Search results for: charges transfer
2453 Heat Transfer Enhancement via Using Al2O3/Water Nanofluid in Car Radiator
Authors: S. Movafagh, Y. Bakhshan
Abstract:
In this study, effect of adding Al2O3 nanoparticle to base fluid (water) in car radiator is investigated numerically. Radiators are compact heat exchangers optimized and evaluated by considering different working conditions. The cooling system of a car plays an important role in vehicle's performance, consists of two main parts, known as radiator and fan. Improving thermal efficiency of engine leads to increase the engine's performance, decline the fuel consumption and decrease the pollution emissions. In this study, the effects of fluid inlet flow rate and nanoparticle volume fraction on heat transfer and pressure drop of acar radiator are studied.Keywords: forced convection, nanofluid, radiator, CFD simulation
Procedia PDF Downloads 3452452 Analysis on Heat Transfer in Solar Parabolic Trough Collectors
Authors: Zaid H. Yaseen, Jamel A. Orfi, Zeyad A. Alsuhaibani
Abstract:
Solar power has a huge potential to be employed in the fields of electricity production, water desalination, and multi-generation. There are various types of solar collectors, and parabolic trough collectors (PTCs) are common among these types. In PTCs, a mirror is used to direct the incident radiation on an absorber tube to utilize the heat in power generation. In this work, a PTC covered with a glass tube is presented and analyzed. Results showed that temperatures of 510℃ for steam can be reached for certain parameters. The work also showed the viability of using Benzene as the working fluid in the absorber tube. Also, some analysis regarding changing the absorber’s tube diameter and the efficiency of the solar collector was demonstrated in this work. The effect of changing the heat transfer correlations for the convection phenomena of the working fluid was illustrated. In fact, two heat transfer correlations, the Dittus-Boelter and Gnielinski correlations, were used, and the outcomes showed a resemblance in the results for the maximum attainable temperature in the working fluid.Keywords: absorber tube, glass tube, incident radiation, parabolic trough collector
Procedia PDF Downloads 162451 Numerical Simulation of Unsteady Natural Convective Nanofluid Flow within a Trapezoidal Enclosure Using Meshfree Method
Authors: S. Nandal, R. Bhargava
Abstract:
The paper contains a numerical study of the unsteady magneto-hydrodynamic natural convection flow of nanofluids within a symmetrical wavy walled trapezoidal enclosure. The length and height of enclosure are both considered equal to L. Two-phase nanofluid model is employed. The governing equations of nanofluid flow along with boundary conditions are non-dimensionalized and are solved using one of Meshfree technique (EFGM method). Meshfree numerical technique does not require a predefined mesh for discretization purpose. The bottom wavy wall of the enclosure is defined using a cosine function. Element free Galerkin method (EFGM) does not require the domain. The effects of various parameters namely time t, amplitude of bottom wavy wall a, Brownian motion parameter Nb and thermophoresis parameter Nt is examined on rate of heat and mass transfer to get a visualization of cooling and heating effects. Such problems have important applications in heat exchangers or solar collectors, as wavy walled enclosures enhance heat transfer in comparison to flat walled enclosures.Keywords: heat transfer, meshfree methods, nanofluid, trapezoidal enclosure
Procedia PDF Downloads 1582450 Investigating the Effect of Different Design Factors on the Required Length of the Ambient Air Vaporizer
Authors: F. S. Alavi
Abstract:
In this study, MATLAB engineering software was used in order to model an industrial Ambient Air Vaporizer (AAV), considering combined convection and conduction heat transfers from the fins and the tube. The developed theoretical model was then used to investigate the effects of various design factors such as gas flow rate, ambient air temperature, fin thickness and etc. on total vaporizer ‘s length required. Cryogenic liquid nitrogen was selected as an input fluid, in all cases. According to the results, increasing the inlet fluid flow rate has direct linear effect on the total required length of vaporizer. Vaporizer’s required length decreases by increasing the size of fin radius or size of fin thickness. The dependency of vaporizer’s length on fin thickness’ size reduces at higher values of thickness and gradually converge to zero. For low flow rates, internal convection heat transfer coefficient depends directly on gas flow rate but it becomes constant, independent on flow rate after a specific value. As the ambient air temperature increases, the external heat transfer coefficient also increases and the total required length of vaporizer decreases.Keywords: heat exchanger, modeling, heat transfer, design
Procedia PDF Downloads 1152449 Stability Analysis of Three-Dimensional Flow and Heat Transfer over a Permeable Shrinking Surface in a Cu-Water Nanofluid
Authors: Roslinda Nazar, Amin Noor, Khamisah Jafar, Ioan Pop
Abstract:
