Search results for: continuum mechanics
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 619

Search results for: continuum mechanics

139 Development of a Geomechanical Risk Assessment Model for Underground Openings

Authors: Ali Mortazavi

Abstract:

The main objective of this research project is to delve into a multitude of geomechanical risks associated with various mining methods employed within the underground mining industry. Controlling geotechnical design parameters and operational factors affecting the selection of suitable mining techniques for a given underground mining condition will be considered from a risk assessment point of view. Important geomechanical challenges will be investigated as appropriate and relevant to the commonly used underground mining methods. Given the complicated nature of rock mass in-situ and complicated boundary conditions and operational complexities associated with various underground mining methods, the selection of a safe and economic mining operation is of paramount significance. Rock failure at varying scales within the underground mining openings is always a threat to mining operations and causes human and capital losses worldwide. Geotechnical design is a major design component of all underground mines and basically dominates the safety of an underground mine. With regard to uncertainties that exist in rock characterization prior to mine development, there are always risks associated with inappropriate design as a function of mining conditions and the selected mining method. Uncertainty often results from the inherent variability of rock masse, which in turn is a function of both geological materials and rock mass in-situ conditions. The focus of this research is on developing a methodology which enables a geomechanical risk assessment of given underground mining conditions. The outcome of this research is a geotechnical risk analysis algorithm, which can be used as an aid in selecting the appropriate mining method as a function of mine design parameters (e.g., rock in-situ properties, design method, governing boundary conditions such as in-situ stress and groundwater, etc.).

Keywords: geomechanical risk assessment, rock mechanics, underground mining, rock engineering

Procedia PDF Downloads 134
138 Facing Global Competition through Participation in Global Innovation Networks: The Case of Mechatronics District in the Veneto Region

Authors: Monica Plechero

Abstract:

Many firms belonging to Italian industrial districts faced a crisis starting from 2000 and upsurging during 2008-2014. To remain competitive in the global market, these firms and their local systems need to renovate their traditional competitive advantages, strengthen their link with global flows of knowledge. This may be particularly relevant in sectors such as the mechatronics, that combine traditional knowledge domain with new knowledge domains (e.g. mechanics, electronics, and informatics). This sector is nowadays one of the key sectors within the so-called ‘smart specialization strategy’ that can lead part of the Italian traditional industry towards new economic developmental opportunities. This paper, by investigating the mechatronics district of the Veneto region, wants to shed new light on how firms of a local system can gain from the globalization of innovation and innovation networks. Methodologically, the paper relies on primary data collected through a survey targeting firms of the local system, as well as on a number of qualitative case studies. The relevant role of medium size companies in the district emerges as evident, as they have wider opportunities to be involved in different processes of globalization of innovation. Indeed, with respect to small companies, the size of medium firms allows them to exploit strategically international markets and globally distributed knowledge. Supporting medium firms’ global innovation strategies, and incentivizing their role as district gatekeepers, may strengthen the competitive capability of the local system and provide new opportunities to positively face global competition.

Keywords: global innovation network, industrial district, internationalization, innovation, mechatronics, Veneto region

Procedia PDF Downloads 217
137 Aeronautical Noise Management inside an Aerodrome: Analysis of Sound Exposure on Aviation Professional’s Health

Authors: Rafael Felipe Guatura da Silva, José Luis Gomes da Silva, Luiz Antonio, Ferreira Perrone de Brito

Abstract:

Noise can cause serious damage to human health, such as hearing loss, stress, irritability, fatigue, and others. Aviation is a place where your entire process should be work out with the utmost attention and commitment of human resources, thus the need to study the effects of noise in this sector, as aeronautical noise levels are high. This study aimed to evaluate the impact of noise pollution on the performance of professionals regarding the fatigue generated by aeronautical noise and time to noise exposure. The methodology used consists of measurements of sound pressure levels at 42 points of the aerodrome. The selected points are located inside the hangars and outside the airfield hangars. All points chosen are close to the professionals' work areas, seeking to identify the sound pressure levels to which they submitted. The other part of the research used the principle on the application of a self-report questionnaire to a sample of 207 people working inside the aerodrome. The 207 professionals surveyed consist of aircraft mechanics, pilots, maintenance managers, and administrative professionals. The questionnaire was intended to evaluate the knowledge that professionals have about health risks caused by sound exposure as well as to identify diseases that professionals have, and that may be associated with exposure to high levels of sound pressure. Preliminary results identify points with sound pressure levels of up to 91.7 dB, thus highlighting the need for the use of personal protective equipment that reduces noise exposure. It was also identified a large number of professionals who are bothered by the sound exposure and approximately 25% of professionals interviewed reported having a hearing disorder.

Keywords: aeronautical noise, fatigue, noise and health, noise management

Procedia PDF Downloads 133
136 Construction and Validation of a Hybrid Lumbar Spine Model for the Fast Evaluation of Intradiscal Pressure and Mobility

Authors: Dicko Ali Hamadi, Tong-Yette Nicolas, Gilles Benjamin, Faure Francois, Palombi Olivier

Abstract:

A novel hybrid model of the lumbar spine, allowing fast static and dynamic simulations of the disc pressure and the spine mobility, is introduced in this work. Our contribution is to combine rigid bodies, deformable finite elements, articular constraints, and springs into a unique model of the spine. Each vertebra is represented by a rigid body controlling a surface mesh to model contacts on the facet joints and the spinous process. The discs are modeled using a heterogeneous tetrahedral finite element model. The facet joints are represented as elastic joints with six degrees of freedom, while the ligaments are modeled using non-linear one-dimensional elastic elements. The challenge we tackle is to make these different models efficiently interact while respecting the principles of Anatomy and Mechanics. The mobility, the intradiscal pressure, the facet joint force and the instantaneous center of rotation of the lumbar spine are validated against the experimental and theoretical results of the literature on flexion, extension, lateral bending as well as axial rotation. Our hybrid model greatly simplifies the modeling task and dramatically accelerates the simulation of pressure within the discs, as well as the evaluation of the range of motion and the instantaneous centers of rotation, without penalizing precision. These results suggest that for some types of biomechanical simulations, simplified models allow far easier modeling and faster simulations compared to usual full-FEM approaches without any loss of accuracy.

Keywords: hybrid, modeling, fast simulation, lumbar spine

Procedia PDF Downloads 300
135 Response of Diaphragmatic Excursion to Inspiratory Muscle Trainer Post Thoracotomy

Authors: H. M. Haytham, E. A. Azza, E.S. Mohamed, E. G. Nesreen

Abstract:

Thoracotomy is a great surgery that has serious pulmonary complications, so purpose of this study was to determine the response of diaphragmatic excursion to inspiratory muscle trainer post thoracotomy. Thirty patients of both sexes (16 men and 14 women) with age ranged from 20 to 40 years old had done thoracotomy participated in this study. The practical work was done in cardiothoracic department, Kasr-El-Aini hospital at faculty of medicine for individuals 3 days Post operatively. Patients were assigned into two groups: group A (study group) included 15 patients (8 men and 7 women) who received inspiratory muscle training by using inspiratory muscle trainer for 20 minutes and routine chest physiotherapy (deep breathing, cough and early ambulation) twice daily, 3 days per week for one month. Group B (control group) included 15 patients (8 men and 7 women) who received the routine chest physiotherapy only (deep breathing, cough and early ambulation) twice daily, 3 days per week for one month. Ultrasonography was used to evaluate the changes in diaphragmatic excursion before and after training program. Statistical analysis revealed a significant increase in diaphragmatic excursion in the study group (59.52%) more than control group (18.66%) after using inspiratory muscle trainer post operatively in patients post thoracotomy. It was concluded that the inspiratory muscle training device increases diaphragmatic excursion in patients post thoracotomy through improving inspiratory muscle strength and improving mechanics of breathing and using of inspiratory muscle trainer as a method of physical therapy rehabilitation to reduce post-operative pulmonary complications post thoracotomy.

