in Hospitals of Katsina State, Nigeria

Authors: Aminu Yakubu Umar

Abstract:

X-ray is the major contributor to the effective dose of both the patient and the personnel. Because of the radiological risks involved, it is usually recommended that dose to patient from X-ray be kept as low as reasonably achievable (ALARA) with adequate image quality. The implementation of quality assurance in diagnostic radiology can help greatly in achieving that, as it is a technique designed to reduce X-ray doses to patients undergoing radiological examination. In this study, quality control was carried out in six hospitals, which involved KVp test, evaluation of total filtration, test for constancy of radiation output, and check for mA linearity. Equipment used include KVp meter, Rad-check meter, aluminum sheets (0.1–1.0 mm) etc. The results of this study indicate that, the age of the X-ray machines in the hospitals ranges from 3-13 years, GHI and GH2 being the oldest and FMC being the newest. In the evaluation of total filtration, the HVL of the X-ray machines in the hospitals varied, ranging from 2.3-5.2 mm. The HVL was found to be highest in AHC (5.2 mm), while it was lowest in GH3 (2.3 mm). All HVL measurements were done at 80 KVp. The variation in voltage accuracy in the hospitals ranges from 0.3%-127.5%. It was only in GH1 that the % variation was below the allowed limit. The test for constancy of radiation output showed that, the coefficient of variation ranges from 0.005–0.550. In GH3, FMC and AHC, the coefficient of linearity were less than the allowed limit, while in GH1, GH2 and GH4 the coefficient of linearity had exceeded the allowed limit. As regard to mA linearity, FMC and AHC had their coefficients of linearity as 0.12 and 0.10 respectively, which were within the accepted limit, while GH1, GH3 and GH4 had their coefficients as 0.16, 0.69 and 0.98 respectively, which exceeded the allowed limit.

Keywords: radiation, X-ray output, quality control, half-value layer, mA linearity, KVp variation

Procedia PDF Downloads 596
2825 UV Resistibility of a Carbon Nanofiber Reinforced Polymer Composite

Authors: A. Evcin, N. Çiçek Bezir, R. Duman, N. Duman

Abstract:

Nowadays, a great concern is placed on the harmfulness of ultraviolet radiation (UVR) which attacks human bodies. Nanocarbon materials, such as carbon nanotubes (CNTs), carbon nanofibers (CNFs) and graphene, have been considered promising alternatives to shielding materials because of their excellent electrical conductivities, very high surface areas and low densities. In the present work, carbon nanofibers have been synthesized from solutions of Polyacrylonitrile (PAN)/ N,N-dimethylformamide (DMF) by electrospinning method. The carbon nanofibers have been stabilized by oxidation at 250 °C for 2 h in air and carbonized at 750 °C for 1 h in H2/N2. We present the fabrication and characterization of transparent and ultraviolet (UV) shielding CNF/polymer composites. The content of CNF filler has been varied from 0.2% to 0.6 % by weight. UV Spectroscopy has been performed to study the effect of composition on the transmittance of polymer composites.

Keywords: electrospinning, carbon nanofiber, characterization, composites, nanofiber, ultraviolet radiation

Procedia PDF Downloads 206
2824 EMI Radiation Prediction and Final Measurement Process Optimization by Neural Network

Authors: Hussam Elias, Ninovic Perez, Holger Hirsch

Abstract:

The completion of the EMC regulations worldwide is growing steadily as the usage of electronics in our daily lives is increasing more than ever. In this paper, we introduce a novel method to perform the final phase of Electromagnetic compatibility (EMC) measurement and to reduce the required test time according to the norm EN 55032 by using a developed tool and the conventional neural network(CNN). The neural network was trained using real EMC measurements, which were performed in the Semi Anechoic Chamber (SAC) by CETECOM GmbH in Essen, Germany. To implement our proposed method, we wrote software to perform the radiated electromagnetic interference (EMI) measurements and use the CNN to predict and determine the position of the turntable that meets the maximum radiation value.

