Search results for: body image
6057 Vitamin D Deficiency and Insufficiency in Postmenopausal Women with Obesity
Authors: Vladyslav Povoroznyuk, Anna Musiienko, Nataliia Dzerovych, Roksolana Povoroznyuk, Oksana Ivanyk
Abstract:
Deficiency and insufficiency of Vitamin D is a pandemic of the 21st century. Obesity patients have a lower level of vitamin D, but the literature data are contradictory. The purpose of this study is to investigate deficiency and insufficiency vitamin D in postmenopausal women with obesity. We examined 1007 women aged 50-89 years. Mean age was 65.74±8.61 years; mean height was 1.61±0.07 m; mean weight was 70.65±13.50 kg; mean body mass index was 27.27±4.86 kg/m2, and mean 25(OH) D levels in serum was 26.00±12.00 nmol/l. The women were divided into the following six groups depending on body mass index: I group – 338 women with normal body weight, II group – 16 women with insufficient body weight, III group – 382 women with excessive body weight, IV group – 199 women with obesity of class I, V group – 60 women with obesity of class II, and VI group – 12 women with obesity of class III. Level of 25(OH)D in serum was measured by means of an electrochemiluminescent method - Elecsys 2010 analyzer (Roche Diagnostics, Germany) and cobas test-systems. 34.4% of the examined women have deficiency of vitamin D and 31.4% insufficiency. Women with obesity of class I (23.60±10.24 ng/ml) and obese of class II (22.38±10.34 ng/ml) had significantly lower levels of 25 (OH) D compared to women with normal body weight (28.24±12.99 ng/ml), p=0.00003. In women with obesity, BMI significantly influences vitamin D level, and this influence does not depend on the season.Keywords: obesity, body mass index, vitamin D deficiency, vitamin D insufficiency, postmenopausal women, age
Procedia PDF Downloads 1806056 Combinatory Nutrition Supplementation: A Case of Synergy for Increasing Calcium Bioavailability
Authors: Daniel C. S. Lim, Eric Y. M. Yeo, W. Y. Tan
Abstract:
This paper presents an overview of how calcium interacts with the various essential nutrients within an environment of cellular and hormonal interactions for the purpose of increasing bioavailability to the human body. One example of such interactions can be illustrated with calcium homeostasis. This paper gives an in-depth discussion on the possible interactive permutations with various nutrients and factors leading to the promotion of calcium bioavailability to the body. The review hopes to provide further insights into how calcium supplement formulations can be improved to better influence its bioavailability in the human body.Keywords: bioavailability, environment of cellular and hormonal interactions, nutritional combinations, synergistic
Procedia PDF Downloads 4096055 Review of Full Body Imaging and High-Resolution Automatic 3D Mapping Systems for Medical Application
Authors: Jurijs Salijevs, Katrina Bolocko
Abstract:
The integration of artificial intelligence and neural networks has significantly changed full-body imaging and high-resolution 3D mapping systems, and this paper reviews research in these areas. With an emphasis on their use in the early identification of melanoma and other disorders, the goal is to give a wide perspective on the current status and potential future of these medical imaging technologies. Authors also examine methodologies such as machine learning and deep learning, seeking to identify efficient procedures that enhance diagnostic capabilities through the analysis of 3D body scans. This work aims to encourage further research and technological development to harness the full potential of AI in disease diagnosis.Keywords: artificial intelligence, neural networks, 3D scan, body scan, 3D mapping system, healthcare
Procedia PDF Downloads 1036054 Nation Branding: Guidelines for Identity Development and Image Perception of Thailand Brand in Health and Wellness Tourism
Authors: Jiraporn Prommaha
Abstract:
The purpose of this research is to study the development of Thailand Brand Identity and the perception of its image in order to find any guidelines for the identity development and the image perception of Thailand Brand in Health and Wellness Tourism. The paper is conducted through mixed methods research, both the qualitative and quantitative researches. The qualitative focuses on the in-depth interview of executive administrations from public and private sectors involved scholars and experts in identity and image issue, main 11 people. The quantitative research was done by the questionnaires to collect data from foreign tourists 800; Chinese tourists 400 and UK tourists 400. The technique used for this was the Exploratory Factor Analysis (EFA), this was to determine the relation between the structures of the variables by categorizing the variables into group by applying the Varimax rotation technique. This technique showed recognition the Thailand brand image related to the 2 countries, China and UK. The results found that guidelines for brand identity development and image perception of health and wellness tourism in Thailand; as following (1) Develop communication in order to understanding of the meaning of the word 'Health and beauty tourism' throughout the country, (2) Develop human resources as a national agenda, (3) Develop awareness rising in the conservation and preservation of natural resources of the country, (4) Develop the cooperation of all stakeholders in Health and Wellness Businesses, (5) Develop digital communication throughout the country and (6) Develop safety in Tourism.Keywords: brand identity, image perception, nation branding, health and wellness tourism, mixed methods research
Procedia PDF Downloads 2006053 Airborne SAR Data Analysis for Impact of Doppler Centroid on Image Quality and Registration Accuracy
Authors: Chhabi Nigam, S. Ramakrishnan