Keywords: diaphragmatic excursion, inspiratory muscle trainer, ultrasonography, thoracotomy

Procedia PDF Downloads 310
134 Evaluation of Current Methods in Modelling and Analysis of Track with Jointed Rails

Authors: Hossein Askarinejad, Manicka Dhanasekar

Abstract:

In railway tracks, two adjacent rails are either welded or connected using bolted jointbars. In recent years the number of bolted rail joints is reduced by introduction of longer rail sections and by welding the rails at location of some joints. However, significant number of bolted rail joints remains in railways around the world as they are required to allow for rail thermal expansion or to provide electrical insulation in some sections of track. Regardless of the quality and integrity of the jointbar and bolt connections, the bending stiffness of jointbars is much lower than the rail generating large deflections under the train wheels. In addition, the gap or surface discontinuity on the rail running surface leads to generation of high wheel-rail impact force at the joint gap. These fundamental weaknesses have caused high rate of failure in track components at location of rail joints resulting in significant economic and safety issues in railways. The mechanical behavior of railway track at location of joints has not been fully understood due to various structural and material complexities. Although there have been some improvements in the methods for analysis of track at jointed rails in recent years, there are still uncertainties concerning the accuracy and reliability of the current methods. In this paper the current methods in analysis of track with a rail joint are critically evaluated and the new advances and recent research outcomes in this area are discussed. This research is part of a large granted project on rail joints which was defined by Cooperative Research Centre (CRC) for Rail Innovation with supports from Australian Rail Track Corporation (ARTC) and Queensland Rail (QR).

Keywords: jointed rails, railway mechanics, track dynamics, wheel-rail interaction

Procedia PDF Downloads 341
133 Reflective and Collaborative Professional Development Program in Secondary Education to Improve Student’s Oral Language

Authors: Marta Gràcia, Ana Luisa Adam-Alcocer, Jesús M. Alvarado, Verónica Quezada, Tere Zarza, Priscila Garza

Abstract:

In secondary education, integrating linguistic content and reflection on it is a crucial challenge that should be included in course plans to enhance students' oral communication competence. In secondary education classrooms, a continuum can be identified in relation to teaching methodologies: 1) the traditional teacher-dominated transmission approach, which is described as that in which teachers transmit content to students unidirectionally; 2) dialogical, bidirectional teaching approach that encourages students to adopt a critical vision of the information provided by the teacher or that is generated through students’ discussion. In this context, the EVALOE-DSS (Assessment Scale of Oral Language Teaching in the School Context-Decision Support System) digital instrument has emerged to help teachers in transforming their classes into spaces for communication, dialogue, reflection, evaluation of the learning process, teaching linguistic contents, and to develop curricular competencies. The tool includes various resources, such as a tutorial with the objectives and an initial screen for teachers to describe the class to be evaluated. One of the main resources of the digital instrument consists of 30 items-actions with three qualitative response options (green, orange, and red face emoji) grouped in five dimensions. In the context of the participation of secondary education teachers in a professional development program using EVALOE-DSS, a digital tool resource aimed to generate more participatory, interactive, dialogic classes, the objectives of the study were: 1) understanding the changes in classrooms’ dynamics and in the teachers’ strategies during their participation in the professional developmental program; 2) analyzing the impact of these changes in students’ oral language development according to their teachers; 3) Deeping on the impact of these changes in the students’ assessment of the classes and the self-assessment of oral competence; 4) knowing teachers’ assessment and reflections about their participation in the professional developmental program. Participants were ten teachers of different subjects and 250 students of secondary education (16-18 years) schools in Spain. The principal instrument used was the digital tool EVALOE-DSS. For 6 months, teachers used the digital tool to reflect on their classes, assess them (their actions and their students’ actions), make decisions, and introduce changes in their classes to be more participatory, interactive, and reflective about linguistic contents. Other collecting data instruments and techniques used during the study were: 1) a questionnaire to assess students’ oral language competence before and at the end of the study, 2) a questionnaire for students’ assessment of the characteristics of classes, 3) teachers’ meetings during the professional developmental program to reflect collaboratively on their experience, 4) questionnaire to assess teacher’s experience during their participation in the professional developmental program, 5) focus group meetings between the teachers and two researchers at the end of the study. The results showed relevant changes in teaching strategies, in the dynamics of the classes, which were more interactive, participative, dialogic and self-managed by the students. Both teachers and students agree about the progressive classes’ transformation into spaces for communication, discussion, and reflection on the language, its development, and its use as an essential instrument to develop curricular competencies.

Keywords: digital tool, individual and collaborative reflection, oral language competence, professional development program, secondary education

Procedia PDF Downloads 18
132 Experimental and Numerical Studies of Droplet Formation

Authors: Khaled Al-Badani, James Ren, Lisa Li, David Allanson

Abstract:

Droplet formation is an important process in many engineering systems and manufacturing procedures, which includes welding, biotechnologies, 3D printing, biochemical, biomedical fields and many more. The volume and the characteristics of droplet formation are generally depended on various material properties, microfluidics and fluid mechanics considerations. Hence, a detailed investigation of this process, with the aid of numerical computational tools, are essential for future design optimization and process controls of many engineering systems. This will also improve the understanding of changes in the properties and the structures of materials, during the formation of the droplet, which is important for new material developments to achieve different functions, pending the requirements of the application. For example, the shape of the formed droplet is critical for the function of some final products, such as the welding nugget during Capacitor Discharge Welding process, or PLA 3D printing, etc. Although, most academic journals on droplet formation, focused on issued with material transfer rate, surface tension and residual stresses, the general emphasis on the characteristics of droplet shape has been overlooked. The proposed work for this project will examine theoretical methodologies, experimental techniques, and numerical modelling, using ANSYS FLUENT, to critically analyse and highlight optimization methods regarding the formation of pendant droplet. The project will also compare results from published data with experimental and numerical work, concerning the effects of key material parameters on the droplet shape. These effects include changes in heating/cooling rates, solidification/melting progression and separation/break-up times. From these tests, a set of objectives is prepared, with an intention of improving quality, stability and productivity in modelling metal welding and 3D printing.

Keywords: computer modelling, droplet formation, material distortion, materials forming, welding

Procedia PDF Downloads 276
131 Basic Properties of a Fundamental Particle: Behavioral-Physical and Visual Methods for the Study of Fundamental Particle

Authors: Shukran M. Dadayev

Abstract:

To author's best knowledge, in this paper, the Basic Properties and Research methods of a Fundamental Particle is studied for the first time. That's to say, Fundamental Particle has not been discovered in the Nature yet. Because Fundamental Particle consists of specific Physical, Geometrical and Internal bases. Geometrical and Internal characteristics that are considered significant for the elementary and fundamental particles aren’t basic properties, characteristics or criteria of a Fundamental Particle. Of course, completely new Physical and Visual experimental methods of Quantum mechanics and Behavioral-Physical investigations of Particles are needed to study and discover the Fundamental Particle. These are new Physical, Visual and Behavioral-Physical experimental methods for describing and discovering the Fundamental Particle in the Nature and Microworld. Fundamental Particle consists of the same Energy-Mass-Motion system and a symmetry of Energy-Mass-Motion. Fundamental Particle supplies each of the elementary particles with the same Energy-Mass-Motion system at the same time and regulates each of the particles. Fundamental Particle gives Energy, Mass and Motion to each particles at the same time, each of the Particles consists of acquired Energy-Mass-Motion system and symmetry. Energy, Mass, Motion given by the Fundamental Particle to the particles are Symmetrical Equivalent and they remain in their primary shapes in all cases. Fundamental Particle gives Energy-Mass-Motion system and symmetry consisting of different measures and functions to each of the particles. The Motion given by the Fundamental Particle to the particles is Gravitation, Gravitational Interaction not only gives Motion, but also cause Motion by attracting. All Substances, Fields and Cosmic objects consist of Energy-Mass-Motion. The Field also includes specific Mass. They are always Energetic, Massive and Active. Fundamental Particle establishes the bases of the Nature. Supplement and Regulating of all the particles existing in the Nature belongs to Fundamental Particle.

