Search results for: Gagne’s learning model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 22210

Search results for: Gagne’s learning model

21730 Bridging the Data Gap for Sexism Detection in Twitter: A Semi-Supervised Approach

Authors: Adeep Hande, Shubham Agarwal

Abstract:

This paper presents a study on identifying sexism in online texts using various state-of-the-art deep learning models based on BERT. We experimented with different feature sets and model architectures and evaluated their performance using precision, recall, F1 score, and accuracy metrics. We also explored the use of pseudolabeling technique to improve model performance. Our experiments show that the best-performing models were based on BERT, and their multilingual model achieved an F1 score of 0.83. Furthermore, the use of pseudolabeling significantly improved the performance of the BERT-based models, with the best results achieved using the pseudolabeling technique. Our findings suggest that BERT-based models with pseudolabeling hold great promise for identifying sexism in online texts with high accuracy.

Keywords: large language models, semi-supervised learning, sexism detection, data sparsity

Procedia PDF Downloads 70
21729 Evaluating Learning Outcomes in the Implementation of Flipped Teaching Using Data Envelopment Analysis

Authors: Huie-Wen Lin

Abstract:

This study integrated various teaching factors -based on the idea of a flipped classroom- in a financial management course. The study’s aim was to establish an effective teaching implementation strategy and evaluation mechanism with respect to learning outcomes, which can serve as a reference for the future modification of teaching methods. This study implemented a teaching method in five stages and estimated the learning efficiencies of 22 students (in the teaching scenario and over two semesters). Subsequently, data envelopment analysis (DEA) was used to compare, for each student, between the learning efficiencies before and after participation in the flipped classroom -in the first and second semesters, respectively- to identify the crucial external factors influencing learning efficiency. According to the results, the average overall student learning efficiency increased from 0.901 in the first semester to 0.967 in the second semester, which demonstrate that the flipped classroom approach can improve teaching effectiveness and learning outcomes. The results also revealed a difference in learning efficiency between male and female students.

Keywords: data envelopment analysis, flipped classroom, learning outcome, teaching and learning

Procedia PDF Downloads 156
21728 A Collaborative Learning Model in Engineering Science Based on a Cyber-Physical Production Line

Authors: Yosr Ghozzi

Abstract:

The Cyber-Physical Systems terminology has been well received by the industrial community and specifically appropriated in educational settings. Indeed, our latest educational activities are based on the development of experimental platforms on an industrial scale. In fact, we built a collaborative learning model because of an international market study that led us to place ourselves at the heart of this technology. To align with these findings, a competency-based approach study was conducted, and program content was revised by reflecting the projectbased approach. Thus, this article deals with the development of educational devices according to a generated curriculum and specific educational activities while respecting the repository of skills adopted from what constitutes the educational cyber-physical production systems and the laboratories that are compliant and adapted to them. The implementation of these platforms was systematically carried out in the school's workshops spaces. The objective has been twofold, both research and teaching for the students in mechatronics and logistics of the electromechanical department. We act as trainers and industrial experts to involve students in the implementation of possible extension systems around multidisciplinary projects and reconnect with industrial projects for better professional integration.

Keywords: education 4.0, competency-based learning, teaching factory, project-based learning, cyber-physical systems, industry 4.0

Procedia PDF Downloads 108
21727 Gaits Stability Analysis for a Pneumatic Quadruped Robot Using Reinforcement Learning

Authors: Soofiyan Atar, Adil Shaikh, Sahil Rajpurkar, Pragnesh Bhalala, Aniket Desai, Irfan Siddavatam

Abstract:

Deep reinforcement learning (deep RL) algorithms leverage the symbolic power of complex controllers by automating it by mapping sensory inputs to low-level actions. Deep RL eliminates the complex robot dynamics with minimal engineering. Deep RL provides high-risk involvement by directly implementing it in real-world scenarios and also high sensitivity towards hyperparameters. Tuning of hyperparameters on a pneumatic quadruped robot becomes very expensive through trial-and-error learning. This paper presents an automated learning control for a pneumatic quadruped robot using sample efficient deep Q learning, enabling minimal tuning and very few trials to learn the neural network. Long training hours may degrade the pneumatic cylinder due to jerk actions originated through stochastic weights. We applied this method to the pneumatic quadruped robot, which resulted in a hopping gait. In our process, we eliminated the use of a simulator and acquired a stable gait. This approach evolves so that the resultant gait matures more sturdy towards any stochastic changes in the environment. We further show that our algorithm performed very well as compared to programmed gait using robot dynamics.