Keywords: conventional neural network, electromagnetic compatibility measurement, mean absolute error, position error

Procedia PDF Downloads 179
2823 Radiological Assessment of Fish Samples Due to Natural Radionuclides in River Yobe, North Eastern Nigeria

Authors: H. T. Abba, Abbas Baba Kura

Abstract:

Assessment of natural radioactivity of some fish samples in river Yobe was conducted, using gamma spectroscopy method with NaI(TI) detector. Radioactivity is phenomenon that leads to production of radiations, whereas radiation is known to trigger or induce cancer. The fish were analyzed to estimate the radioactivity (activity) concentrations due to natural radionuclides (Radium 222(226Ra), Thorium 232 (232Th) and Potassium 40 (40K)). The obtained result show that the activity concentration for (226Ra), in all the fish samples collected ranges from 15.23±2.45 BqKg-1 to 67.39±2.13 BqKg-1 with an average value of 34.13±1.34 BqKg-1. That of 232Th, ranges from 42.66±0.81 BqKg-1 to 201.18±3.82 BqKg-1, and the average value stands at 96.01±3.82 BqKg-1. The activity concentration for 40K, ranges between 243.3±1.56 BqKg-1 to 618.2±2.81 BqKg-1 and the average is 413.92±1.7 BqKg-1. This study indicated that average daily intake due to natural activity from the fish is valued at 0.913 Bq/day, 2.577Bq/day and 11.088 Bq/day for 226Ra, 232Th and 40K respectively. This shows that the activity concentration values for fish, shows a promising result with most of the fish activity concentrations been within the acceptable limits. However locations (F02, F07 and F12) fish, became outliers with significant values of 112.53μSvy-1, 121.11μSvy-1 and 114.32μSvy-1 effective Dose. This could be attributed to variation in geological formations within the river as while as the feeding habits of these fish. The work shows that consumers of fish from River Yobe have no risk of radioactivity ingestion, even though no amount of radiation is assumed to be totally safe.

Keywords: radiation, radio-activity, dose, radionuclides, river Yobe

Procedia PDF Downloads 290
2822 Gamma Irradiation Effects on the Magnetic Properties of Hard Ferrites

Authors: F. Abbas Pour Khotbehsara, B. Salehpour, A. Kianvash

Abstract:

Many industrial materials like magnets need to be tested for the radiation environment expected at linear colliders (LC) where the accelerator and detectors will be subjected to large influences of beta, neutron and gamma’s over their life Gamma irradiation of the permanent sample magnets using a 60Co source was investigated up to an absorbed dose of 700Mrad shows a negligible effect on some magnetic properties of Nd-Fe-B. In this work, it has been tried to investigate the change of some important properties of Barium hexa ferrite. Results showed little decreases of magnetic properties at doses rang of 0.5 to 2.5 Mrad. But at the gamma irradiation dose up to 10 Mrad it is showed a few increase of properties. Also study of gamma irradiation of Nd-Fe-B showed considerably increase of magnetic properties.

Keywords: gamma ray irradiation, hard ferrite, magnetic coefficient, magnetic material, radiation dose

Procedia PDF Downloads 225
2821 Effects of E-Learning Mode of Instruction and Conventional Mode of Instruction on Student’s Achievement in English Language in Senior Secondary Schools, Ibadan Municipal, Nigeria

Authors: Ibode Osa Felix

Abstract:

The use of e-Learning is presently intensified in the academic world following the outbreak of the Covid-19 pandemic in early 2020. Hitherto, e-learning had made its debut in teaching and learning many years ago when it emerged as an aspect of Computer Based Teaching, but never before has its patronage become so important and popular as currently obtains. Previous studies revealed that there is an ongoing debate among researchers on the efficacy of the E-learning mode of instruction over the traditional teaching method. Therefore, the study examined the effect of E-learning and Conventional Mode of Instruction on Students Achievement in the English Language. The study is a quasi-experimental study in which 230 students, from three public secondary schools, were selected through a simple random sampling technique. Three instruments were developed, namely, E-learning Instructional Guide (ELIG), Conventional Method of Instructional Guide (CMIG), and English Language Achievement Test (ELAT). The result revealed that students taught through the conventional method had better results than students taught online. The result also shows that girls taught with the conventional method of teaching performed better than boys in the English Language. The study, therefore, recommended that effort should be made by the educational authorities in Nigeria to provide internet facilities to enhance practices among learners and provide electricity to power e-learning equipment in the secondary schools. This will boost e-learning practices among teachers and students and consequently overtake conventional method of teaching in due course.