Keywords: basic properties of a fundamental particle, behavioral-physical and visual methods, energy-mass-motion system and symmetrical equivalence, fundamental particle

Procedia PDF Downloads 3555
130 Acceleration and Deceleration Behavior in the Vicinity of a Speed Camera, and Speed Section Control

Authors: Jean Felix Tuyisingize

Abstract:

Speeding or inappropriate speed is a major problem worldwide, contributing to 10-15% of road crashes and 30% of fatal injury crashes. The consequences of speeding put the driver's life at risk and the lives of other road users like motorists, cyclists, and pedestrians. To control vehicle speeds, governments, and traffic authorities enforced speed regulations through speed cameras and speed section control, which monitor all vehicle speeds and detect plate numbers to levy penalties. However, speed limit violations are prevalent, even on motorways with speed cameras. The problem with speed cameras is that they alter driver behaviors, and their effect declines with increasing distance from the speed camera location. Drivers decelerate short distances before the camera and vigorously accelerate above the speed limit just after passing by the camera. The sudden decelerating near cameras causes the drivers to try to make up for lost time after passing it, and they do this by speeding up, resulting in a phenomenon known as the "Kangaroo jump" or "V-profile" around camera/ASSC areas. This study investigated the impact of speed enforcement devices, specifically Average Speed Section Control (ASSCs) and fixed cameras, on acceleration and deceleration events within their vicinity. The research employed advanced statistical and Geographic Information System (GIS) analysis on naturalistic driving data, to uncover speeding patterns near the speed enforcement systems. The study revealed a notable concentration of events within a 600-meter radius of enforcement devices, suggesting their influence on driver behaviors within a specific range. However, most of these events are of low severity, suggesting that drivers may not significantly alter their speed upon encountering these devices. This behavior could be attributed to several reasons, such as consistently maintaining safe speeds or using real-time in-vehicle intervention systems. The complexity of driver behavior is also highlighted, indicating the potential influence of factors like traffic density, road conditions, weather, time of day, and driver characteristics. Further, the study highlighted that high-severity events often occurred outside speed enforcement zones, particularly around intersections, indicating these as potential hotspots for drastic speed changes. These findings call for a broader perspective on traffic safety interventions beyond reliance on speed enforcement devices. However, the study acknowledges certain limitations, such as its reliance on a specific geographical focus, which may impact the broad applicability of the findings. Additionally, the severity of speed modification events was categorized into low, medium, and high, which could oversimplify the continuum of speed changes and potentially mask trends within each category. This research contributes valuable insights to traffic safety and driver behavior literature, illuminating the complexity of driver behavior and the potential influence of factors beyond the presence of speed enforcement devices. Future research directions may employ various categories of event severity. They may also explore the role of in-vehicle technologies, driver characteristics, and a broader set of environmental variables in driving behavior and traffic safety.

Keywords: acceleration, deceleration, speeding, inappropriate speed, speed enforcement cameras

Procedia PDF Downloads 11
129 Coupled Hydro-Geomechanical Modeling of Oil Reservoir Considering Non-Newtonian Fluid through a Fracture

Authors: Juan Huang, Hugo Ninanya

Abstract:

Oil has been used as a source of energy and supply to make materials, such as asphalt or rubber for many years. This is the reason why new technologies have been implemented through time. However, research still needs to continue increasing due to new challenges engineers face every day, just like unconventional reservoirs. Various numerical methodologies have been applied in petroleum engineering as tools in order to optimize the production of reservoirs before drilling a wellbore, although not all of these have the same efficiency when talking about studying fracture propagation. Analytical methods like those based on linear elastic fractures mechanics fail to give a reasonable prediction when simulating fracture propagation in ductile materials whereas numerical methods based on the cohesive zone method (CZM) allow to represent the elastoplastic behavior in a reservoir based on a constitutive model; therefore, predictions in terms of displacements and pressure will be more reliable. In this work, a hydro-geomechanical coupled model of horizontal wells in fractured rock was developed using ABAQUS; both extended element method and cohesive elements were used to represent predefined fractures in a model (2-D). A power law for representing the rheological behavior of fluid (shear-thinning, power index <1) through fractures and leak-off rate permeating to the matrix was considered. Results have been showed in terms of aperture and length of the fracture, pressure within fracture and fluid loss. It was showed a high infiltration rate to the matrix as power index decreases. A sensitivity analysis is conclusively performed to identify the most influential factor of fluid loss.

Keywords: fracture, hydro-geomechanical model, non-Newtonian fluid, numerical analysis, sensitivity analysis

Procedia PDF Downloads 194
128 On Crack Tip Stress Field in Pseudo-Elastic Shape Memory Alloys

Authors: Gulcan Ozerim, Gunay Anlas

Abstract:

In shape memory alloys, upon loading, stress increases around crack tip and a martensitic phase transformation occurs in early stages. In many studies the stress distribution in the vicinity of the crack tip is represented by using linear elastic fracture mechanics (LEFM) although the pseudo-elastic behavior results in a nonlinear stress-strain relation. In this study, the HRR singularity (Hutchinson, Rice and Rosengren), that uses Rice’s path independent J-integral, is tried to formulate the stress distribution around the crack tip. In HRR approach, the Ramberg-Osgood model for the stress-strain relation of power-law hardening materials is used to represent the elastic-plastic behavior. Although it is recoverable, the inelastic portion of the deformation in martensitic transformation (up to the end of transformation) resembles to that of plastic deformation. To determine the constants of the Ramberg-Osgood equation, the material’s response is simulated in ABAQUS using a UMAT based on ZM (Zaki-Moumni) thermo-mechanically coupled model, and the stress-strain curve of the material is plotted. An edge cracked shape memory alloy (Nitinol) plate is loaded quasi-statically under mode I and modeled using ABAQUS; the opening stress values ahead of the cracked tip are calculated. The stresses are also evaluated using the asymptotic equations of both LEFM and HRR. The results show that in the transformation zone around the crack tip, the stress values are much better represented when the HRR singularity is used although the J-integral does not show path independent behavior. For the nodes very close to the crack tip, the HRR singularity is not valid due to the non-proportional loading effect and high-stress values that go beyond the transformation finish stress.

