Search results for: antigen genes
641 Changes to Populations Might Aid the Spread Antibiotic Resistance in the Environment
Authors: Yasir Bashawri, Vincent N. Chigor James McDonald, Merfyn Williams, Davey Jones, A. Prysor Williams
Abstract:
Resistance to antibiotics has become a threat to public health. As a result of their misuse and overuse, bacteria have become resistant to many common antibiotics. Βeta lactam (β-lactam) antibiotics are one of the most significant classes of antimicrobials in providing therapeutic benefits for the treatment of bacterial infections in both human and veterinary medicine, for approximately 60% of all antibiotics are used. In particular, some Enterobacteriaceae produce Extend Spectrum Beta Lactamases (ESBLs) that enable them to some break down multi-groups of antibiotics. CTX-M enzymes have rapidly become the most important ESBLs, with increases in mainly CTX-M 15 in many countries during the last decade. Global travel by intercontinental medical ‘tourists’, migrant employees and overseas students could theoretically be a risk factor for spreading antibiotic resistance genes in different parts of the world. Bangor city, North Wales, is subject to sudden demographic changes due to a large proportion (>25%) of the population being students, most of which arrive over a space of days. This makes it a suitable location to study the impacts of large demographic change on the presence of ESBLs. The aim of this study is to monitor the presence of ESBLs in Escherichia coli and faecal coliform bacteria isolated from Bangor wastewater treatment plant, before, during and after the arrival week of students to Bangor University. Over a five-week period, water samples were collected twice a week, from the influent, primary sedimentation tank, aeration tank and the final effluent. Isolation and counts for Escherichia coli and other faecal coliforms were done on selective agar (primary UTI agar). ESBL presence will be confirmed by phenotypic and genotypic methods. Sampling at all points of the tertiary treatment stages will indicate the effectiveness of wastewater treatment in reducing the spread of ESBLs genes. The study will yield valuable information to help tackle a problem which many regard to be the one of the biggest threats to modern-day society.Keywords: extended spectrum β-lactamase, enterobacteriaceae, international travel, wastewater treatment plant
Procedia PDF Downloads 375640 BSYJ Promoting Homing and Differentiation of Mesenchymal Stem Cells at the Retina of Age-Related Macular Degeneration Model Mice Induced by Sodium Iodate
Authors: Lina Liang, Kai Xu, Jing Zhang
Abstract:
Purpose: Age-related macular degeneration (AMD) is a major leading cause of visual impairment and blindness with no cure currently established. Cell replacement is discussed as a potential therapy for AMD. Besides intravitreal injection and subretinal injection, intravenous administration has been explored as an alternative route. This study is to observe the effect of BSYJ, a traditional Chinese medicine on the homing and differentiation of mesenchymal stem cells transplanted via tail vein injection in an age-related macular degeneration mouse model. Methods: Four-week-old C57BL/6J mice were injected with 40 mg/kg NaIO₃ to induce age-related macular degeneration model. At the second day after NaIO₃ injection, 1×10⁷ GFP labeled bone marrow-derived mesenchymal stem cells (GFP-MSCs) were transplanted via tali vein injection into the experimental mice. Then the mice were randomly divided into two groups, gavaged with either BSYJ solution (BSYJ group, n=12) or distilled water (DW group, n=12). 12 age-matched healthy C57BL/6J mice were fed regularly as normal control. At day 7, day 14, and day 28 after treatment, retina flat mounting was used to detect the homing of mesenchymal stem cells at the retina. Double-labeling immunofluorescence was used to determine the differentiation of mesenchymal stem cells. Results: At 7, 14, 28 days after treatment, the numbers of GFP-MSCs detected by retina flatmount were 10.2 ± 2.5, 14.5 ± 3.4 and 18.7 ± 5.8, respectively in the distilled water group, while 15.7 ± 3.8, 32.3 ± 3.5 and 77.3 ± 6.4 in BSYJ group, the differences between the two groups were significant (p < 0.05). At 28 days after treatment, it was shown by double staining immunofluorescence that there were more GFP positive cells in the retina of BSYJ group than that of the DW group, but none of the cells expressed RPE specific genes such as RPE65 and CRALBP, or photoreceptor genes such as recoverin and rhodopsin either in BSYJ group or DW group. However, GFAP positive cells were found among the cells labeled with GFP, and the double labeling cells were much more in the BSYJ group than the distilled water group. Conclusion: BSYJ could promote homing of mesenchymal stem cells at the retina of age-related macular degeneration model mice induced by NaIO₃, and the differentiation towards to glial cells. Acknowledgement: National Natural Foundation of China (No: 81473736, 81674033,81973912).Keywords: BSYJ, differentiation, homing, mesenchymal stem cells
Procedia PDF Downloads 144639 Genetically Engineered Crops: Solution for Biotic and Abiotic Stresses in Crop Production
Authors: Deepak Loura
Abstract:
Production and productivity of several crops in the country continue to be adversely affected by biotic (e.g., Insect-pests and diseases) and abiotic (e.g., water temperature and salinity) stresses. Over-dependence on pesticides and other chemicals is economically non-viable for the resource-poor farmers of our country. Further, pesticides can potentially affect human and environmental safety. While traditional breeding techniques and proper- management strategies continue to play a vital role in crop improvement, we need to judiciously use biotechnology approaches for the development of genetically modified crops addressing critical problems in the improvement of crop plants for sustainable agriculture. Modern biotechnology can help to increase crop production, reduce farming costs, and improve food quality and the safety of the environment. Genetic engineering is a new technology which allows plant breeders to produce plants with new gene combinations by genetic transformation of crop plants for improvement of agronomic traits. Advances in recombinant DNA technology have made it possible to have genes between widely divergent species to develop genetically modified or genetically engineered plants. Plant genetic engineering provides the strength to harness useful genes and alleles from indigenous microorganisms to enrich the gene pool for developing genetically modified (GM) crops that will have inbuilt (inherent) resistance to insect pests, diseases, and abiotic stresses. Plant biotechnology has made significant contributions in the past 20 years in the development of genetically engineered or genetically modified crops with multiple benefits. A variety of traits have been introduced in genetically engineered crops which include (i) herbicide resistance. (ii) pest resistance, (iii) viral resistance, (iv) slow ripening of fruits and vegetables, (v) fungal and bacterial resistance, (vi) abiotic stress tolerance (drought, salinity, temperature, flooding, etc.). (vii) quality improvement (starch, protein, and oil), (viii) value addition (vitamins, micro, and macro elements), (ix) pharmaceutical and therapeutic proteins, and (x) edible vaccines, etc. Multiple genes in transgenic crops can be useful in developing durable disease resistance and a broad insect-control spectrum and could lead to potential cost-saving advantages for farmers. The development of transgenic to produce high-value pharmaceuticals and the edible vaccine is also under progress, which requires much more research and development work before commercially viable products will be available. In addition, molecular-aided selection (MAS) is now routinely used to enhance the speed and precision of plant breeding. Newer technologies need to be developed and deployed for enhancing and sustaining agricultural productivity. There is a need to optimize the use of biotechnology in conjunction with conventional technologies to achieve higher productivity with fewer resources. Therefore, genetic modification/ engineering of crop plants assumes greater importance, which demands the development and adoption of newer technology for the genetic improvement of crops for increasing crop productivity.Keywords: biotechnology, plant genetic engineering, genetically modified, biotic, abiotic, disease resistance
Procedia PDF Downloads 71638 Biophysically Motivated Phylogenies
Authors: Catherine Felce, Lior Pachter
Abstract:
Current methods for building phylogenetic trees from gene expression data consider mean expression levels. With single-cell technologies, we can leverage more information about cell dynamics by considering the entire distribution of gene expression across cells. Using biophysical modeling, we propose a method for constructing phylogenetic trees from scRNA-seq data, building on Felsenstein's method of continuous characters. This method can highlight genes whose level of expression may be unchanged between species, but whose rates of transcription/decay may have evolved over time.Keywords: phylogenetics, single-cell, biophysical modeling, transcription