Keywords: e-learning, conventional method of teaching, achievement in english, electricity

Procedia PDF Downloads 150
2820 The Influence of Thermal Radiation and Chemical Reaction on MHD Micropolar Fluid in The Presence of Heat Generation/Absorption

Authors: Binyam Teferi

Abstract:

Numerical and theoretical analysis of mixed convection flow of magneto- hydrodynamics micropolar fluid with stretching capillary in the presence of thermal radiation, chemical reaction, viscous dissipation, and heat generation/ absorption have been studied. The non-linear partial differential equations of momentum, angular velocity, energy, and concentration are converted into ordinary differential equations using similarity transformations which can be solved numerically. The dimensionless governing equations are solved by using Runge Kutta fourth and fifth order along with the shooting method. The effect of physical parameters viz., micropolar parameter, unsteadiness parameter, thermal buoyancy parameter, concentration buoyancy parameter, Hartmann number, spin gradient viscosity parameter, microinertial density parameter, thermal radiation parameter, Prandtl number, Eckert number, heat generation or absorption parameter, Schmidt number and chemical reaction parameter on flow variables viz., the velocity of the micropolar fluid, microrotation, temperature, and concentration has been analyzed and discussed graphically. MATLAB code is used to analyze numerical and theoretical facts. From the simulation study, it can be concluded that an increment of micropolar parameter, Hartmann number, unsteadiness parameter, thermal and concentration buoyancy parameter results in decrement of velocity flow of micropolar fluid; microrotation of micropolar fluid decreases with an increment of micropolar parameter, unsteadiness parameter, microinertial density parameter, and spin gradient viscosity parameter; temperature profile of micropolar fluid decreases with an increment of thermal radiation parameter, Prandtl number, micropolar parameter, unsteadiness parameter, heat absorption, and viscous dissipation parameter; concentration of micropolar fluid decreases as unsteadiness parameter, Schmidt number and chemical reaction parameter increases. Furthermore, computational values of local skin friction coefficient, local wall coupled coefficient, local Nusselt number, and local Sherwood number for different values of parameters have been investigated. In this paper, the following important results are obtained; An increment of micropolar parameter and Hartmann number results in a decrement of velocity flow of micropolar fluid. Microrotation decreases with an increment of the microinertial density parameter. Temperature decreases with an increasing value of the thermal radiation parameter and viscous dissipation parameter. Concentration decreases as the values of Schmidt number and chemical reaction parameter increases. The coefficient of local skin friction is enhanced with an increase in values of both the unsteadiness parameter and micropolar parameter. Increasing values of unsteadiness parameter and micropolar parameter results in an increment of the local couple stress. An increment of values of unsteadiness parameter and thermal radiation parameter results in an increment of the rate of heat transfer. As the values of Schmidt number and unsteadiness parameter increases, Sherwood number decreases.

Keywords: thermal radiation, chemical reaction, viscous dissipation, heat absorption/ generation, similarity transformation

Procedia PDF Downloads 106
2819 The Benefits of Security Culture for Improving Physical Protection Systems at Detection and Radiation Measurement Laboratory

Authors: Ari S. Prabowo, Nia Febriyanti, Haryono B. Santosa

Abstract:

Security function that is called as Physical Protection Systems (PPS) has functions to detect, delay and response. Physical Protection Systems (PPS) in Detection and Radiation Measurement Laboratory needs to be improved continually by using internal resources. The nuclear security culture provides some potentials to support this research. The study starts by identifying the security function’s weaknesses and its strengths of security culture as a purpose. Secondly, the strengths of security culture are implemented in the laboratory management. Finally, a simulation was done to measure its effectiveness. Some changes were happened in laboratory personnel behaviors and procedures. All became more prudent. The results showed a good influence of nuclear security culture in laboratory security functions.

Keywords: laboratory, physical protection system, security culture, security function

Procedia PDF Downloads 162
2818 Using SNAP and RADTRAD to Establish the Analysis Model for Maanshan PWR Plant

Authors: J. R. Wang, H. C. Chen, C. Shih, S. W. Chen, J. H. Yang, Y. Chiang

Abstract:

In this study, we focus on the establishment of the analysis model for Maanshan PWR nuclear power plant (NPP) by using RADTRAD and SNAP codes with the FSAR, manuals, and other data. In order to evaluate the cumulative dose at the Exclusion Area Boundary (EAB) and Low Population Zone (LPZ) outer boundary, Maanshan NPP RADTRAD/SNAP model was used to perform the analysis of the DBA LOCA case. The analysis results of RADTRAD were similar to FSAR data. These analysis results were lower than the failure criteria of 10 CFR 100.11 (a total radiation dose to the whole body, 250 mSv; a total radiation dose to the thyroid from iodine exposure, 3000 mSv).