Keywords: model-based reinforcement learning, gait stability, supervised learning, pneumatic quadruped

Procedia PDF Downloads 316
21726 Student Engagement and Perceived Academic Stress: Open Distance Learning in Malaysia

Authors: Ng Siew Keow, Cheah Seeh Lee

Abstract:

Students’ strong engagement in learning increases their motivation and satisfaction to learn, be resilient to combat academic stress. Engagement in learning is even crucial in the open distance learning (ODL) setting, where the adult students are learning remotely, lessons and learning materials are mostly delivered via online platforms. This study aimed to explore the relationship between learning engagement and perceived academic stress levels of adult students who enrolled in ODL learning mode. In this descriptive correlation study during the 2021-2022 academic years, 101 adult students from Wawasan Open University, Malaysia (WOU) were recruited through convenient sampling. The adult students’ online learning engagement levels and perceived academic stress levels were identified through the self-report Online Student Engagement Scale (OSE) and the Perception of Academic Stress Scale (PASS). The Pearson correlation coefficient test revealed a significant positive relationship between online student engagement and perceived academic stress (r= 0.316, p<0.01). The higher scores on PASS indicated lower levels of perceived academic stress. The findings of the study supported the assumption of the importance of engagement in learning in promoting psychological well-being as well as sustainability in online learning in the open distance learning context.

Keywords: student engagement, academic stress, open distance learning, online learning

Procedia PDF Downloads 162
21725 Effectiveness of Language Learning Strategy Instruction Based on CALLA on Iranian EFL Language Strategy Use

Authors: Reza Khani, Ziba Hosseini

Abstract:

Ever since the importance of language learning strategy instruction (LLS) has been distinguished, there has been growing interest on how to teach LLS in language learning classrooms. So thus this study attempted to implement language strategy instruction based on CALLA approach for Iranian EFL learners in a real classroom setting. The study was testing the hypothesis that strategy instruction result in improved linguistic strategy of students. The participant of the study were 240 EFL learners who received language learning instruction for four months. The data collected using Oxford strategy inventory for language learning. The results indicated the instruction had statistically significant effect on language strategy use of intervention group who received instruction.

Keywords: CALLA, language learning strategy, language learning strategy instruction, Iranian EFL language strategy

Procedia PDF Downloads 572
21724 A Conv-Long Short-term Memory Deep Learning Model for Traffic Flow Prediction

Authors: Ali Reza Sattarzadeh, Ronny J. Kutadinata, Pubudu N. Pathirana, Van Thanh Huynh

Abstract:

Traffic congestion has become a severe worldwide problem, affecting everyday life, fuel consumption, time, and air pollution. The primary causes of these issues are inadequate transportation infrastructure, poor traffic signal management, and rising population. Traffic flow forecasting is one of the essential and effective methods in urban congestion and traffic management, which has attracted the attention of researchers. With the development of technology, undeniable progress has been achieved in existing methods. However, there is a possibility of improvement in the extraction of temporal and spatial features to determine the importance of traffic flow sequences and extraction features. In the proposed model, we implement the convolutional neural network (CNN) and long short-term memory (LSTM) deep learning models for mining nonlinear correlations and their effectiveness in increasing the accuracy of traffic flow prediction in the real dataset. According to the experiments, the results indicate that implementing Conv-LSTM networks increases the productivity and accuracy of deep learning models for traffic flow prediction.

Keywords: deep learning algorithms, intelligent transportation systems, spatiotemporal features, traffic flow prediction

Procedia PDF Downloads 173
21723 Enhancing Project Performance Forecasting using Machine Learning Techniques

Authors: Soheila Sadeghi

Abstract:

Accurate forecasting of project performance metrics is crucial for successfully managing and delivering urban road reconstruction projects. Traditional methods often rely on static baseline plans and fail to consider the dynamic nature of project progress and external factors. This research proposes a machine learning-based approach to forecast project performance metrics, such as cost variance and earned value, for each Work Breakdown Structure (WBS) category in an urban road reconstruction project. The proposed model utilizes time series forecasting techniques, including Autoregressive Integrated Moving Average (ARIMA) and Long Short-Term Memory (LSTM) networks, to predict future performance based on historical data and project progress. The model also incorporates external factors, such as weather patterns and resource availability, as features to enhance the accuracy of forecasts. By applying the predictive power of machine learning, the performance forecasting model enables proactive identification of potential deviations from the baseline plan, which allows project managers to take timely corrective actions. The research aims to validate the effectiveness of the proposed approach using a case study of an urban road reconstruction project, comparing the model's forecasts with actual project performance data. The findings of this research contribute to the advancement of project management practices in the construction industry, offering a data-driven solution for improving project performance monitoring and control.