Procedia PDF Downloads 49637 Adalimumab Therapy for Inflammatory Discitis Associated with Spondyloarthropathy
Authors: Liu Yuhong, Hussen Mansai, Mei Chunli
Abstract:
Inflammatory discitis is a sterile inflammatary disease that typically presents with abnormalities in two adjacent vertebral bodies and the intervening disk. Diagnosis this disorder is usually difficult and ideal management remains controversial. In this report,we examine a case of inflammatory discitis in a 56 year old female in which treatment with adalimumab ameliorated symptoms. The 56-year-old female patient developed repeatedly inflammatory discitis in the past three years, presenting with severe back pain, an elevated C-reactive protein and erythrocyte sedimentation rate, radiological erosive changes in vertebral and intervertebral disk of the spine. Surgical treatment, antibiotics and non steroidal anti-inflammatory drugs(NSAIDs) were used, but the patient still suffered from recurrent onset of unbearable backache. Three years later from the patient’s first admission,adalimumab was prescribed due to the third occurrence of Anderson lesions, which she had been suffering from for years. Soon after the same day of adalimumab therapy, her symptoms had a dramatic improvement. On the following day she could stand and walk slowly, her CRP and ESR were decreased to nearly normal levels in 4 weeks. Human leukocyte antigen (HLA)-typing analysis revealed a positive result for HLA-B27, the patient’s inflammatory discitis was considered to be associated with spondyloarthropathy.Keywords: adalimumab, inflammatory discitis, spondyloarthropathy, patient
Procedia PDF Downloads 253636 Improved Intracellular Protein Degradation System for Rapid Screening and Quantitative Study of Essential Fungal Proteins in Biopharmaceutical Development
Authors: Patarasuda Chaisupa, R. Clay Wright
Abstract:
The selection of appropriate biomolecular targets is a crucial aspect of biopharmaceutical development. The Auxin-Inducible Degron Degradation (AID) technology has demonstrated remarkable potential in efficiently and rapidly degrading target proteins, thereby enabling the identification and acquisition of drug targets. The AID system also offers a viable method to deplete specific proteins, particularly in cases where the degradation pathway has not been exploited or when the adaptation of proteins, including the cell environment, occurs to compensate for the mutation or gene knockout. In this study, we have engineered an improved AID system tailored to deplete proteins of interest. This AID construct combines the auxin-responsive E3 ubiquitin ligase binding domain, AFB2, and the substrate degron, IAA17, fused to the target genes. Essential genes of fungi with the lowest percent amino acid similarity to human and plant orthologs, according to the Basic Local Alignment Search Tool (BLAST), were cloned into the AID construct in S. cerevisiae (AID-tagged strains) using a modular yeast cloning toolkit for multipart assembly and direct genetic modification. Each E3 ubiquitin ligase and IAA17 degron was fused to a fluorescence protein, allowing for real-time monitoring of protein levels in response to different auxin doses via cytometry. Our AID system exhibited high sensitivity, with an EC50 value of 0.040 µM (SE = 0.016) for AFB2, enabling the specific promotion of IAA17::target protein degradation. Furthermore, we demonstrate how this improved AID system enhances quantitative functional studies of various proteins in fungi. The advancements made in auxin-inducible protein degradation in this study offer a powerful approach to investigating critical target protein viability in fungi, screening protein targets for drugs, and regulating intracellular protein abundance, thus revolutionizing the study of protein function underlying a diverse range of biological processes.Keywords: synthetic biology, bioengineering, molecular biology, biotechnology
Procedia PDF Downloads 92635 Comprehensive Analysis of RNA m5C Regulator ALYREF as a Suppressive Factor of Anti-tumor Immune and a Potential Tumor Prognostic Marker in Pan-Cancer
Authors: Yujie Yuan, Yiyang Fan, Hong Fan
Abstract:
Objective: The RNA methylation recognition protein Aly/REF export factor (ALYREF) is considered one type of “reader” protein acting as a recognition protein of m5C, has been reported involved in several biological progresses including cancer initiation and progression. 5-methylcytosine (m5C) is a conserved and prevalent RNA modification in all species, as accumulating evidence suggests its role in the promotion of tumorigenesis. It has been claimed that ALYREF mediates nuclear export of mRNA with m5C modification and regulates biological effects of cancer cells. However, the systematical regulatory pathways of ALYREF in cancer tissues have not been clarified, yet. Methods: The expression level of ALYREF in pan-cancer and their normal tissues was compared through the data acquired from The Cancer Genome Atlas (TCGA). The University of Alabama at Birmingham Cancer data analysis Portal UALCAN was used to analyze the relationship between ALYREF and clinical pathological features. The relationship between the expression level of ALYREF and prognosis of pan-cancer, and the correlation genes of ALYREF were figured out by using Gene Expression Correlation Analysis database GEPIA. Immune related genes were obtained from TISIDB (an integrated repository portal for tumor-immune system interactions). Immune-related research was conducted by using Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data (ESTIMATE) and TIMER. Results: Based on the data acquired from TCGA, ALYREF has an obviously higher-level expression in various types of cancers compared with relevant normal tissues excluding thyroid carcinoma and kidney chromophobe. The immunohistochemical images on The Human Protein Atlas showed that ALYREF can be detected in cytoplasm, membrane, but mainly located in nuclear. In addition, a higher expression level of ALYREF in tumor tissue generates a poor prognosis in majority of cancers. According to the above results, cancers with a higher expression level of ALYREF compared with normal tissues and a significant correlation between ALYREF and prognosis were selected for further analysis. By using TISIDB, we found that portion of ALYREF co-expression genes (such as BIRC5, H2AFZ, CCDC137, TK1, and PPM1G) with high Pearson correlation coefficient (PCC) were involved in anti-tumor immunity or affect resistance or sensitivity to T cell-mediated killing. Furthermore, based on the results acquired from GEPIA, there was significant correlation between ALYREF and PD-L1. It was exposed that there is a negative correlation between the expression level of ALYREF and ESTIMATE score. Conclusion: The present study indicated that ALYREF plays a vital and universal role in cancer initiation and progression of pan-cancer through regulating mitotic progression, DNA synthesis and metabolic process, and RNA processing. The correlation between ALYREF and PD-L1 implied ALYREF may affect the therapeutic effect of immunotherapy of tumor. More evidence revealed that ALYREF may play an important role in tumor immunomodulation. The correlation between ALYREF and immune cell infiltration level indicated that ALYREF can be a potential therapeutic target. Exploring the regulatory mechanism of ALYREF in tumor tissues may expose the reason for poor efficacy of immunotherapy and offer more directions of tumor treatment.Keywords: ALYREF, pan-cancer, immunotherapy, PD-L1
Procedia PDF Downloads 71634 Properties of Adipose Tissue Derived Mesenchymal Stem Cells with Long-Term Cryopreservation
Authors: Jienny Lee, In-Soo Cho, Sang-Ho Cha
Abstract:
Adult mesenchymal stem cells (MSCs) have been investigated using preclinical approaches for tissue regeneration. Porcine MSCs (pMSCs) are capable of growing and attaching to plastic with a fibroblast-like morphology and then differentiating into bone, adipose, and cartilage tissues in vitro. This study was conducted to investigate the proliferating abilities, differentiation potentials, and multipotency of miniature pig adipose tissue-derived MSCs (mpAD-MSCs) with or without long-term cryopreservation, considering that cryostorage has the potential for use in clinical applications. After confirming the characteristics of the mpAD-MSCs, we examined the effect of long-term cryopreservation (> 2 years) on expression of cell surface markers (CD34, CD90 and CD105), proliferating abilities (cumulative population doubling level, doubling time, colony-forming unit, and MTT assay) and differentiation potentials into mesodermal cell lineages. As a result, the expression of cell surface markers is similar between thawed and fresh mpAD-MSCs. However, long-term cryopreservation significantly lowered the differentiation potentials (adipogenic, chondrogenic, and osteogenic) of mpAD-MSCs. When compared with fresh mpAD-MSCs, thawed mpAD-MSCs exhibited lower expression of mesodermal cell lineage-related genes such as peroxisome proliferator-activated receptor-g2, lipoprotein lipase, collagen Type II alpha 1, osteonectin, and osteocalcin. Interestingly, long-term cryostoraged mpAD-MSCs exhibited significantly higher cell viability than the fresh mpAD-MSCs. Long-term cryopreservation induced a 30% increase in the cell viability of mpAD-MSCs when compared with the fresh mpAD-MSCs at 5 days after thawing. However, long-term cryopreservation significantly lowered expression of stemness markers such as Oct3/4, Sox2, and Nanog. Furthermore, long-term cryopreservation negatively affected expression of senescence-associated genes such as telomerase reverse transcriptase and heat shock protein 90 of mpAD-MSCs when compared with the fresh mpAD-MSCs. The results from this study might be important for the successful application of MSCs in clinical trials after long-term cryopreservation.Keywords: mesenchymal stem cells, cryopreservation, stemness, senescence
