Search results for: classification of matter
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3875

Search results for: classification of matter

3395 Free, Fair, and Credible Election and Democratic Governance in Bangladesh

Authors: Md. Awal Hossain Mollah

Abstract:

The aim of this study was to evaluate the relation between the free, fair and credible election in ensuring democratic governance in Bangladesh. The paper is a case (Bangladesh) study and qualitative in nature and based on secondary sources of materials. For doing this study, conceptual clarification has been done first and identified few elements of free, fair and credible elections. Then, how far these elements have been ensured in Bangladeshi elections has been evaluated by analyzing all the national elections held since independence. Apart from these, major factors and challenges of holding a free, fair and credible election in Bangladesh have been examined through using the following research questions: 1. Does role of election commission matter for free, fair and credible elections to form a democratic government? 2. Does role of political parties matter for democratic governance? 3. Do role of government matter for conducting the free, fair and credible election in ensuring democratic governance? 4. Does non-party caretaker government matter for conducting a free, fair and credible election? 5. Does democratic governance depend on multi-dimensional factors and actors? Major findings of this study are: Since the independence of Bangladesh, 10 national elections held in various regimes. 4 out of 10 national elections have been found free, fair and credible which have been conducted by the non-party caretaker government. Rests of the elections are not out of controversy and full of manipulation held under elected government. However, the caretaker government has already been abolished by the AL government through 15th amendment of the constitution. The present AL government is elected by the 10th parliamentary election under incumbent (AL) government, but a major opposition allies (20 parties) lead by BNP boycotted this election and 154 of the total 300 seats being uncontested. As a result, AL again came to the power without a competitive election and most of the national and International election observers including media world consider this election as unfair and the government is suffering from lack of legitimacy. Therefore, the governance of present Bangladesh is not democratic at all and it is to be considered as one party (14 parties’ allies lead by AL) authoritarian governance in the shade of parliamentary governance. Both the position and opposition of the parliament is belonging in 14 parties’ alliances lead by AL.

Keywords: democracy, governance, free, fair and credible elections, Bangladesh

Procedia PDF Downloads 326
3394 Effect of Humic Acids on Agricultural Soil Structure and Stability and Its Implication on Soil Quality

Authors: Omkar Gaonkar, Indumathi Nambi, Suresh G. Kumar

Abstract:

The functional and morphological aspects of soil structure determine the soil quality. The dispersion of colloidal soil particles, especially the clay fraction and rupture of soil aggregates, both of which play an important role in soil structure development, lead to degradation of soil quality. The main objective of this work was to determine the effect of the behaviour of soil colloids on the agricultural soil structure and quality. The effect of commercial humic acid and soil natural organic matter on the electrical and structural properties of the soil colloids was also studied. Agricultural soil, belonging to the sandy loam texture class from northern part of India was considered in this study. In order to understand the changes in the soil quality in the presence and absence of humic acids, the soil fabric and structure was analyzed by X-ray diffraction (XRD), Fourier Transform Infrared (FTIR) Spectroscopy and Scanning Electron Microscopy (SEM). Electrical properties of natural soil colloids in aqueous suspensions were assessed by zeta potential measurements at varying pH values with and without the presence of humic acids. The influence of natural organic matter was analyzed by oxidizing the natural soil organic matter with hydrogen peroxide. The zeta potential of the soil colloids was found to be negative in the pH range studied. The results indicated that hydrogen peroxide treatment leads to deflocculation of colloidal soil particles. In addition, the humic acids undergoes effective adsorption onto the soil surface imparting more negative zeta potential to the colloidal soil particles. The soil hydrophilicity decreased in the presence of humic acids which was confirmed by surface free energy determination. Thus, it can be concluded that the presence of humic acids altered the soil fabric and structure, thereby affecting the soil quality. This study assumes significance in understanding soil aggregation and the interactions at soil solid-liquid interface.

Keywords: humic acids, natural organic matter, zeta potential, soil quality

Procedia PDF Downloads 250
3393 Aberrant Consumer Behavior in Seller’s and Consumer’s Eyes: Newly Developed Classification

Authors: Amal Abdelhadi

Abstract:

Consumer misbehavior evaluation can be markedly different based on a number of variables and different from one environment to another. Using three aberrant consumer behavior (ACB) scenarios (shoplifting, stealing from hotel rooms and software piracy) this study aimed to explore Libyan seller and consumers of ACB. Materials were collected by using a multi-method approach was employed (qualitative and quantitative approaches) in two fieldwork phases. In the phase stage, a qualitative data were collected from 26 Libyan sellers’ by face-to-face interviews. In the second stage, a consumer survey was used to collect quantitative data from 679 Libyan consumers. This study found that the consumer’s and seller’s evaluation of ACB are not always consistent. Further, ACB evaluations differed based on the form of ACB. Furthermore, the study found that not all consumer behaviors that were considered as bad behavior in other countries have the same evaluation in Libya; for example, software piracy. Therefore this study suggested a newly developed classification of ACB based on marketers’ and consumers’ views. This classification provides 9 ACB types within two dimensions (marketers’ and consumers’ views) and three degrees of behavior evaluation (good, acceptable and misbehavior).