Keywords: project performance forecasting, machine learning, time series forecasting, cost variance, earned value management

Procedia PDF Downloads 50
21722 ARCS Model for Enhancing Intrinsic Motivation in Learning Biodiversity Subjects: A Case Study of Tertiary Level Students in Malaysia

Authors: Nadia Nisha Musa, Nur Atirah Hasmi, Hasnun Nita Ismail, Zulfadli Mahfodz

Abstract:

In Malaysian Education System, subject related to biodiversity has started in the curriculum from Foundation Study until tertiary education. Biodiversity become the focus of attention due to awareness on global warming which potentially leads to a loss of biodiversity. A loss in biodiversity means a loss in medicinal discoveries and reduces food supply. It is of great important to ensure that young generations become aware of biodiversity conservation. The more interactive approaches are needed to build society with a high awareness for biodiversity conservation. To address this challenge, the goal of this study is to enhance intrinsic motivation of biological students via ARCS model of instruction. Self-access learning materials such as tutorial, module and fieldwork were designed with ARCS elements to a sample size of 70 university students from the beginning of the semester. Both paper and online surveys were used to collect data from the respondents. The results showed that elements of attention, relevance, confidence and satisfaction have a positive impact on intrinsic motivation of students and their academic performance.

Keywords: intrinsic motivation, ARCS model of instruction, biodiversity, self-access learning

Procedia PDF Downloads 222
21721 PatchMix: Learning Transferable Semi-Supervised Representation by Predicting Patches

Authors: Arpit Rai

Abstract:

In this work, we propose PatchMix, a semi-supervised method for pre-training visual representations. PatchMix mixes patches of two images and then solves an auxiliary task of predicting the label of each patch in the mixed image. Our experiments on the CIFAR-10, 100 and the SVHN dataset show that the representations learned by this method encodes useful information for transfer to new tasks and outperform the baseline Residual Network encoders by on CIFAR 10 by 12% on ResNet 101 and 2% on ResNet-56, by 4% on CIFAR-100 on ResNet101 and by 6% on SVHN dataset on the ResNet-101 baseline model.

Keywords: self-supervised learning, representation learning, computer vision, generalization

Procedia PDF Downloads 90
21720 Developing Interactive Media for Piston Engine Lectures to Improve Cadets Learning Outcomes: Literature Study

Authors: Jamaludin Jamaludin, Suparji Suparji, Lilik Anifah, I. Gusti Putu Asto Buditjahjanto, Eppy Yundra

Abstract:

Learning media is an important and main component in the learning process. By using currently available media, cadets still have difficulty understanding how the piston engine works, so they are not able to apply these concepts appropriately. This study aims to examine the development of interactive media for piston engine courses in order to improve student learning outcomes. The research method used is a literature study of several articles, journals and proceedings of interactive media development results from 2010-2020. The results showed that the development of interactive media is needed to support the learning process and influence the cognitive abilities of students. With this interactive media, learning outcomes can be improved and the learning process can be effective.

Keywords: interactive media, learning outcomes, learning process, literature study

Procedia PDF Downloads 154
21719 A Call for Transformative Learning Experiences to Facilitate Student Workforce Diversity Learning in the United States

Authors: Jeanetta D. Sims, Chaunda L. Scott, Hung-Lin Lai, Sarah Neese, Atoya Sims, Angelia Barrera-Medina

Abstract:

Given the call for increased transformative learning experiences and the demand for academia to prepare students to enter workforce diversity careers, this study explores the landscape of workforce diversity learning in the United States. Using a multi-disciplinary syllabi browsing process and a content analysis method, the most prevalent instructional activities being used in workforce-diversity related courses in the United States are identified. In addition, the instructional activities are evaluated based on transformative learning tenants.

Keywords: workforce diversity, workforce diversity learning, transformative learning, diversity education, U. S. workforce diversity, workforce diversity assignments

Procedia PDF Downloads 505
21718 The Impact of Usefulness and Ease of Using Mobile Learning Technology on Faculty Acceptance

Authors: Leena Ahmad Khaleel Alfarani, Maggie McPherson, Neil Morris

Abstract:

Over the last decade, m-learning has been widely accepted and utilized by many western universities. However, Saudi universities face many challenges in utilizing such technology, a central one being to encourage teachers to use such technology. Although there are several factors that affect faculty members’ participation in the adoption of m-learning, this paper focuses merely on two factors, the usefulness and ease of using m-learning. A sample of 279 faculty members in one Saudi university has responded to the online survey. The results of the study have revealed that there is a statistically significant relationship (at the 0.05 level) between both usefulness and ease of using m-learning factors and the intention of teachers to use m-learning currently and in the future.

