Search results for: biological soil health indicators
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14582

Search results for: biological soil health indicators

14102 Erodibility Analysis of Cikapundung Hulu: A Study Case of Mekarwangi Catchment Area

Authors: Shantosa Yudha Siswanto, Rachmat Harryanto

Abstract:

The aim of the research was to investigate the effect of land use and slope steepness on soil erodibility index. The research was conducted from September to December 2013 in Mekarwangi catchment area, sub watershed of Cikapundung Hulu, Indonesia. The study was carried out using descriptive method. Physiographic free survey method was used as survey method, it was a survey based on land physiographic appearance. Soil sampling was carried out into transect on the similarity of slope without calculating the range between points of observation. Soil samples were carried onto three classes of land use such as: forest, plantation and dry cultivation area. Each land use consists of three slope classes such as: 8-15%, 16-25%, and 26-40% class. Five samples of soil were taken from each of them, resulting 45 points of observation. The result of the research showed that type of land use and slope classes gave different effect on soil erodibility. The highest C-organic and permeability was found on forest with slope 16-25%. Slope of 8-15% with forest land use give the lowest effect on soil erodibility.

Keywords: land use, slope, erodibility, erosion

Procedia PDF Downloads 246
14101 Sandy Soil Properties under Different Plant Cover Types in Drylands, Sudan

Authors: Rayan Elsiddig Eltaib, Yamanaka Norikazu, Mubarak Abdelrahman Abdalla

Abstract:

This study investigated the effects of Acacia Senegal, Calotropis procera, Leptadenia pyrotechnica, Ziziphus spina Christi, Balanites aegyptiaca, Indigofera oblongigolia, Arachis hypogea and Sesimum indicum grown in the western region of White Nile State on soil properties of the 0-10, 10-30, 30-60 and 60-90 cm depths. Soil properties were: pH(paste), electrical conductivity of the saturation extract (ECe), total N (TN), organic carbon (OC), soluble K, available P, aggregate stability and water holding capacity. Triplicate Soil samples were collected after the end of the rainy season using 5 cm diameter auger. Results indicated that pH, ECe and TN were not significantly different among plant cover types. In the top 10-30 cm depth, OC under all types was significantly higher than the control (4.1 to 7.7 fold). The highest (0.085%) OC was found under the Z. spina Christi and A. Senegal whereas the lowest (0.045%) was reported under the A. hypogea. In the 10-30 cm depth, with the exception of A. hypogea, Z. spina christi and S. indicum, P content was almost similar but significantly higher than the control by 72 to 129%. In the 10-30 cm depth, K content under the S. indicum (0.46 meq/L) was exceptionally high followed by Z. spina christi (0.102 meq/L) as compared to the control (0.029 meq/L). Water holding capacity and aggregate stability of the top 0-10 cm depth were not significantly different among plant cover types. Based on the fact that accumulation of organic matter in the soil profile of any ecosystem is an important indicator of soil quality, results of this study may conclude that (1) cultivation of A.senegal, B.aegyptiaca and Z. spina Christi improved soil quality whereas (2) cultivation of A. hypogea or soil that is solely invaded with C. procera and L.pyrotechnica may induce soil degradation.

Keywords: canopy, crops, shrubs, soil properties, trees

Procedia PDF Downloads 278
14100 Toxic Metal and Radiological Risk Assessment of Soil, Water and Vegetables around a Gold Mine Turned Residential Area in Mokuro Area of Ile-Ife, Osun State Nigeria: An Implications for Human Health

Authors: Grace O. Akinlade, Danjuma D. Maza, Oluwakemi O. Olawolu, Delight O. Babalola, John A. O. Oyekunle, Joshua O. Ojo

Abstract:

The Mokuro area of Ile-Ife, South West Nigeria, was well known for gold mining in the past (about twenty years ago). However, the place has since been reclaimed and converted to residential area without any environmental risk assessment of the impact of the mining tailings on the environment. Soil, water, and plant samples were collected from 4 different locations around the mine-turned-residential area. Soil samples were pulverized and sieved into finer particles, while the plant samples were dried and pulverized. All the samples were digested and analyzed for As, Pb, Cd, and Zn using atomic absorption spectroscopy (AAS). From the analysis results, the hazard index (HI) was then calculated for the metals. The soil and plant samples were air dried and pulverized, then weighed, after which the samples were packed into special and properly sealed containers to prevent radon gas leakage. After the sealing, the samples were kept for 28 days to attain secular equilibrium. The concentrations of 40K, 238U, and 232Th in the samples were measured using a cesium iodide (CsI) spectrometer and URSA software. The AAS analysis showed that As, Pb, Cd (Toxic metals), and Zn (essential trace metals) are in concentrations lower than permissible limits in plants and soil samples, while the water samples had concentrations higher than permissible limits. The calculated health indices (HI) show that HI for water is >1 and that of plants and soil is <1. Gamma spectrometry result shows high levels of activity concentrations above the recommended limits for all the soil and plant samples collected from the area. Only the water samples have activity concentrations below the recommended limit. Consequently, the absorbed dose, annual effective dose, and excess lifetime cancer risk are all above the recommended safe limit for all the samples except for water samples. In conclusion, all the samples collected from the area are either contaminated with toxic metals or they pose radiological hazards to the consumers. Further detailed study is therefore recommended in order to be able to advise the residents appropriately.

Keywords: toxic metals, gamma spectrometry, Ile-Ife, radiological hazards, gold mining

Procedia PDF Downloads 49
14099 Investigation of Zinc Corrosion in Tropical Soil Solution

Authors: M. Lebrini, L. Salhi, C. Deyrat, C. Roos, O. Nait-Rabah

Abstract:

The paper presents a large experimental study on the corrosion of zinc in tropical soil and in the ground water at the various depths. Through this study, the corrosion rate prediction was done on the basis of two methods the electrochemical method and the gravimetric. The electrochemical results showed that the corrosion rate is more important at the depth levels 0 m to 0.5 m and 0.5 m to 1 m and beyond these depth levels, the corrosion rate is less important. The electrochemical results indicated also that a passive layer is formed on the zinc surface. The found SEM and EDX micrographs displayed that the surface is extremely attacked and confirmed that a zinc oxide layer is present on the surface whose thickness and relief increase as the contact with soil increases.

