Search results for: three dimensional modeling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5728

Search results for: three dimensional modeling

688 Price Compensation Mechanism with Unmet Demand for Public-Private Partnership Projects

Authors: Zhuo Feng, Ying Gao

Abstract:

Public-private partnership (PPP), as an innovative way to provide infrastructures by the private sector, is being widely used throughout the world. Compared with the traditional mode, PPP emerges largely for merits of relieving public budget constraint and improving infrastructure supply efficiency by involving private funds. However, PPP projects are characterized by large scale, high investment, long payback period, and long concession period. These characteristics make PPP projects full of risks. One of the most important risks faced by the private sector is demand risk because many factors affect the real demand. If the real demand is far lower than the forecasting demand, the private sector will be got into big trouble because operating revenue is the main means for the private sector to recoup the investment and obtain profit. Therefore, it is important to study how the government compensates the private sector when the demand risk occurs in order to achieve Pareto-improvement. This research focuses on price compensation mechanism, an ex-post compensation mechanism, and analyzes, by mathematical modeling, the impact of price compensation mechanism on payoff of the private sector and consumer surplus for PPP toll road projects. This research first investigates whether or not price compensation mechanisms can obtain Pareto-improvement and, if so, then explores boundary conditions for this mechanism. The research results show that price compensation mechanism can realize Pareto-improvement under certain conditions. Especially, to make the price compensation mechanism accomplish Pareto-improvement, renegotiation costs of the government and the private sector should be lower than a certain threshold which is determined by marginal operating cost and distortionary cost of the tax. In addition, the compensation percentage should match with the price cut of the private investor when demand drops. This research aims to provide theoretical support for the government when determining compensation scope under the price compensation mechanism. Moreover, some policy implications can also be drawn from the analysis for better risk-sharing and sustainability of PPP projects.

Keywords: infrastructure, price compensation mechanism, public-private partnership, renegotiation

Procedia PDF Downloads 168
687 Urban Flood Risk Mapping–a Review

Authors: Sherly M. A., Subhankar Karmakar, Terence Chan, Christian Rau

Abstract:

Floods are one of the most frequent natural disasters, causing widespread devastation, economic damage and threat to human lives. Hydrologic impacts of climate change and intensification of urbanization are two root causes of increased flood occurrences, and recent research trends are oriented towards understanding these aspects. Due to rapid urbanization, population of cities across the world has increased exponentially leading to improperly planned developments. Climate change due to natural and anthropogenic activities on our environment has resulted in spatiotemporal changes in rainfall patterns. The combined effect of both aggravates the vulnerability of urban populations to floods. In this context, an efficient and effective flood risk management with its core component as flood risk mapping is essential in prevention and mitigation of flood disasters. Urban flood risk mapping involves zoning of an urban region based on its flood risk, which depicts the spatiotemporal pattern of frequency and severity of hazards, exposure to hazards, and degree of vulnerability of the population in terms of socio-economic, environmental and infrastructural aspects. Although vulnerability is a key component of risk, its assessment and mapping is often less advanced than hazard mapping and quantification. A synergic effort from technical experts and social scientists is vital for the effectiveness of flood risk management programs. Despite an increasing volume of quality research conducted on urban flood risk, a comprehensive multidisciplinary approach towards flood risk mapping still remains neglected due to which many of the input parameters and definitions of flood risk concepts are imprecise. Thus, the objectives of this review are to introduce and precisely define the relevant input parameters, concepts and terms in urban flood risk mapping, along with its methodology, current status and limitations. The review also aims at providing thought-provoking insights to potential future researchers and flood management professionals.

Keywords: flood risk, flood hazard, flood vulnerability, flood modeling, urban flooding, urban flood risk mapping

Procedia PDF Downloads 573
686 Parallelization of Random Accessible Progressive Streaming of Compressed 3D Models over Web

Authors: Aayushi Somani, Siba P. Samal

Abstract:

Three-dimensional (3D) meshes are data structures, which store geometric information of an object or scene, generally in the form of vertices and edges. Current technology in laser scanning and other geometric data acquisition technologies acquire high resolution sampling which leads to high resolution meshes. While high resolution meshes give better quality rendering and hence is used often, the processing, as well as storage of 3D meshes, is currently resource-intensive. At the same time, web applications for data processing have become ubiquitous owing to their accessibility. For 3D meshes, the advancement of 3D web technologies, such as WebGL, WebVR, has enabled high fidelity rendering of huge meshes. However, there exists a gap in ability to stream huge meshes to a native client and browser application due to high network latency. Also, there is an inherent delay of loading WebGL pages due to large and complex models. The focus of our work is to identify the challenges faced when such meshes are streamed into and processed on hand-held devices, owing to its limited resources. One of the solutions that are conventionally used in the graphics community to alleviate resource limitations is mesh compression. Our approach deals with a two-step approach for random accessible progressive compression and its parallel implementation. The first step includes partition of the original mesh to multiple sub-meshes, and then we invoke data parallelism on these sub-meshes for its compression. Subsequent threaded decompression logic is implemented inside the Web Browser Engine with modification of WebGL implementation in Chromium open source engine. This concept can be used to completely revolutionize the way e-commerce and Virtual Reality technology works for consumer electronic devices. These objects can be compressed in the server and can be transmitted over the network. The progressive decompression can be performed on the client device and rendered. Multiple views currently used in e-commerce sites for viewing the same product from different angles can be replaced by a single progressive model for better UX and smoother user experience. Can also be used in WebVR for commonly and most widely used activities like virtual reality shopping, watching movies and playing games. Our experiments and comparison with existing techniques show encouraging results in terms of latency (compressed size is ~10-15% of the original mesh), processing time (20-22% increase over serial implementation) and quality of user experience in web browser.

Keywords: 3D compression, 3D mesh, 3D web, chromium, client-server architecture, e-commerce, level of details, parallelization, progressive compression, WebGL, WebVR

Procedia PDF Downloads 161
685 Influence Activities in Destination, Destination Marketing, and Loyalty through Environmental Preservation toward Satisfaction at the Tourist Destinations in East Java, Indonesia

Authors: Christina Esti Susanti

Abstract:

This study aimed to determine the effect Activities in marketing, Destination Marketing, and Environmental preservation loyalty through satisfaction at tourist destination in East Java, Indonesia. In this study population used is Surabaya citizens who had visited tourist destination in East Java, Indonesia. Characteristics of a sample of respondents in this study are: a minimum age of 17 years, and ever came in tourist destination in East Java, Indonesia with each destination more than 1 visits. Total sample 316 respondents. Data analysis tools which is used in this study is a structural equation modeling. Based on the analysis, the results of this study can be concluded that the hypothesis 1, 2, 5, and 6 are proposed in this study was rejected because not significant. The hypotheses are: (1) Activities in destination have influence which is positive effect on satisfaction in the tourist destination in East Java, Indonesia, (2) Destination marketing have influence which is positive effect on satisfaction in the tourist destination in East Java, Indonesia, (3) Activities in destination have influence which is positive effect towards loyalty through satisfaction in a tourist destination in East Java, Indonesia. (4) Destination marketing have influence which is positive effect on loyalty through satisfaction in a tourist destination in East Java, Indonesia. While the hypothesis 3, 4, and 7, is received. The hypotheses are: (1) Environmental preservation have influence which is positive effect and significant on satisfaction in the tourist destination in East Java, Indonesia. (2) Satisfaction have influence which is positive effect and significant on loyalty to the tourist destination in East Java, Indonesia. (3) Environmental preservation have influence which is positive effect and significant on loyalty through satisfaction in a tourist destination in East Java, Indonesia. Practical advice submitted to the management of tourist destinations, especially in the 10 areas where research was conducted for more attention to the condition of the physical environment to be around tourist spots / attractions, namely: the condition of roads, water supply conditions, the condition of drainage / sanitation, and the condition waste more seriously. Based on the proposal, the manager of a tourist destination seems to be working closely with the local municipal sanitation departments, local water companies local city and town local public works departments to jointly manage a tourist destination considering regional tourism is one of the region's assets and become one sources of local revenue (PAD) is vital.