Procedia PDF Downloads 235633 Isolation and Identification of Salmonella spp and Salmonella enteritidis, from Distributed Chicken Samples in the Tehran Province using Culture and PCR Techniques
Authors: Seyedeh Banafsheh Bagheri Marzouni, Sona Rostampour Yasouri
Abstract:
Salmonella is one of the most important common pathogens between humans and animals worldwide. Globally, the prevalence of the disease in humans is due to the consumption of food contaminated with animal-derived Salmonella. These foods include eggs, red meat, chicken, and milk. Contamination of chicken and its products with Salmonella may occur at any stage of the chicken processing chain. Salmonella infection is usually not fatal. However, its occurrence is considered dangerous in some individuals, such as infants, children, the elderly, pregnant women, or individuals with weakened immune systems. If Salmonella infection enters the bloodstream, the possibility of contamination of tissues throughout the body will arise. Therefore, determining the potential risk of Salmonella at various stages is essential from the perspective of consumers and public health. The aim of this study is to isolate and identify Salmonella from chicken samples distributed in the Tehran market using the Gold standard culture method and PCR techniques based on specific genes, invA and ent. During the years 2022-2023, sampling was performed using swabs from the liver and intestinal contents of distributed chickens in the Tehran province, with a total of 120 samples taken under aseptic conditions. The samples were initially enriched in buffered peptone water (BPW) for pre-enrichment overnight. Then, the samples were incubated in selective enrichment media, including TT broth and RVS medium, at temperatures of 37°C and 42°C, respectively, for 18 to 24 hours. Organisms that grew in the liquid medium and produced turbidity were transferred to selective media (XLD and BGA) and incubated overnight at 37°C for isolation. Suspicious Salmonella colonies were selected for DNA extraction, and PCR technique was performed using specific primers that targeted the invA and ent genes in Salmonella. The results indicated that 94 samples were Salmonella using the PCR technique. Of these, 71 samples were positive based on the invA gene, and 23 samples were positive based on the ent gene. Although the culture technique is the Gold standard, PCR is a faster and more accurate method. Rapid detection through PCR can enable the identification of Salmonella contamination in food items and the implementation of necessary measures for disease control and prevention.Keywords: culture, PCR, salmonella spp, salmonella enteritidis
Procedia PDF Downloads 72632 Actinomycetes from Protected Forest Ecosystems of Assam, India: Diversity and Antagonistic Activity
Authors: Priyanka Sharma, Ranjita Das, Mohan C. Kalita, Debajit Thakur
Abstract:
Background: Actinomycetes are the richest source of novel bioactive secondary metabolites such as antibiotics, enzymes and other therapeutically useful metabolites with diverse biological activities. The present study aims at the antimicrobial potential and genetic diversity of culturable Actinomycetes isolated from protected forest ecosystems of Assam which includes Kaziranga National Park (26°30˝-26°45˝N and 93°08˝-93°36˝E), Pobitora Wildlife Sanctuary (26º12˝-26º16˝N and 91º58˝-92º05˝E) and Gibbon Wildlife Sanctuary (26˚40˝-26˚45˝N and 94˚20˝-94˚25˝E) which are located in the North-eastern part of India. Northeast India is a part of the Indo-Burma mega biodiversity hotspot and most of the protected forests of this region are still unexplored for the isolation of effective antibiotic-producing Actinomycetes. Thus, there is tremendous possibility that these virgin forests could be a potential storehouse of novel microorganisms, particularly Actinomycetes, exhibiting diverse biological properties. Methodology: Soil samples were collected from different ecological niches of the protected forest ecosystems of Assam and Actinomycetes were isolated by serial dilution spread plate technique using five selective isolation media. Preliminary screening of Actinomycetes for an antimicrobial activity was done by spot inoculation method and the secondary screening by disc diffusion method against several test pathogens, including multidrug resistant Staphylococcus aureus (MRSA). The strains were further screened for the presence of antibiotic synthetic genes such as type I polyketide synthases (PKS-I), type II polyketide synthases (PKS-II) and non-ribosomal peptide synthetases (NRPS) genes. Genetic diversity of the Actinomycetes producing antimicrobial metabolites was analyzed through 16S rDNA-RFLP using Hinf1 restriction endonuclease. Results: Based on the phenotypic characterization, a total of 172 morphologically distinct Actinomycetes were isolated and screened for antimicrobial activity by spot inoculation method on agar medium. Among the strains tested, 102 (59.3%) strains showed activity against Gram-positive bacteria, 98 (56.97%) against Gram-negative bacteria, 92 (53.48%) against Candida albicans MTCC 227 and 130 (75.58%) strains showed activity against at least one of the test pathogens. Twelve Actinomycetes exhibited broad spectrum antimicrobial activity in the secondary screening. The taxonomic identification of these twelve strains by 16S rDNA sequencing revealed that Streptomyces was found to be the predominant genus. The PKS-I, PKS-II and NRPS genes detection indicated diverse bioactive products of these twelve Actinomycetes. Genetic diversity by 16S rDNA-RFLP indicated that Streptomyces was the dominant genus amongst the antimicrobial metabolite producing Actinomycetes. Conclusion: These findings imply that Actinomycetes from the protected forest ecosystems of Assam, India, are a potential source of bioactive secondary metabolites. These areas are as yet poorly studied and represent diverse and largely unscreened ecosystem for the isolation of potent Actinomycetes producing antimicrobial secondary metabolites. Detailed characterization of the bioactive Actinomycetes as well as purification and structure elucidation of the bioactive compounds from the potent Actinomycetes is the subject of ongoing investigation. Thus, to exploit Actinomycetes from such unexplored forest ecosystems is a way to develop bioactive products.Keywords: Actinomycetes, antimicrobial activity, forest ecosystems, RFLP
Procedia PDF Downloads 391631 The Association Between CYP2C19 Gene Distribution and Medical Cannabis Treatment
Authors: Vichayada Laohapiboolkul
Abstract:
Introduction: As the legal use of cannabis is being widely accepted throughout the world, medical cannabis has been explored in order to become an alternative cure for patients. Tetrahydrocannabinol (THC) and Cannabidiol (CBD) are natural cannabinoids found in the Cannabis plant which is proved to have positive treatment for various diseases and symptoms such as chronic pain, neuropathic pain, spasticity resulting from multiple sclerosis, reduce cancer-associated pain, autism spectrum disorders (ASD), dementia, cannabis and opioid dependence, psychoses/schizophrenia, general social anxiety, posttraumatic stress disorder, anorexia nervosa, attention-deficit hyperactivity disorder, and Tourette's disorder. Regardless of all the medical benefits, THC, if not metabolized, can lead to mild up to severe adverse drug reactions (ADR). The enzyme CYP2C19 was found to be one of the metabolizers of THC. However, the suballele CYP2C19*2 manifests as a poor metabolizer which could lead to higher levels of THC than usual, possibly leading to various ADRs. Objective: The aim of this study was to investigate the distribution of CYP2C19, specifically CYP2C19*2, genes in Thai patients treated with medical cannabis along with adverse drug reactions. Materials and Methods: Clinical data and EDTA whole blood for DNA extraction and genotyping were collected from patients for this study. CYP2C19*2 (681G>A, rs4244285) genotyping was conducted using the Real-time PCR (ABI, Foster City, CA, USA). Results: There were 42 medical cannabis-induced ADRs cases and 18 medical cannabis tolerance controls who were included in this study. A total of 60 patients were observed where 38 (63.3%) patients were female and 22 (36.7%) were male, with a range of age approximately 19 - 87 years. The most apparent ADRs for medical cannabis treatment were dry mouth/dry throat (76.7%), followed by tachycardia (70%), nausea (30%) and a few arrhythmias (10%). In the total of 27 cases, we found a frequency of 18 CYP2C19*1/*1 alleles (normal metabolizers, 66.7%), 8 CYP2C19*1/*2 alleles (intermediate metabolizers, 29.6%) and 1 CYP2C19*2/*2 alleles (poor metabolizers, 3.7%). Meanwhile, 63.6% of CYP2C19*1/*1, 36.3% and 0% of CYP2C19*1/*2 and *2/*2 in the tolerance controls group, respectively. Conclusions: This is the first study to confirm the distribution of CYP2C19*2 allele and the prevalence of poor metabolizer genes in Thai patients who received medical cannabis for treatment. Thus, CYP2C19 allele might serve as a pharmacogenetics marker for screening before initiating treatment.Keywords: medical cannabis, adverse drug reactions, CYP2C19, tetrahydrocannabinol, poor metabolizer