Keywords: crack, HRR singularity, shape memory alloys, stress distribution

Procedia PDF Downloads 316
127 The Multiaxial Load Proportionality Effect on the Fracture Surface Topography of Forged Magnesium Alloys

Authors: Andrew Gryguć, Seyed Behzad Behravesh, Hamid Jahed, Mary Wells, Wojciech Macek, Bruce Williams

Abstract:

This extended abstract investigates the influence of the multiaxial loading on the fatigue behavior of forged magnesium through quantitative analysis of its fracture surface topography and mesoscopic cracking orientation. Fatigue tests were performed on hollow tubular sample geometries extracted from closed-die forged AZ80 Mg components, with three different multiaxial strain paths (axial/shear), proportional, 45° out of phase, and 90° out of phase. Regardless of the strain path, fatigue cracks are initiated at the outer surface of the specimen where the combined stress state is largest. Depending on the salient mode of deformation, distinctive features in the fracture surface manifested themselves with different topographic amplitudes, surface roughness, and mesoscopic cracking orientation in the vicinity of the initiation site. The dominant crack propagation path was in the circumferential direction of the hollow tubular specimen (i.e., cracking transverse to the sample axis, with little to no branching), which is congruent with previous findings of low to moderate shear strain energy density (SED) multiaxial loading. For proportional loading, the initiation zone surface morphology was largely flat and striated, whereas, at phase angles of 45° and 90°, the initiation surface became more faceted and inclined. Overall, both a qualitative and quantitative link was developed between the fracture surface morphology and the level of non-proportionality in the loading providing useful insight into the fracture mechanics of forged magnesium as a relevant focus for future study.

Keywords: fatigue, fracture, magnesium, forging, fractography, anisotropy, strain energy density, asymmetry, multiaxial fatigue

Procedia PDF Downloads 73
126 A Two-Phase Flow Interface Tracking Algorithm Using a Fully Coupled Pressure-Based Finite Volume Method

Authors: Shidvash Vakilipour, Scott Ormiston, Masoud Mohammadi, Rouzbeh Riazi, Kimia Amiri, Sahar Barati

Abstract:

Two-phase and multi-phase flows are common flow types in fluid mechanics engineering. Among the basic and applied problems of these flow types, two-phase parallel flow is the one that two immiscible fluids flow in the vicinity of each other. In this type of flow, fluid properties (e.g. density, viscosity, and temperature) are different at the two sides of the interface of the two fluids. The most challenging part of the numerical simulation of two-phase flow is to determine the location of interface accurately. In the present work, a coupled interface tracking algorithm is developed based on Arbitrary Lagrangian-Eulerian (ALE) approach using a cell-centered, pressure-based, coupled solver. To validate this algorithm, an analytical solution for fully developed two-phase flow in presence of gravity is derived, and then, the results of the numerical simulation of this flow are compared with analytical solution at various flow conditions. The results of the simulations show good accuracy of the algorithm despite using a nearly coarse and uniform grid. Temporal variations of interface profile toward the steady-state solution show that a greater difference between fluids properties (especially dynamic viscosity) will result in larger traveling waves. Gravity effect studies also show that favorable gravity will result in a reduction of heavier fluid thickness and adverse gravity leads to increasing it with respect to the zero gravity condition. However, the magnitude of variation in favorable gravity is much more than adverse gravity.

Keywords: coupled solver, gravitational force, interface tracking, Reynolds number to Froude number, two-phase flow

Procedia PDF Downloads 304
125 Design, Fabrication and Analysis of Molded and Direct 3D-Printed Soft Pneumatic Actuators

Authors: N. Naz, A. D. Domenico, M. N. Huda

Abstract:

Soft Robotics is a rapidly growing multidisciplinary field where robots are fabricated using highly deformable materials motivated by bioinspired designs. The high dexterity and adaptability to the external environments during contact make soft robots ideal for applications such as gripping delicate objects, locomotion, and biomedical devices. The actuation system of soft robots mainly includes fluidic, tendon-driven, and smart material actuation. Among them, Soft Pneumatic Actuator, also known as SPA, remains the most popular choice due to its flexibility, safety, easy implementation, and cost-effectiveness. However, at present, most of the fabrication of SPA is still based on traditional molding and casting techniques where the mold is 3d printed into which silicone rubber is cast and consolidated. This conventional method is time-consuming and involves intensive manual labour with the limitation of repeatability and accuracy in design. Recent advancements in direct 3d printing of different soft materials can significantly reduce the repetitive manual task with an ability to fabricate complex geometries and multicomponent designs in a single manufacturing step. The aim of this research work is to design and analyse the Soft Pneumatic Actuator (SPA) utilizing both conventional casting and modern direct 3d printing technologies. The mold of the SPA for traditional casting is 3d printed using fused deposition modeling (FDM) with the polylactic acid (PLA) thermoplastic wire. Hyperelastic soft materials such as Ecoflex-0030/0050 are cast into the mold and consolidated using a lab oven. The bending behaviour is observed experimentally with different pressures of air compressor to ensure uniform bending without any failure. For direct 3D-printing of SPA fused deposition modeling (FDM) with thermoplastic polyurethane (TPU) and stereolithography (SLA) with an elastic resin are used. The actuator is modeled using the finite element method (FEM) to analyse the nonlinear bending behaviour, stress concentration and strain distribution of different hyperelastic materials after pressurization. FEM analysis is carried out using Ansys Workbench software with a Yeon-2nd order hyperelastic material model. FEM includes long-shape deformation, contact between surfaces, and gravity influences. For mesh generation, quadratic tetrahedron, hybrid, and constant pressure mesh are used. SPA is connected to a baseplate that is in connection with the air compressor. A fixed boundary is applied on the baseplate, and static pressure is applied orthogonally to all surfaces of the internal chambers and channels with a closed continuum model. The simulated results from FEM are compared with the experimental results. The experiments are performed in a laboratory set-up where the developed SPA is connected to a compressed air source with a pressure gauge. A comparison study based on performance analysis is done between FDM and SLA printed SPA with the molded counterparts. Furthermore, the molded and 3d printed SPA has been used to develop a three-finger soft pneumatic gripper and has been tested for handling delicate objects.

Keywords: finite element method, fused deposition modeling, hyperelastic, soft pneumatic actuator

Procedia PDF Downloads 81
124 Modeling of Thermally Induced Acoustic Emission Memory Effects in Heterogeneous Rocks with Consideration for Fracture Develo

Authors: Vladimir A. Vinnikov

Abstract:

The paper proposes a model of an inhomogeneous rock mass with initially random distribution of microcracks on mineral grain boundaries. It describes the behavior of cracks in a medium under the effect of thermal field, the medium heated instantaneously to a predetermined temperature. Crack growth occurs according to the concept of fracture mechanics provided that the stress intensity factor K exceeds the critical value of Kc. The modeling of thermally induced acoustic emission memory effects is based on the assumption that every event of crack nucleation or crack growth caused by heating is accompanied by a single acoustic emission event. Parameters of the thermally induced acoustic emission memory effect produced by cyclic heating and cooling (with the temperature amplitude increasing from cycle to cycle) were calculated for several rock texture types (massive, banded, and disseminated). The study substantiates the adaptation of the proposed model to humidity interference with the thermally induced acoustic emission memory effect. The influence of humidity on the thermally induced acoustic emission memory effect in quasi-homogeneous and banded rocks is estimated. It is shown that such modeling allows the structure and texture of rocks to be taken into account and the influence of interference factors on the distinctness of the thermally induced acoustic emission memory effect to be estimated. The numerical modeling can be used to obtain information about the thermal impacts on rocks in the past and determine the degree of rock disturbance by means of non-destructive testing.

