Search results for: Joseph Paul Chunga
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 779

Search results for: Joseph Paul Chunga

299 Differential Expression of GABA and Its Signaling Components in Ulcerative Colitis and Irritable Bowel Syndrome Pathogenesis

Authors: Surbhi Aggarwal, Jaishree Paul

Abstract:

Background: Role of GABA has been implicated in autoimmune diseases like multiple sclerosis, type1 diabetes and rheumatoid arthritis where they modulate the immune response but role in gut inflammation has not been defined. Ulcerative colitis (UC) and diarrhoeal predominant irritable bowel syndrome (IBS-D) both involve inflammation of gastrointestinal tract. UC is a chronic, relapsing and idiopathic inflammation of gut. IBS is a common functional gastrointestinal disorder characterised by abdominal pain, discomfort and alternating bowel habits. Mild inflammation is known to occur in IBS-D. Aim: Aim of this study was to investigate the role of GABA in UC as well as in IBS-D. Materials and methods: Blood and biopsy samples from UC, IBS-D and controls were collected. ELISA was used for measuring level of GABA in serum of UC, IBS-D and controls. RT-PCR analysis was done to determine GABAergic signal system in colon biopsy of UC, IBS-D and controls. RT-PCR was done to check the expression of proinflammatory cytokines. CurveExpert 1.4, Graphpad prism-6 software were used for data analysis. Statistical analysis was done by unpaired, two-way student`s t-test. All sets of data were represented as mean± SEM. A probability level of p < 0.05 was considered statistically significant. Results and conclusion: Significantly decreased level of GABA and altered GABAergic signal system was detected in UC and IBS-D as compared to controls. Significantly increased expression of proinflammatory cytokines was also determined in UC and IBS-D as compared to controls. Hence we conclude that insufficient level of GABA in UC and IBS-D leads to overproduction of proinflammatory cytokines which further contributes to inflammation. GABA may be used as a promising therapeutic target for treatment of gut inflammation or other inflammatory diseases.

Keywords: diarrheal predominant irritable bowel syndrome, γ-aminobutyric acid (GABA), inflammation, ulcerative colitis

Procedia PDF Downloads 202
298 The Burden and the Consequences of Waste Management in Nigeria: Geophysical Approach

Authors: Joseph Omeiza Alao

Abstract:

The wobbly state of waste management and the high level of environmental irresponsibility is a threat to environmental security, which invariably endangered public health, regional groundwater systems and atmospheric condition. The dumping of waste materials in water bodies and gutters and the frequent burning of waste materials heaped at dumpsites as well depict the highest level of environmental indiscipline. These unruly human factors have compelled this study to apply four different techniques for environmental impact assessment and the possible public health risks of poor waste management in Nigeria. The techniques include a geophysical survey (resistivity data acquisition), dispatched questionnaire surveys, physiochemical water analysis and a physical survey of several dumpsites. While the resistivity data indicates high-level dumpsite leachate invading the ground soil down to the water table, the physiochemical water analysis depicts high content of BOD (401 – 711) mg/l, COD (731 – 1312) mg/l, TDS (419 – 1871) mg/l and heavy metals (0.014 – 1.971) mg/l present in the regional groundwater systems, which have altered the chemistry of the regional groundwater. The resistivity data shows that the overburdened soil layer overlaying the regional groundwater systems was very low (4.5 Ωm – 151 Ωm) as against the existing data (180 Ωm – 3500 Ωm). However, the physical surveys and the dispatched questionnaire surveys explore the depth of environmental irresponsibility among the citizen. While the imprints of gross environmental indiscipline may be absolutely irreversible, adequate knowledge of the environmental implications of careless waste disposal. After a critical examination of the current waste management strategies in Nigeria, the study suggests a future direction for environmental security and sustainability. Several influential regional factors, such as geology, climatic conditions, and hydrology, were also discussed.

Keywords: groundwater, environmental indiscipline, waste management, water analysis, leachate plumes, public health

Procedia PDF Downloads 46
297 Clinical and Radiological Outcome in 300 Patients with Non-Aneurysmal Sah

Authors: Ranjith Menon, Abathar Aladi, Hans-Christean Nahser, Maneesh Bhojak, Sacha Nevin, Paul Eldridge

Abstract:

Background: Spontaneous subarachnoid haemorrhage (SAH) accounts for approximately 5% of all strokes. Patients with spontaneous SAH (as shown by CT or lumbar puncture) undergo investigations to identify or exclude an underlying structural cause, typically cerebral aneurysm. However in 10 - 20% of cases, no structural cause is found. This includes more than one imaging modality (intracranial MRA, CTA, 4DCTA and/or DSA) and in some spinal MRI. Objective: To determine; 1) If an underlying structural or vascular cause can be identified in non-aneurysmal SAH patients by comparing different imaging modalities at presentation and at follow-up. 2) If MRI spine in patients with non-aneurysmal SAH reveals an underlying SAH cause. 3)The functional outcome at discharge. Results: We performed a retrospective analysis of all non-traumatic SAH patients admitted to the Walton centre from January 2009 to December 2015. There were 1457 patients with non-traumatic SAH admitted to the Walton centre of whom 21.8% (n=300) patients were diagnosed with non-aneurysmal SAH. Males were 65.6% and females were 43.3%. The presenting symptoms were sudden onset headache (93.6%), the focal neurological deficit (12%), loss of consciousness (10.6%) and others (6%). About 285 patients received 2 modalities of imaging (CTA & DSA), 192 received 3 modalities of imaging (CTA, MRA & DSA) and 137 received MRI spine (51/137 whole spine). The modified Rankin Score at discharge were: mRS 0 = 292 (97.33%), mRS 1-2 = 6, mRS 6 = 1 (cardiac arrest in IHD patient) and unknown in 1. Follow-up imaging at 3 to 6 months in 190 (63.3%) patients did not identify an underlying cause. Conclusion: This retrospective analysis concludes that non-aneurysmal SAH has a good functional outcome. A single imaging modality (CTA (4DCTA) or MRA or DSA) was adequate to exclude an underlying cause of SAH and a delayed imaging failed to identify a cause. Routinely performing MRI spine in this group of patients appears not to be necessary according to this evidence.

Keywords: stroke, non-aneurysmal subarachnoid haemorrhage, neuroimaging, modified rankin score

Procedia PDF Downloads 243
296 Non-Linear Static Analysis of Screwed Moment Connections in Cold-Formed Steel Frames

Authors: Jikhil Joseph, Satish Kumar S R.