Procedia PDF Downloads 103630 Genome-Scale Analysis of Streptomyces Caatingaensis CMAA 1322 Metabolism, a New Abiotic Stress-Tolerant Actinomycete
Authors: Suikinai Nobre Santos, Ranko Gacesa, Paul F. Long, Itamar Soares de Melo
Abstract:
Extremophilic microorganism are adapted to biotopes combining several stress factors (temperature, pressure, radiation, salinity and pH), which indicate the richness valuable resource for the exploitation of novel biotechnological processes and constitute unique models for investigations their biomolecules (1, 2). The above information encourages us investigate bioprospecting synthesized compounds by a noval actinomycete, designated thermotolerant Streptomyces caatingaensis CMAA 1322, isolated from sample soil tropical dry forest (Caatinga) in the Brazilian semiarid region (3-17°S and 35-45°W). This set of constrating physical and climatic factores provide the unique conditions and a diversity of well adapted species, interesting site for biotechnological purposes. Preliminary studies have shown the great potential in the production of cytotoxic, pesticidal and antimicrobial molecules (3). Thus, to extend knowledge of the genes clusters responsible for producing biosynthetic pathways of natural products in strain CMAA1322, whole-genome shotgun (WGS) DNA sequencing was performed using paired-end long sequencing with PacBio RS (Pacific Biosciences). Genomic DNA was extracted from a pure culture grown overnight on LB medium using the PureLink genomic DNA kit (Life Technologies). An approximately 3- to 20-kb-insert PacBio library was constructed and sequenced on an 8 single-molecule real-time (SMRT) cell, yielding 116,269 reads (average length, 7,446 bp), which were allocated into 18 contigs, with 142.11x coverage and N50 value of 20.548 bp (BioProject number PRJNA288757). The assembled data were analyzed by Rapid Annotations using Subsystems Technology (RAST) (4) the genome size was found to be 7.055.077 bp, comprising 6167 open reading frames (ORFs) and 413 subsystems. The G+C content was estimated to be 72 mol%. The closest-neighbors tool, available in RAST through functional comparison of the genome, revealed that strain CMAA1322 is more closely related to Streptomyces hygroscopicus ATCC 53653 (similarity score value, 537), S. violaceusniger Tu 4113 (score value, 483), S. avermitilis MA-4680 (score value, 475), S. albus J1074 (score value, 447). The Streptomyces sp. CMAA1322 genome contains 98 tRNA genes and 135 genes copies related to stress response, mainly osmotic stress (14), heat shock (16), oxidative stress (49). Functional annotation by antiSMASH version 3.0 (5) identified 41 clusters for secondary metabolites (including two clusters for lanthipeptides, ten clusters for nonribosomal peptide synthetases [NRPS], three clusters for siderophores, fourteen for polyketide synthetase [PKS], six clusters encoding a terpene, two clusters encoding a bacteriocin, and one cluster encoding a phenazine). Our work provide in comparative analyse of genome and extract produced (data no published) by lineage CMAA1322, revealing the potential of microorganisms accessed from extreme environments as Caatinga” to produce a wide range of biotechnological relevant compounds.Keywords: caatinga, streptomyces, environmental stresses, biosynthetic pathways
Procedia PDF Downloads 242629 Cocoa Stimulates the Production Bioactive Components of Lactobacillus Casei and Competitively Excludes Foodborne Pathogens
Authors: Mengfei Peng, Serajus Salaheen, Debabrata Biswas
Abstract:
Lactobacillus casei found in the human intestine and mouth is commonly applied for dairy production. Recently, it was found that some byproducts produced by Lactobacillus exhibited antimicrobial activities against multiple bacteria. Meanwhile, introduction of prebiotic-like foods (e.g. cocoa) or probiotics or both of them as food supplements in human diets as well as in farm animal feeds is believed to be an effective ways in control/reduce the colonization of foodborne bacterial pathogens infection in the gut environment. We hypothesized that cocoa may stimulate the production antimicrobial components of Lactobacillus casei and may potentially inhibit/reduce the colonization and infection of foodborne bacterial pathogens in the gut. Mixed culture of L. casei (LC) with enterohemorrhagic E. coli EDL933 (EHEC), Salmonella Typhimurium LT2 (ST), or Listeria monocytogenes LM2 (LM) showed that LC could competitively exclude (100%) them within 72 h. Further, investigation of cell-free culture supernatant (CFCS) revealed that the antimicrobial effects of LC came from CFCS. CFCS of LC eliminated (100%) EHEC, ST, and LM within 72 h, and 2 h CFCS treatment increased the hydrophobicity of EHEC (5.10 folds), ST (8.48 folds), and LM (2.03 folds). In addition, LC cells exhibited more inhibitive effects than CFCS on cell adhesive and invasive activities of EHEC (52.14% & 90.45%), ST (66.89% & 93.83%), and LM (61.10% & 83.40%). Two clusters of poly-peptides in CFCS were identified by SDS-PAGE, the molecular weights of which are ≈5 KD and 40-45 KD. LC CFCS with overnight growth in the presence of 3% strengthened all of the antimicrobial activities (growth inhibition, outer membrane disruption, and cell infective ability reduction). Liquid chromatography/Mass spectrometry analysis detected 5 unique components in class of flavonoids in LC CFCS with overnight 3% cocoa supplement. Furthermore, qPCR results showed that CFCSs up-regulated the expression level of genes responsible for flagellin synthesis and motility, but down-regulated genes for specific binding and invasion-associated proteins synthesis. The stimulatory effects of cocoa in producing bioactive components of probiotics may aid prevention of foodborne illness caused by major foodborne enteric bacterial pathogens.Keywords: foodborne pathogens, probiotics, prebiotics, pathogen exclusion
Procedia PDF Downloads 432628 Virulence Factors and Drug Resistance of Enterococci Species Isolated from the Intensive Care Units of Assiut University Hospitals, Egypt
Authors: Nahla Elsherbiny, Ahmed Ahmed, Hamada Mohammed, Mohamed Ali
Abstract:
Background: The enterococci may be considered as opportunistic agents particularly in immunocompromised patients. It is one of the top three pathogens causing many healthcare associated infections (HAIs). Resistance to several commonly used antimicrobial agents is a remarkable characteristic of most species which may carry various genes contributing to virulence. Objectives: to determine the prevalence of enterococci species in different intensive care units (ICUs) causing health care-associated infections (HAIs), intestinal carriage and environmental contamination. Also, to study the antimicrobial susceptibility pattern of the isolates with special reference to vancomycin resistance. In addition to phenotypic and genotypic detection of gelatinase, cytolysin and biofilm formation among isolates. Patients and Methods: This study was carried out in the infection control laboratory at Assiut University Hospitals over a period of one year. Clinical samples were collected from 285 patients with various (HAIs) acquired after admission to different ICUs. Rectal swabs were taken from 14 cases for detection of enterococci carriage. In addition, 1377 environmental samples were collected from the surroundings of the patients. Identification was done by conventional bacteriological methods and confirmed by analytical profile index (API). Antimicrobial sensitivity testing was performed by Kirby Bauer disc diffusion method and detection of vancomycin resistance was done by agar screen method. For the isolates, phenotypic detection of cytolysin, gelatinase production and detection of biofilm by tube method, Congo red method and microtiter plate. We performed polymerase chain reaction (PCR) for detection of some virulence genes (gelE, cylA, vanA, vanB and esp). Results: Enterococci caused 10.5% of the HAIs. Respiratory tract infection was the predominant type (86.7%). The commonest species were E.gallinarum (36.7%), E.casseliflavus (30%), E.faecalis (30%), and E.durans (3.4 %). Vancomycin resistance was detected in a total of 40% (12/30) of those isolates. The risk factors associated with acquiring vancomycin resistant enterococci (VRE) were immune suppression (P= 0.031) and artificial feeding (P= 0.008). For the rectal swabs, enterococci species were detected in 71.4% of samples with the predominance of E. casseliflavus (50%). Most of the isolates were vancomycin resistant (70%). Out of a total 1377 environmental samples, 577 (42%) samples were contaminated with different microorganisms. Enterococci were detected in 1.7% (10/577) of total contaminated samples, 50% of which were vancomycin resistant. All isolates were resistant to penicillin, ampicillin, oxacillin, ciprofloxacin, amikacin, erythromycin, clindamycin and trimethoprim-sulfamethaxazole. For the remaining antibiotics, variable percentages of resistance were reported. Cytolysin and gelatinase were detected phenotypically in 16% and 48 % of the isolates respectively. The microtiter plate method showed the highest percentages of detection of biofilm among all isolated species (100%). The studied virulence genes gelE, esp, vanA and vanB were detected in 62%, 12%, 2% and 12% respectively, while cylA gene was not detected in any isolates. Conclusions: A significant percentage of enterococci was isolated from patients and environments in the ICUs. Many virulence factors were detected phenotypically and genotypically among isolates. The high percentage of resistance, coupled with the risk of cross transmission to other patients make enterococci infections a significant infection control issue in hospitals.Keywords: antimicrobial resistance, enterococci, ICUs, virulence factors