Keywords: activities in marketing, destination amarketing, environmental preservation, satisfaction, loyalty

Procedia PDF Downloads 535
684 A Numerical Studies for Improving the Performance of Vertical Axis Wind Turbine by a Wind Power Tower

Authors: Soo-Yong Cho, Chong-Hyun Cho, Chae-Whan Rim, Sang-Kyu Choi, Jin-Gyun Kim, Ju-Seok Nam

Abstract:

Recently, vertical axis wind turbines (VAWT) have been widely used to produce electricity even in urban. They have several merits such as low sound noise, easy installation of the generator and simple structure without yaw-control mechanism and so on. However, their blades are operated under the influence of the trailing vortices generated by the preceding blades. This phenomenon deteriorates its output power and makes difficulty predicting correctly its performance. In order to improve the performance of VAWT, wind power towers can be applied. Usually, the wind power tower can be constructed as a multi-story building to increase the frontal area of the wind stream. Hence, multiple sets of the VAWT can be installed within the wind power tower, and they can be operated at high elevation. Many different types of wind power tower can be used in the field. In this study, a wind power tower with circular column shape was applied, and the VAWT was installed at the center of the wind power tower. Seven guide walls were used as a strut between the floors of the wind power tower. These guide walls were utilized not only to increase the wind velocity within the wind power tower but also to adjust the wind direction for making a better working condition on the VAWT. Hence, some important design variables, such as the distance between the wind turbine and the guide wall, the outer diameter of the wind power tower, the direction of the guide wall against the wind direction, should be considered to enhance the output power on the VAWT. A numerical analysis was conducted to find the optimum dimension on design variables by using the computational fluid dynamics (CFD) among many prediction methods. The CFD could be an accurate prediction method compared with the stream-tube methods. In order to obtain the accurate results in the CFD, it needs the transient analysis and the full three-dimensional (3-D) computation. However, this full 3-D CFD could be hard to be a practical tool because it requires huge computation time. Therefore, the reduced computational domain is applied as a practical method. In this study, the computations were conducted in the reduced computational domain and they were compared with the experimental results in the literature. It was examined the mechanism of the difference between the experimental results and the computational results. The computed results showed this computational method could be an effective method in the design methodology using the optimization algorithm. After validation of the numerical method, the CFD on the wind power tower was conducted with the important design variables affecting the performance of VAWT. The results showed that the output power of the VAWT obtained using the wind power tower was increased compared to them obtained without the wind power tower. In addition, they showed that the increased output power on the wind turbine depended greatly on the dimension of the guide wall.

Keywords: CFD, performance, VAWT, wind power tower

Procedia PDF Downloads 374
683 Computational Code for Solving the Navier-Stokes Equations on Unstructured Meshes Applied to the Leading Edge of the Brazilian Hypersonic Scramjet 14-X

Authors: Jayme R. T. Silva, Paulo G. P. Toro, Angelo Passaro, Giannino P. Camillo, Antonio C. Oliveira

Abstract:

An in-house C++ code has been developed, at the Prof. Henry T. Nagamatsu Laboratory of Aerothermodynamics and Hypersonics from the Institute of Advanced Studies (Brazil), to estimate the aerothermodynamic properties around the Hypersonic Vehicle Integrated to the Scramjet. In the future, this code will be applied to the design of the Brazilian Scramjet Technological Demonstrator 14-X B. The first step towards accomplishing this objective, is to apply the in-house C++ code at the leading edge of a flat plate, simulating the leading edge of the 14-X Hypersonic Vehicle, making possible the wave phenomena of oblique shock and boundary layer to be analyzed. The development of modern hypersonic space vehicles requires knowledge regarding the characteristics of hypersonic flows in the vicinity of a leading edge of lifting surfaces. The strong interaction between a shock wave and a boundary layer, in a high supersonic Mach number 4 viscous flow, close to the leading edge of the plate, considering no slip condition, is numerically investigated. The small slip region is neglecting. The study consists of solving the fluid flow equations for unstructured meshes applying the SIMPLE algorithm for Finite Volume Method. Unstructured meshes are generated by the in-house software ‘Modeler’ that was developed at Virtual’s Engineering Laboratory from the Institute of Advanced Studies, initially developed for Finite Element problems and, in this work, adapted to the resolution of the Navier-Stokes equations based on the SIMPLE pressure-correction scheme for all-speed flows, Finite Volume Method based. The in-house C++ code is based on the two-dimensional Navier-Stokes equations considering non-steady flow, with nobody forces, no volumetric heating, and no mass diffusion. Air is considered as calorically perfect gas, with constant Prandtl number and Sutherland's law for the viscosity. Solutions of the flat plate problem for Mach number 4 include pressure, temperature, density and velocity profiles as well as 2-D contours. Also, the boundary layer thickness, boundary conditions, and mesh configurations are presented. The same problem has been solved by the academic license of the software Ansys Fluent and for another C++ in-house code, which solves the fluid flow equations in structured meshes, applying the MacCormack method for Finite Difference Method, and the results will be compared.

Keywords: boundary-layer, scramjet, simple algorithm, shock wave

Procedia PDF Downloads 472
682 Suggestion of Methodology to Detect Building Damage Level Collectively with Flood Depth Utilizing Geographic Information System at Flood Disaster in Japan

Authors: Munenari Inoguchi, Keiko Tamura

Abstract:

In Japan, we were suffered by earthquake, typhoon, and flood disaster in 2019. Especially, 38 of 47 prefectures were affected by typhoon #1919 occurred in October 2019. By this disaster, 99 people were dead, three people were missing, and 484 people were injured as human damage. Furthermore, 3,081 buildings were totally collapsed, 24,998 buildings were half-collapsed. Once disaster occurs, local responders have to inspect damage level of each building by themselves in order to certificate building damage for survivors for starting their life reconstruction process. At that disaster, the total number to be inspected was so high. Based on this situation, Cabinet Office of Japan approved the way to detect building damage level efficiently, that is collectively detection. However, they proposed a just guideline, and local responders had to establish the concrete and infallible method by themselves. Against this issue, we decided to establish the effective and efficient methodology to detect building damage level collectively with flood depth. Besides, we thought that the flood depth was relied on the land height, and we decided to utilize GIS (Geographic Information System) for analyzing the elevation spatially. We focused on the analyzing tool of spatial interpolation, which is utilized to survey the ground water level usually. In establishing the methodology, we considered 4 key-points: 1) how to satisfy the condition defined in the guideline approved by Cabinet Office for detecting building damage level, 2) how to satisfy survivors for the result of building damage level, 3) how to keep equitability and fairness because the detection of building damage level was executed by public institution, 4) how to reduce cost of time and human-resource because they do not have enough time and human-resource for disaster response. Then, we proposed a methodology for detecting building damage level collectively with flood depth utilizing GIS with five steps. First is to obtain the boundary of flooded area. Second is to collect the actual flood depth as sampling over flooded area. Third is to execute spatial analysis of interpolation with sampled flood depth to detect two-dimensional flood depth extent. Fourth is to divide to blocks by four categories of flood depth (non-flooded, over the floor to 100 cm, 100 cm to 180 cm and over 180 cm) following lines of roads for getting satisfaction from survivors. Fifth is to put flood depth level to each building. In Koriyama city of Fukushima prefecture, we proposed the methodology of collectively detection for building damage level as described above, and local responders decided to adopt our methodology at typhoon #1919 in 2019. Then, we and local responders detect building damage level collectively to over 1,000 buildings. We have received good feedback that the methodology was so simple, and it reduced cost of time and human-resources.