Abstract:

Cold-formed steel frames are preferable for framed constructions due to its low seismic weights and results into low seismic forces, but on the contrary, significant lateral deflections are expected under seismic/wind loading. The various factors affecting the lateral stiffness of steel frames are the stiffness of connections, beams and columns. So, by increasing the stiffness of beam, column and making the connections rigid will enhance the lateral stiffness. The present study focused on Structural elements made of rectangular hollow sections and fastened with screwed in-plane moment connections for the building frames. The self-drilling screws can be easily drilled on either side of the connection area with the help of gusset plates. The strength of screwed connections can be made 1.2 times the connecting elements. However, achieving high stiffness in connections is also a challenging job. Hence in addition to beam and column stiffness’s the connection stiffness are also going to be a governing parameter in the lateral deflections of the frames. SAP 2000 Non-linear static analysis has been planned to study the seismic behavior of steel frames. The SAP model will be consisting of nonlinear spring model for the connection to account the semi-rigid connections and the nonlinear hinges will be assigned for beam and column sections according to FEMA 273 guidelines. The reliable spring and hinge parameters will be assigned based on an experimental and analytical database. The non-linear static analysis is mainly focused on the identification of various hinge formations and the estimation of lateral deflection and these will contribute as an inputs for the direct displacement-based Seismic design. The research output from this study are the modelling techniques and suitable design guidelines for the performance-based seismic design of cold-formed steel frames.

Keywords: buckling, cold formed steel, nonlinear static analysis, screwed connections

Procedia PDF Downloads 151
295 Examining Patterns in Ethnoracial Diversity in Los Angeles County Neighborhoods, 2016, Using Geographic Information System Analysis and Entropy Measure of Diversity

Authors: Joseph F. Cabrera, Rachael Dela Cruz

Abstract:

This study specifically examines patterns that define ethnoracially diverse neighborhoods. Ethnoracial diversity is important as it facilitates cross-racial interactions within neighborhoods which have been theorized to be associated with such outcomes as intergroup harmony, the reduction of racial and ethnic prejudice and discrimination, and increases in racial tolerance. Los Angeles (LA) is an ideal location to study ethnoracial spatial patterns as it is one of the most ethnoracially diverse cities in the world. A large influx of Latinos, as well as Asians, have contributed to LA’s urban landscape becoming increasingly diverse over several decades. Our dataset contains all census tracts in Los Angeles County in 2016 and incorporates Census and ACS demographic and spatial data. We quantify ethnoracial diversity using a derivative of Simpson’s Diversity Index and utilize this measure to test previous literature that suggests Latinos are one of the key drivers of changing ethnoracial spatial patterns in Los Angeles. Preliminary results suggest that there has been an overall increase in ethnoracial diversity in Los Angeles neighborhoods over the past sixteen years. Patterns associated with this trend include decreases in predominantly white and black neighborhoods, increases in predominantly Latino and Asian neighborhoods, and a general decrease in the white populations of the most diverse neighborhoods. A similar pattern is seen in neighborhoods with large Latino increases- a decrease in white population, but with an increase in Asian and black populations. We also found support for previous research that suggests increases in Latino and Asian populations act as a buffer, allowing for black population increases without a sizeable decrease in the white population. Future research is needed to understand the underlying causes involved in many of the patterns and trends highlighted in this study.

Keywords: race, race and interaction, racial harmony, social interaction

Procedia PDF Downloads 110
294 Determination of Optimum Conditions for the Leaching of Oxidized Copper Ores with Ammonium Nitrate

Authors: Javier Paul Montalvo Andia, Adriana Larrea Valdivia, Adolfo Pillihuaman Zambrano

Abstract:

The most common lixiviant in the leaching process of copper minerals is H₂SO₄, however, the current situation requires more environmentally friendly reagents and in certain situations that have a lower consumption due to the presence of undesirable gangue as muscovite or kaolinite that can make the process unfeasible. The present work studied the leaching of an oxidized copper mineral in an aqueous solution of ammonium nitrate, in order to obtain the optimum leaching conditions of the copper contained in the malachite mineral from Peru. The copper ore studied comes from a deposit in southern Peru and was characterized by X-ray diffractometer, inductively coupled-plasma emission spectrometer (ICP-OES) and atomic absorption spectrophotometry (AAS). The experiments were developed in batch reactor of 600 mL where the parameters as; temperature, pH, ammonium nitrate concentration, particle size and stirring speed were controlled according to experimental planning. The sample solution was analyzed for copper by atomic absorption spectrophotometry (AAS). A simulation in the HSC Chemistry 6.0 program showed that the predominance of the copper compounds of a Cu-H₂O aqueous system is altered by the presence in the system of ammonium complexes, the compound being thermodynamically more stable Cu(NH3)₄²⁺, which predominates in pH ranges from 8.5 to 10 at a temperature of 25 °C. The optimum conditions for copper leaching of the malachite mineral were a stirring speed of 600 rpm, an ammonium nitrate concentration of 4M, a particle diameter of 53 um and temperature of 62 °C. These results showed that the leaching of copper increases with increasing concentration of the ammonium solution, increasing the stirring rate, increasing the temperature and decreasing the particle diameter. Finally, the recovery of copper in optimum conditions was above 80%.

Keywords: ammonium nitrate, malachite, copper oxide, leaching

Procedia PDF Downloads 161
293 An Analysis of the Causes of SMEs Failure in Developing Countries: The Case of South Africa

Authors: Paul Saah, Charles Mbohwa, Nelson Sizwe Madonsela

Abstract:

In the context of developing countries, this study explores a crucial component of economic development by examining the reasons behind the failure of small and medium-sized enterprises (SMEs). SMEs are acknowledged as essential drivers of economic expansion, job creation, and poverty alleviation in emerging countries. This research uses South Africa as a case study to evaluate the reasons why SMEs fail in developing nations. This study explores a quantitative research methodology to investigate the complex causes of SME failures using statistical tools and reliability tests. To ensure the viability of data collection, a sample size of 400 small business owners was chosen using a non-probability selection technique. A closed-ended questionnaire was the primary technique used to obtain detailed information from the participants. Data was analysed and interpreted using computer software packages such as the Statistical Package for the Social Sciences (SPSS). According to the findings, the main reasons why SMEs fail in developing nations are a lack of strategic business planning, a lack of funding, poor management, a lack of innovation, a lack of business research and a low level of education and training. The results of this study show that SMEs can be sustainable and successful as long as they comprehend and use the suggested small business success determining variables into their daily operations. This implies that the more SMEs in developing countries implement the proposed determinant factors of small business success in their business operations the more the businesses are likely to succeed and vice versa.

Keywords: failure, developing countries, SMEs, economic development, South Africa

Procedia PDF Downloads 44
292 Clean Sky 2 Project LiBAT: Light Battery Pack for High Power Applications in Aviation – Simulation Methods in Early Stage Design

Authors: Jan Dahlhaus, Alejandro Cardenas Miranda, Frederik Scholer, Maximilian Leonhardt, Matthias Moullion, Frank Beutenmuller, Julia Eckhardt, Josef Wasner, Frank Nittel, Sebastian Stoll, Devin Atukalp, Daniel Folgmann, Tobias Mayer, Obrad Dordevic, Paul Riley, Jean-Marc Le Peuvedic

Abstract:

Electrical and hybrid aerospace technologies pose very challenging demands on the battery pack – especially with respect to weight and power. In the Clean Sky 2 research project LiBAT (funded by the EU), the consortium is currently building an ambitious prototype with state-of-the art cells that shows the potential of an intelligent pack design with a high level of integration, especially with respect to thermal management and power electronics. For the latter, innovative multi-level-inverter technology is used to realize the required power converting functions with reduced equipment. In this talk the key approaches and methods of the LiBat project will be presented and central results shown. Special focus will be set on the simulative methods used to support the early design and development stages from an overall system perspective. The applied methods can efficiently handle multiple domains and deal with different time and length scales, thus allowing the analysis and optimization of overall- or sub-system behavior. It will be shown how these simulations provide valuable information and insights for the efficient evaluation of concepts. As a result, the construction and iteration of hardware prototypes has been reduced and development cycles shortened.