Keywords: soil corrosion, galvanized steel, electrochemical technique, SEM and EDX

Procedia PDF Downloads 122
14098 The Small Strain Effects to the Shear Strength and Maximum Stiffness of Post-Cyclic Degradation of Hemic Peat Soil

Authors: Z. Adnan, M. M. Habib

Abstract:

The laboratory tests for measuring the effects of small strain to the shear strength and maximum stiffness development of post-cyclic degradation of hemic peat are reviewed in this paper. A series of laboratory testing has been conducted to fulfil the objective of this research to study the post-cyclic behaviour of peat soil and focuses on the small strain characteristics. For this purpose, a number of strain-controlled static, cyclic and post-cyclic triaxial tests were carried out in undrained condition on hemic peat soil. The shear strength and maximum stiffness of hemic peat are evaluated immediately after post-cyclic monotonic testing. There are two soil samples taken from West Johor and East Malaysia peat soil. Based on these laboratories and field testing data, it was found that the shear strength and maximum stiffness of peat soil decreased in post-cyclic monotonic loading than its initial shear strength and stiffness. In particular, degradation in shear strength and stiffness is more sensitive for peat soil due to fragile and uniform fibre structures. Shear strength of peat soil, τmax = 12.53 kPa (Beaufort peat, BFpt) and 36.61 kPa (Parit Nipah peat, PNpt) decreased than its initial 58.46 kPa and 91.67 kPa. The maximum stiffness, Gmax = 0.23 and 0.25 decreased markedly with post-cyclic, Gmax = 0.04 and 0.09. Simple correlations between the Gmax and the τmax effects due to small strain, ε = 0.1, the Gmax values for post-cyclic are relatively low compared to its initial Gmax. As a consequence, the reported values and patterns of both the West Johor and East Malaysia peat soil are generally the same.

Keywords: post-cyclic, strain, maximum stiffness, shear strength

Procedia PDF Downloads 296
14097 Persistence of Ready Mix (Chlorpyriphos 50% + Cypermethrin 5%), Cypermethrin and Chlorpyriphos in Soil under Okra Fruits

Authors: Samriti Wadhwa, Beena Kumari

Abstract:

Background and Significance: Residue levels of ready mix (chlorpyriphos 50% and cypermethrin 5%), cypermethrin and chlorpyriphos individually in sandy loam soil under okra fruits (Variety, Varsha Uphar) were determined; a field experiment was conducted at Research Farm of Department of Entomology of Chaudhary Charan Singh Haryana Agriculture University, Hisar, Haryana, India. Persistence behavior of cypermethrin and chlorpyriphos was studied following application of a pre-mix formulation of insecticides viz. Action-505EC, chlorpyriphos (Radar 20 EC) and cypermethrin (Cyperkill 10 EC) at the recommended dose and double the recommended dose along with control at fruiting stage. Pesticide application also leads to decline in soil acarine fauna which is instrumental in the breakdown of the litter because of which minerals are released into the soil. So, by this study, one can evaluate the safety of pesticides for the soil health. Methodology: Action-505EC (chlorpyriphos 50% and cypermethrin 5%) at 275 g a .i. ha⁻¹ (single dose) and 550 g a. i. ha⁻¹ (double dose), chlorpyriphos (Radar 20 EC) at 200 g a. i. ha⁻¹ (single dose) and 400 g a. i. ha⁻¹ (double dose) and cypermethrin (Cyperkill 10 EC) at 50 g a. i. ha⁻¹ (single dose) and 100 g a. i. ha⁻¹ (double dose) were applied at the fruiting stage on okra crop. Samples of soils from okra field were collected periodically at 0 (1h after spray), 1, 3, 5, 7, 10, 15 days and at harvest after application as well of control soil sample. After air drying, adsorbing through Florisil and activated charcoal and eluting with hexane: acetone (9:1) then residues in soils were estimated by a gas chromatograph equipped with a capillary column and electron capture detector. Results: No persistence of cypermethrin in ready-mix in soil under okra fruits at single and double dose was observed. In case of chlorpyriphos in ready-mix, average initial deposits on 0 (1 h after treatment) day was 0.015 mg kg⁻¹ and 0.036 mg kg⁻¹ which persisted up to 5 days and up to 7 days for single and double dose, respectively. After that residues reached below a detectable level of 0.010 mg kg⁻¹. Experimental studies on cypermethrin individually revealed that average initial deposits on 0 (1 h after treatment) were 0.008 mg kg⁻¹ and 0.012 mg kg⁻¹ which persisted up to 3 days and 5 days for single and double dose, respectively after that residues reached to below detectable level. The initial deposits of chlorpyriphos individually in soil were found to be 0.055 mg kg⁻¹ and 0.113 mg kg⁻¹ which persisted up to 7 days and 10 days at a lower dose and higher dose, respectively after that residues reached to below determination level. Conclusion: In soil under okra crop, only individual cypermethrin in both the doses persisted whereas no persistence of cypermethrin in ready-mix was observed. Persistence of chlorpyriphos individually is more as compared to chlorpyriphos in ready-mix in both the doses. Overall, the persistence of chlorpyriphos in soil under okra crop is more than cypermethrin.