Keywords: building damage inspection, flood, geographic information system, spatial interpolation

Procedia PDF Downloads 114
681 Carbon Sequestration Modeling in the Implementation of REDD+ Programmes in Nigeria

Authors: Oluwafemi Samuel Oyamakin

Abstract:

The forest in Nigeria is currently estimated to extend to around 9.6 million hectares, but used to expand over central and southern Nigeria decades ago. The forest estate is shrinking due to long-term human exploitation for agricultural development, fuel wood demand, uncontrolled forest harvesting and urbanization, amongst other factors, compounded by population growth in rural areas. Nigeria has lost more than 50% of its forest cover since 1990 and currently less than 10% of the country is forested. The current deforestation rate is estimated at 3.7%, which is one of the highest in the world. Reducing Emissions from Deforestation and forest Degradation plus conservation, sustainable management of forests and enhancement of forest carbon stocks constituted what is referred to as REDD+. This study evaluated some of the existing way of computing carbon stocks using eight indigenous tree species like Mansonia, Shorea, Bombax, Terminalia superba, Khaya grandifolia, Khaya senegalenses, Pines and Gmelina arborea. While these components are the essential elements of REDD+ programme, they can be brought under a broader framework of systems analysis designed to arrive at optimal solutions for future predictions through statistical distribution pattern of carbon sequestrated by various species of tree. Available data on height and diameter of trees in Ibadan were studied and their respective potentials of carbon sequestration level were assessed and subjected to tests so as to determine the best statistical distribution that would describe the carbon sequestration pattern of trees. The result of this study suggests a reasonable statistical distribution for carbons sequestered in simulation studies and hence, allow planners and government in determining resources forecast for sustainable development especially where experiments with real-life systems are infeasible. Sustainable management of forest can then be achieved by projecting future condition of forests under different management regimes thereby supporting conservation and REDD+ programmes in Nigeria.

Keywords: REDD+, carbon, climate change, height and diameter

Procedia PDF Downloads 152
680 Reliability of 2D Motion Analysis System for Sagittal Plane Lower Limb Kinematics during Running

Authors: Seyed Hamed Mousavi, Juha M. Hijmans, Reza Rajabi, Ron Diercks, Johannes Zwerver, Henk van der Worp

Abstract:

Introduction: Running is one of the most popular sports activity among people. Improper sagittal plane ankle, knee and hip kinematics are considered to be associated with the increase of injury risk in runners. Motion assessing smart-phone applications are increasingly used to measure kinematics both in the field and laboratory setting, as they are cheaper, more portable, accessible, and easier to use relative to 3D motion analysis system. The aims of this study are 1) to compare the results of 3D gait analysis system and CE; 2) to evaluate the test-retest and intra-rater reliability of coach’s eye (CE) app for the sagittal plane hip, knee, and ankle angles in the touchdown and toe-off while running. Method: Twenty subjects participated in this study. Sixteen reflective markers and cluster markers were attached to the subject’s body. Subjects were asked to run at a self-selected speed on a treadmill. Twenty-five seconds of running were collected for analyzing kinematics of interest. To measure sagittal plane hip, knee and ankle joint angles at touchdown (TD) and toe off (TO), the mean of first ten acceptable consecutive strides was calculated for each angle. A smartphone (Samsung Note5, android) was placed on the right side of the subject so that whole body was simultaneously filmed with 3D gait system during running. All subjects repeated the task with the same running speed after a short interval of 5 minutes in between. The CE app, installed on the smartphone, was used to measure the sagittal plane hip, knee and ankle joint angles at touchdown and toe off the stance phase. Results: Intraclass correlation coefficient (ICC) was used to assess test-retest and intra-rater reliability. To analyze the agreement between 3D and 2D outcomes, the Bland and Altman plot was used. The values of ICC were for Ankle at TD (TRR=0.8,IRR=0.94), ankle at TO (TRR=0.9,IRR=0.97), knee at TD (TRR=0.78,IRR=0.98), knee at TO (TRR=0.9,IRR=0.96), hip at TD (TRR=0.75,IRR=0.97), hip at TO (TRR=0.87,IRR=0.98). The Bland and Altman plots displaying a mean difference (MD) and ±2 standard deviation of MD (2SDMD) of 3D and 2D outcomes were for Ankle at TD (MD=3.71,+2SDMD=8.19, -2SDMD=-0.77), ankle at TO (MD=-1.27, +2SDMD=6.22, -2SDMD=-8.76), knee at TD (MD=1.48, +2SDMD=8.21, -2SDMD=-5.25), knee at TO (MD=-6.63, +2SDMD=3.94, -2SDMD=-17.19), hip at TD (MD=1.51, +2SDMD=9.05, -2SDMD=-6.03), hip at TO (MD=-0.18, +2SDMD=12.22, -2SDMD=-12.59). Discussion: The ability that the measurements are accurately reproduced is valuable in the performance and clinical assessment of outcomes of joint angles. The results of this study showed that the intra-rater and test-retest reliability of CE app for all kinematics measured are excellent (ICC ≥ 0.75). The Bland and Altman plots display that there are high differences of values for ankle at TD and knee at TO. Measuring ankle at TD by 2D gait analysis depends on the plane of movement. Since ankle at TD mostly occurs in the none-sagittal plane, the measurements can be different as foot progression angle at TD increases during running. The difference in values of the knee at TD can depend on how 3D and the rater detect the TO during the stance phase of running.

Keywords: reliability, running, sagittal plane, two dimensional

Procedia PDF Downloads 190
679 Experimental Modeling of Spray and Water Sheet Formation Due to Wave Interactions with Vertical and Slant Bow-Shaped Model

Authors: Armin Bodaghkhani, Bruce Colbourne, Yuri S. Muzychka

Abstract:

The process of spray-cloud formation and flow kinematics produced from breaking wave impact on vertical and slant lab-scale bow-shaped models were experimentally investigated. Bubble Image Velocimetry (BIV) and Image Processing (IP) techniques were applied to study the various types of wave-model impacts. Different wave characteristics were generated in a tow tank to investigate the effects of wave characteristics, such as wave phase velocity, wave steepness on droplet velocities, and behavior of the process of spray cloud formation. The phase ensemble-averaged vertical velocity and turbulent intensity were computed. A high-speed camera and diffused LED backlights were utilized to capture images for further post processing. Various pressure sensors and capacitive wave probes were used to measure the wave impact pressure and the free surface profile at different locations of the model and wave-tank, respectively. Droplet sizes and velocities were measured using BIV and IP techniques to trace bubbles and droplets in order to measure their velocities and sizes by correlating the texture in these images. The impact pressure and droplet size distributions were compared to several previously experimental models, and satisfactory agreements were achieved. The distribution of droplets in front of both models are demonstrated. Due to the highly transient process of spray formation, the drag coefficient for several stages of this transient displacement for various droplet size ranges and different Reynolds number were calculated based on the ensemble average method. From the experimental results, the slant model produces less spray in comparison with the vertical model, and the droplet velocities generated from the wave impact with the slant model have a lower velocity as compared with the vertical model.

Keywords: spray charachteristics, droplet size and velocity, wave-body interactions, bubble image velocimetry, image processing

Procedia PDF Downloads 289
678 Electron Beam Melting Process Parameter Optimization Using Multi Objective Reinforcement Learning

Authors: Michael A. Sprayberry, Vincent C. Paquit

Abstract:

Process parameter optimization in metal powder bed electron beam melting (MPBEBM) is crucial to ensure the technology's repeatability, control, and industry-continued adoption. Despite continued efforts to address the challenges via the traditional design of experiments and process mapping techniques, there needs to be more successful in an on-the-fly optimization framework that can be adapted to MPBEBM systems. Additionally, data-intensive physics-based modeling and simulation methods are difficult to support by a metal AM alloy or system due to cost restrictions. To mitigate the challenge of resource-intensive experiments and models, this paper introduces a Multi-Objective Reinforcement Learning (MORL) methodology defined as an optimization problem for MPBEBM. An off-policy MORL framework based on policy gradient is proposed to discover optimal sets of beam power (P) – beam velocity (v) combinations to maintain a steady-state melt pool depth and phase transformation. For this, an experimentally validated Eagar-Tsai melt pool model is used to simulate the MPBEBM environment, where the beam acts as the agent across the P – v space to maximize returns for the uncertain powder bed environment producing a melt pool and phase transformation closer to the optimum. The culmination of the training process yields a set of process parameters {power, speed, hatch spacing, layer depth, and preheat} where the state (P,v) with the highest returns corresponds to a refined process parameter mapping. The resultant objects and mapping of returns to the P-v space show convergence with experimental observations. The framework, therefore, provides a model-free multi-objective approach to discovery without the need for trial-and-error experiments.