Keywords: mobile learning, diffusion of innovation theory, technology acceptance, faculty adoption

Procedia PDF Downloads 547
21717 Development of an Optimised, Automated Multidimensional Model for Supply Chains

Authors: Safaa H. Sindi, Michael Roe

Abstract:

This project divides supply chain (SC) models into seven Eras, according to the evolution of the market’s needs throughout time. The five earliest Eras describe the emergence of supply chains, while the last two Eras are to be created. Research objectives: The aim is to generate the two latest Eras with their respective models that focus on the consumable goods. Era Six contains the Optimal Multidimensional Matrix (OMM) that incorporates most characteristics of the SC and allocates them into four quarters (Agile, Lean, Leagile, and Basic SC). This will help companies, especially (SMEs) plan their optimal SC route. Era Seven creates an Automated Multidimensional Model (AMM) which upgrades the matrix of Era six, as it accounts for all the supply chain factors (i.e. Offshoring, sourcing, risk) into an interactive system with Heuristic Learning that helps larger companies and industries to select the best SC model for their market. Methodologies: The data collection is based on a Fuzzy-Delphi study that analyses statements using Fuzzy Logic. The first round of Delphi study will contain statements (fuzzy rules) about the matrix of Era six. The second round of Delphi contains the feedback given from the first round and so on. Preliminary findings: both models are applicable, Matrix of Era six reduces the complexity of choosing the best SC model for SMEs by helping them identify the best strategy of Basic SC, Lean, Agile and Leagile SC; that’s tailored to their needs. The interactive heuristic learning in the AMM of Era seven will help mitigate error and aid large companies to identify and re-strategize the best SC model and distribution system for their market and commodity, hence increasing efficiency. Potential contributions to the literature: The problematic issue facing many companies is to decide which SC model or strategy to incorporate, due to the many models and definitions developed over the years. This research simplifies this by putting most definition in a template and most models in the Matrix of era six. This research is original as the division of SC into Eras, the Matrix of Era six (OMM) with Fuzzy-Delphi and Heuristic Learning in the AMM of Era seven provides a synergy of tools that were not combined before in the area of SC. Additionally the OMM of Era six is unique as it combines most characteristics of the SC, which is an original concept in itself.

Keywords: Leagile, automation, heuristic learning, supply chain models

Procedia PDF Downloads 390
21716 Design of the Ubiquitous Cloud Learning Management System

Authors: Panita Wannapiroon, Noppadon Phumeechanya, Sitthichai Laisema

Abstract:

This study is the research and development which is intended to: 1) design the ubiquitous cloud learning management system and: 2) assess the suitability of the design of the ubiquitous cloud learning management system. Its methods are divided into 2 phases. Phase 1 is the design of the ubiquitous cloud learning management system, phase 2 is the assessment of the suitability of the design the samples used in this study are work done by 25 professionals in the field of Ubiquitous cloud learning management systems and information and communication technology in education selected using the purposive sampling method. Data analyzed by arithmetic mean and standard deviation. The results showed that the ubiquitous cloud learning management system consists of 2 main components which are: 1) the ubiquitous cloud learning management system server (u-Cloud LMS Server) including: cloud repository, cloud information resources, social cloud network, cloud context awareness, cloud communication, cloud collaborative tools, and: 2) the mobile client. The result of the system suitability assessment from the professionals is in the highest range.

Keywords: learning management system, cloud computing, ubiquitous learning, ubiquitous learning management system

Procedia PDF Downloads 523
21715 Francophone University Students' Attitudes Towards English Accents in Cameroon

Authors: Eric Agrie Ambele

Abstract:

The norms and models for learning pronunciation in relation to the teaching and learning of English pronunciation are key issues nowadays in English Language Teaching in ESL contexts. This paper discusses these issues based on a study on the attitudes of some Francophone university students in Cameroon towards three English accents spoken in Cameroon: Cameroon Francophone English (CamFE), Cameroon English (CamE), and Hyperlectal Cameroon English (near standard British English). With the desire to know more about the treatment that these English accents receive among these students, an aspect that had hitherto received little attention in the literature, a language attitude questionnaire, and the matched-guise technique was used to investigate this phenomenon. Two methods of data analysis were employed: (1) the percentage count procedure, and (2) the semantic differential scale. The findings reveal that the participants’ attitudes towards the selected accents vary in degree. Though Hyperlectal CamE emerged first, CamE second and CamFE third, no accent, on average, received a negative evaluation. It can be deduced from this findings that, first, CamE is gaining more and more recognition and can stand as an autonomous accent; second, that the participants all rated Hyperlectal CamE higher than CamE implies that they would be less motivated in a context where CamE is the learning model. By implication, in the teaching of English pronunciation to francophone learners learning English in Cameroon, Hyperlectal Cameroon English should be the model.