Abstract:
This paper brings out the analysis of the airborne Synthetic Aperture Radar (SAR) data to study the impact of Doppler centroid on Image quality and geocoding accuracy from the perspective of Stripmap mode of data acquisition. Although in Stripmap mode of data acquisition radar beam points at 90 degrees broad side (side looking), shift in the Doppler centroid is invariable due to platform motion. In-accurate estimation of Doppler centroid leads to poor image quality and image miss-registration. The effect of Doppler centroid is analyzed in this paper using multiple sets of data collected from airborne platform. Occurrences of ghost (ambiguous) targets and their power levels have been analyzed that impacts appropriate choice of PRF. Effect of aircraft attitudes (roll, pitch and yaw) on the Doppler centroid is also analyzed with the collected data sets. Various stages of the RDA (Range Doppler Algorithm) algorithm used for image formation in Stripmap mode, range compression, Doppler centroid estimation, azimuth compression, range cell migration correction are analyzed to find the performance limits and the dependence of the imaging geometry on the final image. The ability of Doppler centroid estimation to enhance the imaging accuracy for registration are also illustrated in this paper. The paper also tries to bring out the processing of low squint SAR data, the challenges and the performance limits imposed by the imaging geometry and the platform dynamics on the final image quality metrics. Finally, the effect on various terrain types, including land, water and bright scatters is also presented.Keywords: ambiguous target, Doppler Centroid, image registration, Airborne SAR
Procedia PDF Downloads 2186052 Underwater Image Enhancement and Reconstruction Using CNN and the MultiUNet Model
Authors: Snehal G. Teli, R. J. Shelke
Abstract:
CNN and MultiUNet models are the framework for the proposed method for enhancing and reconstructing underwater images. Multiscale merging of features and regeneration are both performed by the MultiUNet. CNN collects relevant features. Extensive tests on benchmark datasets show that the proposed strategy performs better than the latest methods. As a result of this work, underwater images can be represented and interpreted in a number of underwater applications with greater clarity. This strategy will advance underwater exploration and marine research by enhancing real-time underwater image processing systems, underwater robotic vision, and underwater surveillance.Keywords: convolutional neural network, image enhancement, machine learning, multiunet, underwater images
Procedia PDF Downloads 756051 The Role of Facades in Conserving the Image of the City
Authors: Hemadri Raut
Abstract:
The city is a blend of the possible interactions of the built form, open spaces and their spatial organization layout in a geographical area to obtain an integrated pattern and environment with building facades being a dominant figure in the body of a city. Façades of each city have their own inherent properties responsive to the human behaviour, weather conditions, safety factors, material availability and composition along with the necessary aesthetics in coordination with adjacent building facades. Cities experience a huge transformation in the culture, lifestyle; socioeconomic conditions and technology nowadays because of the increasing population, urban sprawl, industrialization, contemporary architectural style, post-disaster consequences, war reconstructions, etc. This leads to the loss of the actual identity and architectural character of the city which in turn induces chaos and turbulence in the city. This paper attempts to identify and learn from the traditional elements that would make us more aware of the unique identity of the local communities in a city. It further studies the architectural style, color, shape, and design techniques through the case studies of contextual cities. The work focuses on the observation and transformation of the image of the city through these considerations in the designing of the facades to achieve the reconciliation of the people with urban spaces.Keywords: building facades, city, community, heritage, identity, transformation, urban
Procedia PDF Downloads 2166050 Low-Cost Image Processing System for Evaluating Pavement Surface Distress
Authors: Keerti Kembhavi, M. R. Archana, V. Anjaneyappa
Abstract:
Most asphalt pavement condition evaluation use rating frameworks in which asphalt pavement distress is estimated by type, extent, and severity. Rating is carried out by the pavement condition rating (PCR), which is tedious and expensive. This paper presents the development of a low-cost technique for image pavement distress analysis that permits the identification of pothole and cracks. The paper explores the application of image processing tools for the detection of potholes and cracks. Longitudinal cracking and pothole are detected using Fuzzy-C- Means (FCM) and proceeded with the Spectral Theory algorithm. The framework comprises three phases, including image acquisition, processing, and extraction of features. A digital camera (Gopro) with the holder is used to capture pavement distress images on a moving vehicle. FCM classifier and Spectral Theory algorithms are used to compute features and classify the longitudinal cracking and pothole. The Matlab2016Ra Image preparing tool kit utilizes performance analysis to identify the viability of pavement distress on selected urban stretches of Bengaluru city, India. The outcomes of image evaluation with the utilization semi-computerized image handling framework represented the features of longitudinal crack and pothole with an accuracy of about 80%. Further, the detected images are validated with the actual dimensions, and it is seen that dimension variability is about 0.46. The linear regression model y=1.171x-0.155 is obtained using the existing and experimental / image processing area. The R2 correlation square obtained from the best fit line is 0.807, which is considered in the linear regression model to be ‘large positive linear association’.Keywords: crack detection, pothole detection, spectral clustering, fuzzy-c-means