Keywords: additive manufacturing, metal powder bed fusion, reinforcement learning, process parameter optimization

Procedia PDF Downloads 83
677 On Cold Roll Bonding of Polymeric Films

Authors: Nikhil Padhye

Abstract:

Recently a new phenomenon for bonding of polymeric films in solid-state, at ambient temperatures well below the glass transition temperature of the polymer, has been reported. This is achieved by bulk plastic compression of polymeric films held in contact. Here we analyze the process of cold-rolling of polymeric films via finite element simulations and illustrate a flexible and modular experimental rolling-apparatus that can achieve bonding of polymeric films through cold-rolling. Firstly, the classical theory of rolling a rigid-plastic thin-strip is utilized to estimate various deformation fields such as strain-rates, velocities, loads etc. in rolling the polymeric films at the specified feed-rates and desired levels of thickness-reduction(s). Predicted magnitudes of slow strain-rates, particularly at ambient temperatures during rolling, and moderate levels of plastic deformation (at which Bauschinger effect can be neglected for the particular class of polymeric materials studied here), greatly simplifies the task of material modeling and allows us to deploy a computationally efficient, yet accurate, finite deformation rate-independent elastic-plastic material behavior model (with inclusion of isotropic-hardening) for analyzing the rolling of these polymeric films. The interfacial behavior between the roller and polymer surfaces is modeled using Coulombic friction; consistent with the rate-independent behavior. The finite deformation elastic-plastic material behavior based on (i) the additive decomposition of stretching tensor (D = De + Dp, i.e. a hypoelastic formulation) with incrementally objective time integration and, (ii) multiplicative decomposition of deformation gradient (F = FeFp) into elastic and plastic parts, are programmed and carried out for cold-rolling within ABAQUS Explicit. Predictions from both the formulations, i.e., hypoelastic and multiplicative decomposition, exhibit a close match. We find that no specialized hyperlastic/visco-plastic model is required to describe the behavior of the blend of polymeric films, under the conditions described here, thereby speeding up the computation process .

Keywords: Polymer Plasticity, Bonding, Deformation Induced Mobility, Rolling

Procedia PDF Downloads 169
676 Risk Assessment on Construction Management with “Fuzzy Logy“

Authors: Mehrdad Abkenari, Orod Zarrinkafsh, Mohsen Ramezan Shirazi

Abstract:

Construction projects initiate in complicated dynamic environments and, due to the close relationships between project parameters and the unknown outer environment, they are faced with several uncertainties and risks. Success in time, cost and quality in large scale construction projects is uncertain in consequence of technological constraints, large number of stakeholders, too much time required, great capital requirements and poor definition of the extent and scope of the project. Projects that are faced with such environments and uncertainties can be well managed through utilization of the concept of risk management in project’s life cycle. Although the concept of risk is dependent on the opinion and idea of management, it suggests the risks of not achieving the project objectives as well. Furthermore, project’s risk analysis discusses the risks of development of inappropriate reactions. Since evaluation and prioritization of construction projects has been a difficult task, the network structure is considered to be an appropriate approach to analyze complex systems; therefore, we have used this structure for analyzing and modeling the issue. On the other hand, we face inadequacy of data in deterministic circumstances, and additionally the expert’s opinions are usually mathematically vague and are introduced in the form of linguistic variables instead of numerical expression. Owing to the fact that fuzzy logic is used for expressing the vagueness and uncertainty, formulation of expert’s opinion in the form of fuzzy numbers can be an appropriate approach. In other words, the evaluation and prioritization of construction projects on the basis of risk factors in real world is a complicated issue with lots of ambiguous qualitative characteristics. In this study, evaluated and prioritization the risk parameters and factors with fuzzy logy method by combination of three method DEMATEL (Decision Making Trial and Evaluation), ANP (Analytic Network Process) and TOPSIS (Technique for Order-Preference by Similarity Ideal Solution) on Construction Management.

Keywords: fuzzy logy, risk, prioritization, assessment

Procedia PDF Downloads 578
675 Mechanical Properties of Diamond Reinforced Ni Nanocomposite Coatings Made by Co-Electrodeposition with Glycine as Additive

Authors: Yanheng Zhang, Lu Feng, Yilan Kang, Donghui Fu, Qian Zhang, Qiu Li, Wei Qiu

Abstract:

Diamond-reinforced Ni matrix composite has been widely applied in engineering for coating large-area structural parts owing to its high hardness, good wear resistance and corrosion resistance compared with those features of pure nickel. The mechanical properties of Ni-diamond composite coating can be promoted by the high incorporation and uniform distribution of diamond particles in the nickel matrix, while the distribution features of particles are affected by electrodeposition process parameters, especially the additives in the plating bath. Glycine has been utilized as an organic additive during the preparation of pure nickel coating, which can effectively increase the coating hardness. Nevertheless, to author’s best knowledge, no research about the effects of glycine on the Ni-diamond co-deposition has been reported. In this work, the diamond reinforced Ni nanocomposite coatings were fabricated by a co-electrodeposition technique from a modified Watt’s type bath in the presence of glycine. After preparation, the SEM morphology of the composite coatings was observed combined with energy dispersive X-ray spectrometer, and the diamond incorporation was analyzed. The surface morphology and roughness were obtained by a three-dimensional profile instrument. 3D-Debye rings formed by XRD were analyzed to characterize the nickel grain size and orientation in the coatings. The average coating thickness was measured by a digital micrometer to deduce the deposition rate. The microhardness was tested by automatic microhardness tester. The friction coefficient and wear volume were measured by reciprocating wear tester to characterize the coating wear resistance and cutting performance. The experimental results confirmed that the presence of glycine effectively improved the surface morphology and roughness of the composite coatings. By optimizing the glycine concentration, the incorporation of diamond particles was increased, while the nickel grain size decreased with increasing glycine. The hardness of the composite coatings was increased as the glycine concentration increased. The friction and wear properties were evaluated as the glycine concentration was optimized, showing a decrease in the wear volume. The wear resistance of the composite coatings increased as the glycine content was increased to an optimum value, beyond which the wear resistance decreased. Glycine complexation contributed to the nickel grain refinement and improved the diamond dispersion in the coatings, both of which made a positive contribution to the amount and uniformity of embedded diamond particles, thus enhancing the microhardness, reducing the friction coefficient, and hence increasing the wear resistance of the composite coatings. Therefore, additive glycine can be used during the co-deposition process to improve the mechanical properties of protective coatings.

Keywords: co-electrodeposition, glycine, mechanical properties, Ni-diamond nanocomposite coatings

Procedia PDF Downloads 117
674 Numerical Simulation of the Heat Transfer Process in a Double Pipe Heat Exchanger

Authors: J. I. Corcoles, J. D. Moya-Rico, A. Molina, J. F. Belmonte, J. A. Almendros-Ibanez

Abstract:

One of the most common heat exchangers technology in engineering processes is the use of double-pipe heat exchangers (DPHx), mainly in the food industry. To improve the heat transfer performance, several passive geometrical devices can be used, such as the wall corrugation of tubes, which increases the wet perimeter maintaining a constant cross-section area, increasing consequently the convective surface area. It contributes to enhance heat transfer in forced convection, promoting secondary recirculating flows. One of the most extended tools to analyse heat exchangers' efficiency is the use of computational fluid dynamic techniques (CFD), a complementary activity to the experimental studies as well as a previous step for the design of heat exchangers. In this study, a double pipe heat exchanger behaviour with two different inner tubes, smooth and spirally corrugated tube, have been analysed. Hence, experimental analysis and steady 3-D numerical simulations using the commercial code ANSYS Workbench v. 17.0 are carried out to analyse the influence of geometrical parameters for spirally corrugated tubes at turbulent flow. To validate the numerical results, an experimental setup has been used. To heat up or cool down the cold fluid as it passes through the heat exchanger, the installation includes heating and cooling loops served by an electric boiler with a heating capacity of 72 kW and a chiller, with a cooling capacity of 48 kW. Two tests have been carried out for the smooth tube and for the corrugated one. In all the tests, the hot fluid has a constant flowrate of 50 l/min and inlet temperature of 59.5°C. For the cold fluid, the flowrate range from 25 l/min (Test 1) and 30 l/min (Test 2) with an inlet temperature of 22.1°C. The heat exchanger is made of stainless steel, with an external diameter of 35 mm and wall thickness of 1.5 mm. Both inner tubes have an external diameter of 24 mm and 1 mm thickness of stainless steel with a length of 2.8 m. The corrugated tube has a corrugation height (H) of 1.1 mm and helical pitch (P) of 25 mm. It is characterized using three non-dimensional parameters, the ratio of the corrugation shape and the diameter (H/D), the helical pitch (P/D) and the severity index (SI = H²/P x D). The results showed good agreement between the numerical and the experimental results. Hence, the lowest differences were shown for the fluid temperatures. In all the analysed tests and for both analysed tubes, the temperature obtained numerically was slightly higher than the experimental results, with values ranged between 0.1% and 0.7%. Regarding the pressure drop, the maximum differences between the values obtained numerically, and the experimental values were close to 16%. Based on the experimental and the numerical results, for the corrugated tube, it can be highlighted that the temperature difference between the inlet and the outlet of the cold fluid is 42%, higher than the smooth tube.