Keywords: teaching pronunciation, English accents, Francophone learners, attitudes

Procedia PDF Downloads 199
21714 Perceptions of Higher Education Online Learning Faculty in Lebanon

Authors: Noha Hamie Haidar

Abstract:

The purpose of this case study was to explore faculty attitudes toward online learning in a Lebanese Higher Education Institution (HEI). The research problem addressed the disinterest among faculty at the Arts, Sciences, and Technology University of Lebanon (AUL) in enhancing learning using online technology. The research questions for the study examined the attitudes of the faculty toward applying online learning and the extent of the faculty readiness to adopt this technological change. A qualitative case study design was used that employed multiple sources of information including semi-structured interviews and existing literature. The target population was AUL faculty including full-time instructors and administration (n=25). Data analysis was guided by the lens of Kanter’s theoretical approach, which focused on faculty’s awareness, desire, knowledge, ability, and reinforcement model (ADKAR) for adopting change. Key findings indicated negative impressions concerning online learning such as authority (ministry of education, culture, and rules); and change (increased enrollment and different teaching styles). Yet, within AUL’s academic environment, the opportunity for the adoption of online learning was identified; faculty showed positive elements, such as the competitive advantage to first enter the Lebanese Market, and higher student enrollment. These results may encourage AUL’s faculty to adopt online learning and to achieve a positive social change by expanding the ability of students in HEIs to compete globally.

Keywords: faculty, higher education, technology, online learning

Procedia PDF Downloads 408
21713 Competences for Learning beyond the Academic Context

Authors: Cristina Galván-Fernández

Abstract:

Students differentiate the different contexts of their lives as well as employment, hobbies or studies. In higher education is needed to transfer the experiential knowledge to theory and viceversa. However, is difficult to achieve than students use their personal experiences and social readings for get the learning evidences. In an experience with 178 education students from Chile and Spain we have used an e-portfolio system and a methodology for 4 years with the aims of help them to: 1) self-regulate their learning process and 2) use social networks and professional experiences for make the learning evidences. These two objectives have been controlled by interviews to the same students in different moments and two questionnaires. The results of this study show that students recognize the ownership of their learning and progress in planning and reflection of their own learning.

Keywords: competences, e-portfolio, higher education, self-regulation

Procedia PDF Downloads 301
21712 Developed CNN Model with Various Input Scale Data Evaluation for Bearing Faults Prognostics

Authors: Anas H. Aljemely, Jianping Xuan

Abstract:

Rolling bearing fault diagnosis plays a pivotal issue in the rotating machinery of modern manufacturing. In this research, a raw vibration signal and improved deep learning method for bearing fault diagnosis are proposed. The multi-dimensional scales of raw vibration signals are selected for evaluation condition monitoring system, and the deep learning process has shown its effectiveness in fault diagnosis. In the proposed method, employing an Exponential linear unit (ELU) layer in a convolutional neural network (CNN) that conducts the identical function on positive data, an exponential nonlinearity on negative inputs, and a particular convolutional operation to extract valuable features. The identification results show the improved method has achieved the highest accuracy with a 100-dimensional scale and increase the training and testing speed.

Keywords: bearing fault prognostics, developed CNN model, multiple-scale evaluation, deep learning features

Procedia PDF Downloads 211
21711 20 Definitions in 20 Years: Exploring the Evolution of Blended Learning Definitions from 2003-2022

Authors: Damian Gordon, Paul Doyle, Anna Becevel, Tina Baloh

Abstract:

The goal of this research is to explore the evolution of the concept of “blended learning” over a twenty-year period, to see whether or not the conceptualization has remained consistent or if it has become either more specific or more general. To achieve this goal, the term “blended learning” (and variations) was searched for in various bibliographical repositories for each year 2003-2022 to locate a highly cited paper that is not behind a paywall, to locate unique definitions that would be freely available to all academics each year. Each of the twenty unique definitions is explored to identify how they categorize both the Classroom Component and the Computer Component of blended learning, as well as identify which discipline each definition originates from and which country it comes from to see if there are any significant geographical variations. Based on this analysis, trends that appear in the definitions are noted, as well as an overall interpretation of the notion of “Blended Learning.”