Procedia PDF Downloads 285627 Significance of Molecular Autophagic Pathway in Gaucher Disease Pathology
Authors: Ozlem Oral, Emre Taskin, Aysel Yuce, Serap Dokmeci, Devrim Gozuacik
Abstract:
Autophagy is an evolutionary conserved lysosome-dependent catabolic pathway, responsible for the degradation of long-lived proteins, abnormal aggregates and damaged organelles which cannot be degraded by the ubiquitin-proteasome system. Lysosomes degrade the substrates through the activity of lysosomal hydrolases and lysosomal membrane-bound proteins. Mutations in the coding region of these proteins cause malfunctional lysosomes, which contributes to the pathogenesis of lysosomal storage diseases. Gaucher disease is a lysosomal storage disease resulting from the mutation of a lysosomal membrane-associated glycoprotein called glucocerebrosidase and its cofactor saposin C. The disease leads to intracellular accumulation of glucosylceramide and other glycolipids. Because of the essential role of lysosomes in autophagic degradation, Gaucher disease may directly be linked to this pathway. In this study, we investigated the expression of autophagy and/or lysosome-related genes and proteins in fibroblast cells isolated from patients with different mutations. We carried out confocal microscopy analysis and examined autophagic flux by utilizing the differential pH sensitivities of RFP and GFP in mRFP-GFP-LC3 probe. We also evaluated lysosomal pH by active lysosome staining and lysosomal enzyme activity. Beside lysosomes, we also performed proteasomal activity and cell death analysis in patient samples. Our data showed significant attenuation in the expression of key autophagy-related genes and accumulation of their proteins in mutant cells. We found decreased the ability of autophagosomes to fuse with lysosomes, associated with elevated lysosomal pH and reduced lysosomal enzyme activity. Proteasomal degradation and cell death analysis showed reduced proteolytic activity of the proteasome, which consequently leads to increased susceptibility to cell death. Our data indicate that the major degradation pathways are affected by multifunctional lysosomes in mutant patient cells and may underlie in the mechanism of clinical severity of Gaucher patients. (This project is supported by TUBITAK-3501-National Young Researchers Career Development Program, Project No: 112T130).Keywords: autophagy, Gaucher's disease, glucocerebrosidase, mutant fibroblasts
Procedia PDF Downloads 324626 Effect of Auraptene on the Enzymatic Glutathione Redox-System in Nrf2 Knockout Mice
Authors: Ludmila A. Gavriliuc, Jerry McLarty, Heather E. Kleiner, J. Michael Mathis
Abstract:
Abstract -- Background: The citrus coumarine Auraptene (Aur) is an effective chemopreventive agent, as manifested in many models of diseases and cancer. Nuclear factor erythroid 2-related factor (Nrf2) is an important regulator of genes induced by oxidative stress, such as glutathione S-transferases, heme oxygenase-1, and peroxiredoxin 1, by activating the antioxidant response element (ARE). Genetic and biochemical evidence has demonstrated that glutathione (GSH) and glutathione-dependent enzymes, glutathione reductase (GR), glutathione peroxidases (GPs), glutathione S-transferases (GSTs) are responsible for the control of intracellular reduction-oxidation status and participate in cellular adaptation to oxidative stress. The effect of Aur on the activity of GR, GPs (Se-GP and Se-iGP), and content of GSH in the liver, kidney, and spleen is insufficiently explored. Aim: Our goal was the examination of the Aur influence on the redox-system of GSH in Nrf2 wild type and Nrf2 knockout mice via activation of Nrf2 and ARE. Methods: Twenty female mice, 10 Nrf2 wild-type (WT) and 10 Nrf2 (-/-) knockout (KO), were bred and genotyped for our study. The activity of GR, Se-GP, Se-iGP, GST, G6PD, CytP450 reductase, catalase (Cat), and content of GSH were analyzed in the liver, kidney, and spleen using Spectrophotometry methods. The results of the specific activity of enzymes and the amount of GSH were analyzed with ANOVA and Spearman statistical methods. Results: Aur (200 mg/kg) treatment induced hepatic GST, GR, Se-GP activity and inhibited their activity in the spleen of mice, most likely via activation of the ARE through Nrf2. Activation in kidney Se-GP and G6PD by Aur is also controlled, apparently through Nrf2. Results of the non-parametric Spearman correlation analysis indicated the strong positive correlation between GR and G6PD only in the liver in WT control mice (r=+0.972; p < 0.005) and in the kidney KO control mice (r=+0.958; p < 0.005). The observed low content of GSH in the liver of KO mice indicated an increase in its participation in the neutralization of toxic substances with the absence of induction of GSH-dependent enzymes, such as GST, GR, Se-GP, and Se-iGP. Activation of CytP450 in kidney and spleen and Cat in the liver in KO mice probably revealed another regulatory mechanism for these enzymes. Conclusion: Thereby, obtained results testify that Aur can modulate the activity of genes and antioxidant enzymatic redox-system of GSH, responsible for the control of intracellular reduction-oxidation status.Keywords: auraptene, glutathione, GST, Nrf2
Procedia PDF Downloads 149625 Prevalence and Mechanisms of Antibiotic Resistance in Escherichia coli Isolated from Mastitic Dairy Cattle in Canada
Authors: Satwik Majumder, Dongyun Jung, Jennifer Ronholm, Saji George
Abstract:
Bovine mastitis is the most common infectious disease in dairy cattle, with major economic implications for the dairy industry worldwide. Continuous monitoring for the emergence of antimicrobial resistance (AMR) among bacterial isolates from dairy farms is vital not only for animal husbandry but also for public health. In this study, the prevalence of AMR in 113 Escherichia coli isolates from cases of bovine clinical mastitis in Canada was investigated. Kirby-Bauer disk diffusion test with 18 antibiotics and microdilution method with three heavy metals (copper, zinc, and silver) was performed to determine the antibiotic and heavy-metal susceptibility. Resistant strains were assessed for efflux and ß-lactamase activities besides assessing biofilm formation and hemolysis. Whole-genome sequences for each of the isolates were examined to detect the presence of genes corresponding to the observed AMR and virulence factors. Phenotypic analysis revealed that 32 isolates were resistant to one or more antibiotics, and 107 showed resistance against at least one heavy metal. Quinolones and silver were the most efficient against the tested isolates. Among the AMR isolates, AcrAB-TolC efflux activity and ß-lactamase enzyme activities were detected in 13 and 14 isolates, respectively. All isolates produced biofilm but with different capacities, and 33 isolates showed α-hemolysin activity. A positive correlation (Pearson r = +0.89) between efflux pump activity and quantity of biofilm was observed. Genes associated with aggregation, adhesion, cyclic di-GMP, quorum sensing were detected in the AMR isolates, corroborating phenotype observations. This investigation showed the prevalence of AMR in E. coli isolates from bovine clinical mastitis. The results also suggest the inadequacy of antimicrobials with a single mode of action to curtail AMR bacteria with multiple mechanisms of resistance and virulence factors. Therefore, it calls for combinatorial therapy for the effective management of AMR infections in dairy farms and combats its potential transmission to the food supply chain through milk and dairy products.Keywords: antimicrobial resistance, E. coli, bovine mastitis, antibiotics, heavy-metals, efflux pump, ß-lactamase enzyme, biofilm, whole-genome sequencing
Procedia PDF Downloads 216624 Broad Protection against Avian Influenza Virus by Using a Modified Vaccinia Ankara Virus Expressing a Mosaic Hemagglutinin
