Search results for: curing agent
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1814

Search results for: curing agent

1334 Osmotic Dehydration of Fruit Slices in Concentrated Sugar Solution

Authors: Neda Amidi Fazli, Farid Amidi Fazli

Abstract:

Enriched fruits by minerals provide minerals which are needed to human body the minerals are used by body cells for daily activities. This paper indicates the result of mass transfer in fruit slices in 55% sucrose syrup in presence of calcium and phosphorus ions. Osmosis agent 55% (w/w) was prepared by solving sucrose in deionized water and adding calcium or phosphorus in 1 and 2% concentration. Dry matter, solid gain, water loss as well as weight reduction were calculated. Results showed that by increasing of calcium concentration in osmosis solution solid gain, water loss and weight reduction were increased in short experiment time in kiwi fruit but the parameters decreased in long experiment time by concentration increasing and rise of calcium concentration caused decrease of osmosis parameters in banana. In the case of phosphorus, increasing of ion concentration had adverse effect on all treatments, this may be due to different osmosis force that is created by two types of ions. The mentioned parameters decreased in all treatments by increasing of ion concentration. Highest mass transfer in kiwi fruit occurs when 1% calcium solution applied for 60 minutes, values obtained for solid gain, water loss and weight reduction were 42.60, 51.97, and 9.37 respectively. In the case of banana, when 2% phosphorus concentration was applied as osmosis agent for 60 minutes highest values for solid gain, water loss and weight reduction obtained as 21, 25.84, and 4.84 respectively.

Keywords: calcium, concentration, osmotic dehydration, phosphorus

Procedia PDF Downloads 254
1333 Exploring 1,2,4-Triazine-3(2H)-One Derivatives as Anticancer Agents for Breast Cancer: A QSAR, Molecular Docking, ADMET, and Molecular Dynamics

Authors: Said Belaaouad

Abstract:

This study aimed to explore the quantitative structure-activity relationship (QSAR) of 1,2,4-Triazine-3(2H)-one derivative as a potential anticancer agent against breast cancer. The electronic descriptors were obtained using the Density Functional Theory (DFT) method, and a multiple linear regression techniques was employed to construct the QSAR model. The model exhibited favorable statistical parameters, including R2=0.849, R2adj=0.656, MSE=0.056, R2test=0.710, and Q2cv=0.542, indicating its reliability. Among the descriptors analyzed, absolute electronegativity (χ), total energy (TE), number of hydrogen bond donors (NHD), water solubility (LogS), and shape coefficient (I) were identified as influential factors. Furthermore, leveraging the validated QSAR model, new derivatives of 1,2,4-Triazine-3(2H)-one were designed, and their activity and pharmacokinetic properties were estimated. Subsequently, molecular docking (MD) and molecular dynamics (MD) simulations were employed to assess the binding affinity of the designed molecules. The Tubulin colchicine binding site, which plays a crucial role in cancer treatment, was chosen as the target protein. Through the simulation trajectory spanning 100 ns, the binding affinity was calculated using the MMPBSA script. As a result, fourteen novel Tubulin-colchicine inhibitors with promising pharmacokinetic characteristics were identified. Overall, this study provides valuable insights into the QSAR of 1,2,4-Triazine-3(2H)-one derivative as potential anticancer agent, along with the design of new compounds and their assessment through molecular docking and dynamics simulations targeting the Tubulin-colchicine binding site.

Keywords: QSAR, molecular docking, ADMET, 1, 2, 4-triazin-3(2H)-ones, breast cancer, anticancer, molecular dynamic simulations, MMPBSA calculation

Procedia PDF Downloads 69
1332 Drying Shrinkage of Magnesium Silicate Hydrate Gel Cements

Authors: T. Zhang, X. Liang, M. Lorin, C. Cheeseman, L. J. Vandeperre

Abstract:

Cracks were observed when the magnesium silicate hydrate gel cement (prepared by 40% MgO/ 60% silica fume) was dried. This drying cracking is believed to be caused when unbound water evaporates from the binder. The shrinkage upon forced drying to 200 °C of mortars made up from a reactive magnesium oxide, silica fume and sand was measured using dilatometry. The magnitude of the drying shrinkage was found to decrease when more sand or less water was added to the mortars and can be as low as 0.16% for a mortar containing 60 wt% sand and a water to cement ratio of 0.5, which is of a similar order of magnitude as observed in Portland cement based mortars and concretes. A simple geometrical interpretation based on packing of the particles in the mortar can explain the observed drying shrinkages and based on this analysis the drying shrinkage of the hydration products at zero added solid is estimated to be 7.3% after 7 days of curing.

Keywords: magnesium silicate hydrate, shrinkage, dilatometry, gel cements

Procedia PDF Downloads 286
1331 A Multi-Templated Fe-Ni-Cu Ion Imprinted Polymer for the Selective and Simultaneous Removal of Toxic Metallic Ions from Wastewater

Authors: Morlu Stevens, Bareki Batlokwa

Abstract:

The use of treated wastewater is widely employed to compensate for the scarcity of safe and uncontaminated freshwater. However, the existence of toxic heavy metal ions in the wastewater pose a health hazard to animals and the environment, hence, the importance for an effective technique to tackle the challenge. A multi-templated ion imprinted sorbent (Fe,Ni,Cu-IIP) for the simultaneous removal of heavy metal ions from waste water was synthesised employing molecular imprinting technology (MIT) via thermal free radical bulk polymerization technique. Methacrylic acid (MAA) was employed as the functional monomer, and ethylene glycol dimethylacrylate (EGDMA) as cross-linking agent, azobisisobutyronitrile (AIBN) as the initiator, Fe, Ni, Cu ions as template ions, and 1,10-phenanthroline as the complexing agent. The template ions were exhaustively washed off the synthesized polymer by solvent extraction in several washing steps, while periodically increasing solvent (HCl) concentration from 1.0 M to 10.0 M. The physical and chemical properties of the sorbents were investigated using Fourier Transform Infrared Spectroscopy (FT-IR), X-ray Diffraction (XRD) and Atomic Force Microscopy (AFM) were employed. Optimization of operational parameters such as time, pH and sorbent dosage to evaluate the effectiveness of sorbents were investigated and found to be 15 min, 7.5 and 666.7 mg/L respectively. Selectivity of ion-imprinted polymers and competitive sorption studies between the template and similar ions were carried out and showed good selectivity towards the targeted metal ion by removing 90% - 98% of the templated ions as compared to 58% - 62% of similar ions. The sorbents were further applied for the selective removal of Fe, Ni and Cu from real wastewater samples and recoveries of 92.14 ± 0.16% - 106.09 ± 0.17% and linearities of R2 = 0.9993 - R2 = 0.9997 were achieved.