Keywords: blended learning, definitions of blended learning, e-learning, thematic searches

Procedia PDF Downloads 130
21710 Collaboration and Automatic Tutoring as a Learning Strategy: A Case Study in Programming Courses

Authors: Luis H. Gonzalez-Guerra, Armandina J. Leal-Flores

Abstract:

Students attending classrooms nowadays are habituated to use digital devices all the time and for multiple things. They have been familiar with digital technology throughout their lives so they have developed skills that should be naturally adopted as part of their study strategies. New learning styles require taking in consideration the use of models that support and promote student motivation for learning and development of their creative thinking skills. To achieve student learning in programming courses, different strategies are used. One of them is a collaboration between students, which is a tool which faculty can take advantage of when teaching these kinds of courses. Moreover, cooperation is an essential skill that society should reinforce in order to promote a healthy social environment and cohabitation. Nevertheless, students will still require support and advice to get a complete and correct programming solution to successfully address and solve the problems given throughout the course. This paper present a model where collaboration between students is associated with an automatic tutoring platform providing an excellent approach for the individual learning in collaborative activities in programming courses, and also motivates students to increase their knowledge regarding the topics covered in the classroom.

Keywords: automatic tutoring, collaboration learning, creative thinking, motivation

Procedia PDF Downloads 272
21709 Machine Learning Model to Predict TB Bacteria-Resistant Drugs from TB Isolates

Authors: Rosa Tsegaye Aga, Xuan Jiang, Pavel Vazquez Faci, Siqing Liu, Simon Rayner, Endalkachew Alemu, Markos Abebe

Abstract:

Tuberculosis (TB) is a major cause of disease globally. In most cases, TB is treatable and curable, but only with the proper treatment. There is a time when drug-resistant TB occurs when bacteria become resistant to the drugs that are used to treat TB. Current strategies to identify drug-resistant TB bacteria are laboratory-based, and it takes a longer time to identify the drug-resistant bacteria and treat the patient accordingly. But machine learning (ML) and data science approaches can offer new approaches to the problem. In this study, we propose to develop an ML-based model to predict the antibiotic resistance phenotypes of TB isolates in minutes and give the right treatment to the patient immediately. The study has been using the whole genome sequence (WGS) of TB isolates as training data that have been extracted from the NCBI repository and contain different countries’ samples to build the ML models. The reason that different countries’ samples have been included is to generalize the large group of TB isolates from different regions in the world. This supports the model to train different behaviors of the TB bacteria and makes the model robust. The model training has been considering three pieces of information that have been extracted from the WGS data to train the model. These are all variants that have been found within the candidate genes (F1), predetermined resistance-associated variants (F2), and only resistance-associated gene information for the particular drug. Two major datasets have been constructed using these three information. F1 and F2 information have been considered as two independent datasets, and the third information is used as a class to label the two datasets. Five machine learning algorithms have been considered to train the model. These are Support Vector Machine (SVM), Random forest (RF), Logistic regression (LR), Gradient Boosting, and Ada boost algorithms. The models have been trained on the datasets F1, F2, and F1F2 that is the F1 and the F2 dataset merged. Additionally, an ensemble approach has been used to train the model. The ensemble approach has been considered to run F1 and F2 datasets on gradient boosting algorithm and use the output as one dataset that is called F1F2 ensemble dataset and train a model using this dataset on the five algorithms. As the experiment shows, the ensemble approach model that has been trained on the Gradient Boosting algorithm outperformed the rest of the models. In conclusion, this study suggests the ensemble approach, that is, the RF + Gradient boosting model, to predict the antibiotic resistance phenotypes of TB isolates by outperforming the rest of the models.

Keywords: machine learning, MTB, WGS, drug resistant TB

Procedia PDF Downloads 53
21708 BERT-Based Chinese Coreference Resolution

Authors: Li Xiaoge, Wang Chaodong

Abstract:

We introduce the first Chinese Coreference Resolution Model based on BERT (CCRM-BERT) and show that it significantly outperforms all previous work. The key idea is to consider the features of the mention, such as part of speech, width of spans, distance between spans, etc. And the influence of each features on the model is analyzed. The model computes mention embeddings that combine BERT with features. Compared to the existing state-of-the-art span-ranking approach, our model significantly improves accuracy on the Chinese OntoNotes benchmark.

Keywords: BERT, coreference resolution, deep learning, nature language processing

Procedia PDF Downloads 218
21707 Determination of Water Pollution and Water Quality with Decision Trees

Authors: Çiğdem Bakır, Mecit Yüzkat

Abstract:

With the increasing emphasis on water quality worldwide, the search for and expanding the market for new and intelligent monitoring systems has increased. The current method is the laboratory process, where samples are taken from bodies of water, and tests are carried out in laboratories. This method is time-consuming, a waste of manpower, and uneconomical. To solve this problem, we used machine learning methods to detect water pollution in our study. We created decision trees with the Orange3 software we used in our study and tried to determine all the factors that cause water pollution. An automatic prediction model based on water quality was developed by taking many model inputs such as water temperature, pH, transparency, conductivity, dissolved oxygen, and ammonia nitrogen with machine learning methods. The proposed approach consists of three stages: preprocessing of the data used, feature detection, and classification. We tried to determine the success of our study with different accuracy metrics and the results. We presented it comparatively. In addition, we achieved approximately 98% success with the decision tree.