Authors: Attapon Kamlangdee, Brock Kingstad-Bakke, Tavis K. Anderson, Tony L. Goldberg, Jorge E. Osorio
Abstract:
A critical failure in our preparedness for an influenza pandemic is the lack of a universal vaccine. Influenza virus strains diverge by 1 to 2% per year, and commercially available vaccines often do not elicit protection from one year to the next, necessitating frequent formulation changes. This represents a major challenge to the development of a cross-protective vaccine that can protect against circulating viral antigenic diversity. We have constructed a recombinant modified vaccinia virus Ankara (MVA) that expresses an H5N1 mosaic hemagglutinin (H5M) (MVA-H5M). This mosaic was generated in silico using 2,145 field-sourced H5N1 isolates. A single dose of MVA-H5M provided 100% protection in mice against clade 0, 1, and 2 avian influenza viruses and also protected against seasonal H1N1 virus (A/Puerto Rico/8/34). It also provided short-term (10 days) and long-term (6 months) protection post vaccination. Both neutralizing antibodies and antigen-specific CD4+and CD8+ T cells were still detected at 5 months post vaccination, suggesting that MVA-H5M provides long-lasting immunity.Keywords: modified vaccinia Ankara, MVA, H5N1, hemagglutinin, influenza vaccine
Procedia PDF Downloads 279623 Genome Analyses of Pseudomonas Fluorescens b29b from Coastal Kerala
Authors: Wael Ali Mohammed Hadi
Abstract:
Pseudomonas fluorescens B29B, which has asparaginase enzymatic activity, was isolated from the surface coastal seawater of Trivandrum, India. We report the complete Pseudomonas fluorescens B29B genome sequenced, identified, and annotated from a marine source. We find the genome at most minuscule a 7,331,508 bp single circular chromosome with a GC content of 62.19% and 6883 protein-coding genes. Three hundred forty subsystems were identified, including two predicted asparaginases from the genome analysis of P. fluorescens B29B for further investigation. This genome data will help further industrial biotechnology applications of proteins in general and asparaginase as a target.Keywords: pseudomonas, marine, asparaginases, Kerala, whole-genome
Procedia PDF Downloads 214622 Computing the Similarity and the Diversity in the Species Based on Cronobacter Genome
Authors: E. Al Daoud
Abstract:
The purpose of computing the similarity and the diversity in the species is to trace the process of evolution and to find the relationship between the species and discover the unique, the special, the common and the universal proteins. The proteins of the whole genome of 40 species are compared with the cronobacter genome which is used as reference genome. More than 3 billion pairwise alignments are performed using blastp. Several findings are introduced in this study, for example, we found 172 proteins in cronobacter genome which have insignificant hits in other species, 116 significant proteins in the all tested species with very high score value and 129 common proteins in the plants but have insignificant hits in mammals, birds, fishes, and insects.Keywords: genome, species, blastp, conserved genes, Cronobacter
Procedia PDF Downloads 496621 Melatonin Improved Vase Quality by Delaying Oxidation Reaction and Supplying More Energies in Cut Peony (Paeonia Lactiflora cv. Sarah)
Authors: Tai Chen, Caihuan Tian, Xiuxia Ren, Jingqi Xue, Xiuxin Zhang
Abstract:
The herbaceous peony has become increasingly popular worldwide in recent years, especially as a cut flower with great economic value. However, peony has a very short vase life, only 3-5 d usually, which seriously affects its commodity value. In this study, we used the cut peony (Paeonia lactiflora cv. Sarah) as a material and found that melatonin treatment significantly improved its postharvest performance. In the control group, its vase life was 4.8 d, accompanied by petal dropping at last; melatonin treatment (40 μM) increased this time to 6.9 d without petal dropping at the end. Further study showed that melatonin treatment significantly increased the activity of antioxidant enzymes as well as reduced sugar content in petals, whereas the starch content in petals decreased. These results indicated that melatonin treatment may delay the oxidation reaction caused by aging, which also provides extra energy for maintaining flowering. Through full-length transcriptome sequencing, a total of 2819 differentially expressed genes (DEGs) between control and melatonin treatment groups were identified. KEGG enrichment analysis showed that these DEGs were mainly involved in three pathways, including melatonin synthesis, starch and sucrose conversion, and plant disease resistance. After the RT-qPCR verification, we identified three DEGs, named PlBAM3, PlWRKY22 and PlTIP1, and they should play major roles in melatonin-improved postharvest performance. One possible reason is that PlBAM3 caused maltose production (by starch degradation), maintained the proline biosynthesis, and then alleviated oxidative stress. Another reason is that both PlBAM3 and PlWRKY22 are key drought resistance regulators, which have the ability to alleviate osmotic stress and improve water absorption, which may also help to improve the postharvest quality of cut peony. In addition, PlTIP1 is involved in the sugar signal pathway, indicating sugar may also as a signal substance during this process. Our work may give new ideas for developing new ways to prolong the vase life of cut peony and improve its commodity value eventually.Keywords: cut peony, melatonin, vase life, oxidation reaction, energy supply, differentially expressed genes
Procedia PDF Downloads 50620 Genome Sequencing and Analysis of the Spontaneous Nanosilver Resistant Bacterium Proteus mirabilis Strain scdr1
Authors: Amr Saeb, Khalid Al-Rubeaan, Mohamed Abouelhoda, Manojkumar Selvaraju, Hamsa Tayeb
Abstract:
Background: P. mirabilis is a common uropathogenic bacterium that can cause major complications in patients with long-standing indwelling catheters or patients with urinary tract anomalies. In addition, P. mirabilis is a common cause of chronic osteomyelitis in diabetic foot ulcer (DFU) patients. Methodology: P. mirabilis SCDR1 was isolated from a diabetic ulcer patient. We examined P. mirabilis SCDR1 levels of resistance against nano-silver colloids, the commercial nano-silver and silver containing bandages and commonly used antibiotics. We utilized next generation sequencing techniques (NGS), bioinformatics, phylogenetic analysis and pathogenomics in the identification and characterization of the infectious pathogen. Results: P. mirabilis SCDR1 is a multi-drug resistant isolate that also showed high levels of resistance against nano-silver colloids, nano-silver chitosan composite and the commercially available nano-silver and silver bandages. The P. mirabilis-SCDR1 genome size is 3,815,621 bp with G+C content of 38.44%. P. mirabilis-SCDR1 genome contains a total of 3,533 genes, 3,414 coding DNA sequence genes, 11, 10, 18 rRNAs (5S, 16S, and 23S), and 76 tRNAs. Our isolate contains all the required pathogenicity and virulence factors to establish a successful infection. P. mirabilis SCDR1 isolate is a potential virulent pathogen that despite its original isolation site, wound, it can establish kidney infection and its associated complications. P. mirabilis SCDR1 contains several mechanisms for antibiotics and metals resistance including, biofilm formation, swarming mobility, efflux systems, and enzymatic detoxification. Conclusion: P. mirabilis SCDR1 is the spontaneous nano-silver resistant bacterial strain. P. mirabilis SCDR1 strain contains all reported pathogenic and virulence factors characteristic for the species. In addition, it possesses several mechanisms that may lead to the observed nano-silver resistance.Keywords: Proteus mirabilis, multi-drug resistance, silver nanoparticles, resistance, next generation sequencing techniques, genome analysis, bioinformatics, phylogeny, pathogenomics, diabetic foot ulcer, xenobiotics, multidrug resistance efflux, biofilm formation, swarming mobility, resistome, glutathione S-transferase, copper/silver efflux system, altruism
Procedia PDF Downloads 333619 An Accurate Method for Phylogeny Tree Reconstruction Based on a Modified Wild Dog Algorithm
Authors: Essam Al Daoud
Abstract:
This study solves a phylogeny problem by using modified wild dog pack optimization. The least squares error is considered as a cost function that needs to be minimized. Therefore, in each iteration, new distance matrices based on the constructed trees are calculated and used to select the alpha dog. To test the suggested algorithm, ten homologous genes are selected and collected from National Center for Biotechnology Information (NCBI) databanks (i.e., 16S, 18S, 28S, Cox 1, ITS1, ITS2, ETS, ATPB, Hsp90, and STN). The data are divided into three categories: 50 taxa, 100 taxa and 500 taxa. The empirical results show that the proposed algorithm is more reliable and accurate than other implemented methods.Keywords: least square, neighbor joining, phylogenetic tree, wild dog pack
Procedia PDF Downloads 320618 Expression Profiling of Chlorophyll Biosynthesis Pathways in Chlorophyll B-Lacking Mutants of Rice (Oryza sativa L.)