Keywords: chlorpyriphos, cypermethrin, okra, ready mix, soil

Procedia PDF Downloads 162
14096 An Insight into the Paddy Soil Denitrifying Bacteria and Their Relation with Soil Phospholipid Fatty Acid Profile

Authors: Meenakshi Srivastava, A. K. Mishra

Abstract:

This study characterizes the metabolic versatility of denitrifying bacterial communities residing in the paddy soil using the GC-MS based Phospholipid Fatty Acid (PLFA) analyses simultaneously with nosZ gene based PCR-DGGE (Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis) and real time Q-PCR analysis. We have analyzed the abundance of nitrous oxide reductase (nosZ) genes, which was subsequently related to soil PLFA profile and DGGE based denitrifier community structure. Soil denitrifying bacterial community comprised majority or dominance of Ochrobactrum sp. following Cupriavidus and uncultured bacteria strains in paddy soil of selected sites. Initially, we have analyzed the abundance of the nitrous oxide reductase gene (nosZ), which was found to be related with PLFA based lipid profile. Chandauli of Eastern UP, India represented greater amount of lipid content (C18-C20) and denitrifier’s diversity. This study suggests the positive co-relation between soil PLFA profiles, DGGE, and Q-PCR data. Thus, a close networking among metabolic abilities and taxonomic composition of soil microbial communities existed, and subsequently, such work at greater extent could be helpful in managing nutrient dynamics as well as microbial dynamics of paddy soil ecosystem.

Keywords: denaturing gradient gel electrophoresis, DGGE, nitrifying and denitrifying bacteria, PLFA, Q-PCR

Procedia PDF Downloads 118
14095 Comparison Study between Deep Mixed Columns and Encased Sand Column for Soft Clay Soil in Egypt

Authors: Walid El Kamash

Abstract:

Sand columns (or granular piles) can be employed as soil strengthening for flexible constructions such as road embankments, oil storage tanks in addition to multistory structures. The challenge of embedding the sand columns in soft soil is that the surrounding soft soil cannot avail the enough confinement stress in order to keep the form of the sand column. Therefore, the sand columns which were installed in such soil will lose their ability to perform needed load-bearing capacity. The encasement, besides increasing the strength and stiffness of the sand column, prevents the lateral squeezing of sands when the column is installed even in extremely soft soils, thus enabling quicker and more economical installation. This paper investigates the improvement in load capacity of the sand column by encasement through a comprehensive parametric study using the 3-D finite difference analysis for the soft clay of soil in Egypt. Moreover, the study was extended to include a comparison study between encased sand column and Deep Mixed columns (DM). The study showed that confining the sand by geosynthetic resulted in an increment of shear strength. That result paid the attention to use encased sand stone rather than deep mixed columns due to relative high permeability of the first material.

Keywords: encased sand column, Deep mixed column, numerical analysis, improving soft soil

Procedia PDF Downloads 373
14094 Biodegradation Behavior of Cellulose Acetate with DS 2.5 in Simulated Soil

Authors: Roberta Ranielle M. de Freitas, Vagner R. Botaro

Abstract:

The relationship between biodegradation and mechanical behavior is fundamental for studies of the application of cellulose acetate films as a possible material for biodegradable packaging. In this work, the biodegradation of cellulose acetate (CA) with DS 2.5 was analyzed in simulated soil. CA films were prepared by casting and buried in the simulated soil. Samples were taken monthly and analyzed, the total time of biodegradation was 6 months. To characterize the biodegradable CA, the DMA technique was employed. The main result showed that the time of exposure to the simulated soil affects the mechanical properties of the films and the values of crystallinity. By DMA analysis, it was possible to conclude that as the CA is biodegraded, its mechanical properties were altered, for example, storage modulus has increased with biodegradation and the modulus of loss has decreased. Analyzes of DSC, XRD, and FTIR were also carried out to characterize the biodegradation of CA, which corroborated with the results of DMA. The observation of the carbonyl band by FTIR and crystalline indices obtained by XRD were important to evaluate the degradation of CA during the exposure time.

Keywords: biodegradation, cellulose acetate, DMA, simulated soil

Procedia PDF Downloads 211
14093 Comparison of Petrophysical Relationship for Soil Water Content Estimation at Peat Soil Area Using GPR Common-Offset Measurements

Authors: Nurul Izzati Abd Karim, Samira Albati Kamaruddin, Rozaimi Che Hasan

Abstract:

The appropriate petrophysical relationship is needed for Soil Water Content (SWC) estimation especially when using Ground Penetrating Radar (GPR). Ground penetrating radar is a geophysical tool that provides indirectly the parameter of SWC. This paper examines the performance of few published petrophysical relationships to obtain SWC estimates from in-situ GPR common- offset survey measurements with gravimetric measurements at peat soil area. Gravimetric measurements were conducted to support of GPR measurements for the accuracy assessment. Further, GPR with dual frequencies (250MHhz and 700MHz) were used in the survey measurements to obtain the dielectric permittivity. Three empirical equations (i.e., Roth’s equation, Schaap’s equation and Idi’s equation) were selected for the study, used to compute the soil water content from dielectric permittivity of the GPR profile. The results indicate that Schaap’s equation provides strong correlation with SWC as measured by GPR data sets and gravimetric measurements.

Keywords: common-offset measurements, ground penetrating radar, petrophysical relationship, soil water content

Procedia PDF Downloads 248
14092 Examining the Coverage of CO2-Related Indicators in a Sample of Sustainable Rating Systems

Authors: Wesam Rababa, Jamal Al-Qawasmi

Abstract:

The global climate is negatively impacted by CO2 emissions, which are mostly produced by buildings. Several green building rating systems (GBRS) have been proposed to impose low-carbon criteria in order to address this problem. The Green Globes certification is one such system that evaluates a building's sustainability level by assessing different categories of environmental impact and emerging concepts aimed at reducing environmental harm. Therefore, assessment tools at the national level are crucial in the developing world, where specific local conditions require a more precise evaluation. This study analyzed eight sustainable building assessment systems from different regions of the world, comparing a comprehensive list of CO2-related indicators with a various assessment system for conducting coverage analysis. The results show that GBRS includes both direct and indirect indicators in this regard. It reveals deep variation between examined practices, and a lack of consensus not only on the type and the optimal number of indicators used in a system, but also on the depth and breadth of coverage of various sustainable building SB attributes. Generally, the results show that most of the examined systems reflect a low comprehensive coverage, the highest of which is found in materials category. On the other hand, the most of the examined systems reveal a very low representative coverage.