Keywords: RADionuclide, transport, removal, and dose estimation (RADTRAD), symbolic nuclear analysis package (SNAP), dose, PWR

Procedia PDF Downloads 438
2817 Survey of Indoor Radon/Thoron Concentrations in High Lung Cancer Incidence Area in India

Authors: Zoliana Bawitlung, P. C. Rohmingliana, L. Z. Chhangte, Remlal Siama, Hming Chungnunga, Vanram Lawma, L. Hnamte, B. K. Sahoo, B. K. Sapra, J. Malsawma

Abstract:

Mizoram state has the highest lung cancer incidence rate in India due to its high-level consumption of tobacco and its products which is supplemented by the food habits. While smoking is mainly responsible for this incidence, the effect of inhalation of indoor radon gas cannot be discarded as the hazardous nature of this radioactive gas and its progenies on human population have been well-established worldwide where the radiation damage to bronchial cells eventually can be the second leading cause of lung cancer next to smoking. It is also known that the effect of radiation, however, small may be the concentration, cannot be neglected as they can bring about the risk of cancer incidence. Hence, estimation of indoor radon concentration is important to give a useful reference against radiation effects as well as establishing its safety measures and to create a baseline for further case-control studies. The indoor radon/thoron concentrations in Mizoram had been measured in 41 dwellings selected on the basis of spot gamma background radiation and construction type of the houses during 2015-2016. The dwellings were monitored for one year, in 4 months cycles to indicate seasonal variations, for the indoor concentration of radon gas and its progenies, outdoor gamma dose, and indoor gamma dose respectively. A time-integrated method using Solid State Nuclear Track Detector (SSNTD) based single entry pin-hole dosimeters were used for measurement of indoor Radon/Thoron concentration. Gamma dose measurements for indoor as well as outdoor were carried out using Geiger Muller survey meters. Seasonal variation of indoor radon/ thoron concentration was monitored. The results show that the annual average radon concentrations varied from 54.07 – 144.72 Bq/m³ with an average of 90.20 Bq/m³ and the annual average thoron concentration varied from 17.39 – 54.19 Bq/m³ with an average of 35.91 Bq/m³ which are below the permissible limit. The spot survey of gamma background radiation level varies between 9 to 24 µR/h inside and outside the dwellings throughout Mizoram which are all within acceptable limits. From the above results, there is no direct indication that radon/thoron is responsible for the high lung cancer incidence in the area. In order to find epidemiological evidence of natural radiations to high cancer incidence in the area, one may need to conduct a case-control study which is beyond this scope. However, the derived data of measurement will provide baseline data for further studies.

Keywords: background gamma radiation, indoor radon/thoron, lung cancer, seasonal variation

Procedia PDF Downloads 122
2816 Optimal Planning of Transmission Line Charging Mode During Black Start of a Hydroelectric Unit

Authors: Mohammad Reza Esmaili

Abstract:

After the occurrence of blackouts, the most important subject is how fast the electric service is restored. Power system restoration is an immensely complex issue and there should be a plan to be executed within the shortest time period. This plan has three main stages of black start, network reconfiguration and load restoration. In the black start stage, operators and experts may face several problems, for instance, the unsuccessful connection of the long high-voltage transmission line connected to the electrical source. In this situation, the generator may be tripped because of the unsuitable setting of its line charging mode or high absorbed reactive power. In order to solve this problem, the line charging process is defined as a nonlinear programming problem, and it is optimized by using GAMS software in this paper. The optimized process is performed on a grid that includes a 250 MW hydroelectric unit and a 400 KV transmission system. Simulations and field test results show the effectiveness of optimal planning.