Keywords: corrugated tube, heat exchanger, heat transfer, numerical simulation

Procedia PDF Downloads 134
673 Effective Coaching for Teachers of English Language Learners: A Gap Analysis Framework

Authors: Armando T. Zúñiga

Abstract:

As the number of English Language Learners (ELLs) in public schools continues to grow, so does the achievement gap between ELLs and other student populations. In an effort to support classroom teachers with effective instructional strategies for this student population, many districts have created instructional coaching positions specifically to support classroom teachers of ELLs—ELL Teachers on Special Assignment (ELL TOSAs). This study employed a gap analysis framework to the ELL TOSA professional support program in one California school district to examine knowledge, motivation, and organizational influences (KMO) on the ELL TOSAs’ goal of supporting classroom teachers of ELLs. Three themes emerged as a result of data analysis. First, there was evidence to illustrate the interaction between knowledge and the organization. Data from ELL TOSAs indicated an understanding of the role that collaboration plays in coaching and how to operationalize it in their support of teachers. Further, all of the ELL TOSAs indicated they have received professional development on effective strategies for instructional coaching. Additionally, a large percentage of the ELL TOSAs indicated a knowledge of modeling as an effective coaching practice. Accordingly, all of the ELL TOSAs indicated that they had knowledge of feedback as an effective coaching strategy. However, there was not sufficient evidence to support that they learned the latter two strategies through professional development. A second theme surfaced as there was evidence to illustrate an interaction between motivation and the organization. Some ELL TOSAs indicated that their sense of self-efficacy was affected by conflicting roles and expectations for the job. Most of the ELL TOSAs indicated that their sense of self-efficacy was affected by an increased workload brought about by fiscal decision making. Finally, there was evidence illustrating the interaction between the organization and motivation. The majority of the of ELL TOSAs indicated that there is confusion about how their roles are perceived, leaving the ELL TOSAs to feel that their actions did not contribute to instructional change. In conclusion, five research-based recommendations to support ELL TOSA goal attainment and considerations for future research on instructional coaches for classroom teachers of ELLs are provided.

Keywords: English language development, English language acquisition, language and leadership, language coaching, English language learners, second language acquisition

Procedia PDF Downloads 91
672 Respiratory Bioaerosol Dynamics: Impact of Salinity on Evaporation

Authors: Akhil Teja Kambhampati, Mark A. Hoffman

Abstract:

In the realm of infectious disease research, airborne viral transmission stands as a paramount concern due to its pivotal role in propagating pathogens within densely populated regions. However, amidst this landscape, the phenomenon of hygroscopic growth within respiratory bioaerosols remains relatively underexplored. Unlike pure water aerosols, the unique composition of respiratory bioaerosols leads to varied evaporation rates and hygroscopic growth patterns, influenced by factors such as ambient humidity, temperature, and airflow. This study addresses this gap by focusing on the behaviors of single respiratory bioaerosol utilizing salinity to induce saliva-like hygroscopic behavior. By employing mass, momentum, and energy equations, the study unveils the intricate interplay between evaporation and hygroscopic growth over time. The numerical model enables temporal analysis of bioaerosol characteristics, including size, temperature, and trajectory. The analysis reveals that due to evaporation, there is a reduction in initial size, which shortens the lifetime and distance traveled. However, when hygroscopic growth begins to influence the bioaerosol size, the rate of size reduction slows significantly. The interplay between evaporation and hygroscopic growth results in bioaerosol size within the inhalation range of humans and prolongs the traveling distance. Findings procured from the analysis are crucial for understanding the spread of infectious diseases, especially in high-risk environments such as healthcare facilities and public transportation systems. By elucidating the nuanced behaviors of respiratory bioaerosols, this study seeks to inform the development of more effective preventative strategies against pathogens propagation in the air, thereby contributing to public health efforts on a global scale.

Keywords: airborne viral transmission, high-risk environments, hygroscopic growth, evaporation, numerical modeling, pathogen propagation, preventative strategies, public health, respiratory bioaerosols

Procedia PDF Downloads 24
671 A Study on the Impact of Employment Status of the Elderly on Their Mental Well-Being in India

Authors: Santosh B. Phad, Priyanka V. Janbandhu, Dhananjay W. Bansod

Abstract:

Population Ageing is a growing concern for the social scientists. There is a higher level of aged male participation compared to elderly females. Now, the critical question is whether participation in work improves the quality of life among the elderly and the impact of working status on the mental well-being of the elderly. While examining these research questions, the present paper focuses on the workforce participation of the elderly and the reasons behind it, additionally, determines the association between employment status and the mental well-being of the elderly. The present study has a base of two data sources. First one is Census of India data, 2001 and 2011, and another one is – the Study on Global Ageing and Adult Health (SAGE), a survey conducted in 2007. To capture the trend of workforce participation elderly Census data is significant and to obtain other information associated with this issue the SAGE data is studied. The research piece consists of univariate and bivariate analysis along with some statistical methods like principal component analysis (PCA) and regression modeling – to investigate the association between workforce participation of elderly and subjective well-being (SWB). The results show that the percentage of elderly participating in the labor market is gradually reducing, but the share of working elderly has increased within the group of overall workers. i.e., the ratio of aged workers to non-aged workers is rising. The findings from survey data specify that there is a considerable share of the elderly in the labor market; three-fourths of the employed elderly enrolled the workforce unwillingly. They are in need of some earnings mainly to afford the medical expenses on their health or the health of their spouse, also to support their family members who are economically inactive. Apart from need, duration of working is another vital aspect for the elderly, whereas more than 80 percent of the elderly are working for six hours or more, and most of them engaged in self-employment. However, more than one-third of the working elderly falls into a negative cluster of the subjective well-being (SWB) index, and it is consistent with the result of the discriminant analysis. Here, the SWB index calculated from the 12 items and the reliability score of these items is 0.89.

Keywords: ageing, workforce, census of India, SAGE

Procedia PDF Downloads 137
670 Bedouin of Silicon Wadi: A Case Study Analysis of the Multi-Level Perspectives and Factors Affecting Bedouin Entrepreneurialism as Obstacles to Entry into the Israeli High-Tech Industry

Authors: Frazer G. Thompson

Abstract:

Israel is a nation of cultural and historical diversity, yet the success factors for a modern Bedouin-Arab high-tech entrepreneur seem to be different from those of other Jewish-Israeli citizens. The purpose of this descriptive narrative case study is to explore how an Arab-Israeli all Negev-Bedouin technology company has succeeded in the Israeli high-tech industry by utilizing technology and engineering career opportunities available to Bedouin youth for ‘Sadel Tech,’ at Be’er-Sheva, the Negev, Israel. Methods: The strategy of inquiry seeks to explore real-life contextual understandings, multi-level perspectives, and the cultural influences of personal, community, educational, and entrepreneurial factors. The research methodology includes in-depth one-on-one interviews, focus group sessions, and overt observation to explore the meaning and understanding of the constructs toward determining the effect all or a few of the elements may have on the overall success factors of the company. Results: Study results indicate that the state-run educational system in Israel fails to adequately integrate important aspects of Bedouin culture into the learning environment. However, Bedouin entrepreneurs are finding ways to compensate for these inadequacies by utilizing non-traditional methods of teaching, learning, and doing business. Government incentives for Bedouin start-ups are also recognized as contributors. Employees of Sadel live and work in the Negev, the Gaza Strip, and the West Bank, further informing the study that the traditions of tribal etiquette continue to contribute to modern Bedouin-Arab business culture. Conclusion: Bedouin's business success in Israel is a multi-dimensional concept. While cultural acumen plays a prominent and unique role for both Arab-Israelis and Jewish-Israelis in economic and entrepreneurial pursuits, the marginalization of the Bedouin continues to contribute to the lack of educational and professional opportunities for Bedouin in Israel. Although recognized as important at the government level, programs necessary to implement the infrastructure required to support Bedouin entrepreneurship in Israel remain infantile. The Israeli Government is providing opportunities through grants and other incentives for Bedouin entrepreneurial start-ups, indicating that Israel has recognized the impact of this growing demographic. However, although many Bedouin graduates from University each year with advanced degrees, opportunities for Bedouin within the Israeli high-tech sector remain scarce.