Keywords: aberrant consumer behavior, Libya, multi-method approach, planned behavior theory

Procedia PDF Downloads 573
3392 Understanding Integrated Removal of Heavy Metals, Organic Matter and Nitrogen in a Constructed Wetland System Receiving Simulated Landfill Leachate

Authors: A. Mohammed, A. Babatunde

Abstract:

This study investigated the integrated removal of heavy metals, organic matter and nitrogen from landfill leachate using a novel laboratory scale constructed wetland system. The main objectives of this study were: (i) to assess the overall effectiveness of the constructed wetland system for treating landfill leachate; (ii) to examine the interactions and impact of key leachate constituents (heavy metals, organic matter and nitrogen) on the overall removal dynamics and efficiency. The constructed wetland system consisted of four stages operated in tidal flow and anoxic conditions. Results obtained from 215 days of operation have demonstrated extraordinary heavy metals removal up to 100%. Analysis of the physico- chemical data reveal that the controlling factors for metals removal were the anoxic condition and the use of the novel media (dewatered ferric sludge which is a by-product of drinking water treatment process) as the main substrate in the constructed wetland system. Results show that the use of the ferric sludge enhanced heavy metals removal and brought more flexibility to simultaneous nitrification and denitrification which occurs within the microbial flocs. Furthermore, COD and NH4-N were effectively removed in the system and this coincided with enhanced aeration in the 2nd and 3rd stages of the constructed wetland system. Overall, the results demonstrated that the ferric dewatered sludge constructed wetland system would be an effective solution for integrated removal of pollutants from landfill leachates.

Keywords: constructed wetland, ferric dewatered sludge, heavy metals, landfill leachate

Procedia PDF Downloads 257
3391 Unsupervised Learning of Spatiotemporally Coherent Metrics

Authors: Ross Goroshin, Joan Bruna, Jonathan Tompson, David Eigen, Yann LeCun

Abstract:

Current state-of-the-art classification and detection algorithms rely on supervised training. In this work we study unsupervised feature learning in the context of temporally coherent video data. We focus on feature learning from unlabeled video data, using the assumption that adjacent video frames contain semantically similar information. This assumption is exploited to train a convolutional pooling auto-encoder regularized by slowness and sparsity. We establish a connection between slow feature learning to metric learning and show that the trained encoder can be used to define a more temporally and semantically coherent metric.

Keywords: machine learning, pattern clustering, pooling, classification

Procedia PDF Downloads 456
3390 Remote Sensing through Deep Neural Networks for Satellite Image Classification

Authors: Teja Sai Puligadda

Abstract:

Satellite images in detail can serve an important role in the geographic study. Quantitative and qualitative information provided by the satellite and remote sensing images minimizes the complexity of work and time. Data/images are captured at regular intervals by satellite remote sensing systems, and the amount of data collected is often enormous, and it expands rapidly as technology develops. Interpreting remote sensing images, geographic data mining, and researching distinct vegetation types such as agricultural and forests are all part of satellite image categorization. One of the biggest challenge data scientists faces while classifying satellite images is finding the best suitable classification algorithms based on the available that could able to classify images with utmost accuracy. In order to categorize satellite images, which is difficult due to the sheer volume of data, many academics are turning to deep learning machine algorithms. As, the CNN algorithm gives high accuracy in image recognition problems and automatically detects the important features without any human supervision and the ANN algorithm stores information on the entire network (Abhishek Gupta., 2020), these two deep learning algorithms have been used for satellite image classification. This project focuses on remote sensing through Deep Neural Networks i.e., ANN and CNN with Deep Sat (SAT-4) Airborne dataset for classifying images. Thus, in this project of classifying satellite images, the algorithms ANN and CNN are implemented, evaluated & compared and the performance is analyzed through evaluation metrics such as Accuracy and Loss. Additionally, the Neural Network algorithm which gives the lowest bias and lowest variance in solving multi-class satellite image classification is analyzed.

Keywords: artificial neural network, convolutional neural network, remote sensing, accuracy, loss

Procedia PDF Downloads 159
3389 Vegetation Assessment Under the Influence of Environmental Variables; A Case Study from the Yakhtangay Hill of Himalayan Range, Pakistan

Authors: Hameed Ullah, Shujaul Mulk Khan, Zahid Ullah, Zeeshan Ahmad Sadia Jahangir, Abdullah, Amin Ur Rahman, Muhammad Suliman, Dost Muhammad

Abstract:

The interrelationship between vegetation and abiotic variables inside an ecosystem is one of the main jobs of plant scientists. This study was designed to investigate the vegetation structure and species diversity along with the environmental variables in the Yakhtangay hill district Shangla of the Himalayan Mountain series Pakistan by using multivariate statistical analysis. Quadrat’s method was used and a total of 171 Quadrats were laid down 57 for Tree, Shrubs and Herbs, respectively, to analyze the phytosociological attributes of the vegetation. The vegetation of the selected area was classified into different Life and leaf-forms according to Raunkiaer classification, while PCORD software version 5 was used to classify the vegetation into different plants communities by Two-way indicator species Analysis (TWINSPAN). The CANOCCO version 4.5 was used for DCA and CCA analysis to find out variation directories of vegetation with different environmental variables. A total of 114 plants species belonging to 45 different families was investigated inside the area. The Rosaceae (12 species) was the dominant family followed by Poaceae (10 species) and then Asteraceae (7 species). Monocots were more dominant than Dicots and Angiosperms were more dominant than Gymnosperms. Among the life forms the Hemicryptophytes and Nanophanerophytes were dominant, followed by Therophytes, while among the leaf forms Microphylls were dominant, followed by Leptophylls. It is concluded that among the edaphic factors such as soil pH, the concentration of soil organic matter, Calcium Carbonates concentration in soil, soil EC, soil TDS, and physiographic factors such as Altitude and slope are affecting the structure of vegetation, species composition and species diversity at the significant level with p-value ≤0.05. The Vegetation of the selected area was classified into four major plants communities and the indicator species for each community was recorded. Classification of plants into 4 different communities based upon edaphic gradients favors the individualistic hypothesis. Indicator Species Analysis (ISA) shows the indicators of the study area are mostly indicators to the Himalayan or moist temperate ecosystem, furthermore, these indicators could be considered for micro-habitat conservation and respective ecosystem management plans.