Keywords: power system restoration, black start, line charging mode, nonlinear programming

Procedia PDF Downloads 55
2815 Multiple Winding Multiphase Motor for Electric Drive System

Authors: Zhao Tianxu, Cui Shumei

Abstract:

This paper proposes a novel multiphase motor structure. The armature winding consists of several independent multiphase windings that have different rating rotate speed and power. Compared to conventional motor, the novel motor structure has more operation mode and fault tolerance mode, which makes it adapt to high-reliability requirement situation such as electric vehicle, aircraft and ship. Performance of novel motor structure varies with winding match. In order to find optimum control strategy, motor torque character, efficiency performance and fault tolerance ability under different operation mode are analyzed in this paper, and torque distribution strategy for efficiency optimization is proposed. Simulation analyze is taken and the result shows that proposed structure has the same efficiency on heavy load and higher efficiency on light load operation points, which expands high efficiency area of motor and cruise range of vehicle. The proposed structure can improve motor highest speed.

Keywords: multiphase motor, armature winding match, torque distribution strategy, efficiency

Procedia PDF Downloads 344
2814 Private University Students’ Travel Mode Choice Behaviour to University: Analysis in the Context of Dhaka City

Authors: Sharmin Nasrin

Abstract:

Dhaka is the capital of Bangladesh. In Dhaka among other trips, significant percentages of trips comprise education trips. This paper explores significant factors for private university students’ education trip to the University. A paper pencil based survey has been conducted on Asia Pacific University student in Dhaka from May 2016 to July 2016. Participants were chosen randomly for the survey. Exploratory analysis showed that about 50% chose bus, 33% chose Rickshaw, 2% chose car and 15% chose to walk for travel to their University. Results from Multinomial Logit model revealed that travel cost, travel time and comfort are the significant factors for private university students to choose different modes. However, magnitude of coefficient of attribute comfort is significantly higher compared to travel cost and travel time. Result from this paper can be used by policymakers and Government agencies to provide more cost effective, comfortable journey to their University.

Keywords: private university student's education trip, mode choice mode, Dhaka, developing country

Procedia PDF Downloads 416
2813 Bright–Dark Pulses in Nonlinear Polarisation Rotation Based Erbium-Doped Fiber Laser

Authors: R. Z. R. R. Rosdin, N. M. Ali, S. W. Harun, H. Arof

Abstract:

We have experimentally demonstrated bright-dark pulses in a nonlinear polarization rotation (NPR) based mode-locked Erbium-doped fiber laser (EDFL) with a long cavity configuration. Bright–dark pulses could be achieved when the laser works in the passively mode-locking regime and the net group velocity dispersion is quite anomalous. The EDFL starts to generate a bright pulse train with degenerated dark pulse at the mode-locking threshold pump power of 35.09 mW by manipulating the polarization states of the laser oscillation modes using a polarization controller (PC). A split bright–dark pulse is generated when further increasing the pump power up to 37.95 mW. Stable bright pulses with no obvious evidence of a dark pulse can also be generated when further adjusting PC and increasing the pump power up to 52.19 mW. At higher pump power of 54.96 mW, a new form of bright-dark pulse emission was successfully identified with the repetition rate of 29 kHz. The bright and dark pulses have a duration of 795.5 ns and 640 ns, respectively.

Keywords: Erbium-doped fiber laser, nonlinear polarization rotation, bright-dark pulse, photonic

Procedia PDF Downloads 508
2812 Theoretical Modal Analysis of Freely and Simply Supported RC Slabs

Authors: M. S. Ahmed, F. A. Mohammad

Abstract:

This paper focuses on the dynamic behavior of reinforced concrete (RC) slabs. Therefore, the theoretical modal analysis was performed using two different types of boundary conditions. Modal analysis method is the most important dynamic analyses. The analysis would be modal case when there is no external force on the structure. By using this method in this paper, the effects of freely and simply supported boundary conditions on the frequencies and mode shapes of RC square slabs are studied. ANSYS software was employed to derive the finite element model to determine the natural frequencies and mode shapes of the slabs. Then, the obtained results through numerical analysis (finite element analysis) would be compared with an exact solution. The main goal of the research study is to predict how the boundary conditions change the behavior of the slab structures prior to performing experimental modal analysis. Based on the results, it is concluded that simply support boundary condition has obvious influence to increase the natural frequencies and change the shape of mode when it is compared with freely supported boundary condition of slabs. This means that such support conditions have direct influence on the dynamic behavior of the slabs. Thus, it is suggested to use free-free boundary condition in experimental modal analysis to precisely reflect the properties of the structure. By using free-free boundary conditions, the influence of poorly defined supports is interrupted.