Procedia PDF Downloads 1816049 The Influence of Cage versus Floor Pen Management of Broilers
Authors: Hanan Al-Khalifa
Abstract:
There has been an interest in raising poultry in environmentally controlled cages rather than on floor, because poultry raised on floor are more susceptible to environmental stress including pathogens and heat stress. A study was conducted to investigate the effect of managerial environmental conditions on body weight gain of Cobb 500 broiler breed. Broilers were raised in cages and on floor in two separate rooms. Body weight at different ages of the broilers was monitored. It was found that body weight at slaughter age (5weeks) for boilers raised in batteries were significantly higher than those raised on the floor.Keywords: broilers, cages, floor, poultry
Procedia PDF Downloads 4166048 The Influence of Self-Concept on the Tendency of Body Dysmorphic Disorder of Beauty Salon and Fitness Centre Customers in Malang
Authors: Yunita Kurniawati
Abstract:
The aim of the research is to understand the influence of self concept on the tendency for body dysmorphic disorder among beauty salon and fitness centre customers in Malang. Subjects in this study amounted to 200 of beauty salon and fitness centre customers in Malang. Subjects completed a self-concept scale and the tendency of body dysmorphic scale. This study was analyzed using simple linear regression. The result shows that there are 14% influence of self concept on the tendency of body dysmorphic disorder among customers of beauty salon and fitness centre in Malang.Keywords: self concept, tendency of body dysmorphic disorder, beauty salon and fitness centre customers, Malang
Procedia PDF Downloads 4216047 NANCY: Combining Adversarial Networks with Cycle-Consistency for Robust Multi-Modal Image Registration
Authors: Mirjana Ruppel, Rajendra Persad, Amit Bahl, Sanja Dogramadzi, Chris Melhuish, Lyndon Smith
Abstract:
Multimodal image registration is a profoundly complex task which is why deep learning has been used widely to address it in recent years. However, two main challenges remain: Firstly, the lack of ground truth data calls for an unsupervised learning approach, which leads to the second challenge of defining a feasible loss function that can compare two images of different modalities to judge their level of alignment. To avoid this issue altogether we implement a generative adversarial network consisting of two registration networks GAB, GBA and two discrimination networks DA, DB connected by spatial transformation layers. GAB learns to generate a deformation field which registers an image of the modality B to an image of the modality A. To do that, it uses the feedback of the discriminator DB which is learning to judge the quality of alignment of the registered image B. GBA and DA learn a mapping from modality A to modality B. Additionally, a cycle-consistency loss is implemented. For this, both registration networks are employed twice, therefore resulting in images ˆA, ˆB which were registered to ˜B, ˜A which were registered to the initial image pair A, B. Thus the resulting and initial images of the same modality can be easily compared. A dataset of liver CT and MRI was used to evaluate the quality of our approach and to compare it against learning and non-learning based registration algorithms. Our approach leads to dice scores of up to 0.80 ± 0.01 and is therefore comparable to and slightly more successful than algorithms like SimpleElastix and VoxelMorph.Keywords: cycle consistency, deformable multimodal image registration, deep learning, GAN
Procedia PDF Downloads 1316046 Blue Whale Body Condition from Photographs Taken over a 14-Year Period in the North East Pacific: Annual Variations and Connection to Measures of Ocean Productivity
Authors: Rachel Wachtendonk, John Calambokidis, Kiirsten Flynn
Abstract:
Large marine mammals can serve as an indicator of the overall state of the environment due to their long lifespan and apex position in marine food webs. Reductions in prey, driven by changes in environmental conditions can have resounding impacts on the trophic system as a whole; this can manifest in reduced fat stores that are visible on large whales. Poor health can lead to reduced survivorship and fitness, both of which can be detrimental to a recovering population. A non-invasive technique was used for monitoring blue whale health and for seeing if it changes with ocean conditions. Digital photographs of blue whales taken in the NE Pacific by Cascadia Research and collaborators from 2005-2018 (n=3,545) were scored for overall body condition based on visible vertebrae and body shape on a scale of 0-3 where a score of 0 indicated best body condition and a score of 3 indicated poorest. The data was analyzed to determine if there were patterns in the health of whales across years and whether overall poor health was related to oceanographic conditions and predictors of prey abundance on the California coast. The year was a highly significant factor in body condition (Chi-Square, p<0.001). The proportion of whales showing poor body condition (scores 2 & 3) overall was 33% but by year varied widely from a low of 18% (2008) to a high of 55% (2015). The only two years where >50% of animals had poor body condition were 2015 and 2017 (no other year was above 45%). The 2015 maximum proportion of whales in poor body condition coincide with the marine heat wave that affected the NE Pacific 2014-16 and impacted other whale populations. This indicates that the scoring method was an effective way to evaluate blue whale health and how they respond to a changing ocean.Keywords: blue whale, body condition, environmental variability, photo-identification