In this paper, the steady laminar three-dimensional boundary layer flow and heat transfer of a copper (Cu)-water nanofluid in the vicinity of a permeable shrinking flat surface in an otherwise quiescent fluid is studied. The nanofluid mathematical model in which the effect of the nanoparticle volume fraction is taken into account is considered. The governing nonlinear partial differential equations are transformed into a system of nonlinear ordinary differential equations using a similarity transformation which is then solved numerically using the function bvp4c from Matlab. Dual solutions (upper and lower branch solutions) are found for the similarity boundary layer equations for a certain range of the suction parameter. A stability analysis has been performed to show which branch solutions are stable and physically realizable. The numerical results for the skin friction coefficient and the local Nusselt number as well as the velocity and temperature profiles are obtained, presented and discussed in detail for a range of various governing parameters.Keywords: heat transfer, nanofluid, shrinking surface, stability analysis, three-dimensional flow
Procedia PDF Downloads 2872448 Effect of Spatially Correlated Disorder on Electronic Transport Properties of Aperiodic Superlattices (GaAs/AlxGa1-xAs)
Authors: F. Bendahma, S. Bentata, S. Cherid, A. Zitouni, S. Terkhi, T. Lantri, Y. Sefir, Z. F. Meghoufel
Abstract:
We examine the electronic transport properties in AlxGa1-xAs/GaAs superlattices. Using the transfer-matrix technique and the exact Airy function formalism, we investigate theoretically the effect of structural parameters on the electronic energy spectra of trimer thickness barrier (TTB). Our numerical calculations showed that the localization length of the states becomes more extended when the disorder is correlated (trimer case). We have also found that the resonant tunneling time (RTT) is of the order of several femtoseconds.Keywords: electronic transport properties, structural parameters, superlattices, transfer-matrix technique
Procedia PDF Downloads 2852447 Theoretical Study on the Visible-Light-Induced Radical Coupling Reactions Mediated by Charge Transfer Complex
Authors: Lishuang Ma
Abstract:
Charge transfer (CT) complex, also known as Electron donor-acceptor (EDA) complex, has received attentions increasingly in the field of synthetic chemistry community, due to the CT complex can absorb the visible light through the intermolecular charge transfer excited states, various of catalyst-free photochemical transformations under mild visible-light conditions. However, a number of fundamental questions are still ambiguous, such as the origin of visible light absorption, the photochemical and photophysical properties of the CT complex, as well as the detailed mechanism of the radical coupling pathways mediated by CT complex. Since these are critical factors for target-specific design and synthesis of more new-type CT complexes. To this end, theoretical investigations were performed in our group to answer these questions based on multiconfigurational perturbation theory. The photo-induced fluoroalkylation reactions are mediated by CT complexes, which are formed by the association of an acceptor of perfluoroalkyl halides RF−X (X = Br, I) and a suitable donor molecule such as β-naphtholate anion, were chosen as a paradigm example in this work. First, spectrum simulations were carried out by both CASPT2//CASSCF/PCM and TD-DFT/PCM methods. The computational results showed that the broadening spectra in visible light range (360-550nm) of the CT complexes originate from the 1(σπ*) excitation, accompanied by an intermolecular electron transfer, which was also found closely related to the aggregate states of the donor and acceptor. Moreover, from charge translocation analysis, the CT complex that showed larger charge transfer in the round state would exhibit smaller charge transfer in excited stated of 1(σπ*), causing blue shift relatively. Then, the excited-state potential energy surface (PES) was calculated at CASPT2//CASSCF(12,10)/ PCM level of theory to explore the photophysical properties of the CT complexes. The photo-induced C-X (X=I, Br) bond cleavage was found to occur in the triplet state, which is accessible through a fast intersystem crossing (ISC) process that is controlled by the strong spin-orbit coupling resulting from the heavy iodine and bromine atoms. Importantly, this rapid fragmentation process can compete and suppress the backward electron transfer (BET) event, facilitating the subsequent effective photochemical transformations. Finally, the reaction pathways of the radical coupling were also inspected, which showed that the radical chain propagation pathway could easy to accomplish with a small energy barrier no more than 3.0 kcal/mol, which is the key factor that promote the efficiency of the photochemical reactions induced by CT complexes. In conclusion, theoretical investigations were performed to explore the photophysical and photochemical properties of the CT complexes, as well as the mechanism of radical coupling reactions mediated by CT complex. The computational results and findings in this work can provide some critical insights into mechanism-based design for more new-type EDA complexesKeywords: charge transfer complex, electron transfer, multiconfigurational perturbation theory, radical coupling
Procedia PDF Downloads 1442446 Effective Infection Control Measures to Prevent Transmission of Multi-Drug Resistant Organisms from Burn Transfer Cases in a Regional Burn Centre
Authors: Si Jack Chong, Chew Theng Yap, Wan Loong James Mok
Abstract:
Introduction: Regional burn centres face the spectra of introduced multi-drug resistant organisms (MDRO) from transfer patients resident in MDRO endemic countries. MDRO can cause severe nosocomial infection, which in massive burn patients, will lead to greater morbidity and mortality and strain the institution financially. We aim to highlight 4 key measures that have effectively prevented transmission of imported MDRO. Methods: A case of Candida auris (C. auris) from a massive burn patient transferred from an MDRO endemic country is used to illustrate the measures. C. auris is a globally emerging multi-drug resistant fungal pathogen causing nosocomial transmission. Results: Infection control measures used to mitigate the risk of outbreak from transfer cases are: (1) Multidisciplinary team approach involving Infection Control and Infectious Disease specialists early to ensure appropriate antibiotics use and implementation of barrier measures, (2) aseptic procedures for dressing change with strict isolation and donning of personal protective equipment in the ward, (3) early screening of massive burn patient from MDRO endemic region, (4) hydrogen peroxide vaporization terminal cleaning for operating theatres and rooms. Conclusion: The prevalence of air travel and international transfer to regional burn centres will need effective infection control measures to reduce the risk of transmission from imported massive burn patients. In our centre, we have effectively implemented 4 measures which have reduced the risks of local contamination. We share a recent case report to illustrate successful management of a potential MDRO outbreak resulting from transfer of massive burn patient resident in an MDRO endemic area.Keywords: burns, burn unit, cross infection, infection control
Procedia PDF Downloads 1522445 Electronic States at SnO/SnO2 Heterointerfaces
Authors: A. Albar, U. Schwingenschlogel
Abstract:
Device applications of transparent conducting oxides require a thorough understanding of the physical and chemical properties of the involved interfaces. We use ab-initio calculations within density functional theory to investigate the electronic states at the SnO/SnO2 hetero-interface. Tin dioxide and monoxide are transparent materials with high n-type and p-type mobilities, respectively. This work aims at exploring the modifications of the electronic states, in particular the charge transfer, in the vicinity of the hetero-interface. The (110) interface is modeled by a super-cell approach in order to minimize the mismatch between the lattice parameters of the two compounds. We discuss the electronic density of states as a function of the distance to the interface.Keywords: density of states, ab-initio calculations, interface states, charge transfer
Procedia PDF Downloads 4182444 CFD Modeling of Mixing Enhancement in a Pitted Micromixer by High Frequency Ultrasound Waves
Authors: Faezeh Mohammadi, Ebrahim Ebrahimi, Neda Azimi
Abstract:
Use of ultrasound waves is one of the techniques for increasing the mixing and mass transfer in the microdevices. Ultrasound propagation into liquid medium leads to stimulation of the fluid, creates turbulence and so increases the mixing performance. In this study, CFD modeling of two-phase flow in a pitted micromixer equipped with a piezoelectric with frequency of 1.7 MHz has been studied. CFD modeling of micromixer at different velocity of fluid flow in the absence of ultrasound waves and with ultrasound application has been performed. The hydrodynamic of fluid flow and mixing efficiency for using ultrasound has been compared with the layout of no ultrasound application. The result of CFD modeling shows well agreements with the experimental results. The results showed that the flow pattern inside the micromixer in the absence of ultrasound waves is parallel, while when ultrasound has been applied, it is not parallel. In fact, propagation of ultrasound energy into the fluid flow in the studied micromixer changed the hydrodynamic and the forms of the flow pattern and caused to mixing enhancement. In general, from the CFD modeling results, it can be concluded that the applying ultrasound energy into the liquid medium causes an increase in the turbulences and mixing and consequently, improves the mass transfer rate within the micromixer.Keywords: CFD modeling, ultrasound, mixing, mass transfer
Procedia PDF Downloads 1832443 Quadratic Convective Flow of a Micropolar Fluid in a Non-Darcy Porous Medium with Convective Boundary Condition
Authors: Ch. Ramreddy, P. Naveen, D. Srinivasacharya
Abstract:
The objective of the present study is to investigate the effect of nonlinear temperature and concentration on the mixed convective flow of micropolar fluid over an inclined flat plate in a non-Darcy porous medium in the presence of convective boundary condition. In order to analyze all the essential features, the transformed nonlinear conservation equations are worked out numerically by spectral method. By insisting the comparison between vertical, horizontal and inclined plates, the physical quantities of the flow and its characteristics are exhibited graphically and quantitatively with various parameters. An increase in the coupling number and inclination of angle tend to decrease the skin friction, mass transfer rate and the reverse change is there in wall couple stress and heat transfer rate. The nominal effect on the wall couple stress and skin friction is encountered whereas the significant effect on the local heat and mass transfer rates are found for high enough values of Biot number.Keywords: convective boundary condition, micropolar fluid, non-darcy porous medium, non-linear convection, spectral method
Procedia PDF Downloads 2792442 Mobile Technology Use by People with Learning Disabilities: A Qualitative Study
Authors: Peter Williams
Abstract:
Mobile digital technology, in the form of smart phones, tablets, laptops and their accompanying functionality/apps etc., is becoming ever more used by people with Learning Disabilities (LD) - for entertainment, to communicate and socialize, and enjoy self-expression. Despite this, there has been very little research into the experiences of such technology by this cohort, it’s role in articulating personal identity and self-advocacy and the barriers encountered in negotiating technology in everyday life. The proposed talk describes research funded by the British Academy addressing these issues. It aims to explore: i) the experiences of people with LD in using mobile technology in their everyday lives – the benefits, in terms of entertainment, self-expression and socialising, and possible greater autonomy; and the barriers, such as accessibility or usability issues, privacy or vulnerability concerns etc. ii) how the technology, and in particular the software/apps and interfaces, can be improved to enable the greater access to entertainment, information, communication and other benefits it can offer. It is also hoped that results will inform parents, carers and other supporters regarding how they can use the technology with their charges. Rather than the project simply following the standard research procedure of gathering and analysing ‘data’ to which individual ‘research subjects’ have no access, people with Learning Disabilities (and their supporters) will help co-produce an accessible, annotated and hyperlinked living e-archive of their experiences. Involving people with LD as informants, contributors and, in effect, co-researchers will facilitate digital inclusion and empowerment. The project is working with approximately 80 adults of all ages who have ‘mild’ learning disabilities (people who are able to read basic texts and write simple sentences). A variety of methods is being used. Small groups of participants have engaged in simple discussions or storytelling about some aspect of technology (such as ‘when my phone saved me’ or ‘my digital photos’ etc.). Some individuals have been ‘interviewed’ at a PC, laptop or with a mobile device etc., and asked to demonstrate their usage and interests. Social media users have shown their Facebook pages, Pinterest uploads or other material – giving them an additional focus they have used to discuss their ‘digital’ lives. During these sessions, participants have recorded (or employed the researcher to record) their observations on to the e-archive. Parents, carers and other supporters are also being interviewed to explore their experiences of using mobile technology with the cohort, including any difficulties they have observed their charges having. The archive is supplemented with these observations. The presentation will outline the methods described above, highlighting some of the special considerations required when working inclusively with people with LD. It will describe some of the preliminary findings and demonstrate the e-archive with a commentary on the pages shown.Keywords: inclusive research, learning disabilities, methods, technology
Procedia PDF Downloads 2252441 Study of Self-Assembled Photocatalyst by Metal-Terpyridine Interactions in Polymer Network
Authors: Dong-Cheol Jeong, Jookyung Lee, Yu Hyeon Ro, Changsik Song
Abstract:
The design and synthesis of photo-active polymeric systems are important in regard to solar energy harvesting and utilization. In this study, we synthesized photo-active polymer, thin films, and polymer gel via iterative self-assembly using reversible metal-terpyridine (M-tpy) interactions. The photocurrent generated in the polymeric thin films with Zn(II) was much higher than those of other films. Apparent diffusion rate constant (kapp) was measured for the electron hopping process via potential-step chronoamperometry. As a result, the kapp for the polymeric thin films with Zn(II) was almost two times larger than those with other metal ions. We found that the anodic photocurrents increased with the inclusion of the multi-walled carbon nanotube (MWNT) layer. Inclusion of MWNTs can provide efficient electron transfer pathways. In addition, polymer gel based on interactions between terpyridine and metal ions was shown the photocatalytic activity. Interestingly, in the Mg-terpyridine gel, the reaction rate of benzylamine to imine photo-oxidative coupling was faster than Fe-terpyridine gel because the Mg-terpyridine gel has two steps electron transfer pathway but Fe-terpyridine gel has three steps electron transfer pathway.Keywords: terpyridine, photocatalyst, self-assebly, metal-ligand
Procedia PDF Downloads 3092440 Unsteady Heat and Mass Transfer in MHD Flow of Nanofluids over Stretching Sheet with a Non Uniform Heat Source/Sink
Authors: Bandari Shankar, Yohannes Yirga
Abstract:
In this paper, the problem of heat and mass transfer in unsteady MHD boundary-layer flow of nanofluids over stretching sheet with a non uniform heat source/sink is considered. The unsteadiness in the flow and temperature is caused by the time-dependent stretching velocity and surface temperature. The unsteady boundary layer equations are transformed to a system of non-linear ordinary differential equations and solved numerically using Keller box method. The velocity, temperature, and concentration profiles were obtained and utilized to compute the skin-friction coefficient, local Nusselt number, and local Sherwood number for different values of the governing parameters viz. solid volume fraction parameter, unsteadiness parameter, magnetic field parameter, Schmidt number, space-dependent and temperature-dependent parameters for heat source/sink. A comparison of the numerical results of the present study with previously published data revealed an excellent agreementKeywords: unsteady, heat and mass transfer, manetohydrodynamics, nanofluid, non-uniform heat source/sink, stretching sheet