Keywords: natural frequencies, mode shapes, modal analysis, ANSYS software, RC slabs

Procedia PDF Downloads 437
2811 Millimeter-Wave Silicon Power Amplifiers for 5G Wireless Communications

Authors: Kyoungwoon Kim, Cuong Huynh, Cam Nguyen

Abstract:

Exploding demands for more data, faster data transmission speed, less interference, more users, more wireless devices, and better reliable service-far exceeding those provided in the current mobile communications networks in the RF spectrum below 6 GHz-has led the wireless communication industry to focus on higher, previously unallocated spectrums. High frequencies in RF spectrum near (around 28 GHz) or within the millimeter-wave regime is the logical solution to meet these demands. This high-frequency RF spectrum is of increasingly important for wireless communications due to its large available bandwidths that facilitate various applications requiring large-data high-speed transmissions, reaching up to multi-gigabit per second, of vast information. It also resolves the traffic congestion problems of signals from many wireless devices operating in the current RF spectrum (below 6 GHz), hence handling more traffic. Consequently, the wireless communication industries are moving towards 5G (fifth generation) for next-generation communications such as mobile phones, autonomous vehicles, virtual reality, and the Internet of Things (IoT). The U.S. Federal Communications Commission (FCC) proved on 14th July 2016 three frequency bands for 5G around 28, 37 and 39 GHz. We present some silicon-based RFIC power amplifiers (PA) for possible implementation for 5G wireless communications around 28, 37 and 39 GHz. The 16.5-28 GHz PA exhibits measured gain of more than 34.5 dB and very flat output power of 19.4±1.2 dBm across 16.5-28 GHz. The 25.5/37-GHz PA exhibits gain of 21.4 and 17 dB, and maximum output power of 16 and 13 dBm at 25.5 and 37 GHz, respectively, in the single-band mode. In the dual-band mode, the maximum output power is 13 and 9.5 dBm at 25.5 and 37 GHz, respectively. The 10-19/23-29/33-40 GHz PA has maximum output powers of 15, 13.3, and 13.8 dBm at 15, 25, and 35 GHz, respectively, in the single-band mode. When this PA is operated in dual-band mode, it has maximum output powers of 11.4/8.2 dBm at 15/25 GHz, 13.3/3 dBm at 15/35 GHz, and 8.7/6.7 dBm at 25/35 GHz. In the tri-band mode, it exhibits 8.8/5.4/3.8 dBm maximum output power at 15/25/35 GHz. Acknowledgement: This paper was made possible by NPRP grant # 6-241-2-102 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors

Keywords: Microwaves, Millimeter waves, Power Amplifier, Wireless communications

Procedia PDF Downloads 164
2810 Impact of Modifying the Surface Materials on the Radiative Heat Transfer Phenomenon

Authors: Arkadiusz Urzędowski, Dorota Wójcicka-Migasiuk, Andrzej Sachajdak, Magdalena Paśnikowska-Łukaszuk

Abstract:

Due to the impact of climate changes and inevitability to reduce greenhouse gases, the need to use low-carbon and sustainable construction has increased. In this work, it is investigated how texture of the surface building materials and radiative heat transfer phenomenon in flat multilayer can be correlated. Attempts to test the surface emissivity are taken however, the trustworthiness of measurement results remains a concern since sensor size and thickness are common problems. This paper presents an experimental method to studies surface emissivity with use self constructed thermal sensors and thermal imaging technique. The surface of building materials was modified by mechanical and chemical treatment affecting the reduction of the emissivity. For testing the shaping surface of materials and mapping its three-dimensional structure, scanning profilometry were used in a laboratory. By comparing the results of laboratory tests and performed analysis of 3D computer fluid dynamics software, it can be shown that a change in the surface coverage of materials affects the heat transport by radiation between layers. Motivated by recent advancements in variational inference, this publication evaluates the potential use a dedicated data processing approach, and properly constructed temperature sensors, the influence of the surface emissivity on the phenomenon of radiation and heat transport in the entire partition can be determined.