Keywords: Bedouin education, Bedouin entrepreneur, economic anthropology, ethnic business opportunities, Israeli tech, Silicon Wadi

Procedia PDF Downloads 109
669 Changes in Forest Cover Regulate Streamflow in Central Nigerian Gallery Forests

Authors: Rahila Yilangai, Sonali Saha, Amartya Saha, Augustine Ezealor

Abstract:

Gallery forests in sub-Saharan Africa are drastically disappearing due to intensive anthropogenic activities thus reducing ecosystem services, one of which is water provisioning. The role played by forest cover in regulating streamflow and water yield is not well understood, especially in West Africa. This pioneering 2-year study investigated the interrelationships between plant cover and hydrology in protected and unprotected gallery forests. Rainfall, streamflow, and evapotranspiration (ET) measurements/estimates over 2015-2016 were obtained to form a water balance for both catchments. In addition, transpiration in the protected gallery forest with high vegetation cover was calculated from stomatal conductance readings of selected species chosen from plot level data of plant diversity and abundance. Results showed that annual streamflow was significantly higher in the unprotected site than the protected site, even when normalized by catchment area. However, streamflow commenced earlier and lasted longer in the protected site than the degraded unprotected site, suggesting regulation by the greater tree density in the protected site. Streamflow correlated strongly with rainfall with the highest peak in August. As expected, transpiration measurements were less than potential evapotranspiration estimates, while rainfall exceeded ET in the water cycle. The water balance partitioning suggests that the lower vegetation cover in the unprotected catchment leads to a larger runoff in the rainy season and less infiltration, thereby leading to streams drying up earlier, than in the protected catchment. This baseline information is important in understanding the contribution of plants in water cycle regulation, for modeling integrative water management in applied research and natural resource management in sustaining water resources with changing the land cover and climate uncertainties in this data-poor region.

Keywords: evapotranspiration, gallery forest, rainfall, streamflow, transpiration

Procedia PDF Downloads 159
668 Optical Simulation of HfO₂ Film - Black Silicon Structures for Solar Cells Applications

Authors: Gagik Ayvazyan, Levon Hakhoyan, Surik Khudaverdyan, Laura Lakhoyan

Abstract:

Black Si (b-Si) is a nano-structured Si surface formed by a self-organized, maskless process with needle-like surfaces discernible by their black color. The combination of low reflectivity and the semi-conductive properties of Si found in b-Si make it a prime candidate for application in solar cells as an antireflection surface. However, surface recombination losses significantly reduce the efficiency of b-Si solar cells. Surface passivation using suitable dielectric films can minimize these losses. Nowadays some works have demonstrated that excellent passivation of b-Si nanostructures can be reached using Al₂O₃ films. However, the negative fixed charge present in Al₂O₃ films should provide good field effect passivation only for p- and p+-type Si surfaces. HfO2 thin films have not been practically tested for passivation of b-Si. HfO₂ could provide an alternative for n- and n+- type Si surface passivation since it has been shown to exhibit positive fixed charge. Using optical simulation by Finite-Difference Time Domain (FDTD) method, the possibility of b-Si passivation by HfO2 films has been analyzed. The FDTD modeling revealed that b-Si layers with HfO₂ films effectively suppress reflection in the wavelength range 400–1000 nm and across a wide range of incidence angles. The light-trapping performance primarily depends on geometry of the needles and film thickness. With the decrease of periodicity and increase of height of the needles, the reflectance decrease significantly, and the absorption increases significantly. Increase in thickness results in an even greater decrease in the calculated reflection coefficient of model structures and, consequently, to an improvement in the antireflection characteristics in the visible range. The excellent surface passivation and low reflectance results prove the potential of using the combination of the b-Si surface and the HfO₂ film for solar cells applications.

Keywords: antireflection, black silicon, HfO₂, passivation, simulation, solar cell

Procedia PDF Downloads 133
667 Advances in Mathematical Sciences: Unveiling the Power of Data Analytics

Authors: Zahid Ullah, Atlas Khan

Abstract:

The rapid advancements in data collection, storage, and processing capabilities have led to an explosion of data in various domains. In this era of big data, mathematical sciences play a crucial role in uncovering valuable insights and driving informed decision-making through data analytics. The purpose of this abstract is to present the latest advances in mathematical sciences and their application in harnessing the power of data analytics. This abstract highlights the interdisciplinary nature of data analytics, showcasing how mathematics intersects with statistics, computer science, and other related fields to develop cutting-edge methodologies. It explores key mathematical techniques such as optimization, mathematical modeling, network analysis, and computational algorithms that underpin effective data analysis and interpretation. The abstract emphasizes the role of mathematical sciences in addressing real-world challenges across different sectors, including finance, healthcare, engineering, social sciences, and beyond. It showcases how mathematical models and statistical methods extract meaningful insights from complex datasets, facilitating evidence-based decision-making and driving innovation. Furthermore, the abstract emphasizes the importance of collaboration and knowledge exchange among researchers, practitioners, and industry professionals. It recognizes the value of interdisciplinary collaborations and the need to bridge the gap between academia and industry to ensure the practical application of mathematical advancements in data analytics. The abstract highlights the significance of ongoing research in mathematical sciences and its impact on data analytics. It emphasizes the need for continued exploration and innovation in mathematical methodologies to tackle emerging challenges in the era of big data and digital transformation. In summary, this abstract sheds light on the advances in mathematical sciences and their pivotal role in unveiling the power of data analytics. It calls for interdisciplinary collaboration, knowledge exchange, and ongoing research to further unlock the potential of mathematical methodologies in addressing complex problems and driving data-driven decision-making in various domains.

Keywords: mathematical sciences, data analytics, advances, unveiling

Procedia PDF Downloads 77
666 Estimating the Timing Interval for Malarial Indoor Residual Spraying: A Modelling Approach

Authors: Levicatus Mugenyi, Joaniter Nankabirwa, Emmanuel Arinaitwe, John Rek, Niel Hens, Moses Kamya, Grant Dorsey

Abstract:

Background: Indoor residual spraying (IRS) reduces vector densities and malaria transmission, however, the most effective spraying intervals for IRS have not been well established. We aim to estimate the optimal timing interval for IRS using a modeling approach. Methods: We use a generalized additive model to estimate the optimal timing interval for IRS using the predicted malaria incidence. The model is applied to post IRS cohort clinical data from children aged 0.5–10 years in selected households in Tororo, historically a high malaria transmission setting in Uganda. Six rounds of IRS were implemented in Tororo during the study period (3 rounds with bendiocarb: December 2014 to December 2015, and 3 rounds with actellic: June 2016 to July 2018). Results: Monthly incidence of malaria from October 2014 to February 2019 decreased from 3.25 to 0.0 per person-years in the children under 5 years, and 1.57 to 0.0 for 5-10 year-olds. The optimal time interval for IRS differed between bendiocarb and actellic and by IRS round. It was estimated to be 17 and 40 weeks after the first round of bendiocarb and actellic, respectively. After the third round of actellic, 36 weeks was estimated to be optimal. However, we could not estimate from the data the optimal time after the second and third rounds of bendiocarb and after the second round of actellic. Conclusion: We conclude that to sustain the effect of IRS in a high-medium transmission setting, the second rounds of bendiocarb need to be applied roughly 17 weeks and actellic 40 weeks after the first round, and the timing differs for subsequent rounds. The amount of rainfall did not influence the trend in malaria incidence after IRS, as well as the IRS timing intervals. Our results suggest that shorter intervals for the IRS application can be more effective compared to the current practice, which is about 24 weeks for bendiocarb and 48 weeks for actellic. However, when considering our findings, one should account for the cost and drug resistance associated with IRS. We also recommend that the timing and incidence should be monitored in the future to improve these estimates.