Keywords: Assessment tools, CO2-related indicators, Comparative study, Green Building Rating Systems

Procedia PDF Downloads 49
14091 Factors Associated with Self-Rated Health among Persons with Disabilities: A Korean National Survey

Authors: Won-Seok Kim, Hyung-Ik Shin

Abstract:

Self-rated health (SRH) is a subjective assessment of individual health and has been identified as a strong predictor for mortality and morbidity. However few studies have been directed to the factors associated with SRH in persons with disabilities (PWD). We used data of 7th Korean national survey for 5307 PWD in 2008. Multiple logistic regression analysis was performed to find out independent risk factors for poor SRH in PWD. As a result, indicators of physical condition (poor instrumental ADL), socioeconomic disadvantages (poor education, economically inactive, low self-rated social class, medicaid in health insurance, presence of unmet need for hospital use) and social participation and networks (no use of internet service) were selected as independent risk factors for poor SRH in final model. Findings in the present study would be helpful in making a program to promote the health and narrow the gap of health status between the PWD.

Keywords: disabilities, risk factors, self-rated health, socioeconomic disadvantages, social networks

Procedia PDF Downloads 390
14090 Conservation Agriculture Practice in Bangladesh: Farmers’ Socioeconomic Status and Soil Environment Perspective

Authors: Mohammad T. Uddin, Aurup R. Dhar

Abstract:

The study was conducted to assess the impact of conservation agriculture practice on farmers’ socioeconomic condition and soil environmental quality in Bangladesh. A total of 450 (i.e., 50 focal, 150 proximal and 250 control) farmers from five districts were selected for this study. Descriptive statistics like sum, averages, percentages, etc. were calculated to evaluate the socioeconomic data. Using Enyedi’s crop productivity index, it was found that the crop productivity of focal, proximal and control farmers was increased by 0.9, 1.2 and 1.3 percent, respectively. The result of DID (Difference-in-difference) analysis indicated that the impact of conservation agriculture practice on farmers’ average annual income was significant. Multidimensional poverty index (MPI) indicates that poverty in terms of deprivation of health, education and living standards was decreased; and a remarkable improvement in farmers’ socioeconomic status was found after adopting conservation agriculture practice. Most of the focal and proximal farmers stated about increased soil environmental condition where majority of control farmers stated about constant environmental condition in this regard. The Probit model reveals that minimum tillage operation, permanent organic soil cover, and application of compost and vermicompost were found significant factors affecting soil environmental quality under conservation agriculture. Input support, motivation, training programmes and extension services are recommended to implement in order to raise the awareness and enrich the knowledge of the farmers on conservation agriculture practice.

Keywords: conservation agriculture, crop productivity, socioeconomic status, soil environment quality

Procedia PDF Downloads 321
14089 Ecological Risk Aspects of Essential Trace Metals in Soil Derived From Gold Mining Region, South Africa

Authors: Lowanika Victor Tibane, David Mamba

Abstract:

Human body, animals, and plants depend on certain essential metals in permissible quantities for their survival. Excessive metal concentration may cause severe malfunctioning of the organisms and even fatal in extreme cases. Because of gold mining in the Witwatersrand basin in South Africa, enormous untreated mine dumps comprise elevated concentration of essential trace elements. Elevated quantities of trace metal have direct negative impact on the quality of soil for different land use types, reduce soil efficiency for plant growth, and affect the health human and animals. A total of 21 subsoil samples were examined using inductively coupled plasma optical emission spectrometry and X-ray fluorescence methods and the results elevated men concentration of Fe (36,433.39) > S (5,071.83) > Cu (1,717,28) > Mn (612.81) > Cr (74.52) > Zn (68.67) > Ni (40.44) > Co (9.63) > P (3.49) > Mo > (2.74), reported in mg/kg. Using various contamination indices, it was discovered that the sites surveyed are on average moderately contaminated with Co, Cr, Cu, Mn, Ni, S, and Zn. The ecological risk assessment revealed a low ecological risk for Cr, Ni and Zn, whereas Cu poses a very high ecological risk.

Keywords: essential trace elements, soil contamination, contamination indices, toxicity, descriptive statistics, ecological risk evaluation

Procedia PDF Downloads 86
14088 Influence of Non-Carcinogenic Risk on Public Health

Authors: Gulmira Umarova

Abstract:

The data on the assessment of the influence of environmental risk to the health of the population of Uralsk in the West region of Kazakhstan were presented. Calculation of non-carcinogenic risks was performed for such air pollutants as sulfur dioxide, nitrogen oxides, hydrogen sulfide, carbon monoxide. Here with the critical organs and systems, which are affected by the above-mentioned substances were taken into account. As well as indicators of primary and general morbidity by classes of diseases among the population were considered. The quantitative risk of the influence of substances on organs and systems is established by results of the calculation.

Keywords: environment, health, morbidity, non-carcinogenic risk

Procedia PDF Downloads 113
14087 An Evaluation of Edible Plants for Remediation of Contaminated Soil- Can Edible Plants Be Used to Remove Heavy Metals on Soil?

Authors: Celia Marilia Martins, Sonia I. V. Guilundo, Iris M. Victorino, Antonio O. Quilambo

Abstract:

In Mozambique rapid industrialization (mining, aluminium and cement activities) and urbanization processes has led to the incorporation of heavy metals on soil, thus degrading not only the quality of the environment, but also affecting plants, animals and human healthy. Several methods have been used to remediate contaminated soils, but most of them are costly and difficult to get optimum results. Currently, phytoremediation is an effective and affordable technological solution used to extract or remove inactive metals from contaminated soil. Phytoremediation is the use of plants to clean up a contamination from soils, sediments, and water. This technology is environmental friendly and potentially cost effective. The present investigation summarised the potential of edible vegetable to grow under the high level of heavy metals such as lead and zinc. The plants used in these studies include Tomatoes, lettuce and Soya beans. The studies have shown that edible plants can be grown under the high level of heavy metals on the soil. Further investigations are identifying mechanisms used by plants to ensure a safe and sustainable use for remediation of contaminated soils by heavy metals.