Keywords: electric aircraft, battery, Li-ion, multi-level-inverter, Novec

Procedia PDF Downloads 138
291 Hole Characteristics of Percussion and Single Pulse Laser-Incised Radiata Pine and the Effects of Wood Anatomy on Laser-Incision

Authors: Subhasisa Nath, David Waugh, Graham Ormondroyd, Morwenna Spear, Andy Pitman, Paul Mason

Abstract:

Wood is one of the most sustainable and environmentally favourable materials and is chemically treated in timber industries to maximise durability. To increase the chemical preservative uptake and retention by the wood, current limiting incision technologies are commonly used. This work reports the effects of single pulse CO2 laser-incision and frequency tripled Nd:YAG percussion laser-incision on the characteristics of laser-incised holes in the Radiata Pine. The laser-incision studies were based on changing laser wavelengths, energies and focal planes to conclude on an optimised combination for the laser-incision of Radiata Pine. The laser pulse duration had a dominant effect over laser power in controlling hole aspect ratio in CO2 laser-incision. A maximum depth of ~ 30 mm was measured with a laser power output of 170 W and a pulse duration of 80 ms. However, increased laser power led to increased carbonisation of holes. The carbonisation effect was reduced during laser-incision in the ultra-violet (UV) regime. Deposition of a foamy phase on the laser-incised hole wall was evident irrespective of laser radiation wavelength and energy. A maximum hole depth of ~20 mm was measured in the percussion laser-incision in the UV regime (355 nm) with a pulse energy of 320 mJ. The radial and tangential faces had a significant effect on laser-incision efficiency for all laser wavelengths. The laser-incised hole shapes and circularities were affected by the wood anatomy (earlywoods and latewoods in the structure). Subsequently, the mechanism of laser-incision is proposed by analysing the internal structure of laser-incised holes.

Keywords: CO2 Laser, Nd: YAG laser, incision, drilling, wood, hole characteristics

Procedia PDF Downloads 209
290 Magnetohemodynamic of Blood Flow Having Impact of Radiative Flux Due to Infrared Magnetic Hyperthermia: Spectral Relaxation Approach

Authors: Ebenezer O. Ige, Funmilayo H. Oyelami, Joshua Olutayo-Irheren, Joseph T. Okunlola

Abstract:

Hyperthermia therapy is an adjuvant procedure during which perfused body tissues is subjected to elevated range of temperature in bid to achieve improved drug potency and efficacy of cancer treatment. While a selected class of hyperthermia techniques is shouldered on the thermal radiations derived from single-sourced electro-radiation measures, there are deliberations on conjugating dual radiation field sources in an attempt to improve the delivery of therapy procedure. This paper numerically explores the thermal effectiveness of combined infrared hyperemia having nanoparticle recirculation in the vicinity of imposed magnetic field on subcutaneous strata of a model lesion as ablation scheme. An elaborate Spectral relaxation method (SRM) was formulated to handle equation of coupled momentum and thermal equilibrium in the blood-perfused tissue domain of a spongy fibrous tissue. Thermal diffusion regimes in the presence of external magnetic field imposition were described leveraging on the renowned Roseland diffusion approximation to delineate the impact of radiative flux within the computational domain. The contribution of tissue sponginess was examined using mechanics of pore-scale porosity over a selected of clinical informed scenarios. Our observations showed for a substantial depth of spongy lesion, magnetic field architecture constitute the control regimes of hemodynamics in the blood-tissue interface while facilitating thermal transport across the depth of the model lesion. This parameter-indicator could be utilized to control the dispensing of hyperthermia treatment in intravenous perfused tissue.

Keywords: spectra relaxation scheme, thermal equilibrium, Roseland diffusion approximation, hyperthermia therapy

Procedia PDF Downloads 88
289 Compact LWIR Borescope Sensor for Thermal Imaging of 2D Surface Temperature in Gas-Turbine Engines

Authors: Andy Zhang, Awnik Roy, Trevor B. Chen, Bibik Oleksandar, Subodh Adhikari, Paul S. Hsu

Abstract:

The durability of a combustor in gas-turbine engines is a strong function of its component temperatures and requires good control of these temperatures. Since the temperature of combustion gases frequently exceeds the melting point of the combustion liner walls, an efficient air-cooling system with optimized flow rates of cooling air is significantly important to elongate the lifetime of liner walls. To determine the effectiveness of the air-cooling system, accurate two-dimensional (2D) surface temperature measurement of combustor liner walls is crucial for advanced engine development. Traditional diagnostic techniques for temperature measurement in this application include the rmocouples, thermal wall paints, pyrometry, and phosphors. They have shown some disadvantages, including being intrusive and affecting local flame/flow dynamics, potential flame quenching, and physical damages to instrumentation due to harsh environments inside the combustor and strong optical interference from strong combustion emission in UV-Mid IR wavelength. To overcome these drawbacks, a compact and small borescope long-wave-infrared (LWIR) sensor is developed to achieve 2D high-spatial resolution, high-fidelity thermal imaging of 2D surface temperature in gas-turbine engines, providing the desired engine component temperature distribution. The compactLWIRborescope sensor makes it feasible to promote the durability of a combustor in gas-turbine engines and, furthermore, to develop more advanced gas-turbine engines.

Keywords: borescope, engine, low-wave-infrared, sensor

Procedia PDF Downloads 100
288 Development of an Inexpensive Electrocatalytic Energy Material: Cu-Ni-CeO2 for High Performance Alcoholic Fuel Cell

Authors: Sujit Kumar Guchhait, Subir Paul

Abstract:

One of the major research areas is to find an alternative source of energy to fulfill the energy crisis and environmental problems. The Fuel cell is such kind of energy producing unit. Use of fuel cell to produce renewable energy for commercial purpose is limited by the high cost of Pt based electrode material. Development of high energetic, as well as inexpensive fuel cell electrode materials, is needs of hour to produce clean energy using derive bio-fuel. In this present investigation, inexpensive Cu-Ni-CeO2 electrode material has been synthesized by using pulse current. The surface morphology of the electrode materials is controlled by several deposition parameters to increase the rate of electrochemical oxidation of alcoholic fuel, ethanol. The electrochemical characterization of the developed material was done by Cyclic Voltammetry (CV) and Chronoamperometry (CA) and Electrochemical Impedance Spectroscopy test. It is interesting to find that both these materials have shown high electrocatalytic properties in terms of high exchange current density (I0), low polarization resistance (Rp) and low impedance. It is seen that the addition of CeO2 to Ni-Cu has outperformed Pt as far as high electrocatalytic properties are concerned. The exchange current density on the Cu-Ni-CeO2 electrode surface for ethanol oxidation is about eight times higher than the same on the Pt surface with much lower polarization resistance than the later. The surface morphology of the electrode materials has been revealed by Field Effect Scanning Electron Microscope (FESEM). It is seen that grains are narrow and subspherical with 3D surface containing pores in between two elongated grains. XRD study exhibits the presence of Ni and CeO2 on the Cu surface.