Keywords: ion imprinting, ion imprinted polymers, heavy metals, wastewater

Procedia PDF Downloads 301
1330 Phase Changing Dicationic Polymeric Ionic Liquid with CO2 Capture Abilities

Authors: Swati Sundararajan, Asit B. Samui, Prashant S. Kulkarni

Abstract:

Polymeric ionic liquids combine the properties of ionic liquids and polymers into a single material which has gained massive interest in the recent years. These ionic liquids offer several advantages such as high phase change enthalpy, wide temperature range, chemical and thermal stability, non-volatility and the ability to make them task-specific. Separation of CO2 is an area of critical importance due to the concerns over greenhouse gasses leading to global warming. Thermal energy storage materials, also known as phase change materials absorb latent heat during fusion process and release the absorbed energy to the surrounding environment during crystallization. These materials retain this property over a number of cycles and therefore, are useful for bridging the gap between energy requirement and use. In an effort to develop materials, which will help in minimizing the growing energy demand and environmental concerns, a series of dicationic poly(ethylene glycol) based polymeric ionic liquids were synthesized. One part of an acrylate of poly(ethylene glycol) was reacted with imidazolium quarternizing agent and the second part was reacted with triazolium quarternizing agent. These two different monomers were then copolymerized to prepare dicationic polymeric ionic liquid. These materials were characterized for solid-liquid phase transition and the enthalpy by using differential scanning calorimetry. The CO2 capture studies were performed on a fabricated setup with varying pressure range from 1-20 atm. The findings regarding the prepared materials, having potential dual applications in the fields of thermal energy storage and CO2 capture, will be discussed in the presentation.

Keywords: CO2 capture, phase change materials, polyethylene glycol, polymeric ionic liquids, thermal energy storage

Procedia PDF Downloads 233
1329 The Ideology of the Jordanian Media Women’s Discourse: Lana Mamkgh as an Example

Authors: Amani Hassan Abu Atieh

Abstract:

This study aims at examining the patterns of ideology reflected in the written discourse of women writers in the media of Jordan; Lana Mamkgh is taken as an example. This study critically analyzes the discursive, linguistic, and cognitive representations that she employs as an agent in the institutionalized discourse of the media. Grounded in van Dijk’s critical discourse analysis approach to Sociocognitive Discourse Studies, the present study builds a multilayer framework that encompasses van Dijk’s triangle: discourse, society, and cognition. Specifically, the study attempts to analyze, at both micro and macro levels, the underlying cognitive processes and structures, mainly ideology and discursive strategies, which are functional in the production of women’s discourse in terms of meaning, forms, and functions. Cognitive processes that social actors adopt are underlined by experience/context and semantic mental models on the one hand and social cognition on the other. This study is based on qualitative research and adopts purposive sampling, taking as an example a sample of an opinion article written by Lana Mamkgh in the Arabic Jordanian Daily, Al Rai. Taking her role as an agent in the public sphere, she stresses the National and feminist ideologies, demonstrating the use of assertive, evaluative, and expressive linguistic and rhetorical devices that appeal to the logic, ethics, and emotions of the addressee. Highlighting the agency of Jordanian writers in the media, the study sought to achieve the macro goal of dispensing political and social justice to the underprivileged. Further, the study seeks to prove that the voice of Jordanian women, viewed as underrepresented and invisible in the public arena, has come through clearly.

Keywords: critical discourse analysis, sociocognitive theory, ideology, women discourse, media

Procedia PDF Downloads 82
1328 Strength Properties of Ca-Based Alkali Activated Fly Ash System

Authors: Jung-Il Suh, Hong-Gun Park, Jae-Eun Oh

Abstract:

Recently, the use of long-span precast concrete (PC) construction has increased in modular construction such as storage buildings and parking facilities. When applying long span PC member, reducing weight of long span PC member should be conducted considering lifting capacity of crane and self-weight of PC member and use of structural lightweight concrete made by lightweight aggregate (LWA) can be considered. In the process of lightweight concrete production, segregation and bleeding could occur due to difference of specific gravity between cement (3.3) and lightweight aggregate (1.2~1.8) and reducing weight of binder is needed to prevent the segregation between binder and aggregate. Also, lightweight precast concrete made by cementitious materials such as fly ash and ground granulated blast furnace (GGBFS) which is lower than specific gravity of cement as a substitute for cement has been studied. When only using fly ash for cementless binder alkali-activation of fly ash is most important chemical process in which the original fly ash is dissolved by a strong alkaline medium in steam curing with high-temperature condition. Because curing condition is similar with environment of precast member production, additional process is not needed. Na-based chloride generally used as a strong alkali activator has a practical problem such as high pH toxicity and high manufacturing cost. Instead of Na-based alkali activator calcium hydroxide [Ca(OH)2] and sodium hydroxide [Na2CO3] might be used because it has a lower pH and less expensive than Na-based alkali activator. This study explored the influences on Ca(OH)2-Na2CO3-activated fly ash system in its microstructural aspects and strength and permeability using powder X-ray analysis (XRD), thermogravimetry (TGA), mercury intrusion porosimetry (MIP). On the basis of microstructural analysis, the conclusions are made as follows. Increase of Ca(OH)2/FA wt.% did not affect improvement of compressive strength. Also, Ca(OH)2/FA wt.% and Na2CO3/FA wt.% had little effect on specific gravity of saturated surface dry (SSD) and absolute dry (AD) condition to calculate water absorption. Especially, the binder is appropriate for structural lightweight concrete because specific gravity of the hardened paste has no difference with that of lightweight aggregate. The XRD and TGA/DTG results did not present considerable difference for the types and quantities of hydration products depending on w/b ratio, Ca(OH)2 wt.%, and Na2CO3 wt.%. In the case of higher molar quantity of Ca(OH)2 to Na2CO3, XRD peak indicated unreacted Ca(OH)2 while DTG peak was not presented because of small quantity. Thus, presence of unreacted Ca(OH)2 is too small quantity to effect on mechanical performance. As a result of MIP, the porosity volume related to capillary pore depends on the w/b ratio. In the same condition of w/b ratio, quantities of Ca(OH)2 and Na2CO3 have more influence on pore size distribution rather than total porosity. While average pore size decreased as Na2CO3/FA w.t% increased, the average pore size increased over 20 nm as Ca(OH)2/FA wt.% increased which has inverse proportional relationship between pore size and mechanical properties such as compressive strength and water permeability.