Procedia PDF Downloads 2046045 Heuristic Spatial-Spectral Hyperspectral Image Segmentation Using Bands Quartile Box Plot Profiles
Authors: Mohamed A. Almoghalis, Osman M. Hegazy, Ibrahim F. Imam, Ali H. Elbastawessy
Abstract:
This paper presents a new hyperspectral image segmentation scheme with respect to both spatial and spectral contexts. The scheme uses the 8-pixels spatial pattern to build a weight structure that holds the number of outlier bands for each pixel among its neighborhood windows in different directions. The number of outlier bands for a pixel is obtained using bands quartile box plots profile among spatial 8-pixels pattern windows. The quartile box plot weight structure represents the spatial-spectral context in the image. Instead of starting segmentation process by single pixels, the proposed methodology starts by pixels groups that proved to share the same spectral features with respect to their spatial context. As a result, the segmentation scheme starts with Jigsaw pieces that build a mosaic image. The following step builds a model for each Jigsaw piece in the mosaic image. Each Jigsaw piece will be merged with another Jigsaw piece using KNN applied to their bands' quartile box plots profiles. The scheme iterates till required number of segments reached. Experiments use two data sets obtained from Earth Observer 1 (EO-1) sensor for Egypt and France. Initial results qualitative analysis showed encouraging results compared with ground truth. Quantitative analysis for the results will be included in the final paper.Keywords: hyperspectral image segmentation, image processing, remote sensing, box plot
Procedia PDF Downloads 6056044 Narratives of the Body: Significance and Meanings of Tattoos of Selected Filipino LGBTs
Authors: Generoso Pamittan Jr., Freddielyn Pontemayor
Abstract:
Through the years, the purpose of tattoos in the Philippines, has changed from being tribal and traditional-ritualistic to personal and individualistic. Hence it is interesting to know the stories and meanings behind tattoos of particular individuals. Using the frames of Anabela Pereira’s concept of ‘body art’ as ‘visual language’, this paper scrutinizes the tattoos of selected Filipino LGBTs to (1) unfold the stories behind their body symbols, (2) describe the meanings and significance of their tattoos, and (3) determine the dominant themes that are common among the tattoos of the selected LGBTs. Semi-structured interviews were conducted with selected respondents to obtain in-depth information about the tattoos. Photos of tattoos were also taken, with respondents’ consent, to describe and analyze the details of tattoos’ patterns/ designs. Based on the interviews and analysis, most of the immediate relatives of the selected LGBTs were initially against the idea of having tattoos because of social stigma. However, the LGBT respondents considered their tattoos as symbols of their penchant for something (arts, cooking, etc.), expression of their personality and life’s aspirations, assertion of their identity amidst heteronormative tendencies and symbols that constantly remind them of the significant people and milestones in their lives.Keywords: body art, body tattoo, gender, identity, LGBT, tattoo
Procedia PDF Downloads 1896043 A Comparison Study: Infant and Children’s Clothing Size Charts in South Korea and UK
Authors: Hye-Won Lim, Tom Cassidy, Tracy Cassidy
Abstract:
Infant and children’s body shapes are changing constantly while they are growing up into adults and are also distinctive physically between countries. For this reason, optimum size charts which can represent body sizes and shapes of infants and children are required. In this study, investigations of current size charts in South Korea and UK (n=50 each) were conducted for understanding and figuring out the sizing perspectives of the clothing manufacturers. The size charts of the two countries were collected randomly from online shopping websites and those size charts’ average measurements were compared with both national sizing surveys (SizeKorea and Shape GB). The size charts were also classified by age, gender, clothing type, fitting, and other factors. In addition, the key measurement body parts of size charts of each country were determined and those will be suggested for new size charts and sizing system development.Keywords: infant clothing, children’s clothing, body shapes, size charts
Procedia PDF Downloads 3176042 Neighborhood Graph-Optimized Preserving Discriminant Analysis for Image Feature Extraction
Authors: Xiaoheng Tan, Xianfang Li, Tan Guo, Yuchuan Liu, Zhijun Yang, Hongye Li, Kai Fu, Yufang Wu, Heling Gong
Abstract:
The image data collected in reality often have high dimensions, and it contains noise and redundant information. Therefore, it is necessary to extract the compact feature expression of the original perceived image. In this process, effective use of prior knowledge such as data structure distribution and sample label is the key to enhance image feature discrimination and robustness. Based on the above considerations, this paper proposes a local preserving discriminant feature learning model based on graph optimization. The model has the following characteristics: (1) Locality preserving constraint can effectively excavate and preserve the local structural relationship between data. (2) The flexibility of graph learning can be improved by constructing a new local geometric structure graph using label information and the nearest neighbor threshold. (3) The L₂,₁ norm is used to redefine LDA, and the diagonal matrix is introduced as the scale factor of LDA, and the samples are selected, which improves the robustness of feature learning. The validity and robustness of the proposed algorithm are verified by experiments in two public image datasets.Keywords: feature extraction, graph optimization local preserving projection, linear discriminant analysis, L₂, ₁ norm