Keywords: incidence, indoor residual spraying, generalized additive model, malaria

Procedia PDF Downloads 111
665 Calculation of the Supersonic Air Intake with the Optimization of the Shock Wave System

Authors: Elena Vinogradova, Aleksei Pleshakov, Aleksei Yakovlev

Abstract:

During the flight of a supersonic aircraft under various conditions (altitude, Mach, etc.), it becomes necessary to coordinate the operating modes of the air intake and engine. On the supersonic aircraft, it’s been done by changing various control factors (the angle of rotation of the wedge panels and etc.). This paper investigates the possibility of using modern optimization methods to determine the optimal position of the supersonic air intake wedge panels in order to maximize the total pressure recovery coefficient. Modern software allows us to conduct auto-optimization, which determines the optimal position of the control elements of the investigated product to achieve its maximum efficiency. In this work, the flow in the supersonic aircraft inlet has investigated and optimized the operation of the flaps of the supersonic inlet in an aircraft in a 2-D setting. This work has done using ANSYS CFX software. The supersonic aircraft inlet is a flat adjustable external compression inlet. The braking surface is made in the form of a three-stage wedge. The IOSO NM software package was chosen for optimization. Change in the position of the panels of the input device is carried out by changing the angle between the first and second steps of the three-stage wedge. The position of the rest of the panels is changed automatically. Within the framework of the presented work, the position of the moving air intake panel was optimized under fixed flight conditions of the aircraft under a certain engine operating mode. As a result of the numerical modeling, the distribution of total pressure losses was obtained for various cases of the engine operation, depending on the incoming flow velocity and the flight altitude of the aircraft. The results make it possible to obtain the maximum total pressure recovery coefficient under given conditions. Also, the initial geometry was set with a certain angle between the first and second wedge panels. Having performed all the calculations, as well as the subsequent optimization of the aircraft input device, it can be concluded that the initial angle was set sufficiently close to the optimal angle.

Keywords: optimal angle, optimization, supersonic air intake, total pressure recovery coefficient

Procedia PDF Downloads 228
664 Stability Study of Hydrogel Based on Sodium Alginate/Poly (Vinyl Alcohol) with Aloe Vera Extract for Wound Dressing Application

Authors: Klaudia Pluta, Katarzyna Bialik-Wąs, Dagmara Malina, Mateusz Barczewski

Abstract:

Hydrogel networks, due to their unique properties, are highly attractive materials for wound dressing. The three-dimensional structure of hydrogels provides tissues with optimal moisture, which supports the wound healing process. Moreover, a characteristic feature of hydrogels is their absorption properties which allow for the absorption of wound exudates. For the fabrication of biomedical hydrogels, a combination of natural polymers ensuring biocompatibility and synthetic ones that provide adequate mechanical strength are often used. Sodium alginate (SA) is one of the polymers widely used in wound dressing materials because it exhibits excellent biocompatibility and biodegradability. However, due to poor strength properties, often alginate-based hydrogel materials are enhanced by the addition of another polymer such as poly(vinyl alcohol) (PVA). This paper is concentrated on the preparation methods of sodium alginate/polyvinyl alcohol hydrogel system incorporating Aloe vera extract and glycerin for wound healing material with particular focus on the role of their composition on structure, thermal properties, and stability. Briefly, the hydrogel preparation is based on the chemical cross-linking method using poly(ethylene glycol) diacrylate (PEGDA, Mn = 700 g/mol) as a crosslinking agent and ammonium persulfate as an initiator. In vitro degradation tests of SA/PVA/AV hydrogels were carried out in Phosphate-Buffered Saline (pH – 7.4) as well as in distilled water. Hydrogel samples were firstly cut into half-gram pieces (in triplicate) and immersed in immersion fluid. Then, all specimens were incubated at 37°C and then the pH and conductivity values were measurements at time intervals. The post-incubation fluids were analyzed using SEC/GPC to check the content of oligomers. The separation was carried out at 35°C on a poly(hydroxy methacrylate) column (dimensions 300 x 8 mm). 0.1M NaCl solution, whose flow rate was 0.65 ml/min, was used as the mobile phase. Three injections with a volume of 50 µl were made for each sample. The thermogravimetric data of the prepared hydrogels were collected using a Netzsch TG 209 F1 Libra apparatus. The samples with masses of about 10 mg were weighed separately in Al2O3 crucibles and then were heated from 30°C to 900°C with a scanning rate of 10 °C∙min−1 under a nitrogen atmosphere. Based on the conducted research, a fast and simple method was developed to produce potential wound dressing material containing sodium alginate, poly(vinyl alcohol) and Aloe vera extract. As a result, transparent and flexible SA/PVA/AV hydrogels were obtained. The degradation experiments indicated that most of the samples immersed in PBS as well as in distilled water were not degraded throughout the whole incubation time.

Keywords: hydrogels, wound dressings, sodium alginate, poly(vinyl alcohol)

Procedia PDF Downloads 154
663 Graphic Procession Unit-Based Parallel Processing for Inverse Computation of Full-Field Material Properties Based on Quantitative Laser Ultrasound Visualization

Authors: Sheng-Po Tseng, Che-Hua Yang

Abstract:

Motivation and Objective: Ultrasonic guided waves become an important tool for nondestructive evaluation of structures and components. Guided waves are used for the purpose of identifying defects or evaluating material properties in a nondestructive way. While guided waves are applied for evaluating material properties, instead of knowing the properties directly, preliminary signals such as time domain signals or frequency domain spectra are first revealed. With the measured ultrasound data, inversion calculation can be further employed to obtain the desired mechanical properties. Methods: This research is development of high speed inversion calculation technique for obtaining full-field mechanical properties from the quantitative laser ultrasound visualization system (QLUVS). The quantitative laser ultrasound visualization system (QLUVS) employs a mirror-controlled scanning pulsed laser to generate guided acoustic waves traveling in a two-dimensional target. Guided waves are detected with a piezoelectric transducer located at a fixed location. With a gyro-scanning of the generation source, the QLUVS has the advantage of fast, full-field, and quantitative inspection. Results and Discussions: This research introduces two important tools to improve the computation efficiency. Firstly, graphic procession unit (GPU) with large amount of cores are introduced. Furthermore, combining the CPU and GPU cores, parallel procession scheme is developed for the inversion of full-field mechanical properties based on the QLUVS data. The newly developed inversion scheme is applied to investigate the computation efficiency for single-layered and double-layered plate-like samples. The computation efficiency is shown to be 80 times faster than unparalleled computation scheme. Conclusions: This research demonstrates a high-speed inversion technique for the characterization of full-field material properties based on quantitative laser ultrasound visualization system. Significant computation efficiency is shown, however not reaching the limit yet. Further improvement can be reached by improving the parallel computation. Utilizing the development of the full-field mechanical property inspection technology, full-field mechanical property measured by non-destructive, high-speed and high-precision measurements can be obtained in qualitative and quantitative results. The developed high speed computation scheme is ready for applications where full-field mechanical properties are needed in a nondestructive and nearly real-time way.

Keywords: guided waves, material characterization, nondestructive evaluation, parallel processing

Procedia PDF Downloads 189
662 Efficient Synthesis of Highly Functionalized Biologically Important Spirocarbocyclic Oxindoles via Hauser Annulation

Authors: Kanduru Lokesh, Venkitasamy Kesavan

Abstract:

The unique structural features of spiro-oxindoles with diverse biological activities have made them privileged structures in new drug discovery. The key structural characteristic of these compounds is the spiro ring fused at the C-3 position of the oxindole core with varied heterocyclic motifs. Structural diversification of heterocyclic scaffolds to synthesize new chemical entities as pharmaceuticals and agrochemicals is one of the important goals of synthetic organic chemists. Nitrogen and oxygen containing heterocycles are by far the most widely occurring privileged structures in medicinal chemistry. The structural complexity and distinct three-dimensional arrangement of functional groups of these privileged structures are generally responsible for their specificity against biological targets. Structurally diverse compound libraries have proved to be valuable assets for drug discovery against challenging biological targets. Thus, identifying a new combination of substituents at C-3 position on oxindole moiety is of great importance in drug discovery to improve the efficiency and efficacy of the drugs. The development of suitable methodology for the synthesis of spiro-oxindole compounds has attracted much interest often in response to the significant biological activity displayed by the both natural and synthetic compounds. So creating structural diversity of oxindole scaffolds is need of the decade and formidable challenge. A general way to improve synthetic efficiency and also to access diversified molecules is through the annulation reactions. Annulation reactions allow the formation of complex compounds starting from simple substrates in a single transformation consisting of several steps in an ecologically and economically favorable way. These observations motivated us to develop the annulation reaction protocol to enable the synthesis of a new class of spiro-oxindole motifs which in turn would enable the enhancement of molecular diversity. As part of our enduring interest in the development of novel, efficient synthetic strategies to enable the synthesis of biologically important oxindole fused spirocarbocyclic systems, We have developed an efficient methodology for the construction of highly functionalized spirocarbocyclic oxindoles through [4+2] annulation of phthalides via Hauser annulation. functionalized spirocarbocyclic oxindoles was accomplished for the first time in the literature using Hauser annulation strategy. The reaction between methyleneindolinones and arylsulfonylphthalides catalyzed by cesium carbonate led to the access of new class of biologically important spiro[indoline-3,2'-naphthalene] derivatives in very good yields. The synthetic utility of the annulated product was further demonstrated by fluorination Using NFSI as a fluorinating agent to furnish corresponding fluorinated product.