Keywords: Ca(OH)2, compressive strength, microstructure, fly ash, Na2CO3, water absorption

Procedia PDF Downloads 209
1327 The Effect of Filter Cake Powder on Soil Stability Enhancement in Active Sand Dunes, In the Long and Short Term

Authors: Irit Rutman Halili, Tehila Zvulun, Natali Elgabsi, Revaya Cohen, Shlomo Sarig

Abstract:

Active sand dunes (ASD) may cause significant damage to field crops and livelihood, and therefore, it is necessary to find a treatment that would enhance ADS soil stability. Biological soil crusts (biocrusts) contain microorganisms on the soil surface. Metabolic polysaccharides secreted by biocrust cyanobacteria glue the soil particles into aggregates, thereby stabilizing the soil surface. Filter cake powder (FCP) is a waste by-product in the final stages of the production of sugar from sugarcane, and its disposal causes significant environmental pollution. FCP contains high concentrations of polysaccharides and has recently been shown to be soil stability enhancing agent in ASD. It has been reported that adding FCP to the ASD soil surface by dispersal significantly increases the level of penetration resistance of soil biocrust (PRSB) nine weeks after a single treatment. However, it was not known whether a similar effect could be obtained by administering the FCP in liquid form by means of spraying. It has now been found that spraying a water solution of FCP onto the ASD soil surface significantly increased the level of penetration resistance of soil biocrust (PRSB) three weeks after a single treatment. These results suggest that FCP spraying can be used as a short-term soil stability-enhancing agent for ASD, while administration by dispersal might be more efficient over the long term. Finally, an additional benefit of using FCP as a soil stabilizer, either by dispersal or by spraying, is the reduction in environmental pollution that would otherwise result from the disposal of FCP solid waste.

Keywords: active sand dunes, filter cake powder, biological soil crusts, penetration resistance of soil biocrust

Procedia PDF Downloads 136
1326 Applications of Evolutionary Optimization Methods in Reinforcement Learning

Authors: Rahul Paul, Kedar Nath Das

Abstract:

The paradigm of Reinforcement Learning (RL) has become prominent in training intelligent agents to make decisions in environments that are both dynamic and uncertain. The primary objective of RL is to optimize the policy of an agent in order to maximize the cumulative reward it receives throughout a given period. Nevertheless, the process of optimization presents notable difficulties as a result of the inherent trade-off between exploration and exploitation, the presence of extensive state-action spaces, and the intricate nature of the dynamics involved. Evolutionary Optimization Methods (EOMs) have garnered considerable attention as a supplementary approach to tackle these challenges, providing distinct capabilities for optimizing RL policies and value functions. The ongoing advancement of research in both RL and EOMs presents an opportunity for significant advancements in autonomous decision-making systems. The convergence of these two fields has the potential to have a transformative impact on various domains of artificial intelligence (AI) applications. This article highlights the considerable influence of EOMs in enhancing the capabilities of RL. Taking advantage of evolutionary principles enables RL algorithms to effectively traverse extensive action spaces and discover optimal solutions within intricate environments. Moreover, this paper emphasizes the practical implementations of EOMs in the field of RL, specifically in areas such as robotic control, autonomous systems, inventory problems, and multi-agent scenarios. The article highlights the utilization of EOMs in facilitating RL agents to effectively adapt, evolve, and uncover proficient strategies for complex tasks that may pose challenges for conventional RL approaches.

Keywords: machine learning, reinforcement learning, loss function, optimization techniques, evolutionary optimization methods

Procedia PDF Downloads 59
1325 Molecular Epidemiology of Circulating Adenovirus Types in Acute Conjunctivitis Cases in Chandigarh, North India

Authors: Mini P. Singh, Jagat Ram, Archit Kumar, Tripti Rungta, Jasmine Khurana, Amit Gupta, R. K. Ratho

Abstract:

Introduction: Human adenovirus is the most common agent involved in viral conjunctivitis. The clinical manifestations vary with different serotypes. The identification of the circulating strains followed by phylogenetic analysis can be helpful in understanding the origin and transmission of the disease. The present study aimed to carry out molecular epidemiology of the adenovirus types in the patients with conjunctivitis presenting to the eye centre of a tertiary care hospital in North India. Materials and Methods: The conjunctival swabs were collected from 23 suspected adenoviral conjunctivitis patients between April-August, 2014 and transported in viral transport media. The samples were subjected to nested PCR targeting hexon gene of human adenovirus. The band size of 956bp was eluted and 8 representative positive samples were subjected to sequencing. The sequences were analyzed by using CLUSTALX2.1 and MEGA 5.1 software. Results: The male: female ratio was found to be 3.6:1. The mean age of presenting patients was 43.95 years (+17.2). Approximately 52.1% (12/23) of patients presented with bilateral involvement while 47.8% (11/23) with unilateral involvement of the eye. Human adenovirus DNA could be detected in 65.2% (15/23) of the patients. The phylogenetic analysis revealed presence of serotype 8 in 7 patients and serotype 4 in one patient. The serotype 8 sequences showed 99-100% identity with Tunisian, Indian and Japanese strains. The adenovirus serotype 4 strains had 100% identity with strains from Tunisia, China and USA. Conclusion: Human adenovirus was found be an important etiological agent for conjunctivitis in our set up. The phylogenetic analysis showed that the predominant circulating strains in our epidemic keratoconjunctivitis were serotypes 8 and 4.

Keywords: conjunctivitis, human adenovirus, molecular epidemiology, phylogenetics

Procedia PDF Downloads 259
1324 Bionaut™: A Microrobotic Drug-Device Platform for the Local Treatment of Brainstem Gliomas

Authors: Alex Kiselyov, Suehyun Cho, Darrell Harrington; Florent Cros, Olin Palmer, John Caputo, Michael Kardosh, Eran Oren, William Loudon, Michael Shpigelmacher

Abstract:

Despite the most aggressive surgical and adjuvant therapeutic strategies, treatment of both pediatric and adult brainstem tumors remains problematic. Novel strategies, including targeted biologics, immunotherapy, and specialized delivery systems such as convection-enhanced delivery (CED), have been proposed. While some of these novel treatments are entering phase I trials, the field is still in need of treatment(s) that exhibits dramatically enhanced potency with optimal therapeutic ratio. Bionaut Labs has developed a modular microrobotic platform for performing localized delivery of diverse therapeutics in vivo. Our biocompatible particles (Bionauts™) are externally propelled and visualized in real-time. Bionauts™ are specifically designed to enhance the effect of radiation therapy via anatomically precise delivery of a radiosensitizing agent, as exemplified by temozolomide (TMZ) and Avastin™ to the brainstem gliomas of diverse origin. The treatment protocol is designed to furnish a better therapeutic outcome due to the localized (vs systemic) delivery of the drug to the neoplastic lesion(s) for use as a synergistic combination of radiation and radiosensitizing agent. In addition, the procedure is minimally invasive and is expected to be appropriate for both adult and pediatric patients. Current progress, including platform optimization, selection of the lead radiosensitizer as well as in vivo safety studies of the Bionauts™ in large animals, specifically the spine and the brain of porcine and ovine models, will be discussed.