Procedia PDF Downloads 2752439 Computational Study of Flow and Heat Transfer Characteristics of an Incompressible Fluid in a Channel Using Lattice Boltzmann Method
Authors: Imdat Taymaz, Erman Aslan, Kemal Cakir
Abstract:
The Lattice Boltzmann Method (LBM) is performed to computationally investigate the laminar flow and heat transfer of an incompressible fluid with constant material properties in a 2D channel with a built-in triangular prism. Both momentum and energy transport is modelled by the LBM. A uniform lattice structure with a single time relaxation rule is used. Interpolation methods are applied for obtaining a higher flexibility on the computational grid, where the information is transferred from the lattice structure to the computational grid by Lagrange interpolation. The flow is researched on for different Reynolds number, while Prandtl number is keeping constant as a 0.7. The results show how the presence of a triangular prism effects the flow and heat transfer patterns for the steady-state and unsteady-periodic flow regimes. As an evaluation of the accuracy of the developed LBM code, the results are compared with those obtained by a commercial CFD code. It is observed that the present LBM code produces results that have similar accuracy with the well-established CFD code, as an additionally, LBM needs much smaller CPU time for the prediction of the unsteady phonema.Keywords: laminar forced convection, lbm, triangular prism
Procedia PDF Downloads 3762438 Image Enhancement of Histological Slides by Using Nonlinear Transfer Function
Authors: D. Suman, B. Nikitha, J. Sarvani, V. Archana
Abstract:
Histological slides provide clinical diagnostic information about the subjects from the ancient times. Even with the advent of high resolution imaging cameras the image tend to have some background noise which makes the analysis complex. A study of the histological slides is done by using a nonlinear transfer function based image enhancement method. The method processes the raw, color images acquired from the biological microscope, which, in general, is associated with background noise. The images usually appearing blurred does not convey the intended information. In this regard, an enhancement method is proposed and implemented on 50 histological slides of human tissue by using nonlinear transfer function method. The histological image is converted into HSV color image. The luminance value of the image is enhanced (V component) because change in the H and S components could change the color balance between HSV components. The HSV image is divided into smaller blocks for carrying out the dynamic range compression by using a linear transformation function. Each pixel in the block is enhanced based on the contrast of the center pixel and its neighborhood. After the processing the V component, the HSV image is transformed into a colour image. The study has shown improvement of the characteristics of the image so that the significant details of the histological images were improved.Keywords: HSV space, histology, enhancement, image
Procedia PDF Downloads 3292437 Interconnected Market Hypothesis: A Conceptual Model of Individualistic, Information-Based Interconnectedness
Authors: James Kinsella
Abstract:
There is currently very little understanding of how the interaction between in- vestors, consumers, the firms (agents) affect a) the transmission of information, and b) the creation and transfer of value and wealth between these two groups. Employing scholarly ideas from multiple research areas (behavioural finance, emotional finance, econo-biology, and game theory) we develop a conceptual the- oretic model (the ‘bow-tie’ model) as a framework for considering this interaction. Our bow-tie model views information transfer, value and wealth creation, and transfer through the lens of “investor-consumer connection facilitated through the communicative medium of the ‘firm’ (agents)”. We confront our bow-tie model with theoretical and practical examples. Next, we utilise consumer and business confidence data alongside index data, to conduct quantitative analy- sis, to support our bow-tie concept, and to introduce the concept of “investor- consumer connection”. We highlight the importance of information persuasiveness, knowledge, and emotional categorization of characteristics in facilitating a communicative relationship between investors, consumers, and the firm (agents), forming academic and practical applications of the conceptual bow-tie model, alongside applications to wider instances, such as those seen within the Covid-19 pandemic.Keywords: behavioral finance, emotional finance, economy-biology, social mood
Procedia PDF Downloads 1282436 Effect of Packing Ratio on Fire Spread across Discrete Fuel Beds: An Experimental Analysis
Authors: Qianqian He, Naian Liu, Xiaodong Xie, Linhe Zhang, Yang Zhang, Weidong Yan
Abstract:
In the wild, the vegetation layer with exceptionally complex fuel composition and heterogeneous spatial distribution strongly affects the rate of fire spread (ROS) and fire intensity. Clarifying the influence of fuel bed structure on fire spread behavior is of great significance to wildland fire management and prediction. The packing ratio is one of the key physical parameters describing the property of the fuel bed. There is a threshold value of the packing ratio for ROS, but little is known about the controlling mechanism. In this study, to address this deficiency, a series of fire spread experiments were performed across a discrete fuel bed composed of some regularly arranged laser-cut cardboards, with constant wind speed and different packing ratios (0.0125-0.0375). The experiment aims to explore the relative importance of the internal and surface heat transfer with packing ratio. The dependence of the measured ROS on the packing ratio was almost consistent with the previous researches. The data of the radiative and total heat fluxes show that the internal heat transfer and surface heat transfer are both enhanced with increasing packing ratio (referred to as ‘Stage 1’). The trend agrees well with the variation of the flame length. The results extracted from the video show that the flame length markedly increases with increasing packing ratio in Stage 1. Combustion intensity is suggested to be increased, which, in turn, enhances the heat radiation. The heat flux data shows that the surface heat transfer appears to be more important than the internal heat transfer (fuel preheating inside the fuel bed) in Stage 1. On the contrary, the internal heat transfer dominates the fuel preheating mechanism when the packing ratio further increases (referred to as ‘Stage 2’) because the surface heat flux keeps almost stable with the packing ratio in Stage 2. As for the heat convection, the flow velocity was measured using Pitot tubes both inside and on the upper surface of the fuel bed during the fire spread. Based on the gas velocity distribution ahead of the flame front, it is found that the airflow inside the fuel bed is restricted in Stage 2, which can reduce the internal heat convection in theory. However, the analysis indicates not the influence of inside flow on convection and combustion, but the decreased internal radiation of per unit fuel is responsible for the decrease of ROS.Keywords: discrete fuel bed, fire spread, packing ratio, wildfire
Procedia PDF Downloads 1432435 Clusterization Probability in 14N Nuclei
Authors: N. Burtebayev, Sh. Hamada, Zh. Kerimkulov, D. K. Alimov, A. V. Yushkov, N. Amangeldi, A. N. Bakhtibaev
Abstract:
The main aim of the current work is to examine if 14N is candidate to be clusterized nuclei or not. In order to check this attendance, we have measured the angular distributions for 14N ion beam elastically scattered on 12C target nuclei at different low energies; 17.5, 21, and 24.5MeV which are close to the Coulomb barrier energy for 14N+12C nuclear system. Study of various transfer reactions could provide us with useful information about the attendance of nuclei to be in a composite form (core + valence). The experimental data were analyzed using two approaches; Phenomenological (Optical Potential) and semi-microscopic (Double Folding Potential). The agreement between the experimental data and the theoretical predictions is fairly good in the whole angular range.Keywords: deuteron transfer, elastic scattering, optical model, double folding, density distribution
Procedia PDF Downloads 3282434 Pulsed Vortex Flow in Low–Temperature Range Heat Pipes
Authors: A. V. Seryakov
Abstract:
The work presents part calculation and part experimental research of the intensification of heat-transfer characteristics of medium-temperature heat pipes. Presented is a vapour jet nozzle, similar to the Laval nozzle, surrounded by a capillary-porous insert along the full length of the heat pipe axial to the direction of heat flow. This increases velocity of the vapour flow, heat-transfer coefficient and pulse rate of two-phase vapour flow.Keywords: medium-temperature range heat pipes, capillary-porous insert, capillary steam injectors, Laval nozzle, condensation sensor
Procedia PDF Downloads 4392433 Analysis of Wire Coating for Heat Transfer Flow of a Viscoelastic PTT Fluid with Slip Boundary Conditions
Authors: Rehan Ali Shah, A. M. Siddiqui, T. Haroon
Abstract:
Slip boundary value problem in wire coating analysis with heat transfer is examined. The fluid is assumed to be viscoelastic PTT (Phan-Thien and Tanner). The rheological constitutive equation of PTT fluid model simulates various polymer melts. Therefore, the current consequences are valuable in a number of realistic situations. Effects of slip parameter γ as well as εDec^2 (viscoelastic index) on the axial velocity, shear stress, normal stress, average velocity, volume flux, thickness of coated wire, shear stress, force on the total wire and temperature distribution profiles have been investigated. A new direction is explored to analyze the flow with the slip parameter. The slippage at the boundaries plays an important role in thickness of coated wire. It is noted that as the slip parameter increases the flow rate and thickness of coated wire increases while, temperature distribution decreases. The results reduce to no slip when the slip parameter is vanished. Furthermore, we can obtain the results for Maxwell and viscous model by setting ε and λ equal to zero respectively.Keywords: wire coating, straight annular die, PTT fluid, heat transfer, slip boundary conditions
Procedia PDF Downloads 3632432 Effect of Copper Particle on the PD Characteristics in a Coaxial Duct with Mixture of SF6 (10%) and N2 (90%) Gases
Authors: B. Rajesh Kamath, J. Sundara Rajan, M. K. Veeraiah, M. Z. Kurian
Abstract:
Insulation performance of a gas insulated system is severely affected by particle contaminants. These metallic particles adversely affect the characteristics of insulating system. These particles can produce surface charges due to partial discharge activities. These particles which are free to move enhance the local electric fields. This paper deals with the influence of conducting particle placed in a co-axial duct on the discharge characteristics of gas mixtures. Co-axial duct placed in a high pressure chamber is used for the purpose. A gas pressure of 0.1, 0.2 and 0.3 MPa have been considered with a 10:90 SF6 and N2 gas mixtures. The 2D and 3D histograms of clean duct and duct with copper particle are discussed in this paper.Keywords: coaxial duct, gas insulated system, gas mixtures, metallic particle, partial discharges, histograms
Procedia PDF Downloads 4012431 Prediction of the Heat Transfer Characteristics of Tunnel Concrete
Authors: Seung Cho Yang, Jae Sung Lee, Se Hee Park
Abstract:
This study suggests the analysis method to predict the damages of tunnel concrete caused by fires. The result obtained from the analyses of concrete temperatures at a fire in a tunnel using ABAQUS was compared with the test result. After the reliability of the analysis method was verified, the temperatures of a tunnel at a real fire and those of concrete during the fire were estimated to predict fire damages. The temperatures inside the tunnel were estimated by FDS, a CFD model. It was deduced that the fire performance of tunnel lining and the fire damages of the structure at an actual fire could be estimated by the analysis method.Keywords: fire resistance, heat transfer, numerical analysis, tunnel fire
Procedia PDF Downloads 4382430 Heat Transfer Enhancement Due to the Optimal Porosity in Plate Heat Exchangers with Sinusoidal Plates
Authors: Hossein Shokouhmand, Seyyed Mostafa Saadat
Abstract:
In this paper, the effect of thermal dispersion on the performance of plate heat exchangers (PHEs) with sinusoidal plates is investigated. In this regard, the PHE is considered as a porous medium. The important property of a porous medium is porosity that is defined as the total fluid volume divided by the total volume occupied by the solid and fluid. A 2D array of parallel sinusoidal plates with laminar periodically developed forced convection and single-phase constant property flows and conduction in a homogenous solid phase in two directions is considered. The array of flows is counter and the flows heat capacities are equal. Numerical study of conjugate heat transfer and axial conduction in the solid phase with different plate thicknesses showed that there is an optimal porosity in which the efficiency of heat transfer is up to 4% more than the time when the porosity is near one. It is shown that the optimal porosity at zero angle of inclination depends both on Reynolds number and the aspect ratio. The optimal porosity increased while either the Reynolds number or waviness of plates increased.Keywords: plate heat exchanger, optimal porosity, efficiency, aspect ratio
Procedia PDF Downloads 4052429 Definite Article Errors and Effect of L1 Transfer
Authors: Bimrisha Mali
Abstract:
The present study investigates the type of errors English as a second language (ESL) learners produce using the definite article ‘the’. The participants were provided a questionnaire on the learner's ability test. The questionnaire consists of three cloze tests and two free composition tests. Each participant's response was received in the form of written data. A total of 78 participants from three government schools participated in the study. The participants are high-school students from Rural Assam. Assam is a north-eastern state of India. Their age ranged between 14-15. The medium of instruction and the communication among the students take place in the local language, i.e., Assamese. Pit Corder’s steps for conducting error analysis have been followed for the analysis procedure. Four types of errors were found (1) deletion of the definite article, (2) use of the definite article as modifiers as adjectives, (3) incorrect use of the definite article with singular proper nouns, (4) substitution of the definite article by the indefinite article ‘a’. Classifiers in Assamese that express definiteness is used with nouns, adjectives, and numerals. It is found that native language (L1) transfer plays a pivotal role in the learners’ errors. The analysis reveals the learners' inability to acquire the semantic connotation of definiteness in English due to native language (L1) interference.Keywords: definite article error, l1 transfer, error analysis, ESL
Procedia PDF Downloads 1222428 Study on Energy Transfer in Collapsible Soil During Laboratory Proctor Compaction Test
Authors: Amritanshu Sandilya, M. V. Shah
Abstract:
Collapsible soils such as loess are a common geotechnical challenge due to their potential to undergo sudden and severe settlement under certain loading conditions. The need for filling engineering to increase developing land has grown significantly in recent years, which has created several difficulties in managing soil strength and stability during compaction. Numerous engineering problems, such as roadbed subsidence and pavement cracking, have been brought about by insufficient fill strength. Therefore, strict control of compaction parameters is essential to reduce these distresses. Accurately measuring the degree of compaction, which is often represented by compactness is an important component of compaction control. For credible predictions of how collapsible soils will behave under complicated loading situations, the accuracy of laboratory studies is essential. Therefore, this study aims to investigate the energy transfer in collapsible soils during laboratory Proctor compaction tests to provide insights into how energy transfer can be optimized to achieve more accurate and reliable results in compaction testing. The compaction characteristics in terms of energy of loess soil have been studied at moisture content corresponding to dry of optimum, at the optimum and wet side of optimum and at different compaction energy levels. The hammer impact force (E0) and soil bottom force (E) were measured using an impact load cell mounted at the bottom of the compaction mould. The variation in energy consumption ratio (E/ E0) was observed and compared with the compaction curve of the soil. The results indicate that the plot of energy consumption ratio versus moisture content can serve as a reliable indicator of the compaction characteristics of the soil in terms of energy.Keywords: soil compaction, proctor compaction test, collapsible soil, energy transfer