Keywords: electro-catalyst, alcoholic fuel, cyclic voltammetry, potentiodynamic polarization, EIS, XRD, SEM

Procedia PDF Downloads 277
287 The Detection of Implanted Radioactive Seeds on Ultrasound Images Using Convolution Neural Networks

Authors: Edward Holupka, John Rossman, Tye Morancy, Joseph Aronovitz, Irving Kaplan

Abstract:

A common modality for the treatment of early stage prostate cancer is the implantation of radioactive seeds directly into the prostate. The radioactive seeds are positioned inside the prostate to achieve optimal radiation dose coverage to the prostate. These radioactive seeds are positioned inside the prostate using Transrectal ultrasound imaging. Once all of the planned seeds have been implanted, two dimensional transaxial transrectal ultrasound images separated by 2 mm are obtained through out the prostate, beginning at the base of the prostate up to and including the apex. A common deep neural network, called DetectNet was trained to automatically determine the position of the implanted radioactive seeds within the prostate under ultrasound imaging. The results of the training using 950 training ultrasound images and 90 validation ultrasound images. The commonly used metrics for successful training were used to evaluate the efficacy and accuracy of the trained deep neural network and resulted in an loss_bbox (train) = 0.00, loss_coverage (train) = 1.89e-8, loss_bbox (validation) = 11.84, loss_coverage (validation) = 9.70, mAP (validation) = 66.87%, precision (validation) = 81.07%, and a recall (validation) = 82.29%, where train and validation refers to the training image set and validation refers to the validation training set. On the hardware platform used, the training expended 12.8 seconds per epoch. The network was trained for over 10,000 epochs. In addition, the seed locations as determined by the Deep Neural Network were compared to the seed locations as determined by a commercial software based on a one to three months after implant CT. The Deep Learning approach was within \strikeout off\uuline off\uwave off2.29\uuline default\uwave default mm of the seed locations determined by the commercial software. The Deep Learning approach to the determination of radioactive seed locations is robust, accurate, and fast and well within spatial agreement with the gold standard of CT determined seed coordinates.

Keywords: prostate, deep neural network, seed implant, ultrasound

Procedia PDF Downloads 170
286 Clay Hydrogel Nanocomposite for Controlled Small Molecule Release

Authors: Xiaolin Li, Terence Turney, John Forsythe, Bryce Feltis, Paul Wright, Vinh Truong, Will Gates

Abstract:

Clay-hydrogel nanocomposites have attracted great attention recently, mainly because of their enhanced mechanical properties and ease of fabrication. Moreover, the unique platelet structure of clay nanoparticles enables the incorporation of bioactive molecules, such as proteins or drugs, through ion exchange, adsorption or intercalation. This study seeks to improve the mechanical and rheological properties of a novel hydrogel system, copolymerized from a tetrapodal polyethylene glycol (PEG) thiol and a linear, triblock PEG-PPG-PEG (PPG: polypropylene glycol) α,ω-bispropynoate polymer, with the simultaneous incorporation of various amounts of Na-saturated, montmorillonite clay (MMT) platelets (av. lateral dimension = 200 nm), to form a bioactive three-dimensional network. Although the parent hydrogel has controlled swelling ability and its PEG groups have good affinity for the clay platelets, it suffers from poor mechanical stability and is currently unsuitable for potential applications. Nanocomposite hydrogels containing 4wt% MMT showed a twelve-fold enhancement in compressive strength, reaching 0.75MPa, and also a three-fold acceleration in gelation time, when compared with the parent hydrogel. Interestingly, clay nanoplatelet incorporation into the hydrogel slowed down the rate of its dehydration in air. Preliminary results showed that protein binding by the MMT varied with the nature of the protein, as horseradish peroxidase (HRP) was more strongly bound than bovine serum albumin. The HRP was no longer active when bound, presumably as a result of extensive structural refolding. Further work is being undertaken to assess protein binding behaviour within the nanocomposite hydrogel for potential diabetic wound healing applications.

Keywords: hydrogel, nanocomposite, small molecule, wound healing

Procedia PDF Downloads 247
285 Predicting Radioactive Waste Glass Viscosity, Density and Dissolution with Machine Learning

Authors: Joseph Lillington, Tom Gout, Mike Harrison, Ian Farnan

Abstract:

The vitrification of high-level nuclear waste within borosilicate glass and its incorporation within a multi-barrier repository deep underground is widely accepted as the preferred disposal method. However, for this to happen, any safety case will require validation that the initially localized radionuclides will not be considerably released into the near/far-field. Therefore, accurate mechanistic models are necessary to predict glass dissolution, and these should be robust to a variety of incorporated waste species and leaching test conditions, particularly given substantial variations across international waste-streams. Here, machine learning is used to predict glass material properties (viscosity, density) and glass leaching model parameters from large-scale industrial data. A variety of different machine learning algorithms have been compared to assess performance. Density was predicted solely from composition, whereas viscosity additionally considered temperature. To predict suitable glass leaching model parameters, a large simulated dataset was created by coupling MATLAB and the chemical reactive-transport code HYTEC, considering the state-of-the-art GRAAL model (glass reactivity in allowance of the alteration layer). The trained models were then subsequently applied to the large-scale industrial, experimental data to identify potentially appropriate model parameters. Results indicate that ensemble methods can accurately predict viscosity as a function of temperature and composition across all three industrial datasets. Glass density prediction shows reliable learning performance with predictions primarily being within the experimental uncertainty of the test data. Furthermore, machine learning can predict glass dissolution model parameters behavior, demonstrating potential value in GRAAL model development and in assessing suitable model parameters for large-scale industrial glass dissolution data.