Keywords: Bionaut, brainstem, glioma, local delivery, micro-robot, radiosensitizer

Procedia PDF Downloads 173
1323 Cement Bond Characteristics of Artificially Fabricated Sandstones

Authors: Ashirgul Kozhagulova, Ainash Shabdirova, Galym Tokazhanov, Minh Nguyen

Abstract:

The synthetic rocks have been advantageous over the natural rocks in terms of availability and the consistent studying the impact of a particular parameter. The artificial rocks can be fabricated using variety of techniques such as mixing sand and Portland cement or gypsum, firing the mixture of sand and fine powder of borosilicate glass or by in-situ precipitation of calcite solution. In this study, sodium silicate solution has been used as the cementing agent for the quartz sand. The molded soft cylindrical sandstone samples are placed in the gas-tight pressure vessel, where the hardening of the material takes place as the chemical reaction between carbon dioxide and the silicate solution progresses. The vessel allows uniform disperse of carbon dioxide and control over the ambient gas pressure. Current paper shows how the bonding material is initially distributed in the intergranular space and the surface of the sand particles by the usage of Electron Microscopy and the Energy Dispersive Spectroscopy. During the study, the strength of the cement bond as a function of temperature is observed. The impact of cementing agent dosage on the micro and macro characteristics of the sandstone is investigated. The analysis of the cement bond at micro level helps to trace the changes to particles bonding damage after a potential yielding. Shearing behavior and compressional response have been examined resulting in the estimation of the shearing resistance and cohesion force of the sandstone. These are considered to be main input values to the mathematical prediction models of sand production from weak clastic oil reservoir formations.

Keywords: artificial sanstone, cement bond, microstructure, SEM, triaxial shearing

Procedia PDF Downloads 149
1322 Polyolefin Fiber Reinforced Self-Compacting Concrete Replacing 20% Cement by Fly Ash

Authors: Suman Kumar Adhikary, Zymantus Rudzionis, Arvind Balakrishnan

Abstract:

This paper deals with the behavior of concrete’s workability in a fresh state and compressive and flexural strength in a hardened state with the addition of polyolefin macro fibers. Four different amounts (3kg/m3, 4.5kg/m3, 6kg/m3 and 9kg/m3) of polyolefin macro fibers mixed in concrete mixture to observe the workability and strength properties difference between the concrete specimens. 20% class C type fly ash added is the concrete as replacement of cement. The water-cement ratio(W/C) of those concrete mix was 0.35. Masterglenium SKY 700 superplasticizer was added to the concrete mixture for better results. Slump test was carried out for determining the flowability. On 7th, 14th and 28th day of curing process compression strength tests were done and on 28th day flexural strength test and CMOD test were carried to differentiate the strength properties and post-cracking behavior of concrete samples.

Keywords: self-compacting concrete, polyolefin fibers, fiber reinforced concrete, CMOD test of concrete

Procedia PDF Downloads 154
1321 Spectrum and Prevalence of Candida Infection in Diabetic Foot Ulcers

Authors: Seyed Reza Aghili, Tahereh Shokohi, Lotfollah Davoodi, Zahra Kashi, Azam Moslemi, Mahdi Abastabar, Iman Haghani, Sabah Mayahi, Asoudeh A.

Abstract:

Introduction: In diabetic foot ulcers, if fungal agents such as Candida species penetrate into the cutaneous or depth of ulcer, can increase the degree of the wound and cause Candia infection and make it more difficult to heal. Material & Methods: A cross-sectional study was performed on 100 diabetic foot ulcer patients in 2020 in Sari, Iran. patient's data and wound grade were recorded in a questionnaire. Candida infection was diagnosed with direct microscopic examination and culture of samples. Colony-PCR molecular method was used for ITS region of DNA and then PCR-RFLP with Msp1 enzyme and using HWP1 specific gene to determine species of Candida agent. Results: Of 100 patients, the mean age 62.1 ± 10.8 years, 95% type 2 diabetes, 83%>10 years duration diabetes, 59% male, 66%> poor education level, 99% married, 52% rural, 95% neuropathic symptoms, 88% using antibiotics, 69%HbA1C >9%, and mean ulcer degree 2.6±1.05 were. Candida infection was seen in 13% of the deep tissue of the wound and 7% cutaneous around the wound. The predominant Candida isolated was C. parapsilosis (71.5%), C .albicans (14.3%). Fungal infections caused by mold fungi were not detected. There was a statistically significant relationship between yeast infection and gender, rural, HbA1C and ulcer degree. Conclusion: Mycological evaluations often are ignored. Candida parapsilosis is the most common infectious agent in these patients and may require specific treatment. Therefore, more attention of physicians to Candida infections particularly, early diagnosis and effective treatment can help faster recovery and prevent amputation.

Keywords: diabetic foot ulcer, candida infection, risk factors, c. parapsilosis

Procedia PDF Downloads 171
1320 Widely Diversified Macroeconomies in the Super-Long Run Casts a Doubt on Path-Independent Equilibrium Growth Model

Authors: Ichiro Takahashi

Abstract:

One of the major assumptions of mainstream macroeconomics is the path independence of capital stock. This paper challenges this assumption by employing an agent-based approach. The simulation results showed the existence of multiple "quasi-steady state" equilibria of the capital stock, which may cast serious doubt on the validity of the assumption. The finding would give a better understanding of many phenomena that involve hysteresis, including the causes of poverty. The "market-clearing view" has been widely shared among major schools of macroeconomics. They understand that the capital stock, the labor force, and technology, determine the "full-employment" equilibrium growth path and demand/supply shocks can move the economy away from the path only temporarily: the dichotomy between the short-run business cycles and the long-run equilibrium path. The view then implicitly assumes the long-run capital stock to be independent of how the economy has evolved. In contrast, "Old Keynesians" have recognized fluctuations in output as arising largely from fluctuations in real aggregate demand. It will then be an interesting question to ask if an agent-based macroeconomic model, which is known to have path dependence, can generate multiple full-employment equilibrium trajectories of the capital stock in the super-long run. If the answer is yes, the equilibrium level of capital stock, an important supply-side factor, would no longer be independent of the business cycle phenomenon. This paper attempts to answer the above question by using the agent-based macroeconomic model developed by Takahashi and Okada (2010). The model would serve this purpose well because it has neither population growth nor technology progress. The objective of the paper is twofold: (1) to explore the causes of long-term business cycle, and (2) to examine the super-long behaviors of the capital stock of full-employment economies. (1) The simulated behaviors of the key macroeconomic variables such as output, employment, real wages showed widely diversified macro-economies. They were often remarkably stable but exhibited both short-term and long-term fluctuations. The long-term fluctuations occur through the following two adjustments: the quantity and relative cost adjustments of capital stock. The first one is obvious and assumed by many business cycle theorists. The reduced aggregate demand lowers prices, which raises real wages, thereby decreasing the relative cost of capital stock with respect to labor. (2) The long-term business cycles/fluctuations were synthesized with the hysteresis of real wages, interest rates, and investments. In particular, a sequence of the simulation runs with a super-long simulation period generated a wide range of perfectly stable paths, many of which achieved full employment: all the macroeconomic trajectories, including capital stock, output, and employment, were perfectly horizontal over 100,000 periods. Moreover, the full-employment level of capital stock was influenced by the history of unemployment, which was itself path-dependent. Thus, an experience of severe unemployment in the past kept the real wage low, which discouraged a relatively costly investment in capital stock. Meanwhile, a history of good performance sometimes brought about a low capital stock due to a high-interest rate that was consistent with a strong investment.