Keywords: species richness, edaphic gradients, canonical correspondence analysis (CCA), TWCA

Procedia PDF Downloads 152
3388 An Automatic Generating Unified Modelling Language Use Case Diagram and Test Cases Based on Classification Tree Method

Authors: Wassana Naiyapo, Atichat Sangtong

Abstract:

The processes in software development by Object Oriented methodology have many stages those take time and high cost. The inconceivable error in system analysis process will affect to the design and the implementation process. The unexpected output causes the reason why we need to revise the previous process. The more rollback of each process takes more expense and delayed time. Therefore, the good test process from the early phase, the implemented software is efficient, reliable and also meet the user’s requirement. Unified Modelling Language (UML) is the tool which uses symbols to describe the work process in Object Oriented Analysis (OOA). This paper presents the approach for automatically generated UML use case diagram and test cases. UML use case diagram is generated from the event table and test cases are generated from use case specifications and Graphic User Interfaces (GUI). Test cases are derived from the Classification Tree Method (CTM) that classify data to a node present in the hierarchy structure. Moreover, this paper refers to the program that generates use case diagram and test cases. As the result, it can reduce work time and increase efficiency work.

Keywords: classification tree method, test case, UML use case diagram, use case specification

Procedia PDF Downloads 162
3387 The Prognostic Values of Current Staging Schemes in Temporal Bone Carcinoma: A Real-World Evidence-Based Study

Authors: Minzi Mao, Jianjun Ren, Yu Zhao

Abstract:

Objectives: The absence of a uniform staging scheme for temporal bone carcinoma (TBC) seriously impedes the improvement of its management strategies. Therefore, this research was aimed to investigate the prognostic values of two currently applying staging schemes, namely, the modified Pittsburgh staging system (MPB) and Stell’s T classification (Stell-T) in patients with TBC. Methods: Areal-world single-institution retrospectivereview of patientsdiagnosed with TBC between2008 and 2019 was performed. Baseline characteristics were extracted, and patients were retrospectively staged by both the MPB and Stell-T classifications. Cox regression analyseswereconductedtocomparetheoverall survival (OS). Results: A total of 69 consecutive TBC patients were included in thisstudy. Univariate analysis showed that both Stell-T and T- classifications of the modified Pittsburgh staging system (MPB-T) were significant prognostic factors for all TBC patients as well as temporal bone squamous cell carcinoma (TBSCC, n=50) patients (P < 0.05). However, only Stell-T was confirmed to be an independent prognostic factor in TBSCC patients (P = 0.004). Conclusions: Tumor extensions, quantified by both Stell-T and MPB-T classifications, are significant prognostic factors for TBC patients, especially for TBSCC patients. However, only the Stell-T classification is an independent prognostic factor for TBSCC patients.

Keywords: modified pittsburgh staging system, overall survival, prognostic factor, stell’s T- classification, temporal bone carcinoma

Procedia PDF Downloads 129
3386 Neuroendocrine Tumors of the Oral Cavity: A Summarized Overview

Authors: Sona Babu Rathinam, Lavanya Dharmendran, Therraddi Mutthu

Abstract:

Objectives: The purpose of this paper is to provides an overview of the neuroendocrine tumors that arise in the oral cavity. Material and Methods: An overview of the relevant papers on neuroendocrine tumors of the oral cavity by various authors was studied and summarized. Results: On the basis of the relevant studies, this paper provides an overview of the classification and histological differentiation of the neuroendocrine tumors that arise in the oral cavity. Conclusions: The basis of classification of neuroendocrine tumors is largely determined by their histologic differentiation. Though they reveal biologic heterogeneity, there should be an awareness of the occurrence of such lesions in the oral cavity to enable them to be detected and treated early.

Keywords: malignant peripheral nerve sheath tumor, olfactory neuroblastoma, paraganglioma, schwannoma

Procedia PDF Downloads 80
3385 Amplifying Sine Unit-Convolutional Neural Network: An Efficient Deep Architecture for Image Classification and Feature Visualizations

Authors: Jamshaid Ul Rahman, Faiza Makhdoom, Dianchen Lu

Abstract:

Activation functions play a decisive role in determining the capacity of Deep Neural Networks (DNNs) as they enable neural networks to capture inherent nonlinearities present in data fed to them. The prior research on activation functions primarily focused on the utility of monotonic or non-oscillatory functions, until Growing Cosine Unit (GCU) broke the taboo for a number of applications. In this paper, a Convolutional Neural Network (CNN) model named as ASU-CNN is proposed which utilizes recently designed activation function ASU across its layers. The effect of this non-monotonic and oscillatory function is inspected through feature map visualizations from different convolutional layers. The optimization of proposed network is offered by Adam with a fine-tuned adjustment of learning rate. The network achieved promising results on both training and testing data for the classification of CIFAR-10. The experimental results affirm the computational feasibility and efficacy of the proposed model for performing tasks related to the field of computer vision.

Keywords: amplifying sine unit, activation function, convolutional neural networks, oscillatory activation, image classification, CIFAR-10

Procedia PDF Downloads 110
3384 Activity Data Analysis for Status Classification Using Fitness Trackers

Authors: Rock-Hyun Choi, Won-Seok Kang, Chang-Sik Son

Abstract:

Physical activity is important for healthy living. Recently wearable devices which motivate physical activity are quickly developing, and become cheaper and more comfortable. In particular, fitness trackers provide a variety of information and need to provide well-analyzed, and user-friendly results. In this study, frequency analysis was performed to classify various data sets of Fitbit into simple activity status. The data from Fitbit cloud server consists of 263 subjects who were healthy factory and office workers in Korea from March 7th to April 30th, 2016. In the results, we found assumptions of activity state classification seem to be sufficient and reasonable.