Keywords: contaminated soil, edible plants, heavy metals, phytoremediation

Procedia PDF Downloads 365
14086 Biodegradation Effects onto Source Identification of Diesel Fuel Contaminated Soils

Authors: Colin S. Chen, Chien-Jung Tien, Hsin-Jan Huang

Abstract:

For weathering studies, the change of chemical constituents by biodegradation effect in diesel-contaminated soils are important factors to be considered, especially when there is a prolonged period of weathering processes. The objective was to evaluate biodegradation effects onto hydrocarbon fingerprinting and distribution patterns of diesel fuels, fuel source screening and differentiation, source-specific marker compounds, and diagnostic ratios of diesel fuel constituents by laboratory and field studies. Biodegradation processes of diesel contaminated soils were evaluated by experiments lasting for 15 and 12 months, respectively. The degradation of diesel fuel in top soils was affected by organic carbon content and biomass of microorganisms in soils. Higher depletion of total petroleum hydrocarbon (TPH), n-alkanes, and polynuclear aromatic hydrocarbons (PAHs) and their alkyl homologues was observed in soils containing higher organic carbon content and biomass. Decreased ratio of selected isoprenoids (i.e., pristane (Pr) and phytane (Ph)) including n-C17/pristane and n-C18/phytane was observed. The ratio of pristane/phytane was remained consistent for a longer period of time. At the end of the experimental period, a decrease of pristane/phytane was observed. Biomarker compounds of bicyclic sesquiterpanes (BS) were less susceptible to the effects of biodegradation. The ratios of characteristic factors such as C15 sesquiterpane/ 8β(H)-drimane (BS3/BS5), C15 sesquiterpane/ 8β(H)-drimane (BS4/BS5), 8β(H)-drimane/8β(H)-homodrimane (BS5/BS10), and C15 sesquiterpane/8β(H)-homodrimane (BS3/BS10) could be adopted for source identification of diesel fuels in top soil. However, for biodegradation processes lasted for six months but shorter than nine months, only BS3/BS5 and BS3/BS10 could be distinguished in two diesel fuels. In subsoil experiments (contaminated soil located 50 cm below), the ratios of characteristic factors including BS3/BS5, BS4/BS5, and BS5/BS10 were valid for source identification of two diesel fuels for nine month biodegradation. At the early stage of contamination, biomass of soil decreased significantly. However, 6 and 7 dominant species were found in soils in top soil experiments, respectively. With less oxygen and nutrients in subsoil, less biomass of microorganisms was observed in subsoils. Only 2 and 4 diesel-degrading species of microorganisms were identified in two soils, respectively. Parameters of double ratio such as fluorene/C1-fluorene: C2-phenanthrene/C3-phenanthrene (C0F/C1F:C2P/C3P) in both top and subsoil, C2-naphthalene/C2-phenanthrene: C1-phenanthrene/C3-phenanthrene (C2N/C2P:C1P/C3P), and C1-phenanthrene/C1-fluorene: C3-naphthalene/C3-phenanthrene (C1P/C1F:C3N/C3P) in subsoil could serve as forensic indicators in diesel contaminated sites. BS3/BS10:BS4/BS5 could be used in 6 to 9 months of biodegradation processes. Results of principal component analysis (PCA) indicated that source identification of diesel fuels in top soil could only be perofrmed for weathering process less than 6 months. For subsoil, identification can be conducted for weathering process less than 9 months. Ratio of isoprenoids (pristane and phytane) and PAHs might be affected by biodegradation in spilled sites. The ratios of bicyclic sesquiterpanes could serve as forensic indicators in diesel-contaminated soils. Finally, source identification was attemped for samples collected from different fuel contaminated sites by using the unique pattern of sesquiterpanes. It was anticipated that the information generated from this study would be adopted by decision makers to evaluate the liability of cleanup in diesel contaminated sites.

Keywords: biodegradation, diagnostic ratio, diesel fuel, environmental forensics

Procedia PDF Downloads 218
14085 Effects of Drought on Microbial Activity in Rhizosphere, Soil Hydrophobicity and Leaching of Mineral Nitrogen from Arable Soil Depending on Method of Fertilization

Authors: Jakub Elbl, Lukáš Plošek, Antonín Kintl, Jaroslav Hynšt, Soňa Javoreková, Jaroslav Záhora, Libor Kalhotka, Olga Urbánková, Ivana Charousová

Abstract:

This work presents the first results from the long-term laboratory experiment dealing with impact of drought on soil properties. Three groups of the treatment (A, B and C) with different regime of irrigation were prepared. The soil water content was maintained at 70 % of soil water holding capacity in group A, at 40 % in group B. In group C, soil water regime was maintained in the range of wilting point. Each group of the experiment was divided into three variants (A1 = B1, C1; A2 = B2, C2 etc.) with three repetitions: Variants A1 (B1, C1) were controls without addition of another fertilizer. Variants A2 (B2, C2) were fertilized with mineral nitrogen fertilizer DAM 390 (0.140 Mg of N per ha) and variants A3 (B3, C3) contained 45 g of Cp per a pot. The significant differences (ANOVA, P<0.05) in the leaching of mineral nitrogen and values of saturated hydraulic conductivity (Ksat) were found. The highest values of Ksat were found in variants (within each group) with addition of compost (A3, B3, C3). Conversely, the lowest values of Ksat were found in variants with addition of mineral nitrogen. Low values of Ksat indicate an increased level of hydrophobicity in individual groups of the experiment. Moreover, all variants with compost addition showed lower amount of mineral nitrogen leaching and high level of microbial activity than variants without. This decrease of mineral nitrogen leaching was about 200 % in comparison with the control variant and about 300 % with variant, where mineral nitrogen was added. Based on these results, we can conclude that changes of soil water content directly have impact on microbial activity, soil hydrophobicity and loss of mineral nitrogen from the soil.