Keywords: degree of rock disturbance, non-destructive testing, thermally induced acoustic emission memory effects, structure and texture of rocks

Procedia PDF Downloads 257
123 An Anthropological Insight into Farming Practices and Cultural Life of Farmers in Sarawan Village, District Faridkot, Punjab

Authors: Amandeep Kaur

Abstract:

Farming is one of the most influential traditions which started around 10000 BC and has revolutionized human civilization. It is believed that farming originated at a separate location. Thus it has a great impact on local culture, which in turn gave rise to diversified farming practices. Farming activities are influenced by the culture of a particular region or community as local people have their own knowledge and belief system about soil and crops. With the inception of the Green Revolution, 'a high tech machinery model' in Punjab, various traditional farming methods and techniques changed. The present research concentrates on the local knowledge of farmers and local farming systems from an anthropological perspective. In view of the prevailing agrarian crisis in Punjab, this research is focused on farmer’s experiences and their perception regarding farming practices. Thus an attempt has to be made to focus on the local knowledge, perception, and experience of farmers for eco-friendly and sustainable agricultural development. Farmers voices are used to understand the relationship between farming practices and socio-cultural life of farmers in Faridkot district, Punjab. The research aims to comprehend the nature of changes taking place in the socio-cultural life of people with the development of capitalism and agricultural modernization. The study is based on qualitative methods of ethnography in Sarawan village of Faridkot District. Inferences drawn from in-depth case studies collected from 60 agricultural households lead to the concept of the process of diffusion, innovation, and adoption of farming technology, a variety of crops and the dissemination of agricultural skills regarding various cultural farming practices. The data is based on random sampling; the respondents were both males and females above the age of 18 years to attain a holistic understanding across the generations. A Quasi-participant observation related to lifestyle, the standard of living, and various farming practices performed by them were done. Narratives derived from the fieldwork depicts that farmers usually oppose the restrictions imposed by the government on certain farming practices, especially ban on stubble burning. This paper presents the narratives of farmers regarding the dissemination of awareness about the use of new varieties of seeds, technology, fertilizers, pesticides, etc. The study reveals that farming systems have developed in ways reflecting the activities and choices of farmers influenced by environmental, socio-cultural, economic, and political situations. Modern farming practices have forced small farmers into debt as farmers feel pride in buying new machinery. It has also led to the loss of work culture and excessive use of drugs among youngsters. Even laborers did not want to work on the land with cultivating farmers primarily for social and political reasons. Due to lack of proper marketing of crops, there is a continuum of the wheat-rice cycle instead of crop diversification in Punjab. Change in the farming system also affects the social structure of society. Agricultural modernization has commercialized the socio-cultural relations in Punjab and is slowly urbanizing the rural landscape revolutionizing the traditional social relations to capitalistic relations.

Keywords: agricultural modernization, capitalism, farming practices, narratives

Procedia PDF Downloads 138
122 Towards a Scientific Intepretation of the Theory of Rasa in Indian Classical Music

Authors: Ajmal Hussain

Abstract:

In Indian music parlance, Rasa denotes a distinct aesthetic experience that builds up in the mind of the listeners while listening to a piece of Indian classical music. The distinction of the experience is rooted in the concept that it gives rise to an enhanced awareness about the Self or God and creates a mental state detached from mundane issues of everyday life. The theory of Rasa was initially proposed in the context of theatre but became a part of Indian musicological discourse roughly two thousand years ago, however, to this day, it remains shrouded in mystery due to its religious associations and connotations. This paper attempts to demystify the theory of Rasa in the light of available scientific knowledge fund particularly in Brain and Mind sciences. The paper initially describes the religious context of the theory of Rasa and then discusses its classical formulations by Bharata and Abhinavagupta including the steps and stages laid down by the latter to explain the creation of musical experience. The classical formulations are then interpreted with reference to the scientific knowledge fund about the human mind and mechanics of perception. The study uses the model of human mind as proposed by Portuguese-American neuroscientist Antonio Damasio in his theory ‘A Nesting Principle’. On the basis of the findings by Damasio, the paper interprets the experience of Rasa from a scientific perspective and clarifies the sequence of steps and stages involved in the making of musical experience. The study concludes that although the classical formulations of Rasa identify key aspects of musical experience, the association of Rasa with religion is misleading. The association with religion does not depend upon musical stimulus but the intellectual orientation of the listener. It further establishes that the function of Rasa is more profound as, from an evolutionary perspective, it can be seen as a catalyst for higher consciousness.

Keywords: aesthetic, consciousness, music, Rasa

Procedia PDF Downloads 119
121 Quantum Chemical Prediction of Standard Formation Enthalpies of Uranyl Nitrates and Its Degradation Products

Authors: Mohamad Saab, Florent Real, Francois Virot, Laurent Cantrel, Valerie Vallet

Abstract:

All spent nuclear fuel reprocessing plants use the PUREX process (Plutonium Uranium Refining by Extraction), which is a liquid-liquid extraction method. The organic extracting solvent is a mixture of tri-n-butyl phosphate (TBP) and hydrocarbon solvent such as hydrogenated tetra-propylene (TPH). By chemical complexation, uranium and plutonium (from spent fuel dissolved in nitric acid solution), are separated from fission products and minor actinides. During a normal extraction operation, uranium is extracted in the organic phase as the UO₂(NO₃)₂(TBP)₂ complex. The TBP solvent can form an explosive mixture called red oil when it comes in contact with nitric acid. The formation of this unstable organic phase originates from the reaction between TBP and its degradation products on the one hand, and nitric acid, its derivatives and heavy metal nitrate complexes on the other hand. The decomposition of the red oil can lead to violent explosive thermal runaway. These hazards are at the origin of several accidents such as the two in the United States in 1953 and 1975 (Savannah River) and, more recently, the one in Russia in 1993 (Tomsk). This raises the question of the exothermicity of reactions that involve TBP and all other degradation products, and calls for a better knowledge of the underlying chemical phenomena. A simulation tool (Alambic) is currently being developed at IRSN that integrates thermal and kinetic functions related to the deterioration of uranyl nitrates in organic and aqueous phases, but not of the n-butyl phosphate. To include them in the modeling scheme, there is an urgent need to obtain the thermodynamic and kinetic functions governing the deterioration processes in liquid phase. However, little is known about the thermodynamic properties, like standard enthalpies of formation, of the n-butyl phosphate molecules and of the UO₂(NO₃)₂(TBP)₂ UO₂(NO₃)₂(HDBP)(TBP) and UO₂(NO₃)₂(HDBP)₂ complexes. In this work, we propose to estimate the thermodynamic properties with Quantum Methods (QM). Thus, in the first part of our project, we focused on the mono, di, and tri-butyl complexes. Quantum chemical calculations have been performed to study several reactions leading to the formation of mono-(H₂MBP), di-(HDBP), and TBP in gas and liquid phases. In the gas phase, the optimal structures of all species were optimized using the B3LYP density functional. Triple-ζ def2-TZVP basis sets were used for all atoms. All geometries were optimized in the gas-phase, and the corresponding harmonic frequencies were used without scaling to compute the vibrational partition functions at 298.15 K and 0.1 Mpa. Accurate single point energies were calculated using the efficient localized LCCSD(T) method to the complete basis set limit. Whenever species in the liquid phase are considered, solvent effects are included with the COSMO-RS continuum model. The standard enthalpies of formation of TBP, HDBP, and H2MBP are finally predicted with an uncertainty of about 15 kJ mol⁻¹. In the second part of this project, we have investigated the fundamental properties of three organic species that mostly contribute to the thermal runaway: UO₂(NO₃)₂(TBP)₂, UO₂(NO₃)₂(HDBP)(TBP), and UO₂(NO₃)₂(HDBP)₂ using the same quantum chemical methods that were used for TBP and its derivatives in both the gas and the liquid phase. We will discuss the structures and thermodynamic properties of all these species.