Keywords: activity status, fitness tracker, heart rate, steps

Procedia PDF Downloads 383
3383 The Effect of Particulate Matter on Cardiomyocyte Apoptosis Through Mitochondrial Fission

Authors: Tsai-chun Lai, Szu-ju Fu, Tzu-lin Lee, Yuh-Lien Chen

Abstract:

There is much evidence that exposure to fine particulate matter (PM) from air pollution increases the risk of cardiovascular morbidity and mortality. According to previous reports, PM in the air enters the respiratory tract, contacts the alveoli, and enters the blood circulation, leading to the progression of cardiovascular disease. PM pollution may also lead to cardiometabolic disturbances, increasing the risk of cardiovascular disease. The effects of PM on cardiac function and mitochondrial damage are currently unknown. We used mice and rat cardiomyocytes (H9c2) as animal and in vitro cell models, respectively, to simulate an air pollution environment using PM. These results indicate that the apoptosis-related factor PUMA, a regulator of apoptosis upregulated by p53, is increased in mice treated with PM. Apoptosis was aggravated in cardiomyocytes treated with PM, as measured by TUNEL assay and Annexin V/PI. Western blot results showed that CASPASE3 was significantly increased and BCL2 (B-cell lymphoid 2) was significantly decreased under PM treatment. Concurrent exposure to PM increases mitochondrial reactive oxygen species (ROS) production by MitoSOX Red staining. Furthermore, using Mitotracker staining, PM treatment significantly shortened mitochondrial length, indicating mitochondrial fission. The expression of mitochondrial fission-related proteins p-DRP1 (phosphodynamics-related protein 1) and FIS1 (mitochondrial fission 1 protein) was significantly increased. Based on these results, the exposure to PM worsens mitochondrial function and leads to cardiomyocyte apoptosis.

Keywords: particulate matter, cardiomyocyte, apoptosis, mitochondria

Procedia PDF Downloads 102
3382 Classification of Traffic Complex Acoustic Space

Authors: Bin Wang, Jian Kang

Abstract:

After years of development, the study of soundscape has been refined to the types of urban space and building. Traffic complex takes traffic function as the core, with obvious design features of architectural space combination and traffic streamline. The acoustic environment is strongly characterized by function, space, material, user and other factors. Traffic complex integrates various functions of business, accommodation, entertainment and so on. It has various forms, complex and varied experiences, and its acoustic environment is turned rich and interesting with distribution and coordination of various functions, division and unification of the mass, separation and organization of different space and the cross and the integration of multiple traffic flow. In this study, it made field recordings of each space of various traffic complex, and extracted and analyzed different acoustic elements, including changes in sound pressure, frequency distribution, steady sound source, sound source information and other aspects, to make cluster analysis of each independent traffic complex buildings. It divided complicated traffic complex building space into several typical sound space from acoustic environment perspective, mainly including stable sound space, high-pressure sound space, rhythm sound space and upheaval sound space. This classification can further deepen the study of subjective evaluation and control of the acoustic environment of traffic complex.

Keywords: soundscape, traffic complex, cluster analysis, classification

Procedia PDF Downloads 251
3381 Classification of Myoelectric Signals Using Multilayer Perceptron Neural Network with Back-Propagation Algorithm in a Wireless Surface Myoelectric Prosthesis of the Upper-Limb

Authors: Kevin D. Manalo, Jumelyn L. Torres, Noel B. Linsangan

Abstract:

This paper focuses on a wireless myoelectric prosthesis of the upper-limb that uses a Multilayer Perceptron Neural network with back propagation. The algorithm is widely used in pattern recognition. The network can be used to train signals and be able to use it in performing a function on their own based on sample inputs. The paper makes use of the Neural Network in classifying the electromyography signal that is produced by the muscle in the amputee’s skin surface. The gathered data will be passed on through the Classification Stage wirelessly through Zigbee Technology. The signal will be classified and trained to be used in performing the arm positions in the prosthesis. Through programming using Verilog and using a Field Programmable Gate Array (FPGA) with Zigbee, the EMG signals will be acquired and will be used for classification. The classified signal is used to produce the corresponding Hand Movements (Open, Pick, Hold, and Grip) through the Zigbee controller. The data will then be processed through the MLP Neural Network using MATLAB which then be used for the surface myoelectric prosthesis. Z-test will be used to display the output acquired from using the neural network.

Keywords: field programmable gate array, multilayer perceptron neural network, verilog, zigbee

Procedia PDF Downloads 389
3380 Meta-Analysis of Particulate Matter Production in Developing and Developed Countries

Authors: Hafiz Mehtab Gull Nasir

Abstract:

Industrial development and urbanization have significant impacts on air emissions, and their relationship diverges at different stages of economic progress. The revolution further propelled these activities as principal paths to economic and social transformation; nevertheless, the paths also promoted environmental degradation. Resultantly, both developed and developing countries undergone through fast-paced development; in which developed countries implemented legislation towards environmental pollution control however developing countries took the advantage of technology without caring about the environment. In this study, meta-analysis is performed on production of particulate matter (i.e., PM10 and PM2.5) from urbanized cities of first, second and third world countries to assess the air quality. The cities were selected based on ranked set principles. In case of PM10, third world countries showed highest PM level (~95% confidence interval of 0.74-1.86) followed by second world countries but with managed situation. Besides, first, world countries indicated the lowest pollution (~95% confidence interval of 0.12-0.2). Similarly, highest level of PM2.5 was produced by third world countries followed by the second and first world countries. Hereby, level of PM2.5 was not significantly different for both second and third world countries; however, first world countries showed minimum PM load. Finally, the study revealed different that levels of pollution status exist among different countries; whereas developed countries also devised better strategies towards pollution control while developing countries are least caring about their environmental resources. It is suggested that although industrialization and urbanization are directly involved with interference in natural elements, however, production of nature appears to be more societal rather hermetical.