Procedia PDF Downloads 922427 Synthesis and Characterization of Magnesium and Strontium Doped Sulphate-Hydroxyapatite
Authors: Ammar Z. Alshemary, Yi-Fan Goh, Rafaqat Hussain
Abstract:
Magnesium (Mg2+), strontium (Sr2+) and sulphate ions (SO42-) were successfully substituted into hydroxyapatite (Ca10-x-y MgxSry(PO4)6-z(SO4)zOH2-z) structure through ion exchange process at cationic and anionic sites. Mg2+and Sr2+ ions concentrations were varied between (0.00-0.10), keeping concentration of SO42- ions at z=0.05. [Mg (NO3)2], [Sr (NO3)2] and (Na2SO4) were used as Mg2+, Sr2+, and SO42- sources respectively. The synthesized white precipitate were subjected to heat treatment at 500ºC and finally characterized by X-ray diffraction (XRD) and Fourier Transform infra-red spectroscopy (FTIR). The results showed that the substitution of Mg2+, Sr2+ and SO42- ions into the HA lattice resulted in an increase in the broadness and reduction of XRD peaks. This confirmed that the crystallinity was reduced due to the substitution of ions. Similarly, FTIR result showed the effect of substitution on phosphate bands as well as exchange of hydroxyl group by SO42- ions to balance the charges on HA surface.Keywords: hydroxyapatite, substitution, characterization, XRD, FTIR
Procedia PDF Downloads 4442426 Mixed Convective Heat Transfer in Water-Based Al2O3 Nanofluid in Horizontal Rectangular Duct
Authors: Nur Irmawati, H. A. Mohammed
Abstract:
In the present study, mixed convection in a horizontal rectangular duct using Al2O3 is numerically investigated. The effects of different Rayleigh number, Reynolds number and radiation on flow and heat transfer characteristics were studied in detail. This study covers Rayleigh number in the range of 2×106≤Ra≤2×107 and Reynolds number in the range of 100≤Re≤1100. Results reveal that the Nusselt number increases as Reynolds and Rayleigh numbers increase. It was also found that the dimensionless temperature distribution increases as Rayleigh number increases.Keywords: numerical simulation, mixed convection, horizontal rectangular duct, nanofluids
Procedia PDF Downloads 3772425 Effect of Instructional Materials on Academic Performance in Heat Transfer Concept among Secondary School Physics Students in Fagge Educational Zone, Kano State, Nigeria
Authors: Shehu Aliyu
Abstract:
This study investigated the effects of instructional materials on academic achievement among senior secondary school students on the concept of Heat Transfer in physics in Fagge Educational Zone, Kano State Nigeria. The population consisted of SSII students from 10 public schools. Out of this, 87 students were randomly selected from which 24 males and 22 females formed the experimental group and 41 students as control group. A quasi experiential design with pretest and post-test for both the groups was adopted. Two research questions and null hypotheses guided the conduct of the study. The experimental group was exposed to teaching using instructional materials while the control group was taught using the normal lecture mode. Head Transfer Performance Test (HTPT) was used for data collection. The instrument was validated by experts in the science education field. A Pearson Product Moment Correlation (PPMC) was used to determine the reliability co-efficient and was found to be r=0.83. The research questions were answered using descriptive statistics while the hypotheses were tested at p≤ 0.05 level of significance using t-test. The result obtained from the data analysis showed that students in experimental group performed significantly better than those in the control group and that there was no significant difference in the academic performance between male and female students in the experimental group. Based on the findings of this study, it was recommended among others that the physics teachers should be receiving regular training on the importance of using instructional materials whether ready made or improved in their teaching.Keywords: heat transfer, physics, instructional materials, academic performance
Procedia PDF Downloads 1862424 Effect of the Applied Bias on Miniband Structures in Dimer Fibonacci Inas/Ga1-Xinxas Superlattices
Authors: Z. Aziz, S. Terkhi, Y. Sefir, R. Djelti, S. Bentata
Abstract:
The effect of a uniform electric field across multibarrier systems (InAs/InxGa1-xAs) is exhaustively explored by a computational model using exact airy function formalism and the transfer-matrix technique. In the case of biased DFHBSL structure a strong reduction in transmission properties was observed and the width of the miniband structure linearly decreases with the increase of the applied bias. This is due to the confinement of the states in the miniband structure, which becomes increasingly important (Wannier-Stark Effect).Keywords: dimer fibonacci height barrier superlattices, singular extended state, exact airy function, transfer matrix formalism
Procedia PDF Downloads 307