Keywords: drought, microbial activity, mineral nitrogen, soil hydrophobicity

Procedia PDF Downloads 375
14084 Investigation of Effective Parameters on Pullout Capacity in Soil Nailing with Special Attention to International Design Codes

Authors: R. Ziaie Moayed, M. Mortezaee

Abstract:

An important and influential factor in design and determining the safety factor in Soil Nailing is the ultimate pullout capacity, or, in other words, bond strength. This important parameter depends on several factors such as material and soil texture, method of implementation, excavation diameter, friction angle between the nail and the soil, grouting pressure, the nail depth (overburden pressure), the angle of drilling and the degree of saturation in soil. Federal Highway Administration (FHWA), a customary regulation in the design of nailing, is considered only the effect of the soil type (or rock) and the method of implementation in determining the bond strength, which results in non-economic design. The other regulations are each of a kind, some of the parameters affecting bond resistance are not taken into account. Therefore, in the present paper, at first the relationships and tables presented by several valid regulations are presented for estimating the ultimate pullout capacity, and then the effect of several important factors affecting on ultimate Pullout capacity are studied. Finally, it was determined, the effect of overburden pressure (in method of injection with pressure), soil dilatation and roughness of the drilling surface on pullout strength is incremental, and effect of degree of soil saturation on pullout strength to a certain degree of saturation is increasing and then decreasing. therefore it is better to get help from nail pullout-strength test results and numerical modeling to evaluate the effect of parameters such as overburden pressure, dilatation, and degree of soil saturation, and so on to reach an optimal and economical design.

Keywords: soil nailing, pullout capacity, federal highway administration (FHWA), grout

Procedia PDF Downloads 143
14083 Geotechnical Characterization of Residual Soil for Deterministic Landslide Assessment

Authors: Vera Karla S. Caingles, Glen A. Lorenzo

Abstract:

Soil, as the main material of landslides, plays a vital role in landslide assessment. An efficient and accurate method of doing an assessment is significantly important to prevent damage of properties and loss of lives. The study has two phases: to establish an empirical correlation of the residual soil thickness with the slope angle and to investigate the geotechnical characteristics of residual soil. Digital Elevation Model (DEM) in Geographic Information System (GIS) was used to establish the slope map and to program sampling points for field investigation. Physical and index property tests were undertaken on the 20 soil samples obtained from the area with Pliocene-Pleistocene geology and different slope angle in Kibawe, Bukidnon. The regression analysis result shows that the best fitting model that can describe the soil thickness-slope angle relationship is an exponential function. The physical property results revealed that soils contain a high percentage of clay and silts ranges from 41% - 99.52%. Based on the index properties test results, the soil exhibits a high degree of plasticity and expansion but not collapsible. It is deemed that this compendium will serve as primary data for slope stability analysis and deterministic landslide assessment.

Keywords: collapsibility, correlation, expansiveness, landslide, plasticity

Procedia PDF Downloads 155
14082 Wireless Sensor Network to Help Low Incomes Farmers to Face Drought Impacts

Authors: Fantazi Walid, Ezzedine Tahar, Bargaoui Zoubeida

Abstract:

This research presents the main ideas to implement an intelligent system composed by communicating wireless sensors measuring environmental data linked to drought indicators (such as air temperature, soil moisture , etc...). On the other hand, the setting up of a spatio temporal database communicating with a Web mapping application for a monitoring in real time in activity 24:00 /day, 7 days/week is proposed to allow the screening of the drought parameters time evolution and their extraction. Thus this system helps detecting surfaces touched by the phenomenon of drought. Spatio-temporal conceptual models seek to answer the users who need to manage soil water content for irrigating or fertilizing or other activities pursuing crop yield augmentation. Effectively, spatio-temporal conceptual models enable users to obtain a diagram of readable and easy data to apprehend. Based on socio-economic information, it helps identifying people impacted by the phenomena with the corresponding severity especially that this information is accessible by farmers and stakeholders themselves. The study will be applied in Siliana watershed Northern Tunisia.

Keywords: WSN, database spatio-temporal, GIS, web mapping, indicator of drought

Procedia PDF Downloads 488
14081 Effect of Contaminants on the Behavior of Shallow Foundations

Authors: Ghazal Horiat, Alireza Hajiani Bushehrian

Abstract:

leakage of contamination from fuel or oil reservoirs can alter the geotechnical properties of the soil under their foundation and finally affect their performance in their service life. This article investigates the behavior of shallow foundations on the soil contaminated with diesel and kerosene using the Plaxis Tunnel3D V1.2 software. The information required for the numerical modeling in the paper was obtained from a similar experimental study. The present study seeks to compare the behavior of square foundations on sandy soil without contamination and the soil contaminated with different percentages of diesel and crude oil. The study was conducted on a small square foundation. The depth of the contamination was assumed constant, and the soil was evaluated with four different percentages of both contaminants. The results of analyses were plotted and assessed in the form of load-displacement curves for the foundation. The results indicate reduced bearing capacity of the foundation with the rise in the contamination percentage.

Keywords: bearing capacity, contaminated soils, shallow foundations, 3D numerical analysis

Procedia PDF Downloads 135
14080 Dataset Quality Index:Development of Composite Indicator Based on Standard Data Quality Indicators

Authors: Sakda Loetpiparwanich, Preecha Vichitthamaros

Abstract:

Nowadays, poor data quality is considered one of the majority costs for a data project. The data project with data quality awareness almost as much time to data quality processes while data project without data quality awareness negatively impacts financial resources, efficiency, productivity, and credibility. One of the processes that take a long time is defining the expectations and measurements of data quality because the expectation is different up to the purpose of each data project. Especially, big data project that maybe involves with many datasets and stakeholders, that take a long time to discuss and define quality expectations and measurements. Therefore, this study aimed at developing meaningful indicators to describe overall data quality for each dataset to quick comparison and priority. The objectives of this study were to: (1) Develop a practical data quality indicators and measurements, (2) Develop data quality dimensions based on statistical characteristics and (3) Develop Composite Indicator that can describe overall data quality for each dataset. The sample consisted of more than 500 datasets from public sources obtained by random sampling. After datasets were collected, there are five steps to develop the Dataset Quality Index (SDQI). First, we define standard data quality expectations. Second, we find any indicators that can measure directly to data within datasets. Thirdly, each indicator aggregates to dimension using factor analysis. Next, the indicators and dimensions were weighted by an effort for data preparing process and usability. Finally, the dimensions aggregate to Composite Indicator. The results of these analyses showed that: (1) The developed useful indicators and measurements contained ten indicators. (2) the developed data quality dimension based on statistical characteristics, we found that ten indicators can be reduced to 4 dimensions. (3) The developed Composite Indicator, we found that the SDQI can describe overall datasets quality of each dataset and can separate into 3 Level as Good Quality, Acceptable Quality, and Poor Quality. The conclusion, the SDQI provide an overall description of data quality within datasets and meaningful composition. We can use SQDI to assess for all data in the data project, effort estimation, and priority. The SDQI also work well with Agile Method by using SDQI to assessment in the first sprint. After passing the initial evaluation, we can add more specific data quality indicators into the next sprint.

Keywords: data quality, dataset quality, data quality management, composite indicator, factor analysis, principal component analysis

Procedia PDF Downloads 131
14079 Trend and Distribution of Heavy Metals in Soil and Sediment: North of Thailand Region

Authors: Chatkaew Tansakul, Saovajit Nanruksa, Surasak Chonchirdsin

Abstract:

Heavy metals in the environment can be occurred by both natural weathering process and human activity, which may present significant risks to human health and the wider environment. A number of heavy metals, i.e. Arsenic (As) and Manganese (Mn), are found with a relatively high concentration in the northern part of Thailand that was assumptively from natural parent rocks and materials. However, scarce literature is challenging to identify the accurate root cause and best available explanation. This study is, therefore, aim to gather heavy metals data in 5 provinces of the North of Thailand where PTT Exploration and Production (PTTEP) public company limited has operated for more than 20 years. A thousand heavy metal analysis is collected and interpreted in term of Enrichment Factor (EF). The trend and distribution of heavy metals in soil and sediment are analyzed by considering altogether the geochemistry of the regional soil and rock. . In addition, the relationship between land use and heavy metals distribution is investigated. In the first conclusion, heavy metal concentrations of (As) and (Mn) in the studied areas are equal to 7.0 and 588.6 ppm, respectively, which are comparable to those in regional parent materials (1 – 12 and 850 – 1,000 ppm for As and Mn respectively). Moreover, there is an insignificant escalation of the heavy metals in these studied areas over two decades.

Keywords: contaminated soil, enrichment factor, heavy metals, parent materials in North of Thailand

Procedia PDF Downloads 147
14078 Minimization of Seepage in Sandy Soil Using Different Grouting Types

Authors: Eng. M. Ahmed, A. Ibrahim, M. Ashour

Abstract:

One of the major concerns facing dam is the repair of their structures to prevent the seepage under them. In previous years, many existing dams have been treated by grouting, but with varying degrees of success. One of the major reasons for this erratic performance is the unsuitable selection of the grouting materials to reduce the seepage. Grouting is an effective way to improve the engineering properties of the soil and strengthen of the permeability of the soil to reduce the seepage. The purpose of this paper is to focus on the efficiency of current available grouting materials and techniques from construction, environmental and economical point of view. The seepage reduction usually accomplished by either chemical grouting or cementious grouting using ultrafine cement. In addition, the study shows a comparison between grouting materials according to their degree of permeability reduction and cost. The application of seepage reduction is based on the permeation grouting using grout curtain installation. The computer program (SEEP/W) is employed to model a dam rested on sandy soil, using grout curtain to reduce seepage quantity and hydraulic gradient by different grouting materials. This study presents a relationship that takes into account the permeability of the soil, grout curtain spacing and a new performance parameter that can be used to predict the best selection of grouting materials for seepage reduction.

Keywords: seepage, sandy soil, grouting, permeability

Procedia PDF Downloads 360
14077 The Concept of Anchor Hazard Potential Map

Authors: Sao-Jeng Chao, Chia-Yun Wei, Si-Han Lai, Cheng-Yu Huang, Yu-Han Teng

Abstract:

In Taiwan, the landforms are mainly dominated by mountains and hills. Many road sections of the National Highway are impossible to avoid problems such as slope excavation or slope filling. In order to increase the safety of the slope, various slope protection methods are used to stabilize the slope, especially the soil anchor technique is the most common. This study is inspired by the soil liquefaction potential map. The concept of the potential map is widely used. The typhoon, earth-rock flow, tsunami, flooded area, and the recent discussion of soil liquefaction have safety potential concepts. This paper brings the concept of safety potential to the anchored slope. Because the soil anchor inspection is only the concept of points, this study extends the concept of the point to the surface, using the Quantum GIS program to present the slope damage area, and depicts the slope appearance and soil anchor point with the slope as-built drawing. The soil anchor scores are obtained by anchor inspection data, and the low, medium and high potential areas are remitted by interpolation. Thus, the area where the anchored slope may be harmful is judged and relevant maintenance is provided. The maintenance units can thus prevent judgment and deal with the anchored slope as soon as possible.