Keywords: meta-analysis, particulate matter, developing countries, urbanization

Procedia PDF Downloads 345
3379 Neutral Sugar Contents of Laurel-leaved and Cryptomeria japonica Forests

Authors: Ayuko Itsuki, Sachiyo Aburatani

Abstract:

Soil neutral sugar contents in Kasuga-yama Hill Primeval Forest (Nara, Japan) were examined using the Waksman’s approximation analysis to clarify relations with the neutral sugar constituted the soil organic matter and the microbial biomass. Samples were selected from the soil surrounding laurel-leaved (BB-1) and Carpinus japonica (BB-2) trees for analysis. The water and HCl soluble neutral sugars increased microbial biomass of the laurel-leaved forest soil. Arabinose, xylose, and galactose of the HCl soluble fraction were used immediately in comparison with other neutral sugars. Rhamnose, glucose, and fructose of the HCl soluble fraction were re-composed by the microbes.

Keywords: forest soil, neutral sugaras, soil organic matter, Waksman’s approximation analysis

Procedia PDF Downloads 309
3378 Hybrid Structure Learning Approach for Assessing the Phosphate Laundries Impact

Authors: Emna Benmohamed, Hela Ltifi, Mounir Ben Ayed

Abstract:

Bayesian Network (BN) is one of the most efficient classification methods. It is widely used in several fields (i.e., medical diagnostics, risk analysis, bioinformatics research). The BN is defined as a probabilistic graphical model that represents a formalism for reasoning under uncertainty. This classification method has a high-performance rate in the extraction of new knowledge from data. The construction of this model consists of two phases for structure learning and parameter learning. For solving this problem, the K2 algorithm is one of the representative data-driven algorithms, which is based on score and search approach. In addition, the integration of the expert's knowledge in the structure learning process allows the obtainment of the highest accuracy. In this paper, we propose a hybrid approach combining the improvement of the K2 algorithm called K2 algorithm for Parents and Children search (K2PC) and the expert-driven method for learning the structure of BN. The evaluation of the experimental results, using the well-known benchmarks, proves that our K2PC algorithm has better performance in terms of correct structure detection. The real application of our model shows its efficiency in the analysis of the phosphate laundry effluents' impact on the watershed in the Gafsa area (southwestern Tunisia).

Keywords: Bayesian network, classification, expert knowledge, structure learning, surface water analysis

Procedia PDF Downloads 128
3377 Assessment of Hemostatic Activity of the Aqueous Extract of Leaves of Marrubium vulgare L.: A Mediterranean Lamiaceae Algeria

Authors: Nabil Ghedadba, Abdessemed Samira, Leila Hambaba, Sidi Mohamed Ould Mokhtar, Nassima Fercha, Houas Bousselsela

Abstract:

The overall objective of this study was to evaluate in vitro the hemostatic activity of secondary metabolites (polyphenols, flavonoids, and tannins) of Marrubium vulgare leaves, aromatic plant widely used in traditional medicine for the treatment of asthma, cough, diabetes (by its effect on the pancreas to secrete insulin), heart disease, fever has a high efficiency as against inflammation. Qualitative analysis of the aqueous extract (AQE) by thin layer chromatography revealed the presence of quercetin, kaempferol and rutin. Quantification of total phenols by Folin Ciocalteu method and flavonoids by AlCl3 method gave high values with AQE: 175±0.80 mg GAE per 100g of the dry matter, 23.86±0.36 mg QE per 100g of dry matter. Moreover, the assay of condensed tannins by the vanillin method showed that AQE contains the highest value: 16.55±0.03 mg e-catechin per 100 g of dry matter. Assessment of hemostatic activity by the plasma recalcification method (time of Howell) has allowed us to discover the surprising dose dependent anticoagulant effect of AQE lyophilized from leaves of M. vulgare. A positive linear correlation between the two parameters studied: the content of condensed tannins and hemostatic activity (r=0.96) were used to highlight a possible role of these compounds that are potent vasoconstrictor activity in hemostatic. From these results we can see that Marrubium vulgre could be used for the treatment of health.

Keywords: Marrubium vulgare L., aqueous extract, phenolic compounds dosing, hemostatic activity, condensed tannins

Procedia PDF Downloads 242
3376 A Framework for Automated Nuclear Waste Classification

Authors: Seonaid Hume, Gordon Dobie, Graeme West

Abstract:

Detecting and localizing radioactive sources is a necessity for safe and secure decommissioning of nuclear facilities. An important aspect for the management of the sort-and-segregation process is establishing the spatial distributions and quantities of the waste radionuclides, their type, corresponding activity, and ultimately classification for disposal. The data received from surveys directly informs decommissioning plans, on-site incident management strategies, the approach needed for a new cell, as well as protecting the workforce and the public. Manual classification of nuclear waste from a nuclear cell is time-consuming, expensive, and requires significant expertise to make the classification judgment call. Also, in-cell decommissioning is still in its relative infancy, and few techniques are well-developed. As with any repetitive and routine tasks, there is the opportunity to improve the task of classifying nuclear waste using autonomous systems. Hence, this paper proposes a new framework for the automatic classification of nuclear waste. This framework consists of five main stages; 3D spatial mapping and object detection, object classification, radiological mapping, source localisation based on gathered evidence and finally, waste classification. The first stage of the framework, 3D visual mapping, involves object detection from point cloud data. A review of related applications in other industries is provided, and recommendations for approaches for waste classification are made. Object detection focusses initially on cylindrical objects since pipework is significant in nuclear cells and indeed any industrial site. The approach can be extended to other commonly occurring primitives such as spheres and cubes. This is in preparation of stage two, characterizing the point cloud data and estimating the dimensions, material, degradation, and mass of the objects detected in order to feature match them to an inventory of possible items found in that nuclear cell. Many items in nuclear cells are one-offs, have limited or poor drawings available, or have been modified since installation, and have complex interiors, which often and inadvertently pose difficulties when accessing certain zones and identifying waste remotely. Hence, this may require expert input to feature match objects. The third stage, radiological mapping, is similar in order to facilitate the characterization of the nuclear cell in terms of radiation fields, including the type of radiation, activity, and location within the nuclear cell. The fourth stage of the framework takes the visual map for stage 1, the object characterization from stage 2, and radiation map from stage 3 and fuses them together, providing a more detailed scene of the nuclear cell by identifying the location of radioactive materials in three dimensions. The last stage involves combining the evidence from the fused data sets to reveal the classification of the waste in Bq/kg, thus enabling better decision making and monitoring for in-cell decommissioning. The presentation of the framework is supported by representative case study data drawn from an application in decommissioning from a UK nuclear facility. This framework utilises recent advancements of the detection and mapping capabilities of complex radiation fields in three dimensions to make the process of classifying nuclear waste faster, more reliable, cost-effective and safer.

Keywords: nuclear decommissioning, radiation detection, object detection, waste classification

Procedia PDF Downloads 200
3375 Temporality in Architecture and Related Knowledge

Authors: Gonca Z. Tuncbilek

Abstract:

Architectural research tends to define architecture in terms of its permanence. In this study, the term ‘temporality’ and its use in architectural discourse is re-visited. The definition, proposition, and efficacy of the temporality occur both in architecture and in its related knowledge. The temporary architecture not only fulfills the requirement of the architectural programs, but also plays a significant role in generating an environment of architectural discourse. In recent decades, there is a great interest on the temporary architectural practices regarding to the installations, exhibition spaces, pavilions, and expositions; inviting the architects to experience and think about architecture. The temporary architecture has a significant role among the architecture, the architect, and the architectural discourse. Experiencing the contemporary materials, methods and technique; they have proposed the possibilities of the future architecture. These structures give opportunities to the architects to a wide-ranging variety of freedoms to experience the ‘new’ in architecture. In addition to this experimentation, they can be considered as an agent to redefine and reform the boundaries of the architectural discipline itself. Although the definition of architecture is re-analyzed in terms of its temporality rather than its permanence; architecture, in reality, still relies on historically codified types and principles of the formation. The concept of type can be considered for several different sciences, and there is a tendency to organize and understand the world in terms of classification in many different cultures and places. ‘Type’ is used as a classification tool with/without the scope of the critical invention. This study considers theories of type, putting forward epistemological and discursive arguments related to the form of architecture, being related to historical and formal disciplinary knowledge in architecture. This study has been to emphasize the importance of the temporality in architecture as a creative tool to reveal the position within the architectural discourse. The temporary architecture offers ‘new’ opportunities in the architectural field to be analyzed. In brief, temporary structures allow the architect freedoms to the experimentation in architecture. While redefining the architecture in terms of temporality, architecture still relies on historically codified types (pavilions, exhibitions, expositions, and installations). The notion of architectural types and its varying interpretations are analyzed based on the texts of architectural theorists since the Age of Enlightenment. Investigating the classification of type in architecture particularly temporary architecture, it is necessary to return to the discussion of the origin of the knowledge and its classification.

Keywords: classification of architecture, exhibition design, pavilion design, temporary architecture

Procedia PDF Downloads 365
3374 Roof Material Detection Based on Object-Based Approach Using WorldView-2 Satellite Imagery

Authors: Ebrahim Taherzadeh, Helmi Z. M. Shafri, Kaveh Shahi

Abstract:

One of the most important tasks in urban area remote sensing is detection of impervious surface (IS), such as building roof and roads. However, detection of IS in heterogeneous areas still remains as one of the most challenging works. In this study, detection of concrete roof using an object-oriented approach was proposed. A new rule-based classification was developed to detect concrete roof tile. The proposed rule-based classification was applied to WorldView-2 image. Results showed that the proposed rule has good potential to predict concrete roof material from WorldView-2 images with 85% accuracy.

Keywords: object-based, roof material, concrete tile, WorldView-2

Procedia PDF Downloads 424
3373 Global Positioning System Match Characteristics as a Predictor of Badminton Players’ Group Classification

Authors: Yahaya Abdullahi, Ben Coetzee, Linda Van Den Berg

Abstract:

The study aimed at establishing the global positioning system (GPS) determined singles match characteristics that act as predictors of successful and less-successful male singles badminton players’ group classification. Twenty-two (22) male single players (aged: 23.39 ± 3.92 years; body stature: 177.11 ± 3.06cm; body mass: 83.46 ± 14.59kg) who represented 10 African countries participated in the study. Players were categorised as successful and less-successful players according to the results of five championships’ of the 2014/2015 season. GPS units (MinimaxX V4.0), Polar Heart Rate Transmitter Belts and digital video cameras were used to collect match data. GPS-related variables were corrected for match duration and independent t-tests, a cluster analysis and a binary forward stepwise logistic regression were calculated. A Receiver Operating Characteristic Curve (ROC) was used to determine the validity of the group classification model. High-intensity accelerations per second were identified as the only GPS-determined variable that showed a significant difference between groups. Furthermore, only high-intensity accelerations per second (p=0.03) and low-intensity efforts per second (p=0.04) were identified as significant predictors of group classification with 76.88% of players that could be classified back into their original groups by making use of the GPS-based logistic regression formula. The ROC showed a value of 0.87. The identification of the last-mentioned GPS-related variables for the attainment of badminton performances, emphasizes the importance of using badminton drills and conditioning techniques to not only improve players’ physical fitness levels but also their abilities to accelerate at high intensities.