Keywords: agent-based macroeconomic model, business cycle, hysteresis, stability

Procedia PDF Downloads 189
1319 Analysis of Factors Influencing the Response Time of an Aspirating Gaseous Agent Concentration Detection Method

Authors: Yu Guan, Song Lu, Wei Yuan, Heping Zhang

Abstract:

Gas fire extinguishing system is widely used due to its cleanliness and efficiency, and since its spray will be affected by many factors such as convection and obstacles in jetting region, so in order to evaluate its effectiveness, detecting concentration distribution in the jetting area is indispensable, which is commonly achieved by aspirating concentration detection technique. During the concentration measurement, the response time of detector is a very important parameter, especially for those fire-extinguishing systems with rapid gas dispersion. Long response time will not only underestimate its concentration but also prolong the change of concentration with time. Therefore it is necessary to analyze the factors influencing the response time. In the paper, an aspirating concentration detection method was introduced, which is achieved by using a small critical nozzle and a laminar flowmeter, and because of the response time is mainly related to the gas transport process from sampling site to the sensor, the effects of exhaust pipe size, gas flow rate, and gas concentration on its response time were analyzed. During the research, Bromotrifluoromethane (CBrF₃) was used. The effect of the sampling tube was investigated with different length of 1, 2, 3, 4 and 5 m (5mm in pipe diameter) and different pipe diameter of 3, 4, 5, 6 and 8 mm (3m in length). The effect of gas flow rate was analyzed by changing the throat diameter of the critical nozzle with 0.5, 0.682, 0.75, 0.8, 0.84 and 0.88 mm. The effect of gas concentration on response time was studied with the concentration range of 0-25%. The result showed that the response time increased with the increase of both the length and diameter of the sampling pipe, and the effect of length on response time was linear, but for the effect of diameter, it was exponential. It was also found that as the throat diameter of critical nozzle increased, the response time reduced a lot, in other words, gas flow rate has a great influence on response time. For the effect of gas concentration, the response time increased with the increase of the CBrF₃ concentration, and the slope of the curve was reduced.

Keywords: aspirating concentration detection, fire extinguishing, gaseous agent, response time

Procedia PDF Downloads 249
1318 Comparative Study of Compressive Strength of Triangular Polyester Fiber with Fly Ash Roller Compacted Concrete Using Ultrasonic Pulse Velocity Method

Authors: Pramod Keshav Kolase, Atul K. Desai

Abstract:

This paper presents the experimental investigation results of Ultrasonic Pulse Velocity (UPV) tests conducted on roller compacted concrete pavement (RCCP) material containing Class F fly ash of as mineral admixture and triangular polyester fiber as a secondary reinforcement. The each mix design series fly ash content is varied from 0% to 45 % and triangular polyester fiber 0% to 0.75% by volume fraction. In each series and for different ages of curing (i.e. 7, 28 and 90 days) forty-eight cube specimens are cast and tested for compressive strength and UPV. The UPV of fly ash was found to be lower for all mixtures at 7 days in comparison with control mix concrete. But at 28, 56 days and 90 days the UPV were significantly improved for all the mixes. Relationships between compressive strength of RCCP and UPV and Dynamic Elastic Modulus are proposed for all series mixes.

Keywords: compressive strength, dynamic elastic modulus, fly ash, fiber, roller compacted concrete, ultrasonic pulse velocity

Procedia PDF Downloads 197
1317 The Effect of Pregabalin on Postoperative Pain after Anterior Cruciate Ligament Reconstruction: A Systematic Review of Randomized Clinical Trials

Authors: Emad Kouhestani

Abstract:

Background: Despite the enormous success of anterior cruciate ligament (ACL) reconstruction, acute neuropathic pain can develop postoperatively and is both distressing and difficult to treat once established. Pregabalin, as an anticonvulsant agent that selectively affects the nociceptive process, has been used as a pain relief agent. The purpose of this systematic review of randomized controlled trials (RCTs) was to evaluate the pain control effect of pregabalin versus placebo after ACL reconstruction. Method: A search of the literature was performed from inception to June 2022, using PubMed, Scopus, Google Scholar, Web of Science, Cochrane, and EBSCO. Studies considered for inclusion were RCTs that reported relevant outcomes (postoperative pain scores, or cumulative opioid consumption, adverse events) following the administration of pregabalin in patients undergoing ACL reconstruction. Result: Five placebo-controlled RCTs involving 272 participants met the inclusion criteria. 75 mg and 150 mg of oral pregabalin were used in included trials. Two studies used a single dose of pregabalin one hour before anesthesia induction. Two studies used pregabalin 1 hour before anesthesia induction and 12 hours after. One study used daily pregabalin 7 days before and 7 days after surgery. Out of five papers, three papers found significantly lower pain intensity and cumulative opioid consumption in the pregabalin group compared with the placebo group. However, a decrease in pain scores was found in all trials. Pregabalin administration was associated with dizziness and nausea. Conclusion: The use of pregabalin may be a valuable asset in pain management after ACL reconstruction. However, future studies with larger sample sizes and longer follow-up periods are required.

Keywords: pregabalin, anterior cruciate ligament, postoperative pain, clinical trial

Procedia PDF Downloads 64
1316 Therapeutic Challenges in Treatment of Adults Bacterial Meningitis Cases

Authors: Sadie Namani, Lindita Ajazaj, Arjeta Zogaj, Vera Berisha, Bahrije Halili, Luljeta Hasani, Ajete Aliu

Abstract:

Background: The outcome of bacterial meningitis is strongly related to the resistance of bacterial pathogens to the initial antimicrobial therapy. The objective of the study was to analyze the initial antimicrobial therapy, the resistance of meningeal pathogens and the outcome of adults bacterial meningitis cases. Materials/methods: This prospective study enrolled 46 adults older than 16 years of age, treated for bacterial meningitis during the years 2009 and 2010 at the infectious diseases clinic in Prishtinë. Patients are categorized into specific age groups: > 16-26 years of age (10 patients), > 26-60 years of age (25 patients) and > 60 years of age (11 patients). All p-values < 0.05 were considered statistically significant. Data were analyzed using Stata 7.1 and SPSS 13. Results: During the two year study period 46 patients (28 males) were treated for bacterial meningitis. 33 patients (72%) had a confirmed bacterial etiology; 13 meningococci, 11 pneumococci, 7 gram-negative bacilli (Ps. aeruginosa 2, Proteus sp. 2, Acinetobacter sp. 2 and Klebsiella sp. 1 case) and 2 staphylococci isolates were found. Neurological complications developed in 17 patients (37%) and the overall mortality rate was 13% (6 deaths). Neurological complications observed were: cerebral abscess (7/46; 15.2%), cerebral edema (4/46; 8.7%); haemiparesis (3/46; 6.5%); recurrent seizures (2/46; 4.3%), and single cases of thrombosis sinus cavernosus, facial nerve palsy and decerebration (1/46; 2.1%). The most common meningeal pathogens were meningococcus in the youngest age group, gram negative-bacilli in second age group and pneumococcus in eldery age group. Initial single-agent antibiotic therapy (ceftriaxone) was used in 17 patients (37%): in 60% of patients in the youngest age group and in 44% of cases in the second age group. 29 patients (63%) were treated with initial dual-agent antibiotic therapy; ceftriaxone in combination with vancomycin or ampicillin. Ceftriaxone and ampicillin were the most commonly used antibiotics for the initial empirical therapy in adults > 50 years of age. All adults > 60 years of age were treated with the initial dual-agent antibiotic therapy as in this age group was recorded the highest mortality rate (M=27%) and adverse outcome (64%). Resistance of pathogens to antimicrobics was recorded in cases caused by gram-negative bacilli and was associated with greater risk for developing neurological complications (p=0.09). None of the gram-negative bacilli were resistant to carbapenems; all were resistant to ampicillin while 5/7 isolates were resistant to cefalosporins. Resistance of meningococci and pneumococci to beta-lactams was not recorded. There were no statistical differences in the occurrence of neurological complications (p > 0.05), resistance of meningeal pathogens to antimicrobics (p > 0.05) and the inital antimicrobial therapy (one vs. two antibiotics) concerning group-ages in adults. Conclusions: The initial antibiotic therapy with ceftriaxone alone or in combination with vancomycin or ampicillin did not cover cases caused by gram-negative bacilli.

Keywords: adults, bacterial meningitis, outcomes, therapy

Procedia PDF Downloads 154
1315 Flavonoid Content and Antioxidant Potential of White and Brown Sesame Seed Oils

Authors: Fatima Bello, Ibrahim Sani

Abstract:

Medicinal plants are the most important sources of life saving drugs for the majority of world’s population. People of all continents have used hundreds to thousands of indigenous plants in curing and management of many diseases. Sesame (Sesamum indicum L.) is one of the most widely cultivated species for its nutritious and medicinal seeds and oil. This research was carried out to determine the flavonoid content and antioxidant potential of two varieties of sesame seeds oil. Oil extraction was done using Soxhlet apparatus. The percentage oil yield for white and brown seeds were 47.85% and 20.72%, respectively. Flavonoid was present in both seeds with concentration of 480 mg/g and 360 mg/g in white and brown sesame seeds, respectively. The antioxidant potential was determined at different oil volume; 1.00, 0.75, 0.50 and 0.25ml. The results for the white and brown sesame seed oils were 96.8 and 70.7, 91.0 and 65.2, 83.1 and 55.4, 77.9 and 50.2, respectively. The white seed oil has higher oil yield than the brown seed oil. Likewise, the white seed oil has more flavonoid content than the brown seed oil and also better reducing power than the brown seed oil.

Keywords: antioxidant potential, brown sesame seeds, flavonoid content, sesame seed oil, Sesamum indicum L., white sesame seeds

Procedia PDF Downloads 425
1314 Process Modified Geopolymer Concrete: A Sustainable Material for Green Construction Technology

Authors: Dibyendu Adak, Saroj Mandal

Abstract:

The fly ash based geopolymer concrete generally requires heat activation after casting, which has been considered as an important limitation for its practical application. Such limitation can be overcome by a modification in the process at the time of mixing of ingredients (fly and activator fluid) for geopolymer concrete so that curing can be made at ambient temperature. This process modified geopolymer concrete shows an appreciable improvement in structural performance compared to conventional heat cured geopolymer concrete and control cement concrete. The improved durability performance based on water absorption, sulphate test, and RCPT is also noted. The microstructural properties analyzed through Field Emission Scanning Electron Microscope (FESEM) with Energy Dispersive X-ray Spectroscopy (EDS) and X-ray Diffraction (XRD) techniques show the better interaction of fly ash and activator solution at early ages for the process modified geopolymer concrete. This accelerates the transformation of the amorphous phase of fly ash to the crystalline phase.

Keywords: fly ash, geopolymer concrete, process modification, structural properties, durability, micro-structures

Procedia PDF Downloads 141
1313 Effect of Concrete Strength on the Bond Between Carbon Fiber Reinforced Polymer and Concrete in Hot Weather

Authors: Usama Mohamed Ahamed

Abstract:

This research deals with the bond behavior of carbon FRP composite wraps adhered/bonded to the surface of the concrete. Four concrete mixes were designed to achieve a concrete compressive strength of 18, 22.5,25 and 30 MP after 28 days of curing. The focus of the study is on bond degradation when the hybrid structure is exposed to hot weather conditions. Specimens were exposed to 50 0C temperature duration 6 months and other specimens were sustained in laboratory temperature ( 20-24) 0C. Upon removing the specimens from their conditioning environment, tension tests were performed in the machine using a specially manufactured concrete cube holder. A lightweight mortar layer is used to protect the bonded carbon FRP layer on the concrete surface. The results show that the higher the concrete's compressive, the higher the bond strength. The high temperature decreases the bond strength between concrete and carbon fiber-reinforced polymer. The use of a protection layer is essential for concrete exposed to hot weather.

Keywords: concrete, bond, hot weather and carbon fiber, carbon fiber reinforced polymers

Procedia PDF Downloads 73
1312 Metal Ions Cross-Linking of Epoxidized Natural Rubber

Authors: Kriengsak Damampai, Skulrat Pichaiyut, Amit Das, Charoen Nacason

Abstract:

The curing of epoxidized natural rubber (ENR) was performed by using metal ions (Ferric chloride, FeCl₃). Two different mole% of epoxide were used there are 25 mole% (ENR-25) and 50 mole% (ENR-50) epoxizied natural rubber. The main aim of this work was investigated the influence of metal ions on the coordination reaction of epoxidized natural rubber. Also, cure characteristics and mechanical properties of the rubber compounds were investigated. It was found that the ENR-50 compounds indicated superior modulus and tensile strength than the ENR-25 compounds. This was attributed to higher the cross-linking in the rubber via coordination linkages between the oxidation groups in ENR molecule and FeCl₃of metal ions. Various quantities of FeCl3 were also investigated. It is seen that the ENR-25 and 50 mole% compounds with FeCl₃ of more than 3 mmol exhibited higher modulus and tensile strength compare to the pure ENR. Furthermore, the FTIR spectra was used to confirm the cross-linked of ENR with FeCl₃.