Keywords: decision tree, water quality, water pollution, machine learning

Procedia PDF Downloads 83
21706 Learning Instructional Managements between the Problem-Based Learning and Stem Education Methods for Enhancing Students Learning Achievements and their Science Attitudes toward Physics the 12th Grade Level

Authors: Achirawatt Tungsombatsanti, Toansakul Santiboon, Kamon Ponkham

Abstract:

Strategies of the STEM education was aimed to prepare of an interdisciplinary and applied approach for the instructional of science, technology, engineering, and mathematics in an integrated students for enhancing engagement of their science skills to the Problem-Based Learning (PBL) method in Borabu School with a sample consists of 80 students in 2 classes at the 12th grade level of their learning achievements on electromagnetic issue. Research administrations were to separate on two different instructional model groups, the 40-experimental group was designed with the STEM instructional experimenting preparation and induction in a 40-student class and the controlling group using the PBL was designed to students identify what they already know, what they need to know, and how and where to access new information that may lead to the resolution of the problem in other class. The learning environment perceptions were obtained using the 35-item Physics Laboratory Environment Inventory (PLEI). Students’ creating attitude skills’ sustainable development toward physics were assessed with the Test Of Physics-Related Attitude (TOPRA) The term scaling was applied to the attempts to measure the attitude objectively with the TOPRA was used to assess students’ perceptions of their science attitude toward physics. Comparisons between pretest and posttest techniques were assessed students’ learning achievements on each their outcomes from each instructional model, differently. The results of these findings revealed that the efficiency of the PLB and the STEM based on criteria indicate that are higher than the standard level of the 80/80. Statistically, significant of students’ learning achievements to their later outcomes on the controlling and experimental physics class groups with the PLB and the STEM instructional designs were differentiated between groups at the .05 level, evidently. Comparisons between the averages mean scores of students’ responses to their instructional activities in the STEM education method are higher than the average mean scores of the PLB model. Associations between students’ perceptions of their physics classes to their attitudes toward physics, the predictive efficiency R2 values indicate that 77%, and 83% of the variances in students’ attitudes for the PLEI and the TOPRA in physics environment classes were attributable to their perceptions of their physics PLB and the STEM instructional design classes, consequently. An important of these findings was contributed to student understanding of scientific concepts, attitudes, and skills as evidence with STEM instructional ought to higher responding than PBL educational teaching. Statistically significant between students’ learning achievements were differentiated of pre and post assessments which overall on two instructional models.

Keywords: learning instructional managements, problem-based learning, STEM education, method, enhancement, students learning achievements, science attitude, physics classes

Procedia PDF Downloads 230
21705 The Potentials of Online Learning and the Challenges towards Its Adoption in Nigeria's Higher Institutions of Learning

Authors: Kuliya Muhammed

Abstract:

This paper examines the potentials of online learning and the challenges to its adoption in Nigeria’s higher institutions of learning. The research would assist in tackling the challenges of online learning adoption and enlighten institutions on the numerous benefits of online learning in Nigeria. The researcher used survey method for the study and questionnaires were used to obtain the needed data from 230 respondents cut across 20 higher institutions in the country. The findings revealed that online learning has the prospect to boost access to learning tools, assist students’ to learn from the comfort of their offices or homes, reduce the cost of learning, and enable individuals to gain self-knowledge. The major challenges in the adoption of e-learning are poor Information and Communication Technology infrastructures, poor internet connectivity where available, lack of Information and Communication Technology background, problem of power supply, lack of commitment by institutions, poor maintenance of Information and Communication Technology tools, inadequate facilities, lack of government funding and fraud. Recommendations were also made at the end of the research work.

Keywords: electronic, ICT, institution, internet, learning, technology

Procedia PDF Downloads 388
21704 Chinese Vocabulary Acquisition and Mobile Assisted Language Learning

Authors: Yuqing Sun

Abstract:

Chinese has been regarded as one of the most difficult languages in learning due to its complex spelling structure, difficult pronunciation, as well as its varying forms. Since vocabulary acquisition is the basic process to acquire a language, to express yourself, to compose a sentence, and to conduct a communication, so learning the vocabulary is of great importance. However, the vocabulary contains pronunciation, spelling, recognition and application which may seem as a huge work. This may pose a question for the language teachers (language teachers in China who teach Chinese to the foreign students): How to teach them in an effective way? Traditionally, teachers have no choice but teach it all by themselves, then with the development of technology, they can use computer as a tool to help them (Computer Assisted Language Learning or CALL). Now, they move into the Mobile Assisted Language Learning (MALL) method to guide their teaching, upon which the appraisal is convincing. It diversifies the learning material and the way of output, which can activate learners’ curiosity and accelerate their understanding. This paper will focus on actual case studies occurring in the universities in China of teaching the foreign students to learn Chinese, and the analysis of the utilization of WeChat channel as an example of MALL model to explore the active role of MALL to enhance the effectiveness of Chinese vocabulary acquisition.