Authors: Khiem M. Nguyen, Ming C. Yang
Abstract:
Chloroplast pigments are extremely important during photosynthesis since they play essential roles in light absorption and energy transfer. Therefore, understanding the efficiency of chlorophyll (Chl) biosynthesis could facilitate enhancement in photo-assimilates accumulation, and ultimately, in crop yield. The Chl-deficient mutants have been used extensively to study the Chl biosynthetic pathways and the biogenesis of the photosynthetic apparatus. Rice (Oryza sativa L.) is one of the most leading food crops, serving as staple food for many parts of the world. To author’s best knowledge, Chl b–lacking rice has been found; however the molecular mechanism of Chl biosynthesis still remains unclear compared to wild-type rice. In this study, the ultrastructure analysis, photosynthetic properties, and transcriptome profile of wild-type rice (Norin No.8, N8) and its Chl b-lacking mutant (Chlorina 1, C1) were examined. The finding concluded that total Chl content and Chl b content in the C1 leaves were strongly reduced compared to N8 leaves, suggesting that reduction in the total Chl content contributes to leaf color variation at the physiological level. Plastid ultrastructure of C1 possessed abnormal thylakoid membranes with loss of starch granule, large number of vesicles, and numerous plastoglobuli. The C1 rice also exhibited thinner stacked grana, which was caused by a reduction in the number of thylakoid membranes per granum. Thus, the different Chl a/b ratio of C1 may reflect the abnormal plastid development and function. Transcriptional analysis identified 23 differentially expressed genes (DEGs) and 671 transcription factors (TFs) that were involved in Chl metabolism, chloroplast development, cell division, and photosynthesis. The transcriptome profile and DEGs revealed that the gene encoding PsbR (PSII core protein) was down-regulated, therefore suggesting that the lower in light-harvesting complex proteins are responsible for the lower photosynthetic capacity in C1. In addition, expression level of cell division protein (FtsZ) genes were significantly reduced in C1, causing chloroplast division defect. A total of 19 DEGs were identified based on KEGG pathway assignment involving Chl biosynthesis pathway. Among these DEGs, the GluTR gene was down-regulated, whereas the UROD, CPOX, and MgCH genes were up-regulated. Observation through qPCR suggested that later stages of Chl biosynthesis were enhanced in C1, whereas the early stages were inhibited. Plastid structure analysis together with transcriptomic analysis suggested that the Chl a/b ratio was amplified both by the reduction in Chl contents accumulation, owning to abnormal chloroplast development, and by the enhanced conversion of Chl b to Chl a. Moreover, the results indicated the same Chl-cycle pattern in the wild-type and C1 rice, indicating another Chl b degradation pathway. Furthermore, the results demonstrated that normal grana stacking, along with the absence of Chl b and greatly reduced levels of Chl a in C1, provide evidence to support the conclusion that other factors along with LHCII proteins are involved in grana stacking. The findings of this study provide insight into the molecular mechanisms that underlie different Chl a/b ratios in rice.Keywords: Chl-deficient mutant, grana stacked, photosynthesis, RNA-Seq, transcriptomic analysis
Procedia PDF Downloads 124617 Surface Plasmon Resonance Imaging-Based Epigenetic Assay for Blood DNA Post-Traumatic Stress Disorder Biomarkers
Authors: Judy M. Obliosca, Olivia Vest, Sandra Poulos, Kelsi Smith, Tammy Ferguson, Abigail Powers Lott, Alicia K. Smith, Yang Xu, Christopher K. Tison
Abstract:
Post-Traumatic Stress Disorder (PTSD) is a mental health problem that people may develop after experiencing traumatic events such as combat, natural disasters, and major emotional challenges. Tragically, the number of military personnel with PTSD correlates directly with the number of veterans who attempt suicide, with the highest rate in the Army. Research has shown epigenetic risks in those who are prone to several psychiatric dysfunctions, particularly PTSD. Once initiated in response to trauma, epigenetic alterations in particular, the DNA methylation in the form of 5-methylcytosine (5mC) alters chromatin structure and represses gene expression. Current methods to detect DNA methylation, such as bisulfite-based genomic sequencing techniques, are laborious and have massive analysis workflow while still having high error rates. A faster and simpler detection method of high sensitivity and precision would be useful in a clinical setting to confirm potential PTSD etiologies, prevent other psychiatric disorders, and improve military health. A nano-enhanced Surface Plasmon Resonance imaging (SPRi)-based assay that simultaneously detects site-specific 5mC base (termed as PTSD base) in methylated genes related to PTSD is being developed. The arrays on a sensing chip were first constructed for parallel detection of PTSD bases using synthetic and genomic DNA (gDNA) samples. For the gDNA sample extracted from the whole blood of a PTSD patient, the sample was first digested using specific restriction enzymes, and fragments were denatured to obtain single-stranded methylated target genes (ssDNA). The resulting mixture of ssDNA was then injected into the assay platform, where targets were captured by specific DNA aptamer probes previously immobilized on the surface of a sensing chip. The PTSD bases in targets were detected by anti-5-methylcytosine antibody (anti-5mC), and the resulting signals were then enhanced by the universal nanoenhancer. Preliminary results showed successful detection of a PTSD base in a gDNA sample. Brighter spot images and higher delta values (control-subtracted reflectivity signal) relative to those of the control were observed. We also implemented the in-house surface activation system for detection and developed SPRi disposable chips. Multiplexed PTSD base detection of target methylated genes in blood DNA from PTSD patients of severity conditions (asymptomatic and severe) was conducted. This diagnostic capability being developed is a platform technology, and upon successful implementation for PTSD, it could be reconfigured for the study of a wide variety of neurological disorders such as traumatic brain injury, Alzheimer’s disease, schizophrenia, and Huntington's disease and can be extended to the analyses of other sample matrices such as urine and saliva.Keywords: epigenetic assay, DNA methylation, PTSD, whole blood, multiplexing
Procedia PDF Downloads 123616 Multilocus Phylogenetic Approach Reveals Informative DNA Barcodes for Studying Evolution and Taxonomy of Fusarium Fungi
Authors: Alexander A. Stakheev, Larisa V. Samokhvalova, Sergey K. Zavriev
Abstract:
Fusarium fungi are among the most devastating plant pathogens distributed all over the world. Significant reduction of grain yield and quality caused by Fusarium leads to multi-billion dollar annual losses to the world agricultural production. These organisms can also cause infections in immunocompromised persons and produce the wide range of mycotoxins, such as trichothecenes, fumonisins, and zearalenone, which are hazardous to human and animal health. Identification of Fusarium fungi based on the morphology of spores and spore-forming structures, colony color and appearance on specific culture media is often very complicated due to the high similarity of these features for closely related species. Modern Fusarium taxonomy increasingly uses data of crossing experiments (biological species concept) and genetic polymorphism analysis (phylogenetic species concept). A number of novel Fusarium sibling species has been established using DNA barcoding techniques. Species recognition is best made with the combined phylogeny of intron-rich protein coding genes and ribosomal DNA sequences. However, the internal transcribed spacer of (ITS), which is considered to be universal DNA barcode for Fungi, is not suitable for genus Fusarium, because of its insufficient variability between closely related species and the presence of non-orthologous copies in the genome. Nowadays, the translation elongation factor 1 alpha (TEF1α) gene is the “gold standard” of Fusarium taxonomy, but the search for novel informative markers is still needed. In this study, we used two novel DNA markers, frataxin (FXN) and heat shock protein 90 (HSP90) to discover phylogenetic relationships between Fusarium species. Multilocus phylogenetic analysis based on partial sequences of TEF1α, FXN, HSP90, as well as intergenic spacer of ribosomal DNA (IGS), beta-tubulin (β-TUB) and phosphate permease (PHO) genes has been conducted for 120 isolates of 19 Fusarium species from different climatic zones of Russia and neighboring countries using maximum likelihood (ML) and maximum parsimony (MP) algorithms. Our analyses revealed that FXN and HSP90 genes could be considered as informative phylogenetic markers, suitable for evolutionary and taxonomic studies of Fusarium genus. It has been shown that PHO gene possesses more variable (22 %) and parsimony informative (19 %) characters than other markers, including TEF1α (12 % and 9 %, correspondingly) when used for elucidating phylogenetic relationships between F. avenaceum and its closest relatives – F. tricinctum, F. acuminatum, F. torulosum. Application of novel DNA barcodes confirmed the fact that F. arthrosporioides do not represent a separate species but only a subspecies of F. avenaceum. Phylogeny based on partial PHO and FXN sequences revealed the presence of separate cluster of four F. avenaceum strains which were closer to F. torulosum than to major F. avenaceum clade. The strain F-846 from Moldova, morphologically identified as F. poae, formed a separate lineage in all the constructed dendrograms, and could potentially be considered as a separate species, but more information is needed to confirm this conclusion. Variable sites in PHO sequences were used for the first-time development of specific qPCR-based diagnostic assays for F. acuminatum and F. torulosum. This work was supported by Russian Foundation for Basic Research (grant № 15-29-02527).Keywords: DNA barcode, fusarium, identification, phylogenetics, taxonomy
Procedia PDF Downloads 324615 Gene Cloning and Expression of Azoreductases from Azo-Degraders Lysinibacillus macrolides and Bacillus coagulans Isolated from Egyptian Industrial Wastewater
Authors: Omaima A. Sharaf, Wafaa M. Abd El-Rahim, Hassan Moawad, Michael J. Sadowsky
Abstract:
Textile industry is one of the important industries in the worldwide. It is known that the eco-friendly industrial and agricultural activities are significant for socio-economic stability of all countries. The absence of appropriate industrial waste water treatments is essential barrier for sustainable development in food and agricultural sectors especially in developing country like Egypt. Thus, the development of enzymatic bioremediation technology for textile dye removal will enhance the collaboration between scientists who develop the technology and industry where this technology will be implemented towards the safe disposal of the textile dye wastes. Highly efficient microorganisms are of most importance in developing and using highly effective biological treatment processes. Bacterial degradation of azo dyes is generally initiated by an enzymatic step that involves cleavage of azo linkages, usually with the aid of an azoreductase as electron donor. Thus, expanding the spectrum of microorganisms with high enzymatic activities as azoreductases and discovering novel azo-dye degrading enzymes, with enhanced stability and superior catalytic properties, are necessary for many environmental and industrial applications. Consequently, the use of molecular tools has become increasingly integrated into the understanding of enzyme properties and characterization. Researchers have utilized a gene cloning and expression methods as a tool to produce recombinant protein for decolorizing dyes more efficiently. Thus, presumptive evidence for the presence of genes encoding azoreductases in the genomes of selected local, and most potent azo-degrading strains were obtained by using specific oligonucleotides primers. These potent strains have been isolated from textile industrial wastewater in Egypt and identified using 16S rRNA sequence analysis as 'Lysinibacillus macrolidesB8, Brevibacillus parabrevisB11, Bacillus coagulansB7, and B. cereusB5'. PCR products of two full length genes designated as (AZO1;621bp and AZO2;534bp) were detected. BLASTx results indicated that AZO1 gene was corresponding to predicted azoreductase from of Bacillus sp. ABP14, complete genome, multispecies azoreductase [Bacillus], It was submitted to the gene bank by an accession no., BankIt2085371 AZO1 MG923210 (621bp; 207 amino acids). AZO1 was generated from the DNA of our identified strains Lysinibacillus macrolidesB8. On the other hand, AZO2 gene was corresponding to a predicted azoreductase from Bacillus cereus strain S2-8. Gene bank accession no. was BankIt2085839 AZO2 MG932081 (534bp;178 amino acids) and it was amplified from our Bacillus coagulansB7. Both genes were successfully cloned into pCR2.1TOPO (Invitrogen) and in pET28b+ vectors, then they transformed into E. coli DH5α and BL21(DE3) cells for heterologous expression studies. Our recombinant azoreductases (AZO1&AZO2) exhibited potential enzyme activity and efficiently decolorized an azo dye (Direct violet). They exhibited pH stability between 6 and 8 with optimum temperature up to 60°C and 37 °C after induction by 1mM and 1.5mM IPTG, for both AZO1 &AZO2, respectively. These results suggested that further optimization and purification of these recombinant proteins by using different heterologous expression systems will give great potential for the sustainable utilization of these recombinant enzymes in several industrial applications especially in wastewater treatments.Keywords: azoreductases, decolorization, enzyme activity, gene cloning and expression
Procedia PDF Downloads 129614 Sheep Pox Virus Recombinant Proteins To Develop Subunit Vaccines
Authors: Olga V. Chervyakova, Elmira T. Tailakova, Vitaliy M. Strochkov, Kulyaisan T. Sultankulova, Nurlan T. Sandybayev, Lev G. Nemchinov, Rosemarie W. Hammond
Abstract:
Sheep pox is a highly contagious infection that OIE regards to be one of the most dangerous animal diseases. It causes enormous economic losses because of death and slaughter of infected animals, lower productivity, cost of veterinary and sanitary as well as quarantine measures. To control spread of sheep pox infection the attenuated vaccines are widely used in the Republic of Kazakhstan and other Former Soviet Union countries. In spite of high efficiency of live vaccines, the possible presence of the residual virulence, potential genetic instability restricts their use in disease-free areas that leads to necessity to exploit new approaches in vaccine development involving recombinant DNA technology. Vaccines on the basis of recombinant proteins are the newest generation of prophylactic preparations. The main advantage of these vaccines is their low reactogenicity and this fact makes them widely used in medical and veterinary practice for vaccination of humans and farm animals. The objective of the study is to produce recombinant immunogenic proteins for development of the high-performance means for sheep pox prophylaxis. The SPV proteins were chosen for their homology with the known immunogenic vaccinia virus proteins. Assay of nucleotide and amino acid sequences of the target SPV protein genes. It has been shown that four proteins SPPV060 (ortholog L1), SPPV074 (ortholog H3), SPPV122 (ortholog A33) and SPPV141 (ortholog B5) possess transmembrane domains at N- or C-terminus while in amino acid sequences of SPPV095 (ortholog А 4) and SPPV117 (ortholog А 27) proteins these domains were absent. On the basis of these findings the primers were constructed. Target genes were amplified and subsequently cloned into the expression vector рЕТ26b(+) or рЕТ28b(+). Six constructions (pSPPV060ΔТМ, pSPPV074ΔТМ, pSPPV095, pSPPV117, pSPPV122ΔТМ and pSPPV141ΔТМ) were obtained for expression of the SPV genes under control of T7 promoter in Escherichia coli. To purify and detect recombinant proteins the amino acid sequences were modified by adding six histidine molecules at C-terminus. Induction of gene expression by IPTG was resulted in production of the proteins with molecular weights corresponding to the estimated values for SPPV060, SPPV074, SPPV095, SPPV117, SPPV122 and SPPV141, i.e. 22, 30, 20, 19, 17 and 22 kDa respectively. Optimal protocol of expression for each gene that ensures high yield of the recombinant protein was identified. Assay of cellular lysates by western blotting confirmed expression of the target proteins. Recombinant proteins bind specifically with antibodies to polyhistidine. Moreover all produced proteins are specifically recognized by the serum from experimentally SPV-infected sheep. The recombinant proteins SPPV060, SPPV074, SPPV117, SPPV122 and SPPV141 were also shown to induce formation of antibodies with virus-neutralizing activity. The results of the research will help to develop a new-generation high-performance means for specific sheep pox prophylaxis that is one of key moments in animal health protection. The research was conducted under the International project ISTC # K-1704 “Development of methods to construct recombinant prophylactic means for sheep pox with use of transgenic plants” and under the Grant Project RK MES G.2015/0115RK01983 "Recombinant vaccine for sheep pox prophylaxis".Keywords: prophylactic preparation, recombinant protein, sheep pox virus, subunit vaccine
Procedia PDF Downloads 242613 Imputation Technique for Feature Selection in Microarray Data Set
Authors: Younies Saeed Hassan Mahmoud, Mai Mabrouk, Elsayed Sallam
Abstract:
Analysing DNA microarray data sets is a great challenge, which faces the bioinformaticians due to the complication of using statistical and machine learning techniques. The challenge will be doubled if the microarray data sets contain missing data, which happens regularly because these techniques cannot deal with missing data. One of the most important data analysis process on the microarray data set is feature selection. This process finds the most important genes that affect certain disease. In this paper, we introduce a technique for imputing the missing data in microarray data sets while performing feature selection.Keywords: DNA microarray, feature selection, missing data, bioinformatics
Procedia PDF Downloads 574612 Effect of Locally Injected Mesenchymal Stem Cells on Bone Regeneration of Rat Calvaria Defects
Authors: Gileade P. Freitas, Helena B. Lopes, Alann T. P. Souza, Paula G. F. P. Oliveira, Adriana L. G. Almeida, Paulo G. Coelho, Marcio M. Beloti, Adalberto L. Rosa
Abstract:
Bone tissue presents great capacity to regenerate when injured by trauma, infectious processes, or neoplasia. However, the extent of injury may exceed the inherent tissue regeneration capability demanding some kind of additional intervention. In this scenario, cell therapy has emerged as a promising alternative to treat challenging bone defects. This study aimed at evaluating the effect of local injection of bone marrow-derived mesenchymal stem cells (BM-MSCs) and adipose tissue-derived mesenchymal stem cells (AT-MSCs) on bone regeneration of rat calvaria defects. BM-MSCs and AT-MSCs were isolated and characterized by expression of surface markers; cell viability was evaluated after injection through a 21G needle. Defects of 5 mm in diameter were created in calvaria and after two weeks a single injection of BM-MSCs, AT-MSCs or vehicle-PBS without cells (Control) was carried out. Cells were tracked by bioluminescence and at 4 weeks post-injection bone formation was evaluated by micro-computed tomography (μCT) and histology, nanoindentation, and through gene expression of bone remodeling markers. The data were evaluated by one-way analysis of variance (p≤0.05). BM-MSCs and AT-MSCs presented characteristics of mesenchymal stem cells, kept viability after passing through a 21G needle and remained in the defects until day 14. In general, injection of both BM-MSCs and AT-MSCs resulted in higher bone formation compared to Control. Additionally, this bone tissue displayed elastic modulus and hardness similar to the pristine calvaria bone. The expression of all evaluated genes involved in bone formation was upregulated in bone tissue formed by BM-MSCs compared to AT-MSCs while genes involved in bone resorption were upregulated in AT-MSCs-formed bone. We show that cell therapy based on the local injection of BM-MSCs or AT-MSCs is effective in delivering viable cells that displayed local engraftment and induced a significant improvement in bone healing. Despite differences in the molecular cues observed between BM-MSCs and AT-MSCs, both cells were capable of forming bone tissue at comparable amounts and properties. These findings may drive cell therapy approaches toward the complete bone regeneration of challenging sites.Keywords: cell therapy, mesenchymal stem cells, bone repair, cell culture
Procedia PDF Downloads 184