Keywords: machine learning, predictive modelling, pattern recognition, radioactive waste glass

Procedia PDF Downloads 93
284 Ergosterol Regulated Functioning of Rubisco in Tomato

Authors: Prabir Kumar Paul, Joyeeta Mitra

Abstract:

Ergosterol, is an important fungal metabolite on phylloplane which is not synthesised by plants. However, the functional requirement of ergosterol to the plants is still an enigma. Being ubiquitously present in all plants except algae needs an insight into its physiological implication. The present study aimed at understanding if and how ergosterol influences the physiology of chloroplast particularly the activity of RuBisCo and carbonic anhydrase. The concept of the study was based on one of our earlier observation of enhanced Hills reaction in plants treated with fungal metabolites which contained ergosterol. The fungal metabolite treated plants had a significantly high concentration of photosynthetic pigments. Eight-week-old tomato plants raised under aseptic conditions at 25 + 10 C, 75 % relative humidity and 12 hour L/D photoperiod. Metabolites of Aspergillus niger and Fusarium oxysporum were sprayed on plants either singly or in a 1: 1 combination. A separate group of plants was also treated with 0.5, 1.0, 3.0, 5.0. 7.0 mg ergosterol / ml of n- heptane. Control plants were treated with sterile distilled water only. Plants were sampled at 24, 48, 72 and 96 hours of treatment. RuBisCo and carbonic anhydrase was estimated from sampled leaves. RuBisCo was separated on 1D SDS-PAGE and subjected to MALDI – TOF- TOF – MS analysis. The presence of ergosterol in fungal metabolites was confirmed. Fungal metabolites significantly enhanced the concentration and activity of RuBisCo and carbonic anhydrase. The Vmax activity of the enzymes was significantly high in metabolite treated plants. 1:1 mix of metabolite was more effective than when applied individually. Insilico analysis revealed, RuBisCo subunits had a binding site for ergosterol and in its presence affinity of Co2 to the enzyme increased by several folds. Invivo activity of RuBisCo was significantly elicited by ergosterol. Results of the present study indicate that ergosterol from phylloplane microfungi probably regulates the binding of Co2 to RuBisCo along with activity of carbonic anhydrase thereby modulating the physiology of choloroplast.

Keywords: carbonic anhydrase, ergosterol, phylloplane, RuBisCo

Procedia PDF Downloads 207
283 Evaluating Aquaculture Farmers Responses to Climate Change and Sustainable Practices in Kenya

Authors: Olalekan Adekola, Margaret Gatonye, Paul Orina

Abstract:

The growing demand for farmed fish by underdeveloped and developing countries as a means of contributing positively towards eradication of hunger, food insecurity, and malnutrition for their fast growing populations has implications to the environment. Likewise, climate change poses both an immediate and future threat to local fish production with capture fisheries already experiencing a global decline. This not only raises fundamental questions concerning how aquaculture practices affect the environment, but also how ready are aquaculture farmers to adapt to climate related hazards. This paper assesses existing aquaculture practices and approaches to adapting to climate hazards in Kenya, where aquaculture has grown rapidly since the year 2009. The growth has seen rise in aquaculture set ups mainly along rivers and streams, importation of seed and feed and intensification with possible environmental implications. The aquaculture value chain in the context of climate change and their implication for practice is further investigated, and the strategies necessary for an improved implementation of resilient aquaculture system in Kenya is examined. Data for the study are collected from interviews, questionnaires, two workshops and document analysis. Despite acclaimed nutritional benefit of fish consumption in Kenya, poor management of effluents enriched with nitrogen, phosphorus, organic matter, and suspended solids has implications not just on the ecosystem, goods, and services, but is also potential source of resource-use conflicts especially in downstream communities and operators in the livestock, horticulture, and industrial sectors. The study concluded that aquaculture focuses on future orientation, climate resilient infrastructure, appropriate site selection and invest on biosafety as the key sustainable strategies against climate hazards.

Keywords: aquaculture, resilience, environment, strategies, Kenya

Procedia PDF Downloads 139
282 Taguchi-Based Surface Roughness Optimization for Slotted and Tapered Cylindrical Products in Milling and Turning Operations

Authors: Vineeth G. Kuriakose, Joseph C. Chen, Ye Li

Abstract:

The research follows a systematic approach to optimize the parameters for parts machined by turning and milling processes. The quality characteristic chosen is surface roughness since the surface finish plays an important role for parts that require surface contact. A tapered cylindrical surface is designed as a test specimen for the research. The material chosen for machining is aluminum alloy 6061 due to its wide variety of industrial and engineering applications. HAAS VF-2 TR computer numerical control (CNC) vertical machining center is used for milling and HAAS ST-20 CNC machine is used for turning in this research. Taguchi analysis is used to optimize the surface roughness of the machined parts. The L9 Orthogonal Array is designed for four controllable factors with three different levels each, resulting in 18 experimental runs. Signal to Noise (S/N) Ratio is calculated for achieving the specific target value of 75 ± 15 µin. The controllable parameters chosen for turning process are feed rate, depth of cut, coolant flow and finish cut and for milling process are feed rate, spindle speed, step over and coolant flow. The uncontrollable factors are tool geometry for turning process and tool material for milling process. Hypothesis testing is conducted to study the significance of different uncontrollable factors on the surface roughnesses. The optimal parameter settings were identified from the Taguchi analysis and the process capability Cp and the process capability index Cpk were improved from 1.76 and 0.02 to 3.70 and 2.10 respectively for turning process and from 0.87 and 0.19 to 3.85 and 2.70 respectively for the milling process. The surface roughnesses were improved from 60.17 µin to 68.50 µin, reducing the defect rate from 52.39% to 0% for the turning process and from 93.18 µin to 79.49 µin, reducing the defect rate from 71.23% to 0% for the milling process. The purpose of this study is to efficiently utilize the Taguchi design analysis to improve the surface roughness.

Keywords: surface roughness, Taguchi parameter design, CNC turning, CNC milling

Procedia PDF Downloads 131
281 Characteristics of the Particle Size Distribution and Exposure Concentrations of Nanoparticles Generated from the Laser Metal Deposition Process

Authors: Yu-Hsuan Liu, Ying-Fang Wang

Abstract:

The objectives of the present study are to characterize nanoparticles generated from the laser metal deposition (LMD) process and to estimate particle concentrations deposited in the head (H), that the tracheobronchial (TB) and alveolar (A) regions, respectively. The studied LMD chamber (3.6m × 3.8m × 2.9m) is installed with a robot laser metal deposition machine. Direct-reading instrument of a scanning mobility particle sizer (SMPS, Model 3082, TSI Inc., St. Paul, MN, USA) was used to conduct static sampling inside the chamber for nanoparticle number concentration and particle size distribution measurements. The SMPS obtained particle number concentration at every 3 minutes, the diameter of the SMPS ranged from 11~372 nm when the aerosol and sheath flow rates were set at 0.6 and 6 L / min, respectively. The resultant size distributions were used to predict depositions of nanoparticles at the H, TB, and A regions of the respiratory tract using the UK National Radiological Protection Board’s (NRPB’s) LUDEP Software. Result that the number concentrations of nanoparticles in indoor background and LMD chamber were 4.8×10³ and 4.3×10⁵ # / cm³, respectively. However, the nanoparticles emitted from the LMD process was in the form of the uni-modal with number median diameter (NMD) and geometric standard deviation (GSD) as 142nm and 1.86, respectively. The fractions of the nanoparticles deposited on the alveolar region (A: 69.8%) were higher than the other two regions of the head region (H: 10.9%), tracheobronchial region (TB: 19.3%). This study conducted static sampling to measure the nanoparticles in the LMD process, and the results show that the fraction of particles deposited on the A region was higher than the other two regions. Therefore, applying the characteristics of nanoparticles emitted from LMD process could be provided valuable scientific-based evidence for exposure assessments in the future.