Keywords: badminton, global positioning system, match analysis, inertial movement analysis, intensity, effort

Procedia PDF Downloads 191
3372 Revisiting the Swadesh Wordlist: How Long Should It Be

Authors: Feda Negesse

Abstract:

One of the most important indicators of research quality is a good data - collection instrument that can yield reliable and valid data. The Swadesh wordlist has been used for more than half a century for collecting data in comparative and historical linguistics though arbitrariness is observed in its application and size. This research compare s the classification results of the 100 Swadesh wordlist with those of its subsets to determine if reducing the size of the wordlist impact s its effectiveness. In the comparison, the 100, 50 and 40 wordlists were used to compute lexical distances of 29 Cushitic and Semitic languages spoken in Ethiopia and neighbouring countries. Gabmap, a based application, was employed to compute the lexical distances and to divide the languages into related clusters. The study shows that the subsets are not as effective as the 100 wordlist in clustering languages into smaller subgroups but they are equally effective in di viding languages into bigger groups such as subfamilies. It is noted that the subsets may lead to an erroneous classification whereby unrelated languages by chance form a cluster which is not attested by a comparative study. The chance to get a wrong result is higher when the subsets are used to classify languages which are not closely related. Though a further study is still needed to settle the issues around the size of the Swadesh wordlist, this study indicates that the 50 and 40 wordlists cannot be recommended as reliable substitute s for the 100 wordlist under all circumstances. The choice seems to be determined by the objective of a researcher and the degree of affiliation among the languages to be classified.

Keywords: classification, Cushitic, Swadesh, wordlist

Procedia PDF Downloads 298
3371 3D Classification Optimization of Low-Density Airborne Light Detection and Ranging Point Cloud by Parameters Selection

Authors: Baha Eddine Aissou, Aichouche Belhadj Aissa

Abstract:

Light detection and ranging (LiDAR) is an active remote sensing technology used for several applications. Airborne LiDAR is becoming an important technology for the acquisition of a highly accurate dense point cloud. A classification of airborne laser scanning (ALS) point cloud is a very important task that still remains a real challenge for many scientists. Support vector machine (SVM) is one of the most used statistical learning algorithms based on kernels. SVM is a non-parametric method, and it is recommended to be used in cases where the data distribution cannot be well modeled by a standard parametric probability density function. Using a kernel, it performs a robust non-linear classification of samples. Often, the data are rarely linearly separable. SVMs are able to map the data into a higher-dimensional space to become linearly separable, which allows performing all the computations in the original space. This is one of the main reasons that SVMs are well suited for high-dimensional classification problems. Only a few training samples, called support vectors, are required. SVM has also shown its potential to cope with uncertainty in data caused by noise and fluctuation, and it is computationally efficient as compared to several other methods. Such properties are particularly suited for remote sensing classification problems and explain their recent adoption. In this poster, the SVM classification of ALS LiDAR data is proposed. Firstly, connected component analysis is applied for clustering the point cloud. Secondly, the resulting clusters are incorporated in the SVM classifier. Radial basic function (RFB) kernel is used due to the few numbers of parameters (C and γ) that needs to be chosen, which decreases the computation time. In order to optimize the classification rates, the parameters selection is explored. It consists to find the parameters (C and γ) leading to the best overall accuracy using grid search and 5-fold cross-validation. The exploited LiDAR point cloud is provided by the German Society for Photogrammetry, Remote Sensing, and Geoinformation. The ALS data used is characterized by a low density (4-6 points/m²) and is covering an urban area located in residential parts of the city Vaihingen in southern Germany. The class ground and three other classes belonging to roof superstructures are considered, i.e., a total of 4 classes. The training and test sets are selected randomly several times. The obtained results demonstrated that a parameters selection can orient the selection in a restricted interval of (C and γ) that can be further explored but does not systematically lead to the optimal rates. The SVM classifier with hyper-parameters is compared with the most used classifiers in literature for LiDAR data, random forest, AdaBoost, and decision tree. The comparison showed the superiority of the SVM classifier using parameters selection for LiDAR data compared to other classifiers.

Keywords: classification, airborne LiDAR, parameters selection, support vector machine

Procedia PDF Downloads 147
3370 Migration, Violent Extremism and Gang Violence in Trinidad and Tobago

Authors: Raghunath Mahabir

Abstract:

This paper provides an analysis of the existing evidence on the relationships between the migration of Venezuelans into Trinidad and Tobago, violent extremism and gang violence. Arguing that there is a dearth of reliable data on the subject matter, the paper fills the gap by providing relevant definitions of terms used, discusses the sources of data and identifies the causes for this migration and the subsequent ramifications for Trinidad and Tobago and for the migrants themselves. A simple but clear classification pointing to the nexus between migration gang violence and violent extremism is developed, following the logic of migration of criminals(gang members), the need to link with local gangs and the view that certain elements within the TnT society has become radicalized to the point where violent extremism is being displayed in different ways. The paper highlights implications for further policy debate:the imperatives for more effective communication between government officials responsible for migration and those personnel who are tasked with countering violent extremism and gang violence: promoting and executing better integration and social inclusion policies which are necessary to minimize social exclusion, and the threat of violent extremist agendas emanating from both Venezuelans and Trinidadians and generally to establish strong analytical framework grounded in stronger definitions, more reliable data and other evidence which can guide further research and analysis and contribute to policy formation.

