Search results for: mechanical resistance
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6487

Search results for: mechanical resistance

1447 Performance Improvement of SBR Polymer Concrete Used in Construction of Rigid Pavement Highway

Authors: Mohammed Abbas Al-Jumaili

Abstract:

There are some studies which have been conducted in resent years to investigate the possibility of producing high performance polymer concrete. However, despite the great important of this subject, very limited amount of literature is available about the strength and performance of this type of concrete in case using in rigid pavement highway. In this study, the possibility of producing high performance polymer concrete by using Styrene Butadiene Rubber (SBR) emulsion with various (SBR) percents of 5,10 ,15, and 20 % by weight of cement has been investigated. The compressive, splitting tensile and flexural strengths and dynamic modulus of elasticity tests were conducted after age of 7 and 28 days for control without polymer and SBR concretes. A total of (30) cubes, (30) cylinders and (30) prisms were prepared using different types of concrete mixes. The AASHTO guide-1993 method was used to determine slab concrete thickness of rigid pavement highway in case of using various SBR polymer concrete mixture types. The research results indicate that the use of 10% SBR by weight of cement leads to produce high performance concrete especially with regard to mechanical properties and structural relative to corresponding control concrete.

Keywords: rigid pavement highway, styrene–butadiene rubber (SBR) latex, compressive test, splitting tensile test, flexural test and dynamic modulus of elasticity test

Procedia PDF Downloads 324
1446 Influence of Silica Fume Addition on Concrete

Authors: Gaurav Datta, Sourav Ghosh, Rahul Roy

Abstract:

The incorporation of silica fume into the normal concrete is a routine one in the present days to produce the tailor made high strength and high performance concrete. The design parameters are increasing with the incorporation of silica fume in conventional concrete and the mix proportioning is becoming complex. The main objective of this paper has been made to investigate the different mechanical properties like compressive strength, permeability, porosity, density, modulus of elasticity, compacting factor, slump of concrete incorporating silica fume. In this present paper 5 (five) mix of concrete incorporating silica fume is cast to perform experiments. These experiments were carried out by replacing cement with different percentages of silica fume at a single constant water-cementitious materials ratio keeping other mix design variables constant. The silica fume was replaced by 0%, 5%, 10%, 15% and 20% for water-cementitious materials (w/cm) ratio for 0.40. For all mixes compressive strengths were determined at 24 hours, 7 and 28 days for 100 mm and 150 mm cubes. Other properties like permeability, porosity, density, modulus of elasticity, compacting factor, and slump were also determined for five mixes of concrete.

Keywords: high performance concrete, high strength concrete, silica fume, strength

Procedia PDF Downloads 290
1445 MATLAB Supported Learning and Students' Conceptual Understanding of Functions of Two Variables: Experiences from Wolkite University

Authors: Eyasu Gemech, Kassa Michael, Mulugeta Atnafu

Abstract:

A non-equivalent group's quasi-experiment research was conducted at Wolkite University to investigate MATLAB supported learning and students' conceptual understanding in learning Applied Mathematics II using four different comparative instructional approaches: MATLAB supported traditional lecture method, MATLAB supported collaborative method, only collaborative method, and only traditional lecture method. Four intact classes of mechanical engineering groups 1 and 2, garment engineering and textile engineering students were randomly selected out of eight departments. The first three departments were considered as treatment groups and the fourth one 'Textile engineering' was assigned as a comparison group. The departments had 30, 29, 35 and 32 students respectively. The results of the study show that there is a significant mean difference in students' conceptual understanding between groups of students learning through MATLAB supported collaborative method and the other learning approaches. Students who were learned through MATLAB technology-supported learning in combination with collaborative method were found to understand concepts of functions of two variables better than students learning through the other methods of learning. These, hence, are informative of the potential approaches universities would follow for a better students’ understanding of concepts.