Keywords: exposure assessment, laser metal deposition process, nanoparticle, respiratory region

Procedia PDF Downloads 264
280 RNAseq Reveals Hypervirulence-Specific Host Responses to M. tuberculosis Infection

Authors: Gina Leisching, Ray-Dean Pietersen, Carel Van Heerden, Paul Van Helden, Ian Wiid, Bienyameen Baker

Abstract:

The distinguishing factors that characterize the host response to infection with virulent Mycobacterium tuberculosis (M.tb) are largely confounding. We present an infection study with two genetically closely related M.tb strains that have vastly different pathogenic characteristics. The early host response to infection with these detergent-free cultured strains was analyzed through RNAseq in an attempt to provide information on the subtleties which may ultimately contribute to the virulent phenotype. Murine bone marrow-derived macrophages (BMDMs) were infected with either a hyper- (R5527) or hypovirulent (R1507) Beijing M. tuberculosis clinical isolate. RNAseq revealed 69 differentially expressed host genes in BMDMs during comparison of these two transcriptomes. Pathway analysis revealed activation of the stress-induced and growth inhibitory Gadd45 signaling pathway in hypervirulent infected BMDMs. Upstream regulators of interferon activation such as and IRF3 and IRF7 were predicted to be upregulated in hypovirulent-infected BMDMs. Additional analysis of the host immune response through ELISA and qPCR included the use of human THP-1 macrophages where a robust proinflammatory response was observed after infection with the hypervirulent strain. RNAseq revealed two early-response genes (IER3 and SAA3) and two host-defence genes (OASL1 and SLPI) that were significantly upregulated by the hypervirulent strain. The role of these genes under M.tb infection conditions are largely unknown but here we provide validation of their presence with use of qPCR and Western blot. Further analysis into their biological role under infection with virulent M.tb is required.

Keywords: host-response, Mycobacterium tuberculosis, RNAseq, virulence

Procedia PDF Downloads 194
279 Analyzing the Effectiveness of Communication Practices and Processes within Project-Based Firms

Authors: Paul Saah, Charles Mbohwa, Nelson Sizwe Madonsela

Abstract:

The capacity to deliver projects on schedule, within budget, and to the pleasure of the client depends on effective communication, which is the lifeblood of project-based businesses. In order to pinpoint areas for development and shed light on the crucial role that communication plays in project success, the aim of this study is to evaluate the efficacy of communication practises and processes inside project-based organisations. In order to analyse concepts and get a greater grasp of their theoretical basis, this study's methodology combines a careful review of the relevant literature with a conceptual analysis of the subject. Data from a varied sample of project-based businesses spanning all industries and sizes were collected via document analysis. The relationship between communication practises, and processes were investigated in connection to key performance measures such as project outcomes, client satisfaction, and team dynamics. According to the study's findings, project-based businesses that adopt effective communication practises, and procedures experience a reduction in unfavourable experiences, stronger integration, and coordination, clarity of purpose, and practises that can hasten problem resolution. However, failing to adopt effective communication practises and procedures in project-based company result in counter issues, including project derailment from the schedule, failure to meet goals, inefficient use of existing resources, and failure to meet organisational goals. Therefore, optimising their communication practises, and procedures are crucial for sustainable growth and competitive advantage as project-based enterprises continue to play a crucial part in today's dynamic business scene.

Keywords: effective communication, project-based firms, communication practices, project success, communication strategies

Procedia PDF Downloads 41
278 Correlates of Modes of Transportation to Work among Working Adults in Ernakulam District, Kerala

Authors: Anjaly Joseph, Elezebeth Mathews

Abstract:

Transportation and urban planning is the least recognised area for physical activity promotion in India, unlike developed regions. Identifying the preferred transportation modalities and factors associated with it is essential to address these lacunae. The objective of the study was to assess the prevalence of modes of transportation to work, and its correlates among working adults in Ernakulam District, Kerala. A cross sectional study was conducted among 350 working individuals in the age group of 18-60 years, selected through multi-staged stratified random sampling in Ernakulam district of Kerala. The inclusion criteria were working individuals 18-60 years, workplace at a distance of more than 1 km from the home and who worked five or more days a week. Pregnant women/women on maternity leave and drivers (taxi drivers, autorickshaw drivers, and lorry drivers) were excluded. An interview schedule was used to capture the modes of transportation namely, public, private and active transportation, socio demographic details, travel behaviour, anthropometric measurements and health status. Nearly two-thirds (64 percent) of them used private transportation to work, while active commuters were only 6.6 percent. The correlates identified for active commuting compared to other modes were low socio-economic status (OR=0.22, CI=0.5-0.85) and presence of a driving license (OR=4.95, CI= 1.59-15.45). The correlates identified for public transportation compared to private transportation were female gender (OR= 17.79, CI= 6.26-50.31), low income (OR=0.33, CI= 0.11-0.93), being unmarried (OR=5.19, CI=1.46-8.37), presence of no or only one private vehicle in the house (OR=4.23, CI=1.24-20.54) and presence of convenient public transportation facility to workplace (OR=3.97, CI= 1.66-9.47). The association between body mass index (BMI) and public transportation were explored and found that public transport users had lesser BMI than private commuters (OR=2.30, CI=1.23-4.29). Policies that encourage active and public transportation needs to be introduced such as discouraging private vehicle through taxes, introduction of convenient and safe public transportation facility, walking/cycling paths, and paid parking facility.

Keywords: active transportation, correlates, India, public transportation, transportation modes

Procedia PDF Downloads 144
277 Impact of the COVID-19 Pandemic on the Maternal, Newborn, Child Health and Nutrition Indicators in Miagao, Iloilo and Sibunag, Guimaras, Philippines

Authors: Franco Miguel Nodado, Adrienne Marie Bugayong Janagap, Allen Claire Arances, Kirsten Anne Gerez, Frances Catherine Rosario, Charise Alvyne Samaniego, Matt Andrew Secular, Rommel Gestuveo, Marilyn Sumayo, Joseph Arbizo, Philip Ian Padilla

Abstract:

COVID-19 pandemic adversely affected the delivery of health care services, but its impacts on Maternal, Newborn, Child Health and Nutrition (MNCHN) programs in rural municipalities in the Philippines remains understudied. Thus, this study explored the effects of the pandemic on MNCHN indicators in the municipalities of Miagao, Iloilo and Sibunag, Guimaras. A cross-sectional design was employed to compare the MNCHN indicators before and during the pandemic, and between Miagao and Sibunag. Key informant interviews (KII) were performed to identify the factors affecting access to MNCHN programs. During the pandemic, Miagao had a significant increase in positive outcomes of eight out of ten maternal health indicators, while Sibunag showed a significant decrease in six indicators. For child health and nutrition, Miagao obtained significant improvements in five of seven indicators, while Sibunag showed a significant increase in positive outcomes for six. KII data showed that the primary concern of mothers in Miagao is accessibility, while mothers in Sibunag raised concerns on accessibility, availability, and affordability of these MNCHN services. Miagao MHO employed various strategies such as telemedicine, activation of barangay health workers, and decentralization of health services to Barangay Health Centers, which can explain the improvements in MNCHN indicators. Sibunag also decentralized its health services, but its limited resources might have led them to prioritize child health and nutrition services. The findings suggest that the impacts of the COVID-19 pandemic on MNCHN depend on local health measures employed by the municipality, while telemedicine is a very useful tool in mitigating the negative effects of disrupted health services.