Keywords: PUREX process, red oils, quantum chemical methods, hydrolysis

Procedia PDF Downloads 179
120 Application of Particle Image Velocimetry in the Analysis of Scale Effects in Granular Soil

Authors: Zuhair Kadhim Jahanger, S. Joseph Antony

Abstract:

The available studies in the literature which dealt with the scale effects of strip footings on different sand packing systematically still remain scarce. In this research, the variation of ultimate bearing capacity and deformation pattern of soil beneath strip footings of different widths under plane-strain condition on the surface of loose, medium-dense and dense sand have been systematically studied using experimental and noninvasive methods for measuring microscopic deformations. The presented analyses are based on model scale compression test analysed using Particle Image Velocimetry (PIV) technique. Upper bound analysis of the current study shows that the maximum vertical displacement of the sand under the ultimate load increases for an increase in the width of footing, but at a decreasing rate with relative density of sand, whereas the relative vertical displacement in the sand decreases for an increase in the width of the footing. A well agreement is observed between experimental results for different footing widths and relative densities. The experimental analyses have shown that there exists pronounced scale effect for strip surface footing. The bearing capacity factors rapidly decrease up to footing widths B=0.25 m, 0.35 m, and 0.65 m for loose, medium-dense and dense sand respectively, after that there is no significant decrease in . The deformation modes of the soil as well as the ultimate bearing capacity values have been affected by the footing widths. The obtained results could be used to improve settlement calculation of the foundation interacting with granular soil.

Keywords: DPIV, granular mechanics, scale effect, upper bound analysis

Procedia PDF Downloads 138
119 Validity of Universe Structure Conception as Nested Vortexes

Authors: Khaled M. Nabil

Abstract:

This paper introduces the Nested Vortexes conception of the universe structure and interprets all the physical phenomena according this conception. The paper first reviews recent physics theories, either in microscopic scale or macroscopic scale, to collect evidence that the space is not empty. But, these theories describe the property of the space medium without determining its structure. Determining the structure of space medium is essential to understand the mechanism that leads to its properties. Without determining the space medium structure, many phenomena; such as electric and magnetic fields, gravity, or wave-particle duality remain uninterpreted. Thus, this paper introduces a conception about the structure of the universe. It assumes that the universe is a medium of ultra-tiny homogeneous particles which are still undiscovered. Like any medium with certain movements, possibly because of a great asymmetric explosion, vortexes have occurred. A vortex condenses the ultra-tiny particles in its center forming a bigger particle, the bigger particles, in turn, could be trapped in a bigger vortex and condense in its center forming a much bigger particle and so on. This conception describes galaxies, stars, protons as particles at different levels. Existing of the particle’s vortexes make the consistency of the speed of light postulate is not true. This conception shows that the vortex motion dynamic agrees with the motion of all the universe particles at any level. An experiment has been carried out to detect the orbiting effect of aggregated vortexes of aligned atoms of a permanent magnet. Based on the described particle’s structure, the gravity force of a particle and attraction between particles as well as charge, electric and magnetic fields and quantum mechanics characteristics are interpreted. All augmented physics phenomena are solved.

Keywords: astrophysics, cosmology, particles’ structure model, particles’ forces

Procedia PDF Downloads 110
118 Close-Range Remote Sensing Techniques for Analyzing Rock Discontinuity Properties

Authors: Sina Fatolahzadeh, Sergio A. Sepúlveda

Abstract:

This paper presents advanced developments in close-range, terrestrial remote sensing techniques to enhance the characterization of rock masses. The study integrates two state-of-the-art laser-scanning technologies, the HandySCAN and GeoSLAM laser scanners, to extract high-resolution geospatial data for rock mass analysis. These instruments offer high accuracy, precision, low acquisition time, and high efficiency in capturing intricate geological features in small to medium size outcrops and slope cuts. Using the HandySCAN and GeoSLAM laser scanners facilitates real-time, three-dimensional mapping of rock surfaces, enabling comprehensive assessments of rock mass characteristics. The collected data provide valuable insights into structural complexities, surface roughness, and discontinuity patterns, which are essential for geological and geotechnical analyses. The synergy of these advanced remote sensing technologies contributes to a more precise and straightforward understanding of rock mass behavior. In this case, the main parameters of RQD, joint spacing, persistence, aperture, roughness, infill, weathering, water condition, and joint orientation in a slope cut along the Sea-to-Sky Highway, BC, were remotely analyzed to calculate and evaluate the Rock Mass Rating (RMR) and Geological Strength Index (GSI) classification systems. Automatic and manual analyses of the acquired data are then compared with field measurements. The results show the usefulness of the proposed remote sensing methods and their appropriate conformity with the actual field data.

Keywords: remote sensing, rock mechanics, rock engineering, slope stability, discontinuity properties

Procedia PDF Downloads 54
117 [Keynote Talk]: Three Dimensional Finite Element Analysis of Functionally Graded Radiation Shielding Nanoengineered Sandwich Composites

Authors: Nasim Abuali Galehdari, Thomas J. Ryan, Ajit D. Kelkar

Abstract:

In recent years, nanotechnology has played an important role in the design of an efficient radiation shielding polymeric composites. It is well known that, high loading of nanomaterials with radiation absorption properties can enhance the radiation attenuation efficiency of shielding structures. However, due to difficulties in dispersion of nanomaterials into polymer matrices, there has been a limitation in higher loading percentages of nanoparticles in the polymer matrix. Therefore, the objective of the present work is to provide a methodology to fabricate and then to characterize the functionally graded radiation shielding structures, which can provide an efficient radiation absorption property along with good structural integrity. Sandwich structures composed of Ultra High Molecular Weight Polyethylene (UHMWPE) fabric as face sheets and functionally graded epoxy nanocomposite as core material were fabricated. A method to fabricate a functionally graded core panel with controllable gradient dispersion of nanoparticles is discussed. In order to optimize the design of functionally graded sandwich composites and to analyze the stress distribution throughout the sandwich composite thickness, a finite element method was used. The sandwich panels were discretized using 3-Dimensional 8 nodded brick elements. Classical laminate analysis in conjunction with simplified micromechanics equations were used to obtain the properties of the face sheets. The presented finite element model would provide insight into deformation and damage mechanics of the functionally graded sandwich composites from the structural point of view.

Keywords: nanotechnology, functionally graded material, radiation shielding, sandwich composites, finite element method

Procedia PDF Downloads 462
116 Electric Field-Induced Deformation of Particle-Laden Drops and Structuring of Surface Particles

Authors: Alexander Mikkelsen, Khobaib Khobaib, Zbigniew Rozynek

Abstract:

Drops covered by particles have found important uses in various fields, ranging from stabilization of emulsions to production of new advanced materials. Particles at drop interfaces can be interlocked to form solid capsules with properties tailored for a myriad of applications. Despite the huge potential of particle-laden drops and capsules, the knowledge of their deformation and stability are limited. In this regard, we contribute with experimental studies on the deformation and manipulation of silicone oil drops covered with micrometer-sized particles subjected to electric fields. A mixture of silicone oil and particles were immersed in castor oil using a mechanical pipette, forming millimeter sized drops. The particles moved and adsorbed at the drop interfaces by sedimentation, and were structured at the interface by electric field-induced electrohydrodynamic flows. When applying a direct current electric field, free charges accumulated at the drop interfaces, yielding electric stress that deformed the drops. In our experiments, we investigated how particle properties affected drop deformation, break-up, and particle structuring. We found that by increasing the size of weakly-conductive clay particles, the drop shape can go from compressed to stretched out in the direction of the electric field. Increasing the particle size and electrical properties were also found to weaken electrohydrodynamic flows, induce break-up of drops at weaker electric field strengths and structure particles in chains. These particle parameters determine the dipolar force between the interfacial particles, which can yield particle chaining. We conclude that the balance between particle chaining and electrohydrodynamic flows governs the observed drop mechanics.