Keywords: heat transfer, surface roughness, surface emissivity, radiation

Procedia PDF Downloads 69
2809 Modification of Polymer Composite Based on Electromagnetic Radiation

Authors: Ananta R. Adhikari

Abstract:

In today's era, polymer composite utilization has witnessed a significant increase across various fronts of material science advancement. Despite the development of many highly sophisticated technologies aimed at modifying polymer composites, there persists a quest for a technology that is straightforward, energy-efficient, easily controllable, cost-effective, time-saving, and environmentally friendly. Microwave technology has emerged as a major technique in material synthesis and modification due to its unique characteristics such as rapid, selective, uniform heating, and, particularly, direct heating based on molecular interaction. This study will be about the utilization of microwave energy as an alternative technique for material processing. Specifically, we will explore ongoing research conducted in our laboratory, focusing on its applications in the medical field.

Keywords: polymer composites, material processing, microstructure, microwave radiation

Procedia PDF Downloads 23
2808 Guidance and Control of a Torpedo Autonomous Underwater Vehicle

Authors: Soheil Arash Moghadam, Abdol R. Kashani Nia, Ali Akrami Zade

Abstract:

Considering numerous applications of Autonomous Underwater Vehicles in various industries, there has been plenty of researches and studies on the motion control of such vehicles. One of the useful aspects for studying is the guidance of these vehicles. In this paper, while presenting motion equations with six degrees of freedom for Autonomous Underwater Vehicles, Proportional Navigation Guidance Law and the first order sliding mode control for TAIPAN AUV was used to address its guidance for the purpose of collision with a moving target.

Keywords: Autonomous Underwater Vehicle (AUV), degree of freedom (DOF), hydrodynamic, line of sight(LOS), proportional navigation guidance(PNG), sliding mode control(SMC)

Procedia PDF Downloads 446
2807 Computational Fluid Dynamics Analysis of a Biomass Burner Gas Chamber in OpenFOAM

Authors: Óscar Alfonso Gómez Sepúlveda, Julián Ernesto Jaramillo, Diego Camilo Durán

Abstract:

The global climate crisis has affected different aspects of human life, and in an effort to reverse the effects generated, we seek to optimize and improve the equipment and plants that produce high emissions of CO₂, being possible to achieve this through numerical simulations. These equipments include biomass combustion chambers. The objective of this research is to visualize the thermal behavior of a gas chamber that is used in the process of obtaining vegetable extracts. The simulation is carried out with OpenFOAM taking into account the conservation of energy, turbulence, and radiation; for the purposes of the simulation, combustion is omitted and replaced by heat generation. Within the results, the streamlines generated by the primary and secondary flows are analyzed in order to visualize whether they generate the expected effect, and the energy is used to the maximum. The inclusion of radiation seeks to compare its influence and also simplify the computational times to perform mesh analysis. An analysis is carried out with simplified geometries and with experimental data to corroborate the selection of the models to be used, and it is obtained that for turbulence, the appropriate one is the standard k - w. As a means of verification, a general energy balance is made and compared with the results of the numerical analysis, where the error is 1.67%, which is considered acceptable. From the approach to improvement options, it was found that with the implementation of fins, heat can be increased by up to 7.3%.

Keywords: CFD analysis, biomass, heat transfer, radiation, OpenFOAM

Procedia PDF Downloads 100
2806 Disaggregate Travel Behavior and Transit Shift Analysis for a Transit Deficient Metropolitan City

Authors: Sultan Ahmad Azizi, Gaurang J. Joshi

Abstract:

Urban transportation has come to lime light in recent times due to deteriorating travel quality. The economic growth of India has boosted significant rise in private vehicle ownership in cities, whereas public transport systems have largely been ignored in metropolitan cities. Even though there is latent demand for public transport systems like organized bus services, most of the metropolitan cities have unsustainably low share of public transport. Unfortunately, Indian metropolitan cities have failed to maintain balance in mode share of various travel modes in absence of timely introduction of mass transit system of required capacity and quality. As a result, personalized travel modes like two wheelers have become principal modes of travel, which cause significant environmental, safety and health hazard to the citizens. Of late, the policy makers have realized the need to improve public transport system in metro cities for sustaining the development. However, the challenge to the transit planning authorities is to design a transit system for cities that may attract people to switch over from their existing and rather convenient mode of travel to the transit system under the influence of household socio-economic characteristics and the given travel pattern. In this context, the fast-growing industrial city of Surat is taken up as a case for the study of likely shift to bus transit. Deterioration of public transport system of bus after 1998, has led to tremendous growth in two-wheeler traffic on city roads. The inadequate and poor service quality of present bus transit has failed to attract the riders and correct the mode use balance in the city. The disaggregate travel behavior for trip generations and the travel mode choice has been studied for the West Adajan residential sector of city. Mode specific utility functions are calibrated under multi-nominal logit environment for two-wheeler, cars and auto rickshaws with respect to bus transit using SPSS. Estimation of shift to bus transit is carried indicate an average 30% of auto rickshaw users and nearly 5% of 2W users are likely to shift to bus transit if service quality is improved. However, car users are not expected to shift to bus transit system.