Keywords: maternal, child, COVID-19, Miagao, Sibunag, nutrition

Procedia PDF Downloads 153
276 Applications of Evolutionary Optimization Methods in Reinforcement Learning

Authors: Rahul Paul, Kedar Nath Das

Abstract:

The paradigm of Reinforcement Learning (RL) has become prominent in training intelligent agents to make decisions in environments that are both dynamic and uncertain. The primary objective of RL is to optimize the policy of an agent in order to maximize the cumulative reward it receives throughout a given period. Nevertheless, the process of optimization presents notable difficulties as a result of the inherent trade-off between exploration and exploitation, the presence of extensive state-action spaces, and the intricate nature of the dynamics involved. Evolutionary Optimization Methods (EOMs) have garnered considerable attention as a supplementary approach to tackle these challenges, providing distinct capabilities for optimizing RL policies and value functions. The ongoing advancement of research in both RL and EOMs presents an opportunity for significant advancements in autonomous decision-making systems. The convergence of these two fields has the potential to have a transformative impact on various domains of artificial intelligence (AI) applications. This article highlights the considerable influence of EOMs in enhancing the capabilities of RL. Taking advantage of evolutionary principles enables RL algorithms to effectively traverse extensive action spaces and discover optimal solutions within intricate environments. Moreover, this paper emphasizes the practical implementations of EOMs in the field of RL, specifically in areas such as robotic control, autonomous systems, inventory problems, and multi-agent scenarios. The article highlights the utilization of EOMs in facilitating RL agents to effectively adapt, evolve, and uncover proficient strategies for complex tasks that may pose challenges for conventional RL approaches.

Keywords: machine learning, reinforcement learning, loss function, optimization techniques, evolutionary optimization methods

Procedia PDF Downloads 54
275 Ecological impacts of Cage Farming: A Case Study of Lake Victoria, Kenya

Authors: Mercy Chepkirui, Reuben Omondi, Paul Orina, Albert Getabu, Lewis Sitoki, Jonathan Munguti

Abstract:

Globally, the decline in capture fisheries as a result of the growing population and increasing awareness of the nutritional benefits of white meat has led to the development of aquaculture. This is anticipated to meet the increasing call for more food for the human population, which is likely to increase further by 2050. Statistics showed that more than 50% of the global future fish diet will come from aquaculture. Aquaculture began commercializing some decades ago; this is accredited to technological advancement from traditional to modern cultural systems, including cage farming. Cage farming technology has been rapidly growing since its inception in Lake Victoria, Kenya. Currently, over 6,000 cages have been set up in Kenyan waters, and this offers an excellent opportunity for recognition of Kenya’s government tactic to eliminate food insecurity and malnutrition, create employment and promote a Blue Economy. However, being an open farming enterprise is likely to emit large bulk of waste hence altering the ecosystem integrity of the lake. This is through increased chlorophyll-a pigments, alteration of the plankton community, macroinvertebrates, fish genetic pollution, transmission of fish diseases and pathogens. Cage farming further increases the nutrient loads leading to the production of harmful algal blooms, thus negatively affecting aquatic and human life. Despite the ecological transformation, cage farming provides a platform for the achievement of the Sustainable Development Goals of 2030, especially the achievement of food security and nutrition. Therefore, there is a need for Integrated Multitrophic Aquaculture as part of Blue Transformation for ecosystem monitoring.

Keywords: aquaculture, ecosystem, blue economy, food security

Procedia PDF Downloads 54
274 Encapsulation of Flexible OLED with an Auxiliary Sealing Line

Authors: Hanjun Yun, Gun Bae, Nabin Paul, Cheolhee Moon

Abstract:

Flexible OLED is an important technology for the next generation display over various kinds of applications. However, the organic materials of OLEDs degrade rapidly under the invasion of oxygen and water moisture. The degradation causes the formation of non-emitting areas which gradually suppress the device brightness, ultimately the lifetime of the device decreasing rapidly. Until now, the most suitable sealing process of the flexible OLED devices is a thin film encapsulation (TFE). However, TFE consists of a multilayer thin-film structure with organic-inorganic materials, so the cost is expensive and the process time is long. Another problem is that the blocking characteristics from the moisture and oxygen are not perfect. Therefore, the encapsulation of the flexible OLED device is a still key technical issue for the successful market entry. In this study, we are to introduce an auxiliary sealing line between the two flexible substrates. The electrode lines were formed on the substrates which have a SiNx barrier coating layer. To induce the solid phase diffusion process between the SiNx layer and the electrode lines, the electrode materials were determined as Al-Si composition. Thermal energy was supplied for both the SiNx layer and Al-Si electrode lines within the furnace to induce the interfacial bonding through the solid phase diffusion of Si. We printed a test pattern for the edge of the flexible PET substrate of 3cm*3cm size. Experimental conditions such as heating temperature, heating time were optimized to get enough adhesion strength which was estimated through the competitive bending test. Finally, OLED devices with flexible PET substrate of 3cm*3cm size were manufactured to investigate the blocking characteristics as an encapsulation layer.

Keywords: barrier, encapsulation, OLED, solid phase diffusion

Procedia PDF Downloads 210
273 Liquid Tin(II) Alkoxide Initiators for Use in the Ring-Opening Polymerisation of Cyclic Ester Monomers

Authors: Sujitra Ruengdechawiwat, Robert Molloy, Jintana Siripitayananon, Runglawan Somsunan, Paul D. Topham, Brian J. Tighe

Abstract:

The main aim of this research has been to design and synthesize some completely soluble liquid tin(II) alkoxide initiators for use in the ring-opening polymerisation (ROP) of cyclic ester monomers. This is in contrast to conventional tin(II) alkoxides in solid form which tend to be molecular aggregates and difficult to dissolve. The liquid initiators prepared were bis(tin(II) monooctoate) diethylene glycol ([Sn(Oct)]2DEG) and bis(tin(II) monooctoate) ethylene glycol ([Sn(Oct)]2EG). Their efficiencies as initiators in the bulk ROP of ε-caprolactone (CL) at 130oC were studied kinetically by dilatometry. Kinetic data over the 20-70% conversion range was used to construct both first-order and zero-order rate plots. It was found that the rate data fitted more closely to first-order kinetics with respect to the monomer concentration and gave higher first-order rate constants than the corresponding tin(II) octoate/diol initiating systems normally used to generate the tin(II) alkoxide in situ. Since the ultimate objective of this work is to produce copolymers suitable for biomedical use as absorbable monofilament surgical sutures, poly(L-lactide-co-ε-caprolactone) 75:25 mol %, P(LL-co-CL), copolymers were synthesized using both solid and liquid tin(II) alkoxide initiators at 130°C for 48 hrs. The statistical copolymers were obtained in near-quantitative yields with compositions (from 1H-NMR) close to the initial comonomer feed ratios. The monomer sequencing (from 13C-NMR) was partly random and partly blocky (gradient-type) due to the much differing monomer reactivity ratios (rLL >> rCL). From GPC, the copolymers obtained using the soluble liquid tin(II) alkoxides were found to have higher molecular weights (Mn = 40,000-100,000) than those from the only partially soluble solid initiators (Mn = 30,000-52,000).