Keywords: MATLAB supported collaborative method, MATLAB supported learning, collaborative method, conceptual understanding, functions of two variables

Procedia PDF Downloads 278
1444 The Impact of Alumina Cement on Properties of Portland Cement Slurries and Mortars

Authors: Krzysztof Zieliński, Dariusz Kierzek

Abstract:

The addition of a small amount of alumina cement to Portland cement results in immediate setting, a rapid increase in the compressive strength and a clear increase of the adhesion to concrete substrate. This phenomenon is used, among others, for the production of liquid floor self-levelling compounds. Alumina cement is several times more expensive than Portland cement and is a component having a significant impact on prices of products manufactured with its use. For the production of liquid floor self-levelling compounds, low-alumina cement containing approximately 40% Al2O3 is normally used. The aim of the study was to determine the impact of Portland cement with the addition of alumina cement on the basic physical and mechanical properties of cement slurries and mortars. CEM I 42.5R and three types of alumina cement containing 40%, 50% and 70% of Al2O3 were used for the tests. Mixes containing 4%, 6%, 8%, 10% and 12% of different varieties of alumina cement were prepared; for which, the time of initial and final setting, compressive and flexural strength and adhesion to concrete substrate were determined. The analysis of the obtained test results showed that a similar immediate setting effect and clearly better adhesion strength can be obtained using the addition of 6% of high-alumina cement than 12% of low-alumina cement. As the prices of these cements are similar, this can give significant financial savings in the production of liquid floor self-levelling compounds.

Keywords: alumina cement, immediate setting, compression strength, adhesion to substrate

Procedia PDF Downloads 152
1443 Effect of Unbound Granular Materials Nonlinear Resilient Behaviour on Pavement Response and Performance of Low Volume Roads

Authors: Khaled Sandjak, Boualem Tiliouine

Abstract:

Structural analysis of flexible pavements has been and still is currently performed using multi-layer elastic theory. However, for thinly surfaced pavements subjected to low to medium volumes of traffics, the importance of non-linear stress-strain behaviour of unbound granular materials (UGM) requires the use of more sophisticated numerical models for structural design and performance of such pavements. In the present work, nonlinear unbound aggregates constitutive model is implemented within an axisymmetric finite element code developed to simulate the nonlinear behaviour of pavement structures including two local aggregates of different mineralogical nature, typically used in Algerian pavements. The performance of the mechanical model is examined about its capability of representing adequately, under various conditions, the granular material non-linearity in pavement analysis. In addition, deflection data collected by falling weight deflectometer (FWD) are incorporated into the analysis in order to assess the sensitivity of critical pavement design criteria and pavement design life to the constitutive model. Finally, conclusions of engineering significance are formulated.

Keywords: FWD backcalculations, finite element simulations, Nonlinear resilient behaviour, pavement response and performance, RLT test results, unbound granular materials

Procedia PDF Downloads 261
1442 Integration of Load Introduction Elements into Fabrics

Authors: Jan Schwennen, Harlad Schmid, Juergen Fleischer

Abstract:

Lightweight design plays an important role in the automotive industry. Especially the combination of metal and CFRP shows great potential for future vehicle concepts. This requires joining technologies that are cost-efficient and appropriate for the materials involved. Previous investigations show that integrating load introduction elements during CFRP part manufacturing offers great advantages in mechanical performance. However, it is not yet clear how to integrate the elements in an automated process without harming the fiber structure. In this paper, a test rig is build up to investigate the effect of different parameters during insert integration experimentally. After a short description of the experimental equipment, preliminary tests are performed to determine a set of important process parameters. Based on that, the planning of design of experiments is given. The interpretation and evaluation of the test results show that with a minimization of the insert diameter and the peak angle less harm on the fiber structure can be achieved. Furthermore, a maximization of the die diameter above the insert shows a positive effect on the fiber structure. At the end of this paper, a theoretical description of alternative peak shaping is given and then the results get validated on the basis of an industrial reference part.