Keywords: Chinese, vocabulary acquisition, MALL, case

Procedia PDF Downloads 415
21703 Experiential Learning for Upholding Entrepreneurship Education: A Case Study from Egypt

Authors: Randa El Bedawy

Abstract:

Exchanging best practices in the scope of entrepreneurship education and the use of experiential learning approaches are growing lately at a very fast pace. Educators should be challenged to promote such a learning approach to bridge the gap between entrepreneurship students and the actual business work environment. The study aims to share best practices, experiences, and knowledge to support entrepreneurship education. The study is exploratory qualitative research based on a case study approach to demonstrate how experiential learning can be used for supporting learning effectiveness in entrepreneurship education through demonstrating a set of fourteen tasks that were used to engage practically the students who were studying a course of entrepreneurship at the American University in Cairo. The study sheds the light on the rational process of using experiential learning to endorse entrepreneurship education through the illustration of each task along with its learning outcomes. The study explores the benefits and obstacles that educators may face when implementing such an experiential approach. The results of the study confirm that developing an experiential learning approach based on constructing a set of well designed practical tasks that complement the overall intended learning outcomes has proven very effective for promoting the students’ learning of entrepreneurship education. However, good preparation for both educators and students is needed primarily to ensure the effective implementation of such an experiential learning approach.

Keywords: business education, entrepreneurship, entrepreneurship education, experiential learning

Procedia PDF Downloads 163
21702 Comparative Study of Deep Reinforcement Learning Algorithm Against Evolutionary Algorithms for Finding the Optimal Values in a Simulated Environment Space

Authors: Akshay Paranjape, Nils Plettenberg, Robert Schmitt

Abstract:

Traditional optimization methods like evolutionary algorithms are widely used in production processes to find an optimal or near-optimal solution of control parameters based on the simulated environment space of a process. These algorithms are computationally intensive and therefore do not provide the opportunity for real-time optimization. This paper utilizes the Deep Reinforcement Learning (DRL) framework to find an optimal or near-optimal solution for control parameters. A model based on maximum a posteriori policy optimization (Hybrid-MPO) that can handle both numerical and categorical parameters is used as a benchmark for comparison. A comparative study shows that DRL can find optimal solutions of similar quality as compared to evolutionary algorithms while requiring significantly less time making them preferable for real-time optimization. The results are confirmed in a large-scale validation study on datasets from production and other fields. A trained XGBoost model is used as a surrogate for process simulation. Finally, multiple ways to improve the model are discussed.

Keywords: reinforcement learning, evolutionary algorithms, production process optimization, real-time optimization, hybrid-MPO

Procedia PDF Downloads 112
21701 Predictive Machine Learning Model for Assessing the Impact of Untreated Teeth Grinding on Gingival Recession and Jaw Pain

Authors: Joseph Salim

Abstract:

This paper proposes the development of a supervised machine learning system to predict the consequences of untreated bruxism (teeth grinding) on gingival (gum) recession and jaw pain (most often bilateral jaw pain with possible headaches and limited ability to open the mouth). As a general dentist in a multi-specialty practice, the author has encountered many patients suffering from these issues due to uncontrolled bruxism (teeth grinding) at night. The most effective treatment for managing this problem involves wearing a nightguard during sleep and receiving therapeutic Botox injections to relax the muscles (the masseter muscle) responsible for grinding. However, some patients choose to postpone these treatments, leading to potentially irreversible and costlier consequences in the future. The proposed machine learning model aims to track patients who forgo the recommended treatments and assess the percentage of individuals who will experience worsening jaw pain, gingival (gum) recession, or both within a 3-to-5-year timeframe. By accurately predicting these outcomes, the model seeks to motivate patients to address the root cause proactively, ultimately saving time and pain while improving quality of life and avoiding much costlier treatments such as full-mouth rehabilitation to help recover the loss of vertical dimension of occlusion due to shortened clinical crowns because of bruxism, gingival grafts, etc.

Keywords: artificial intelligence, machine learning, predictive insights, bruxism, teeth grinding, therapeutic botox, nightguard, gingival recession, gum recession, jaw pain

Procedia PDF Downloads 94