Keywords: drop deformation, electric field induced stress, electrohydrodynamic flows, particle structuring at drop interfaces

Procedia PDF Downloads 191
115 Social and Political Economy of Paid and Unpaid Work: Work of Women Home Based Workers in National Capital Region (NCR), India

Authors: Sudeshna Sengupta

Abstract:

Women’s work lives weave a complex fabric of myriad work relations and complex structures. Lives, when seen from the lens of work, is a saga of conjugated oppression by intertwined structures that are vertically and horizontally interwoven in a very complex manner. Women interact with multiple institutions through their work. The interactions and interplay of institutions shape their organization of work. They intersperse productive work with reproductive work, unpaid economic activities with unpaid care work, and all kinds of activities with leisure and self-care. The proposed paper intends to understand how women working as home-based workers in the National Capital Region (NCR) of India are organizing their everyday work, and how the organization of work is influenced by the interplay of structures. Situating itself in a multidisciplinary theoretical framework, this paper brings out how the gendering of work is playing out in the political, economic and social domain and shaping the work-life within the family, and in the paid workspace. The paper will use a primary data source, which is qualitative in nature. It will comprise 15 qualitative interviews of women home-based workers from the National Capital Region. The research uses a life history approach. The sampling was purposive using snowballing as a method. The dataset is part of the primary data (qualitative) collected for the ongoing Ph.D. work in Gender Studies at Ambedkar University Delhi. The home-based workers interviewed were in “non-factory” wage relations based on piece rates with flexible working hours. Their workplaces were their own homes with no spatial divide between living spaces and workspaces. Home-based workers were recognized as a group in the domain of labor economics in the 1980s. When menial work was cheaper than machine work, the capital owners preferred to outsource work as home-based work to women. These production spaces are fragmented and the identity of gender is created within labor processes to favor material accumulation. Both the employers and employees acknowledged the material gain of the capital owner when work was subcontracted to women at home. Simultaneously the market reinforced women’s reproductive role by conforming to patriarchal ideology. The contractors played an important role in implementing localized control on workers and also in finding workers for fragmented, gendered production processes. Their presence helped the employers in bringing together multiple forms of oppression that ranged from creating a structure to flout laws by creating shadow employers. It created an intertwined social and economic structure as well as a workspace where the line between productive and reproductive work gets blurred. The state invisibilized itself either by keeping the sector out of the domain of laws or by not implementing its own laws regulating working conditions or social security. It allowed the local hierarchy to function and define localized working conditions. The productive reproductive continuum reveals a labor control that influenced both the productive and reproductive work of women.

Keywords: informal sector, paid work, women workers, labor processes

Procedia PDF Downloads 154
114 Understanding Inhibitory Mechanism of the Selective Inhibitors of Cdk5/p25 Complex by Molecular Modeling Studies

Authors: Amir Zeb, Shailima Rampogu, Minky Son, Ayoung Baek, Sang H. Yoon, Keun W. Lee

Abstract:

Neurotoxic insults activate calpain, which in turn produces truncated p25 from p35. p25 forms hyperactivated Cdk5/p25 complex, and thereby induces severe neuropathological aberrations including hyperphosphorylated tau, neuroinflammation, apoptosis, and neuronal death. Inhibition of Cdk5/p25 complex alleviates aberrant phosphorylation of tau to mitigate AD pathology. PHA-793887 and Roscovitine have been investigated as selective inhibitors of Cdk5/p25 with IC50 values 5nM and 160nM, respectively, but their mechanistic studies remain unknown. Herein, computational simulations have explored the binding mode and interaction mechanism of PHA-793887 and Roscovitine with Cdk5/p25. Docking results suggested that PHA-793887 and Rsocovitine have occupied the ATP-binding site of Cdk5 and obtained highest docking (GOLD) score of 66.54 and 84.03, respectively. Furthermore, molecular dynamics (MD) simulation demonstrated that PHA-793887 and Roscovitine established stable RMSD of 1.09 Å and 1.48 Å with Cdk5/p25, respectively. Profiling of polar interactions suggested that each inhibitor formed hydrogen bonds (H-bond) with catalytic residues of Cdk5 and could remain stable throughout the molecular dynamics simulation. Additionally, binding free energy calculation by molecular mechanics/Poisson–Boltzmann surface area (MM/PBSA) suggested that PHA-793887 and Roscovitine had lowest binding free energies of -150.05 kJ/mol and -113.14 kJ/mol, respectively with Cdk5/p25. Free energy decomposition demonstrated that polar energy by H-bond between the Glu81 of Cdk5 and PHA-793887 is the essential factor to make PHA-793887 highly selective towards Cdk5/p25. Overall, this study provided substantial evidences to explore mechanistic interactions of the selective inhibitors of Cdk5/p25 and could be used as fundamental considerations in the development of structure-based selective inhibitors of Cdk5/p25.

Keywords: Cdk5/p25 inhibition, molecular modeling of Cdk5/p25, PHA-793887 and roscovitine, selective inhibition of Cdk5/p25

Procedia PDF Downloads 127
113 A Computational Framework for Load Mediated Patellar Ligaments Damage at the Tropocollagen Level

Authors: Fadi Al Khatib, Raouf Mbarki, Malek Adouni

Abstract:

In various sport and recreational activities, the patellofemoral joint undergoes large forces and moments while accommodating the significant knee joint movement. In doing so, this joint is commonly the source of anterior knee pain related to instability in normal patellar tracking and excessive pressure syndrome. One well-observed explanation of the instability of the normal patellar tracking is the patellofemoral ligaments and patellar tendon damage. Improved knowledge of the damage mechanism mediating ligaments and tendon injuries can be a great help not only in rehabilitation and prevention procedures but also in the design of better reconstruction systems in the management of knee joint disorders. This damage mechanism, specifically due to excessive mechanical loading, has been linked to the micro level of the fibred structure precisely to the tropocollagen molecules and their connection density. We argue defining a clear frame starting from the bottom (micro level) to up (macro level) in the hierarchies of the soft tissue may elucidate the essential underpinning on the state of the ligaments damage. To do so, in this study a multiscale fibril reinforced hyper elastoplastic Finite Element model that accounts for the synergy between molecular and continuum syntheses was developed to determine the short-term stresses/strains patellofemoral ligaments and tendon response. The plasticity of the proposed model is associated only with the uniaxial deformation of the collagen fibril. The yield strength of the fibril is a function of the cross-link density between tropocollagen molecules, defined here by a density function. This function obtained through a Coarse-graining procedure linking nanoscale collagen features and the tissue level materials properties using molecular dynamics simulations. The hierarchies of the soft tissues were implemented using the rule of mixtures. Thereafter, the model was calibrated using a statistical calibration procedure. The model then implemented into a real structure of patellofemoral ligaments and patellar tendon (OpenKnee) and simulated under realistic loading conditions. With the calibrated material parameters the calculated axial stress lies well with the experimental measurement with a coefficient of determination (R2) equal to 0.91 and 0.92 for the patellofemoral ligaments and the patellar tendon respectively. The ‘best’ prediction of the yielding strength and strain as compared with the reported experimental data yielded when the cross-link density between the tropocollagen molecule of the fibril equal to 5.5 ± 0.5 (patellofemoral ligaments) and 12 (patellar tendon). Damage initiation of the patellofemoral ligaments was located at the femoral insertions while the damage of the patellar tendon happened in the middle of the structure. These predicted finding showed a meaningful correlation between the cross-link density of the tropocollagen molecules and the stiffness of the connective tissues of the extensor mechanism. Also, damage initiation and propagation were documented with this model, which were in satisfactory agreement with earlier observation. To the best of our knowledge, this is the first attempt to model ligaments from the bottom up, predicted depending to the tropocollagen cross-link density. This approach appears more meaningful towards a realistic simulation of a damaging process or repair attempt compared with certain published studies.