Procedia PDF Downloads 1496041 Comparative Ethnography and Urban Health: A Multisite Study on Obesogenic Cities
Authors: Carlos Rios Llamas
Abstract:
Urban health challenges, like the obesity epidemic, need to be studied from a dialogue between different disciplines and geographical conditions. Public health uses quantitative analysis and local samples, but qualitative data and multisite analysis would help to better understand how obesity has become a health problem. In the last decades, obesity rates have increased in most of the countries, especially in the Western World. Concerned about the problem, the American Medical Association has recently voted obesity as a disease. Suddenly, a ‘war on obesity’ attracted scientists from different disciplines to explore various ways to control and even reverse the trends. Medical sciences have taken the advance with quantitative methodologies focused on individual behaviors. Only a few scientist have extended their studies to the environment where obesity is produced as social risk, and less of them have taken into consideration the political and cultural aspects. This paper presents a multisite ethnography in South Bronx, USA, La Courneuve, France, and Lomas del Sur, Mexico, where obesity rates are as relevant as urban degradation. The comparative ethnography offers a possibility to unveil the mechanisms producing health risks from the urban tissue. The analysis considers three main categories: 1) built environment and access to food and physical activity, 2) biocultural construction of the healthy body, 3) urban inequalities related to health and body size. Major findings from a comparative ethnography on obesogenic environments, refer to the anthropological values related to food and body image, as well as the multidimensional oppression expressed in fat people who live in stigmatized urban zones. At the end, obesity, like many other diseases, is the result of political and cultural constructions structured in urbanization processes.Keywords: comparative ethnography, urban health, obesogenic cities, biopolitics
Procedia PDF Downloads 2466040 Dark and Bright Envelopes for Dehazing Images
Authors: Zihan Yu, Kohei Inoue, Kiichi Urahama
Abstract:
We present a method for de-hazing images. A dark envelope image is derived with the bilateral minimum filter and a bright envelope is derived with the bilateral maximum filter. The ambient light and transmission of the scene are estimated from these two envelope images. An image without haze is reconstructed from the estimated ambient light and transmission.Keywords: image dehazing, bilateral minimum filter, bilateral maximum filter, local contrast
Procedia PDF Downloads 2636039 ICanny: CNN Modulation Recognition Algorithm
Authors: Jingpeng Gao, Xinrui Mao, Zhibin Deng
Abstract:
Aiming at the low recognition rate on the composite signal modulation in low signal to noise ratio (SNR), this paper proposes a modulation recognition algorithm based on ICanny-CNN. Firstly, the radar signal is transformed into the time-frequency image by Choi-Williams Distribution (CWD). Secondly, we propose an image processing algorithm using the Guided Filter and the threshold selection method, which is combined with the hole filling and the mask operation. Finally, the shallow convolutional neural network (CNN) is combined with the idea of the depth-wise convolution (Dw Conv) and the point-wise convolution (Pw Conv). The proposed CNN is designed to complete image classification and realize modulation recognition of radar signal. The simulation results show that the proposed algorithm can reach 90.83% at 0dB and 71.52% at -8dB. Therefore, the proposed algorithm has a good classification and anti-noise performance in radar signal modulation recognition and other fields.Keywords: modulation recognition, image processing, composite signal, improved Canny algorithm
Procedia PDF Downloads 1916038 Using Fuzzy Logic Decision Support System to Predict the Lifted Weight for Students at Weightlifting Class
Authors: Ahmed Abdulghani Taha, Mohammad Abdulghani Taha
Abstract:
This study aims at being acquainted with the using the body fat percentage (%BF) with body Mass Index (BMI) as input parameters in fuzzy logic decision support system to predict properly the lifted weight for students at weightlifting class lift according to his abilities instead of traditional manner. The sample included 53 male students (age = 21.38 ± 0.71 yrs, height (Hgt) = 173.17 ± 5.28 cm, body weight (BW) = 70.34 ± 7.87.6 kg, Body mass index (BMI) 23.42 ± 2.06 kg.m-2, fat mass (FM) = 9.96 ± 3.15 kg and fat percentage (% BF) = 13.98 ± 3.51 %.) experienced the weightlifting class as a credit and has variance at BW, Hgt and BMI and FM. BMI and % BF were taken as input parameters in FUZZY logic whereas the output parameter was the lifted weight (LW). There were statistical differences between LW values before and after using fuzzy logic (Diff 3.55± 2.21, P > 0.001). The percentages of the LW categories proposed by fuzzy logic were 3.77% of students to lift 1.0 fold of their bodies; 50.94% of students to lift 0.95 fold of their bodies; 33.96% of students to lift 0.9 fold of their bodies; 3.77% of students to lift 0.85 fold of their bodies and 7.55% of students to lift 0.8 fold of their bodies. The study concluded that the characteristic changes in body composition experienced by students when undergoing weightlifting could be utilized side by side with the Fuzzy logic decision support system to determine the proper workloads consistent with the abilities of students.Keywords: fuzzy logic, body mass index, body fat percentage, weightlifting