Keywords: anchor, slope, potential map, lift-off test, existing load

Procedia PDF Downloads 134
14076 Analysis of the Variation on Earth Pressure by Addition of Construction Demolition Waste (C&D Waste) In Black Cotton Soil

Authors: Nirav Jadav, M. G.Vanza

Abstract:

Black cotton soils mainly exhibit the property of swelling/shrinkage when they react to moisture variations. This property causes development of cracks in the structures resting on these soils, which poses instability to the structures. Soil stabilization is a technique to enhance the geotechnical characteristics of Black cotton soils by changing their properties. Due to rapid growth in construction industry, a lot of waste material is being generated every day, which poses the problem of its disposal. If the waste material can be utilized for soil stabilization, it will mitigate the problems of its disposal. The tests results evaluate that the strength of the Black cotton soils increased by the use of C&D waste material. This study determines various Index and engineering properties of soil and compare for different proportions of soil and C&D Waste. For finding properties of soil and C&D Waste, various test is carried out like sieve analysis, hydrometer test, specific gravity test, Atterberg’s limit test, Standard proctor test and soil Triaxial unconsolidated undrained test. It also takes into account the characteristics alteration due to addition of C&D Waste in active and passive pressure. This study presents the efficacy for use of C&D Waste as a stabilizing material to be mixed with backfill soil in retaining walls. Standard proctor test was conducted at proportions S1W0 (soil = 100%, Waste = 0%), S7W1 (soil = 87.5%, waste = 12.5%), S3W1, S5W3 and S1W1. From these, S5W3 showed optimum results, so this proportion was considered for Soil Triaxial UU-Test. Also, S1W0 was considered too. When 37.5% of soil is replaced by C&D Waste, the Optimum moisture content (OMC) decrease by 11.48%, further, increase C&D Waste in soil OMC remains constant, and maximum dry density (MDD) were observed to be increased by 9.27%, further increased C&D Waste in soil MDD reduces. Carried out strength test, which shows cohesion decreased by 162% and the internal friction angle increased by 49.4% with compare to virgin soil. The study focuses on the potential use of C&D Waste as a stabilizing material in the retaining wall backfill. The active earth pressure decreases, and the passive earth pressure increases in the S5W3 mixture compared to the S1W0 mixture at the same depth.

Keywords: black cotton soil, construction demolition waste, compaction test, strength test

Procedia PDF Downloads 79
14075 Determinants of Child Anthropometric Indicators: A Case Study of Mali in 2015

Authors: Davod Ahmadigheidari

Abstract:

The main objective of this study was to explore prevalence of anthropometric indicators as well the factors associated with the anthropometric indications in Mali. Data on 2015, downloaded from the website of Unicef, were analyzed. A total of 16,467 women (ages 15-49 years) and 16,467 children (ages 0-59 months) were selected for the sample. Different statistical analyses, such as descriptive, crosstabs and binary logistic regression form the basis of this study. Child anthropometric indicators (i.e., wasting, stunting, underweight and BMI for age) were used as the dependent variables. SPSS Syntax from WHO was used to create anthropometric indicators. Different factors, such as child’s sex, child’s age groups, child’s diseases symptoms (i.e., diarrhea, cough and fever), maternal education, household wealth index and area of residence were used as independent variables. Results showed more than forty percent of Malian households were in nutritional crises (stunting (42%) and underweight (34%). Findings from logistic regression analyses indicated that low score of wealth index, low maternal education and experience of diarrhea in last two weeks increase the probability of child malnutrition.

Keywords: Mali, wasting, stunting, underweight, BMI for age and wealth index

Procedia PDF Downloads 150
14074 Assessment the Capacity of Retention of a Natural Material for the Protection of Ground Water

Authors: Hakim Aguedal, Abdelkader Iddou, Abdalla Aziz, Abdelhadi Bentouami, Ferhat Bensalah, Salah Bensadek

Abstract:

The major environmental risk of soil pollution is the contamination of groundwater by infiltration of organic and inorganic pollutants that can cause a serious pollution. To prevent the migration of this pollution through this structure, many studies propose the installation of layers, which play a role of a barrier that inhibiting the contamination of groundwater by limiting or slowing the flow of rainwater carrying pollution through the layers of soil. However, it is practically impossible to build a barrier layer that let through only water, but it is possible to design a structure with low permeability, which reduces the infiltration of dangerous pollutant. In an environmental context of groundwater protection, the main objective of this study was to investigate the environmental and appropriate suitability method to preserve groundwater, by establishment of a permeable reactive barrier (PRB) intermediate in soil. Followed the influence of several parameters allow us to find the most effective materials and the most appropriate way to incorporate this barrier in the soil.

Keywords: Ground water, protection, permeable reactive Barrier, soil pollution.

Procedia PDF Downloads 548
14073 Bio Energy from Metabolic Activity of Bacteria in Plant and Soil Using Novel Microbial Fuel Cells

Authors: B. Samuel Raj, Solomon R. D. Jebakumar

Abstract:

Microbial fuel cells (MFCs) are an emerging and promising method for achieving sustainable energy since they can remove contaminated organic matter and simultaneously generate electricity. Our approach was driven in three different ways like Bacterial fuel cell, Soil Microbial fuel cell (Soil MFC) and Plant Microbial fuel cell (Plant MFC). Bacterial MFC: Sulphate reducing bacteria (SRB) were isolated and identified as the efficient electricigens which is able to produce ±2.5V (689mW/m2) and it has sustainable activity for 120 days. Experimental data with different MFC revealed that high electricity production harvested continuously for 90 days 1.45V (381mW/m2), 1.98V (456mW/m2) respectively. Biofilm formation was confirmed on the surface of the anode by high content screening (HCS) and scanning electron Microscopic analysis (SEM). Soil MFC: Soil MFC was constructed with low cost and standard Mudwatt soil MFC was purchased from keegotech (USA). Vermicompost soil (V1) produce high energy (± 3.5V for ± 400 days) compared to Agricultural soil (A1) (± 2V for ± 150 days). Biofilm formation was confirmed by HCS and SEM analysis. This finding provides a method for extracting energy from organic matter, but also suggests a strategy for promoting the bioremediation of organic contaminants in subsurface environments. Our Soil MFC were able to run successfully a 3.5V fan and three LED continuously for 150 days. Plant MFC: Amaranthus candatus (P1) and Triticum aestivium (P2) were used in Plant MFC to confirm the electricity production from plant associated microbes, four uniform size of Plant MFC were constructed and checked for energy production. P2 produce high energy (± 3.2V for 40 days) with harvesting interval of two times and P1 produces moderate energy without harvesting interval (±1.5V for 24 days). P2 is able run 3.5V fan continuously for 10days whereas P1 needs optimization of growth conditions to produce high energy.

Keywords: microbial fuel cell, biofilm, soil microbial fuel cell, plant microbial fuel cell

Procedia PDF Downloads 344