Keywords: tropocollagen, multiscale model, fibrils, knee ligaments

Procedia PDF Downloads 121
112 Triplet Shear Tests on Retrofitted Brickwork Masonry Walls

Authors: Berna Istegun, Erkan Celebi

Abstract:

The main objective of this experimental study is to assess the shear strength and the crack behavior of the triplets built of perforated brickwork masonry elements. In order to observe the influence of shear resistance and energy dissipating before and after retrofitting applications by using the reinforcing system, static-cyclic shear tests were employed in the structural mechanics laboratory of Sakarya University. The reinforcing system is composed of hybrid multiaxial seismic fabric consisting of alkali resistant glass and polypropylene fibers. The plaster as bonding material used in the specimen’s retrofitting consists of expanded glass granular. In order to acquire exact measuring data about the failure behavior of the two mortar joints under shear stressing, vertical load-controlled cylinder having force capacity of 50 kN and loading rate of 1.5 mm/min. with an internal inductive displacement transducers is carried out perpendicular to the triplet specimens. In this study, a total of six triplet specimens with textile reinforcement were prepared for these shear bond tests. The three of them were produced as single-sided reinforced triplets with seismic fabric, while the others were strengthened on both sides. In addition, three triplet specimens without retrofitting and plaster were also tested as reference samples. The obtained test results were given in the manner of force-displacement relationships, ductility coefficients and shear strength parameters comparatively. It is concluded that two-side seismic textile applications on masonry elements with relevant plaster have considerably increased the sheer force resistance and the ductility capacity.

Keywords: expanded glass granular, perforated brickwork, retrofitting, seismic fabric, triplet shear tests

Procedia PDF Downloads 196
111 Awareness Creation of Benefits of Antitrypsin-Free Nutraceutical Biopowder for Increasing Human Serum Albumin Synthesis as Possible Adjunct for Management of MDRTB or MDRTB-HIV Patients

Authors: Vincent Oghenekevbe Olughor, Olusoji Mayowa Ige

Abstract:

Except for a preexisting liver disease and malnutrition, there are no predilections for low serum albumin (SA) levels in humans. At normal reference levels (4.0-6.0g/dl) SA is a universal marker for mortality and morbidity risks assessments where depletion by 1.0g/dl increases mortality risk by 137% and morbidity by 89%.It has 40 known functions contributing significantly to the sustenance of human life. A depletion in SA to <2.2g/dl, in most clinical settings worldwide, leads to loss of oncotic pressure of blood causing clinical manifestations of bipedal Oedema, in which the patients remain conscious. SA also contributes significantly to buffering of blood to a life-sustaining pH of 7.35-7.45. A drop in blood pH to <6.9 will lead to instant coma and death, which can occur after SA continues to deplete after manifestations of bipedal Oedema. In an intervention study conducted in 2014 following the discovery that “SA is depleted during malaria fever”, a Nutraceutical formulated for use as treatment adjunct to prevent SA depletions during malaria to <2.4g/dl after Efficacy testing was found to be satisfactory. There are five known types of Malaria caused by Apicomplexan parasites, Plasmodium: the most lethal being that caused by Plasmodium falciparum causing malignant tertian malaria, in which the fever was occurring every 48 hours coincides with the dumping of malaria-toxins (Hemozoin) into blood, causing contamination: blood must remain sterile. Other Apicomplexan parasites, Toxoplasma and Cryptosporidium, are opportunistic infections of HIV. Separate studies showed SA depletions in MDRTB (multidrug resistant TB), and MDRTB-HIV patients by the same mechanism discovered with malaria and such depletions will be further complicated whenever Apicomplexan parasitic infections co-exist. Both Apicomplexan parasites and the TB parasite belong to the Obligate-group of Parasites, which are parasites that replicate only inside its host; and most of them have capacities to over-consume host nutrients during parasitaemia. In MDRTB patients the body attempts repeatedly to prevent depletions in SA to critical levels in the presence of adequate nutrients and only for a while in MDRTB-HIV patients. These groups of patients will, therefore, benefit from the already tested Nutraceutical in malaria patients. The Nutraceutical bio-Powder was formulated (to BP 1988 specification) from twelve nature-based food-grade nutrients containing all dedicated nutrients for ensuring improved synthesis of Albumin by the liver. The Nutraceutical was administered daily for 38±2days in 23 children, in a prospective phase-2 clinical trial, and its impact on body weight and core blood parameters were documented at the start and end of efficacy testing period. Sixteen children who did not experience malaria-induced depletions of SA had significant SA increase; seven children who experienced malaria-induced depletions of SA had insignificant SA decrease. The Packed Cell Volume Percentage (PCV %), a measure of the Oxygen carrying capacity of blood and the amount of nutrients the body can absorb, increased in both groups. The total serum proteins (SA+ Globulins) increased or decreased within the continuum of normal. In conclusion, MDRTB and MDRTB-HIV patients will benefit from a variant of this Nutraceutical when used as treatment adjunct.

Keywords: antitrypsin-free Nutraceutical, apicomplexan parasites, no predilections for low serum albumin, toxoplasmosis

Procedia PDF Downloads 280
110 Mechanical Behavior of Laminated Glass Cylindrical Shell with Hinged Free Boundary Conditions

Authors: Ebru Dural, M. Zulfu Asık

Abstract:

Laminated glass is a kind of safety glass, which is made by 'sandwiching' two glass sheets and a polyvinyl butyral (PVB) interlayer in between them. When the glass is broken, the interlayer in between the glass sheets can stick them together. Because of this property, the hazards of sharp projectiles during natural and man-made disasters reduces. They can be widely applied in building, architecture, automotive, transport industries. Laminated glass can easily undergo large displacements even under their own weight. In order to explain their true behavior, they should be analyzed by using large deflection theory to represent nonlinear behavior. In this study, a nonlinear mathematical model is developed for the analysis of laminated glass cylindrical shell which is free in radial directions and restrained in axial directions. The results will be verified by using the results of the experiment, carried out on laminated glass cylindrical shells. The behavior of laminated composite cylindrical shell can be represented by five partial differential equations. Four of the five equations are used to represent axial displacements and radial displacements and the fifth one for the transverse deflection of the unit. Governing partial differential equations are derived by employing variational principles and minimum potential energy concept. Finite difference method is employed to solve the coupled differential equations. First, they are converted into a system of matrix equations and then iterative procedure is employed. Iterative procedure is necessary since equations are coupled. Problems occurred in getting convergent sequence generated by the employed procedure are overcome by employing variable underrelaxation factor. The procedure developed to solve the differential equations provides not only less storage but also less calculation time, which is a substantial advantage in computational mechanics problems.

Keywords: laminated glass, mathematical model, nonlinear behavior, PVB

Procedia PDF Downloads 310