Procedia PDF Downloads 4296037 Image Analysis for Obturator Foramen Based on Marker-controlled Watershed Segmentation and Zernike Moments
Authors: Seda Sahin, Emin Akata
Abstract:
Obturator foramen is a specific structure in pelvic bone images and recognition of it is a new concept in medical image processing. Moreover, segmentation of bone structures such as obturator foramen plays an essential role for clinical research in orthopedics. In this paper, we present a novel method to analyze the similarity between the substructures of the imaged region and a hand drawn template, on hip radiographs to detect obturator foramen accurately with integrated usage of Marker-controlled Watershed segmentation and Zernike moment feature descriptor. Marker-controlled Watershed segmentation is applied to seperate obturator foramen from the background effectively. Zernike moment feature descriptor is used to provide matching between binary template image and the segmented binary image for obturator foramens for final extraction. The proposed method is tested on randomly selected 100 hip radiographs. The experimental results represent that our method is able to segment obturator foramens with % 96 accuracy.Keywords: medical image analysis, segmentation of bone structures on hip radiographs, marker-controlled watershed segmentation, zernike moment feature descriptor
Procedia PDF Downloads 4346036 Heat Sink Optimization for a High Power Wearable Thermoelectric Module
Authors: Zohreh Soleimani, Sally Salome Shahzad, Stamatis Zoras
Abstract:
As a result of current energy and environmental issues, the human body is known as one of the promising candidate for converting wasted heat to electricity (Seebeck effect). Thermoelectric generator (TEG) is one of the most prevalent means of harvesting body heat and converting that to eco-friendly electrical power. However, the uneven distribution of the body heat and its curvature geometry restrict harvesting adequate amount of energy. To perfectly transform the heat radiated by the body into power, the most direct solution is conforming the thermoelectric generators (TEG) with the arbitrary surface of the body and increase the temperature difference across the thermoelectric legs. Due to this, a computational survey through COMSOL Multiphysics is presented in this paper with the main focus on the impact of integrating a flexible wearable TEG with a corrugated shaped heat sink on the module power output. To eliminate external parameters (temperature, air flow, humidity), the simulations are conducted within indoor thermal level and when the wearer is stationary. The full thermoelectric characterization of the proposed TEG fabricated by a wavy shape heat sink has been computed leading to a maximum power output of 25µW/cm2 at a temperature gradient nearly 13°C. It is noteworthy that for the flexibility of the proposed TEG and heat sink, the applicability and efficiency of the module stay high even on the curved surfaces of the body. As a consequence, the results demonstrate the superiority of such a TEG to the most state of the art counterparts fabricated with no heat sink and offer a new train of thought for the development of self-sustained and unobtrusive wearable power suppliers which generate energy from low grade dissipated heat from the body.Keywords: device simulation, flexible thermoelectric module, heat sink, human body heat
Procedia PDF Downloads 1516035 Body Composition Analyser Parameters and Their Comparison with Manual Measurements
Authors: I. Karagjozova, B. Dejanova, J. Pluncevic, S. Petrovska, V. Antevska, L. Todorovska
Abstract:
Introduction: Medical checking assessment is important in sports medicine. To follow the health condition in subjects who perform sports, body composition parameters, such as intracellular water, extracellular water, protein and mineral content, muscle and fat mass might be useful. The aim of the study was to show available parameters and to compare them to manual assessment. Material and methods: A number of 20 subjects (14 male and 6 female) at age of 20±2 years were determined in the study, 5 performed recreational sports, while others were professional ones. The mean height was 175±7 cm, the mean weight was 72±9 cm, and the body mass index (BMI) was 23±2 kg/m2. The measured compartments were as following: intracellular water (IW), extracellular water (EW), protein component (PC), mineral component (MC), skeletal muscle mass (SMM) and body fat mass (BFM). Lean balance were examined for right and left arm (LA), trunk (T), right leg (RL) and left leg (LL). The comparison was made between the calculation derived by manual made measurements, using Matejka formula and parameters obtained by body composition analyzer (BCA) - Inbody 720 BCA Biospace. Used parameters for the comparison were muscle mass (SMM), body fat mass (BFM). Results: BCA obtained values were for: IW - 22.6±5L, EW - 13.5±2 L, PC - 9.8±0.9 kg, MC - 3.5±0.3, SMM - 27±3 kg, BFM - 13.8±4 kg. Lean balance showed following values for: RA - 2.45±0.2 kg, LA - 2.37±0.4, T - 20.9±5 kg, RL - 7.43±1 kg, and LL - 7.49 ±1.5 kg. SMM showed statistical difference between manual obtained value, 51±01% to BCA parameter 45.5±3% (p<0.001). Manual obtained values for BFM was lower (17±2%) than BCA obtained one, 19.5±5.9% (p<0.02). Discussion: The obtained results showed appropriate values for the examined age, regarding to all examined parameters which contribute to overview the body compartments, important for sport performing. Due to comparison between the manual and BCA assessment, we may conclude that manual measurements may differ from the certain ones, which is confirmed by statistical significance.Keywords: athletes, body composition, bio electrical impedance, sports medicine