Keywords: migration, violent extremism, gangs, Venezuela

Procedia PDF Downloads 54
3369 Energy Detection Based Sensing and Primary User Traffic Classification for Cognitive Radio

Authors: Urvee B. Trivedi, U. D. Dalal

Abstract:

As wireless communication services grow quickly; the seriousness of spectrum utilization has been on the rise gradually. An emerging technology, cognitive radio has come out to solve today’s spectrum scarcity problem. To support the spectrum reuse functionality, secondary users are required to sense the radio frequency environment, and once the primary users are found to be active, the secondary users are required to vacate the channel within a certain amount of time. Therefore, spectrum sensing is of significant importance. Once sensing is done, different prediction rules apply to classify the traffic pattern of primary user. Primary user follows two types of traffic patterns: periodic and stochastic ON-OFF patterns. A cognitive radio can learn the patterns in different channels over time. Two types of classification methods are discussed in this paper, by considering edge detection and by using autocorrelation function. Edge detection method has a high accuracy but it cannot tolerate sensing errors. Autocorrelation-based classification is applicable in the real environment as it can tolerate some amount of sensing errors.

Keywords: cognitive radio (CR), probability of detection (PD), probability of false alarm (PF), primary user (PU), secondary user (SU), fast Fourier transform (FFT), signal to noise ratio (SNR)

Procedia PDF Downloads 345
3368 Predictive Analytics of Student Performance Determinants

Authors: Mahtab Davari, Charles Edward Okon, Somayeh Aghanavesi

Abstract:

Every institute of learning is usually interested in the performance of enrolled students. The level of these performances determines the approach an institute of study may adopt in rendering academic services. The focus of this paper is to evaluate students' academic performance in given courses of study using machine learning methods. This study evaluated various supervised machine learning classification algorithms such as Logistic Regression (LR), Support Vector Machine, Random Forest, Decision Tree, K-Nearest Neighbors, Linear Discriminant Analysis, and Quadratic Discriminant Analysis, using selected features to predict study performance. The accuracy, precision, recall, and F1 score obtained from a 5-Fold Cross-Validation were used to determine the best classification algorithm to predict students’ performances. SVM (using a linear kernel), LDA, and LR were identified as the best-performing machine learning methods. Also, using the LR model, this study identified students' educational habits such as reading and paying attention in class as strong determinants for a student to have an above-average performance. Other important features include the academic history of the student and work. Demographic factors such as age, gender, high school graduation, etc., had no significant effect on a student's performance.

Keywords: student performance, supervised machine learning, classification, cross-validation, prediction

Procedia PDF Downloads 126
3367 Deep Learning Approach to Trademark Design Code Identification

Authors: Girish J. Showkatramani, Arthi M. Krishna, Sashi Nareddi, Naresh Nula, Aaron Pepe, Glen Brown, Greg Gabel, Chris Doninger

Abstract:

Trademark examination and approval is a complex process that involves analysis and review of the design components of the marks such as the visual representation as well as the textual data associated with marks such as marks' description. Currently, the process of identifying marks with similar visual representation is done manually in United States Patent and Trademark Office (USPTO) and takes a considerable amount of time. Moreover, the accuracy of these searches depends heavily on the experts determining the trademark design codes used to catalog the visual design codes in the mark. In this study, we explore several methods to automate trademark design code classification. Based on recent successes of convolutional neural networks in image classification, we have used several different convolutional neural networks such as Google’s Inception v3, Inception-ResNet-v2, and Xception net. The study also looks into other techniques to augment the results from CNNs such as using Open Source Computer Vision Library (OpenCV) to pre-process the images. This paper reports the results of the various models trained on year of annotated trademark images.

Keywords: trademark design code, convolutional neural networks, trademark image classification, trademark image search, Inception-ResNet-v2

Procedia PDF Downloads 232
3366 The Mineralogy of Shales from the Pilbara and How Chemical Weathering Affects the Intact Strength

Authors: Arturo Maldonado

Abstract:

In the iron ore mining industry, the intact strength of rock units is defined using the uniaxial compressive strength (UCS). This parameter is very important for the classification of shale materials, allowing the split between rock and cohesive soils based on the magnitude of UCS. For this research, it is assumed that UCS less than or equal to 1 MPa is representative of soils. Several researchers have anticipated that the magnitude of UCS reduces with weathering progression, also since UCS is a directional property, its magnitude depends upon the rock fabric orientation. Thus, the paper presents how the UCS of shales is affected by both weathering grade and bedding orientation. The mineralogy of shales has been defined using Hyper-spectral and chemical assays to define the mineral constituents of shale and other non-shale materials. Geological classification tools have been used to define distinct lithological types, and in this manner, the author uses mineralogical datasets to recognize and isolate shales from other rock types and develop tertiary plots for fresh and weathered shales. The mineralogical classification of shales has reduced the contamination of lithology types and facilitated the study of the physical factors affecting the intact strength of shales, like anisotropic strength due to bedding orientation. The analysis of mineralogical characteristics of shales is perhaps the most important contribution of this paper to other researchers who may wish to explore similar methods.

Keywords: rock mechanics, mineralogy, shales, weathering, anisotropy

Procedia PDF Downloads 59