Keywords: biodegradable polyesters, poly(L-lactide-co-ε-caprolactone), ring-opening polymerisation, tin(II) alkoxide

Procedia PDF Downloads 174
272 Characterizing Nanoparticles Generated from the Different Working Type and the Stack Flue during 3D Printing Process

Authors: Kai-Jui Kou, Tzu-Ling Shen, Ying-Fang Wang

Abstract:

The objectives of the present study are to characterize nanoparticles generated from the different working type in 3D printing room and the stack flue during 3D printing process. The studied laboratory (10.5 m× 7.2 m × 3.2 m) with a ventilation rate of 500 m³/H is installed a 3D metal printing machine. Direct-reading instrument of a scanning mobility particle sizer (SMPS, Model 3082, TSI Inc., St. Paul, MN, USA) was used to conduct static sampling for nanoparticle number concentration and particle size distribution measurements. The SMPS obtained particle number concentration at every 3 minutes, the diameter of the SMPS ranged from 11~372 nm when the aerosol and sheath flow rates were set at 0.6 and 6 L/min, respectively. The concentrations of background, printing process, clearing operation, and screening operation were performed in the laboratory. On the other hand, we also conducted nanoparticle measurement on the 3D printing machine's stack flue to understand its emission characteristics. Results show that the nanoparticles emitted from the different operation process were the same distribution in the form of the uni-modal with number median diameter (NMD) as approximately 28.3 nm to 29.6 nm. The number concentrations of nanoparticles were 2.55×10³ count/cm³ in laboratory background, 2.19×10³ count/cm³ during printing process, 2.29×10³ count/cm³ during clearing process, 3.05×10³ count/cm³ during screening process, 2.69×10³ count/cm³ in laboratory background after printing process, and 6.75×10³ outside laboratory, respectively. We found that there are no emission nanoparticles during the printing process. However, the number concentration of stack flue nanoparticles in the ongoing print is 1.13×10⁶ count/cm³, and that of the non-printing is 1.63×10⁴ count/cm³, with a NMD of 458 nm and 29.4 nm, respectively. It can be confirmed that the measured particle size belongs to easily penetrate the filter in theory during the printing process, even though the 3D printer has a high-efficiency filtration device. Therefore, it is recommended that the stack flue of the 3D printer would be equipped with an appropriate dust collection device to prevent the operators from exposing these hazardous particles.

Keywords: nanoparticle, particle emission, 3D printing, number concentration

Procedia PDF Downloads 154
271 Antibacterial Activity and Kinetic Parameters of the Essential Oils of Drypetes Gossweileri S.Moore, Ocimun Gratissimum L. and Cymbopogon Citratus DC Stapf on 5 Multidrug-Resistant Strains of Shigella

Authors: Elsa Makue Nguuffo, Esther Del Florence Moni Ndedi, Jacky Njiki Bikoï, Jean Paul Assam Assam, Maximilienne Ascension Nyegue

Abstract:

Aims: The present study aims to evaluate the kinetic parameters of essential oils (EOs) and combinations fromDrypetes gossweileri Stem Bark, Ocimum gratissimum leaves, Cymbopogon citratusleaves after evaluation of their antibacterial activityonmultidrug-resistant strains ofShigella. Material and Methods:fiveclinical strains of Shigellaisolated from patients with diarrhoeaincluding Shigella flexneri, and 4 otherstrains of Shigella sppwere selected. Their antibiotic profile was established using agar test diffusion with seven antibiotics belonging to seven classes.EOs were extracted from each plant using hydrodistillation process. The activity of Ciprofloxacin®, OEs, and their combination formulatedinthe followingratios(w/w/w): C1: 1/1/1; C2: 2/1/1; C3: 1/2/1, C4:1/1/2 was evaluated microdilution assay. The various interactions of OEs in the different combinations were determined then the OE and the most active combination were retained to determine their kinetic parameters on S. flexneri. Results: Antibiotic susceptibility tests revealed that most Shigella isolates (n = 4) were resistant to six antibiotics tested. Ciprofloxacin (40%), Nalidixic acid (60%), Tetracycline (80%), Amoxicillin (100%), Cefotaxime (80%), Erythromycin (100%), and Cotrimoxazole (80%) were the profiles found in the different strains of Shigella. About the antibacterial activity of OEs, Drypetes gossweileriOE and C2 combination had shown a higher Shigellicide property with a Minimal Inhibitory Concentration(MIC) respectivelyranging from 0.078 mg/mL to 0.312 mg/mL and 0.012 to 1.562 mg/mL. Combinations of OEs showed various interactions whose synergistic effects were mostly encountered. The best deactivation was obtained by the combination C2 at 16 MIC withb= 1.962. Conclusion: the susceptibility of Shigella to OEs and their combinations justifies their use in traditional medicine in the treatment of shigellosis.

Keywords: shigella, multidrug-resistant, EOs, kinetic

Procedia PDF Downloads 73
270 A Comparative Analysis of Clustering Approaches for Understanding Patterns in Health Insurance Uptake: Evidence from Sociodemographic Kenyan Data

Authors: Nelson Kimeli Kemboi Yego, Juma Kasozi, Joseph Nkruzinza, Francis Kipkogei

Abstract:

The study investigated the low uptake of health insurance in Kenya despite efforts to achieve universal health coverage through various health insurance schemes. Unsupervised machine learning techniques were employed to identify patterns in health insurance uptake based on sociodemographic factors among Kenyan households. The aim was to identify key demographic groups that are underinsured and to provide insights for the development of effective policies and outreach programs. Using the 2021 FinAccess Survey, the study clustered Kenyan households based on their health insurance uptake and sociodemographic features to reveal patterns in health insurance uptake across the country. The effectiveness of k-prototypes clustering, hierarchical clustering, and agglomerative hierarchical clustering in clustering based on sociodemographic factors was compared. The k-prototypes approach was found to be the most effective at uncovering distinct and well-separated clusters in the Kenyan sociodemographic data related to health insurance uptake based on silhouette, Calinski-Harabasz, Davies-Bouldin, and Rand indices. Hence, it was utilized in uncovering the patterns in uptake. The results of the analysis indicate that inclusivity in health insurance is greatly related to affordability. The findings suggest that targeted policy interventions and outreach programs are necessary to increase health insurance uptake in Kenya, with the ultimate goal of achieving universal health coverage. The study provides important insights for policymakers and stakeholders in the health insurance sector to address the low uptake of health insurance and to ensure that healthcare services are accessible and affordable to all Kenyans, regardless of their socio-demographic status. The study highlights the potential of unsupervised machine learning techniques to provide insights into complex health policy issues and improve decision-making in the health sector.

Keywords: health insurance, unsupervised learning, clustering algorithms, machine learning

Procedia PDF Downloads 94