Procedia PDF Downloads 4776034 Crop Classification using Unmanned Aerial Vehicle Images
Authors: Iqra Yaseen
Abstract:
One of the well-known areas of computer science and engineering, image processing in the context of computer vision has been essential to automation. In remote sensing, medical science, and many other fields, it has made it easier to uncover previously undiscovered facts. Grading of diverse items is now possible because of neural network algorithms, categorization, and digital image processing. Its use in the classification of agricultural products, particularly in the grading of seeds or grains and their cultivars, is widely recognized. A grading and sorting system enables the preservation of time, consistency, and uniformity. Global population growth has led to an increase in demand for food staples, biofuel, and other agricultural products. To meet this demand, available resources must be used and managed more effectively. Image processing is rapidly growing in the field of agriculture. Many applications have been developed using this approach for crop identification and classification, land and disease detection and for measuring other parameters of crop. Vegetation localization is the base of performing these task. Vegetation helps to identify the area where the crop is present. The productivity of the agriculture industry can be increased via image processing that is based upon Unmanned Aerial Vehicle photography and satellite. In this paper we use the machine learning techniques like Convolutional Neural Network, deep learning, image processing, classification, You Only Live Once to UAV imaging dataset to divide the crop into distinct groups and choose the best way to use it.Keywords: image processing, UAV, YOLO, CNN, deep learning, classification
Procedia PDF Downloads 1076033 Maximum Entropy Based Image Segmentation of Human Skin Lesion
Authors: Sheema Shuja Khattak, Gule Saman, Imran Khan, Abdus Salam
Abstract:
Image segmentation plays an important role in medical imaging applications. Therefore, accurate methods are needed for the successful segmentation of medical images for diagnosis and detection of various diseases. In this paper, we have used maximum entropy to achieve image segmentation. Maximum entropy has been calculated using Shannon, Renyi, and Tsallis entropies. This work has novelty based on the detection of skin lesion caused by the bite of a parasite called Sand Fly causing the disease is called Cutaneous Leishmaniasis.Keywords: shannon, maximum entropy, Renyi, Tsallis entropy
Procedia PDF Downloads 4636032 Perceptual Image Coding by Exploiting Internal Generative Mechanism
Authors: Kuo-Cheng Liu
Abstract:
In the perceptual image coding, the objective is to shape the coding distortion such that the amplitude of distortion does not exceed the error visibility threshold, or to remove perceptually redundant signals from the image. While most researches focus on color image coding, the perceptual-based quantizer developed for luminance signals are always directly applied to chrominance signals such that the color image compression methods are inefficient. In this paper, the internal generative mechanism is integrated into the design of a color image compression method. The internal generative mechanism working model based on the structure-based spatial masking is used to assess the subjective distortion visibility thresholds that are visually consistent to human eyes better. The estimation method of structure-based distortion visibility thresholds for color components is further presented in a locally adaptive way to design quantization process in the wavelet color image compression scheme. Since the lowest subband coefficient matrix of images in the wavelet domain preserves the local property of images in the spatial domain, the error visibility threshold inherent in each coefficient of the lowest subband for each color component is estimated by using the proposed spatial error visibility threshold assessment. The threshold inherent in each coefficient of other subbands for each color component is then estimated in a local adaptive fashion based on the distortion energy allocation. By considering that the error visibility thresholds are estimated using predicting and reconstructed signals of the color image, the coding scheme incorporated with locally adaptive perceptual color quantizer does not require side information. Experimental results show that the entropies of three color components obtained by using proposed IGM-based color image compression scheme are lower than that obtained by using the existing color image compression method at perceptually lossless visual quality.Keywords: internal generative mechanism, structure-based spatial masking, visibility threshold, wavelet domain
Procedia PDF Downloads 2486031 Basic Study of Mammographic Image Magnification System with Eye-Detector and Simple EEG Scanner
Authors: Aika Umemuro, Mitsuru Sato, Mizuki Narita, Saya Hori, Saya Sakurai, Tomomi Nakayama, Ayano Nakazawa, Toshihiro Ogura
Abstract:
Mammography requires the detection of very small calcifications, and physicians search for microcalcifications by magnifying the images as they read them. The mouse is necessary to zoom in on the images, but this can be tiring and distracting when many images are read in a single day. Therefore, an image magnification system combining an eye-detector and a simple electroencephalograph (EEG) scanner was devised, and its operability was evaluated. Two experiments were conducted in this study: the measurement of eye-detection error using an eye-detector and the measurement of the time required for image magnification using a simple EEG scanner. Eye-detector validation showed that the mean distance of eye-detection error ranged from 0.64 cm to 2.17 cm, with an overall mean of 1.24 ± 0.81 cm for the observers. The results showed that the eye detection error was small enough for the magnified area of the mammographic image. The average time required for point magnification in the verification of the simple EEG scanner ranged from 5.85 to 16.73 seconds, and individual differences were observed. The reason for this may be that the size of the simple EEG scanner used was not adjustable, so it did not fit well for some subjects. The use of a simple EEG scanner with size adjustment would solve this problem. Therefore, the image magnification system using the eye-detector and the simple EEG scanner is useful.Keywords: EEG scanner, eye-detector, mammography, observers
Procedia PDF Downloads 2156030 Effect of Playing Football or Body Building on Measurements of Forward Head Posture
Authors: Mohamed Gomaa Mohamed
Abstract:
Type of study: Observational cross section study. Background and purpose: Forward head posture (FHP) is a common sagittal faulty posture with anterior head translation relative to vertical posture line. FHP related to temporomandibular joint dysfunctions, neck pain and headache. Sports persons usually overuse one side of the body in training and playing leading to postural imbalance, yet the effect of playing football or bodybuilding on measurements of FHP has never been studied. Participants: Thirty six subjects divided into 3 groups of 12 football players, 12 body builders and 12 students. Method: FHP severity was assessed by measuring the craniovertebral (CVA) and gaze angles, using the photogrammetric method. Photos were taken from right side of subjects while assuming standing position. Analysis of variance was used to assess angles difference between the three groups. Results: No significant differences were found in CVA and gaze angles between the three groups (P > 0.05). Conclusion: Playing football or body building doesn't impose significant FHP.Keywords: craniovertebral angle, gaze angle, football, body building
Procedia PDF Downloads 4166029 Automatic Near-Infrared Image Colorization Using Synthetic Images
Authors: Yoganathan Karthik, Guhanathan Poravi
Abstract:
Colorizing near-infrared (NIR) images poses unique challenges due to the absence of color information and the nuances in light absorption. In this paper, we present an approach to NIR image colorization utilizing a synthetic dataset generated from visible light images. Our method addresses two major challenges encountered in NIR image colorization: accurately colorizing objects with color variations and avoiding over/under saturation in dimly lit scenes. To tackle these challenges, we propose a Generative Adversarial Network (GAN)-based framework that learns to map NIR images to their corresponding colorized versions. The synthetic dataset ensures diverse color representations, enabling the model to effectively handle objects with varying hues and shades. Furthermore, the GAN architecture facilitates the generation of realistic colorizations while preserving the integrity of dimly lit scenes, thus mitigating issues related to over/under saturation. Experimental results on benchmark NIR image datasets demonstrate the efficacy of our approach in producing high-quality colorizations with improved color accuracy and naturalness. Quantitative evaluations and comparative studies validate the superiority of our method over existing techniques, showcasing its robustness and generalization capability across diverse NIR image scenarios. Our research not only contributes to advancing NIR image colorization but also underscores the importance of synthetic datasets and GANs in addressing domain-specific challenges in image processing tasks. The proposed framework holds promise for various applications in remote sensing, medical imaging, and surveillance where accurate color representation of NIR imagery is crucial for analysis and interpretation.Keywords: computer vision, near-infrared images, automatic image colorization, generative adversarial networks, synthetic data
Procedia PDF Downloads 436028 Using Electrical Impedance Tomography to Control a Robot
Authors: Shayan Rezvanigilkolaei, Shayesteh Vefaghnematollahi
Abstract:
Electrical impedance tomography is a non-invasive medical imaging technique suitable for medical applications. This paper describes an electrical impedance tomography device with the ability to navigate a robotic arm to manipulate a target object. The design of the device includes various hardware and software sections to perform medical imaging and control the robotic arm. In its hardware section an image is formed by 16 electrodes which are located around a container. This image is used to navigate a 3DOF robotic arm to reach the exact location of the target object. The data set to form the impedance imaging is obtained by having repeated current injections and voltage measurements between all electrode pairs. After performing the necessary calculations to obtain the impedance, information is transmitted to the computer. This data is fed and then executed in MATLAB which is interfaced with EIDORS (Electrical Impedance Tomography Reconstruction Software) to reconstruct the image based on the acquired data. In the next step, the coordinates of the center of the target object are calculated by image processing toolbox of MATLAB (IPT). Finally, these coordinates are used to calculate the angles of each joint of the robotic arm. The robotic arm moves to the desired tissue with the user command.Keywords: electrical impedance tomography, EIT, surgeon robot, image processing of electrical impedance tomography
Procedia PDF Downloads 272