Keywords: bus transit, disaggregate travel nehavior, mode choice Behavior, public transport

Procedia PDF Downloads 239
2805 Mediation Analysis of the Efficacy of the Nimotuzumab-Cisplatin-Radiation (NCR) Improve Overall Survival (OS): A HPV Negative Oropharyngeal Cancer Patient (HPVNOCP) Cohort

Authors: Akshay Patil

Abstract:

Objective: Mediation analysis identifies causal pathways by testing the relationships between the NCR, the OS, and an intermediate variable that mediates the relationship between the Nimotuzumab-cisplatin-radiation (NCR) and OS. Introduction: In randomized controlled trials, the primary interest is in the mechanisms by which an intervention exerts its effects on the outcomes. Clinicians are often interested in how the intervention works (or why it does not work) through hypothesized causal mechanisms. In this work, we highlight the value of understanding causal mechanisms in randomized trial by applying causal mediation analysis in a randomized trial in oncology. Methods: Data was obtained from a phase III randomized trial (Subgroup of HPVNOCP). NCR is reported to significantly improve the OS of patients locally advanced head and neck cancer patients undergoing definitive chemoradiation. Here, based on trial data, the mediating effect of NCR on patient overall survival was systematically quantified through progression-free survival(PFS), disease free survival (DFS), Loco-regional failure (LRF), and the disease control rate (DCR), Overall response rate (ORR). Effects of potential mediators on the HR for OS with NCR versus cisplatin-radiation (CR) were analyzed by Cox regression models. Statistical analyses were performed using R software Version 3.6.3 (The R Foundation for Statistical Computing) Results: Effects of potential mediator PFS was an association between NCR treatment and OS, with an indirect-effect (IE) 0.76(0.62 – 0.95), which mediated 60.69% of the treatment effect. Taking into account baseline confounders, the overall adjusted hazard ratio of death was 0.64 (95% CI: 0.43 – 0.96; P=0.03). The DFS was also a significant mediator and had an IE 0.77 (95% CI; 0.62-0.93), 58% mediated). Smaller mediation effects (maximum 27%) were observed for LRF with IE 0.88(0.74 – 1.06). Both DCR and ORR mediated 10% and 15%, respectively, of the effect of NCR vs. CR on the OS with IE 0.65 (95% CI; 0.81 – 1.08) and 0.94(95% CI; 0.79 – 1.04). Conclusion: Our findings suggest that PFS and DFS were the most important mediators of the OS with nimotuzumab to weekly cisplatin-radiation in HPVNOCP.

Keywords: mediation analysis, cancer data, survival, NCR, HPV negative oropharyngeal

Procedia PDF Downloads 121
2804 Simulations of a Jet Impinging on a Flat Plate

Authors: Reda Mankbadi

Abstract:

In this paper we explore the use of a second-order unstructured-grid, finite-volume code for direct noise prediction. We consider a Mach 1.5 jet impinging on a perpendicular flat plate. Hybrid LES-RANS simulations are used to calculate directly both the flow field and the radiated sound. The ANSYS Fluent commercial code is utilized for the calculations. The acoustic field is obtained directly from the simulations and is compared with the integral approach of Ffowcs Williams-Hawkings (FWH). Results indicate the existence of a preferred radiation angle. The spectrum obtained is in good agreement with observations. This points out to the possibility of handling the effects of complicated geometries on noise radiation by using unstructured second-orders codes.

Keywords: CFD, Ffowcs Williams-Hawkings (FWH), imping jet, ANSYS fluent commercial code, hybrid LES-RANS simulations

Procedia PDF Downloads 427