Keywords: Epoxidized natural rubber, Ferric chloride, cross-linking, Coordination

Procedia PDF Downloads 65
1311 The Optimization of Topical Antineoplastic Therapy Using Controlled Release Systems Based on Amino-functionalized Mesoporous Silica

Authors: Lacramioara Ochiuz, Aurelia Vasile, Iulian Stoleriu, Cristina Ghiciuc, Maria Ignat

Abstract:

Topical administration of chemotherapeutic agents (eg. carmustine, bexarotene, mechlorethamine etc.) in local treatment of cutaneous T-cell lymphoma (CTCL) is accompanied by multiple side effects, such as contact hypersensitivity, pruritus, skin atrophy or even secondary malignancies. A known method of reducing the side effects of anticancer agent is the development of modified drug release systems using drug incapsulation in biocompatible nanoporous inorganic matrices, such as mesoporous MCM-41 silica. Mesoporous MCM-41 silica is characterized by large specific surface, high pore volume, uniform porosity, and stable dispersion in aqueous medium, excellent biocompatibility, in vivo biodegradability and capacity to be functionalized with different organic groups. Therefore, MCM-41 is an attractive candidate for a wide range of biomedical applications, such as controlled drug release, bone regeneration, protein immobilization, enzymes, etc. The main advantage of this material lies in its ability to host a large amount of the active substance in uniform pore system with adjustable size in a mesoscopic range. Silanol groups allow surface controlled functionalization leading to control of drug loading and release. This study shows (I) the amino-grafting optimization of mesoporous MCM-41 silica matrix by means of co-condensation during synthesis and post-synthesis using APTES (3-aminopropyltriethoxysilane); (ii) loading the therapeutic agent (carmustine) obtaining a modified drug release systems; (iii) determining the profile of in vitro carmustine release from these systems; (iv) assessment of carmustine release kinetics by fitting on four mathematical models. Obtained powders have been described in terms of structure, texture, morphology thermogravimetric analysis. The concentration of the therapeutic agent in the dissolution medium has been determined by HPLC method. In vitro dissolution tests have been done using cell Enhancer in a 12 hours interval. Analysis of carmustine release kinetics from mesoporous systems was made by fitting to zero-order model, first-order model Higuchi model and Korsmeyer-Peppas model, respectively. Results showed that both types of highly ordered mesoporous silica (amino grafted by co-condensation process or post-synthesis) are thermally stable in aqueous medium. In what regards the degree of loading and efficiency of loading with the therapeutic agent, there has been noticed an increase of around 10% in case of co-condensation method application. This result shows that direct co-condensation leads to even distribution of amino groups on the pore walls while in case of post-synthesis grafting many amino groups are concentrated near the pore opening and/or on external surface. In vitro dissolution tests showed an extended carmustine release (more than 86% m/m) both from systems based on silica functionalized directly by co-condensation and after synthesis. Assessment of carmustine release kinetics revealed a release through diffusion from all studied systems as a result of fitting to Higuchi model. The results of this study proved that amino-functionalized mesoporous silica may be used as a matrix for optimizing the anti-cancer topical therapy by loading carmustine and developing prolonged-release systems.

Keywords: carmustine, silica, controlled, release

Procedia PDF Downloads 240
1310 Effect of Modification and Expansion on Emergence of Cooperation in Demographic Multi-Level Donor-Recipient Game

Authors: Tsuneyuki Namekata, Yoko Namekata

Abstract:

It is known that the mean investment evolves from a very low initial value to some high level in the Continuous Prisoner's Dilemma. We examine how the cooperation level evolves from a low initial level to a high level in our Demographic Multi-level Donor-Recipient situation. In the Multi-level Donor-Recipient game, one player is selected as a Donor and the other as a Recipient randomly. The Donor has multiple cooperative moves and one defective move. A cooperative move means the Donor pays some cost for the Recipient to receive some benefit. The more cooperative move the Donor takes, the higher cost the Donor pays and the higher benefit the Recipient receives. The defective move has no effect on them. Two consecutive Multi-level Donor-Recipient games, one as a Donor and the other as a Recipient, can be viewed as a discrete version of the Continuous Prisoner's Dilemma. In the Demographic Multi-level Donor-Recipient game, players are initially distributed spatially. In each period, players play multiple Multi-level Donor-Recipient games against other players. He leaves offspring if possible and dies because of negative accumulated payoff of him or his lifespan. Cooperative moves are necessary for the survival of the whole population. There is only a low level of cooperative move besides the defective move initially available in strategies of players. A player may modify and expand his strategy by his recent experiences or practices. We distinguish several types of a player about modification and expansion. We show, by Agent-Based Simulation, that introducing only the modification increases the emergence rate of cooperation and introducing both the modification and the expansion further increases it and a high level of cooperation does emerge in our Demographic Multi-level Donor-Recipient Game.

Keywords: agent-based simulation, donor-recipient game, emergence of cooperation, spatial structure, TFT, TF2T

Procedia PDF Downloads 348
1309 Comparison of Physico-Mechanical Properties of Superplasticizer Stabilized Graphene Oxide and Carbon Nanotubes Reinforced Cement Nanocomposites

Authors: Ramanjit Kaur, N. C. Kothiyal

Abstract:

The present study compares the improved mechanical strength of cement mortar nanocomposites (CNCs) using polycarboxylate superplasticizer (PCE-SP) stabilized graphene oxide or functionalized carbon nanotubes (SP-GO and SP-FCNT) as reinforcing agents. So, in the present study, GO, and FCNT have been sterically stabilized via superplasticizer. The obtained results have shown that a dosage of 0.02 wt% of SP-GO and 0.08 wt% of SP-FCNTs showed an improvement in compressive strength by 23.2% and 16.5%, respectively. On the other hand, incorporation of 0.04% SP-GO and SP-FCNT resulted in an enhanced split tensile strength of 38.5% and 35.8%, respectively, as compared to the control sample at 90 days of curing. Mercury Intrusion Porosimetry (MIP) observations presented a decline in the porosity of 0.02% SP-GO-CNCs and 0.08% SP-FCNT-CNCs by 25% and 31% in comparison to the control sample. The improved hydration of CNCs contributing to the enhancement of physicomechanical strength has also been shown by SEM and XRD studies.