Keywords: Hauser-Kraus annulation, spiro carbocyclic oxindoles, oxindole-ester, fluoridation

Procedia PDF Downloads 191
661 Fabrication of SnO₂ Nanotube Arrays for Enhanced Gas Sensing Properties

Authors: Hsyi-En Cheng, Ying-Yi Liou

Abstract:

Metal-oxide semiconductor (MOS) gas sensors are widely used in the gas-detection market due to their high sensitivity, fast response, and simple device structures. However, the high working temperature of MOS gas sensors makes them difficult to integrate with the appliance or consumer goods. One-dimensional (1-D) nanostructures are considered to have the potential to lower their working temperature due to their large surface-to-volume ratio, confined electrical conduction channels, and small feature sizes. Unfortunately, the difficulty of fabricating 1-D nanostructure electrodes has hindered the development of low-temperature MOS gas sensors. In this work, we proposed a method to fabricate nanotube-arrays, and the SnO₂ nanotube-array sensors with different wall thickness were successfully prepared and examined. The fabrication of SnO₂ nanotube arrays incorporates the techniques of barrier-free anodic aluminum oxide (AAO) template and atomic layer deposition (ALD) of SnO₂. First, 1.0 µm Al film was deposited on ITO glass substrate by electron beam evaporation and then anodically oxidized by five wt% phosphoric acid solution at 5°C under a constant voltage of 100 V to form porous aluminum oxide. As the Al film was fully oxidized, a 15 min over anodization and a 30 min post chemical dissolution were used to remove the barrier oxide at the bottom end of pores to generate a barrier-free AAO template. The ALD using reactants of TiCl4 and H₂O was followed to grow a thin layer of SnO₂ on the template to form SnO₂ nanotube arrays. After removing the surface layer of SnO₂ by H₂ plasma and dissolving the template by 5 wt% phosphoric acid solution at 50°C, upright standing SnO₂ nanotube arrays on ITO glass were produced. Finally, Ag top electrode with line width of 5 μm was printed on the nanotube arrays to form SnO₂ nanotube-array sensor. Two SnO₂ nanotube-arrays with wall thickness of 30 and 60 nm were produced in this experiment for the evaluation of gas sensing ability. The flat SnO₂ films with thickness of 30 and 60 nm were also examined for comparison. The results show that the properties of ALD SnO₂ films were related to the deposition temperature. The films grown at 350°C had a low electrical resistivity of 3.6×10-3 Ω-cm and were, therefore, used for the nanotube-array sensors. The carrier concentration and mobility of the SnO₂ films were characterized by Ecopia HMS-3000 Hall-effect measurement system and were 1.1×1020 cm-3 and 16 cm3/V-s, respectively. The electrical resistance of SnO₂ film and nanotube-array sensors in air and in a 5% H₂-95% N₂ mixture gas was monitored by Pico text M3510A 6 1/2 Digits Multimeter. It was found that, at 200 °C, the 30-nm-wall SnO₂ nanotube-array sensor performs the highest responsivity to 5% H₂, followed by the 30-nm SnO₂ film sensor, the 60-nm SnO₂ film sensor, and the 60-nm-wall SnO₂ nanotube-array sensor. However, at temperatures below 100°C, all the samples were insensitive to the 5% H₂ gas. Further investigation on the sensors with thinner SnO₂ is necessary for improving the sensing ability at temperatures below 100 °C.

Keywords: atomic layer deposition, nanotube arrays, gas sensor, tin dioxide

Procedia PDF Downloads 237
660 Approaches to Estimating the Radiation and Socio-Economic Consequences of the Fukushima Daiichi Nuclear Power Plant Accident Using the Data Available in the Public Domain

Authors: Dmitry Aron

Abstract:

Major radiation accidents carry not only the potential risks of negative consequences for public health due to exposure but also because of large-scale emergency measures were taken by authorities to protect the population, which can lead to unreasonable social and economic damage. It is technically difficult, as a rule, to assess the possible costs and damages from decisions on evacuation or resettlement of residents in the shortest possible time, since it requires specially prepared information systems containing relevant information on demographic, economic parameters and incoming data on radiation conditions. Foreign observers also face the difficulties in assessing the consequences of an accident in a foreign territory, since they usually do not have official and detailed statistical data on the territory of foreign state beforehand. Also, they can suppose the application of unofficial data from open Internet sources is an unreliable and overly labor-consuming procedure. This paper describes an approach to prompt creation of relational database that contains detailed actual data on economics, demographics and radiation situation at the Fukushima Prefecture during the Fukushima Daiichi NPP accident, received by the author from open Internet sources. This database was developed and used to assess the number of evacuated population, radiation doses, expected financial losses and other parameters of the affected areas. The costs for the areas with temporarily evacuated and long-term resettled population were investigated, and the radiological and economic effectiveness of the measures taken to protect the population was estimated. Some of the results are presented in the article. The study showed that such a tool for analyzing the consequences of radiation accidents can be prepared in a short space of time for the entire territory of Japan, and it can serve for the modeling of social and economic consequences for hypothetical accidents for any nuclear power plant in its territory.

Keywords: Fukushima, radiation accident, emergency measures, database

Procedia PDF Downloads 181
659 Generalized Correlation Coefficient in Genome-Wide Association Analysis of Cognitive Ability in Twins

Authors: Afsaneh Mohammadnejad, Marianne Nygaard, Jan Baumbach, Shuxia Li, Weilong Li, Jesper Lund, Jacob v. B. Hjelmborg, Lene Christensen, Qihua Tan

Abstract:

Cognitive impairment in the elderly is a key issue affecting the quality of life. Despite a strong genetic background in cognition, only a limited number of single nucleotide polymorphisms (SNPs) have been found. These explain a small proportion of the genetic component of cognitive function, thus leaving a large proportion unaccounted for. We hypothesize that one reason for this missing heritability is the misspecified modeling in data analysis concerning phenotype distribution as well as the relationship between SNP dosage and the phenotype of interest. In an attempt to overcome these issues, we introduced a model-free method based on the generalized correlation coefficient (GCC) in a genome-wide association study (GWAS) of cognitive function in twin samples and compared its performance with two popular linear regression models. The GCC-based GWAS identified two genome-wide significant (P-value < 5e-8) SNPs; rs2904650 near ZDHHC2 on chromosome 8 and rs111256489 near CD6 on chromosome 11. The kinship model also detected two genome-wide significant SNPs, rs112169253 on chromosome 4 and rs17417920 on chromosome 7, whereas no genome-wide significant SNPs were found by the linear mixed model (LME). Compared to the linear models, more meaningful biological pathways like GABA receptor activation, ion channel transport, neuroactive ligand-receptor interaction, and the renin-angiotensin system were found to be enriched by SNPs from GCC. The GCC model outperformed the linear regression models by identifying more genome-wide significant genetic variants and more meaningful biological pathways related to cognitive function. Moreover, GCC-based GWAS was robust in handling genetically related twin samples, which is an important feature in handling genetic confounding in association studies.

Keywords: cognition, generalized correlation coefficient, GWAS, twins

Procedia PDF Downloads 109