Keywords: graphene oxide, functionalized CNTs, steric stabilization, microstructure, crystalline behavior, pore structure refinement

Procedia PDF Downloads 80
1308 The Effect of the Combination of Methotrexate Nanoparticles and TiO2 on Breast Cancer

Authors: Nusaiba Al-Nemrawi, Belal Al-Husein

Abstract:

Methotrexate (MTX) is a stoichiometric inhibitor of dihydrofolate reductase, which is essential for DNA synthesis. MTX is a chemotherapeutic agent used for treating many types of cancer cells. However, cells’ resistant to MTX is very common and its pharmacokinetic behavior is highly problematic. of MTX within tumor cells, we propose encapsulation of antitumor drugs in nanoparticulated systems. Chitosan (CS) is a naturally occurring polymer that is biocompatibe, biodegradable, non-toxic, cationic and bioadhesive. CS nanoparticles (CS-NPs) have been used as drug carrier for targeted delivery. Titanium dioxide (TiO2), a natural mineral oxide, which is used in biomaterials due to its high stability and antimicrobial and anticorrosive properties. TiO2 showed a potential as a tumor suppressor. In this study a new formulation of MTX loaded in CS NPs (CS-MTX NPs) and coated with Titanium oxide (TiO2) was prepared. The mean particle size, zeta potential, polydispersity index were measured. The interaction between CS NPs and TiO2 NPs was confirmed using FTIR and XRD. CS-MTX NPs was studied in vitro using the tumor cell line MCF-7 (human breast cancer). The results showed that CS-MTX has a size around 169 nm and as they were coated with TiO2, the size ranged between and depending on the ratio of CS-MTX to TiO2 ratio used in the preparation. All NPs (uncoated and coated carried positive charges and were monodispersed. The entrapment efficacy was around 65%. Both FTIR and XRD proved that TiO2 interacted with CS-MTX NPs. The drug invitro release was controlled and sustained over days. Finally, the studied in vitro using the tumor cell line MCF-7 suggested that combining nanomaterials with anticancer drugs CS-MTX NPs may be more effective than free MTX for cancer treatment. In conclusion, the combination of CS-MTX NPs and TiO2 NPs showed excellent time-dependent in vitro antitumor behavior, therefore, can be employed as a promising anticancer agent to attain efficient results towards MCF-7 cells.

Keywords: Methotrexate, Titanium dioxide, Chitosan nanoparticles, cancer

Procedia PDF Downloads 81
1307 Mobile Microscope for the Detection of Pathogenic Cells Using Image Processing

Authors: P. S. Surya Meghana, K. Lingeshwaran, C. Kannan, V. Raghavendran, C. Priya

Abstract:

One of the most basic and powerful tools in all of science and medicine is the light microscope, the fundamental device for laboratory as well as research purposes. With the improving technology, the need for portable, economic and user-friendly instruments is in high demand. The conventional microscope fails to live up to the emerging trend. Also, adequate access to healthcare is not widely available, especially in developing countries. The most basic step towards the curing of a malady is the diagnosis of the disease itself. The main aim of this paper is to diagnose Malaria with the most common device, cell phones, which prove to be the immediate solution for most of the modern day needs with the development of wireless infrastructure allowing to compute and communicate on the move. This opened up the opportunity to develop novel imaging, sensing, and diagnostics platforms using mobile phones as an underlying platform to address the global demand for accurate, sensitive, cost-effective, and field-portable measurement devices for use in remote and resource-limited settings around the world.

Keywords: cellular, hand-held, health care, image processing, malarial parasites, microscope

Procedia PDF Downloads 247
1306 Egyptian Soil Isolate Shows Promise as a Source of a New Broad-spectrum Antimicrobial Agent Against Multidrug-resistant Pathogens

Authors: Norhan H. Mahdally, Bathini Thissera Riham A. ElShiekh, Noha M. Elhosseiny, Mona T. Kashef, Ali M. El Halawany, Mostafa E. Rateb, Ahmed S. Attia

Abstract:

Multidrug-resistant (MDR) pathogens pose a global threat to healthcare settings. The exhaustion of the current antibiotic arsenal and the scarcity of new antimicrobials in the pipeline aggravate this threat and necessitate a prompt and effective response. This study focused on two major pathogens that can cause serious infections: carbapenem-resistant Acinetobacter baumannii (CRAB) and methicillin-resistant Staphylococcus aureus (MRSA). Multiple soil isolates were collected from several locations throughout Egypt and screened for their conventional and non-conventional antimicrobial activities against MDR pathogens. One isolate exhibited potent antimicrobial activity and was subjected to multiple rounds of fractionation. After fermentation and bio-guided fractionation, we identified pure microbial secondary metabolites with two scaffolds that exhibited promising effects against CRAB and MRSA. Scaling up and chemical synthesis of derivatives of the identified metabolite resulted in obtaining a more potent derivative, which we designated as 2HP. Cytotoxicity studies indicated that 2HP is well-tolerated by human cells. Ongoing work is focusing on formulating the new compound into a nano-formulation to enhance its delivery. Also, to have a better idea about how this compound works, a proteomic approach is currently underway. Our findings suggest that 2HP is a potential new broad-spectrum antimicrobial agent. Further studies are needed to confirm these findings and to develop 2HP into a safe and effective treatment for MDR infections.

Keywords: broad-spectrum antimicrobials, carbapenem-resistant acinetobacter baumannii, drug discovery, methicillin-resistant staphylococcus aureus, multidrug-resistant, natural products

Procedia PDF Downloads 53
1305 An Efficient Process Analysis and Control Method for Tire Mixing Operation

Authors: Hwang Ho Kim, Do Gyun Kim, Jin Young Choi, Sang Chul Park

Abstract:

Since tire production process is very complicated, company-wide management of it is very difficult, necessitating considerable amounts of capital and labors. Thus, productivity should be enhanced and maintained competitive by developing and applying effective production plans. Among major processes for tire manufacturing, consisting of mixing component preparation, building and curing, the mixing process is an essential and important step because the main component of tire, called compound, is formed at this step. Compound as a rubber synthesis with various characteristics plays its own role required for a tire as a finished product. Meanwhile, scheduling tire mixing process is similar to flexible job shop scheduling problem (FJSSP) because various kinds of compounds have their unique orders of operations, and a set of alternative machines can be used to process each operation. In addition, setup time required for different operations may differ due to alteration of additives. In other words, each operation of mixing processes requires different setup time depending on the previous one, and this kind of feature, called sequence dependent setup time (SDST), is a very important issue in traditional scheduling problems such as flexible job shop scheduling problems. However, despite of its importance, there exist few research works dealing with the tire mixing process. Thus, in this paper, we consider the scheduling problem for tire mixing process and suggest an efficient particle swarm optimization (PSO) algorithm to minimize the makespan for completing all the required jobs belonging to the process. Specifically, we design a particle encoding scheme for the considered scheduling problem, including a processing sequence for compounds and machine allocation information for each job operation, and a method for generating a tire mixing schedule from a given particle. At each iteration, the coordination and velocity of particles are updated, and the current solution is compared with new solution. This procedure is repeated until a stopping condition is satisfied. The performance of the proposed algorithm is validated through a numerical experiment by using some small-sized problem instances expressing the tire mixing process. Furthermore, we compare the solution of the proposed algorithm with it obtained by solving a mixed integer linear programming (MILP) model developed in previous research work. As for performance measure, we define an error rate which can evaluate the difference between two solutions. As a result, we show that PSO algorithm proposed in this paper outperforms MILP model with respect to the effectiveness and efficiency. As the direction for future work, we plan to consider scheduling problems in other processes such as building, curing. We can also extend our current work by considering other performance measures such as weighted makespan or processing times affected by aging or learning effects.

Keywords: compound, error rate, flexible job shop scheduling problem, makespan, particle encoding scheme, particle swarm optimization, sequence dependent setup time, tire mixing process

Procedia PDF Downloads 242