Keywords: CFRP, fabrics, insert, load introduction element, integration

Procedia PDF Downloads 243
1441 Simulation on Influence of Environmental Conditions on Part Distortion in Fused Deposition Modelling

Authors: Anto Antony Samy, Atefeh Golbang, Edward Archer, Alistair McIlhagger

Abstract:

Fused deposition modelling (FDM) is one of the additive manufacturing techniques that has become highly attractive in the industrial and academic sectors. However, parts fabricated through FDM are highly susceptible to geometrical defects such as warpage, shrinkage, and delamination that can severely affect their function. Among the thermoplastic polymer feedstock for FDM, semi-crystalline polymers are highly prone to part distortion due to polymer crystallization. In this study, the influence of FDM processing conditions such as chamber temperature and print bed temperature on the induced thermal residual stress and resulting warpage are investigated using the 3D transient thermal model for a semi-crystalline polymer. The thermo-mechanical properties and the viscoelasticity of the polymer, as well as the crystallization physics, which considers the crystallinity of the polymer, are coupled with the evolving temperature gradient of the print model. From the results, it was observed that increasing the chamber temperature from 25°C to 75°C lead to a decrease of 1.5% residual stress, while decreasing bed temperature from 100°C to 60°C, resulted in a 33% increase in residual stress and a significant rise of 138% in warpage. The simulated warpage data is validated by comparing it with the measured warpage values of the samples using 3D scanning.

Keywords: finite element analysis, fused deposition modelling, residual stress, warpage

Procedia PDF Downloads 187
1440 Using OMICs Approaches to Investigate Venomic Insights into the Spider Web Silk

Authors: Franciele G. Esteves, Jose R. A. dos Santos-Pinto, Caroline L. de Souza, Mario S. Palma

Abstract:

Orb-weaving spiders use a very strong, stickiness, and elastic web to catch the prey. These web properties would be enough for the entrapment of prey; however, these spiders may be hiding venomous secrets on the web, which are being revealed now. Here we provide strong proteome, peptidome, and transcriptomic evidence for the presence of toxic components on the web silk from Nephila clavipes. Our scientific outcomes revealed, both in the web silk and in the silk-producing glands, a wide diversity of toxins/neurotoxins, defensins, and proteolytic enzymes. These toxins/neurotoxins are similar to toxins isolated from animal venoms, such as Sphigomyelinase D, Latrotoxins, Zodatoxins, Ctenitoxin Pn and Pk, Agatoxins and Theraphotoxin. Moreover, the insect-toxicity results with the web silk crude extract demonstrated that these toxic components can be lethal and/or cause paralytic effects to the prey. Therefore, through OMICs approaches, the results presented until now may contribute to a better understanding of the chemical and ecological interaction of these compounds in insect-prey capture by spider web N. clavipes, demonstrating that the web is not only a simple mechanical tool but has a chemical-active involvement in prey capture. Moreover, the results can also contribute to future studies of possible development of a selective insecticide or even in possible pharmacological applications.

Keywords: web silk toxins, silk-produncing glands, de novo transcriptome assembly, LCMS-based proteomics

Procedia PDF Downloads 135
1439 A Combined Activated Sludge-Sonication Process for Abattoir Wastewater Treatment

Authors: Pello Alfonso-Muniozguren, Madeleine Bussemaker, Devendra Saroj, Judy Lee

Abstract:

Wastewater treatment is becoming a worldwide concern due to new and tighter environmental regulations, and the increasing need for fresh water for the exponentially growing population. The meat industry has one of the highest consumption of water producing up to 10 times more polluted (BOD) wastewaters in comparison to domestic sewage. Therefore, suitable wastewater treatment methods are required to ensure the wastewater quality meet regulations before discharge. In the present study, a combined lab scale activated sludge-sonication system was used to treat pre-treated abattoir wastewater. A hydraulic retention time of 24 hours and a solid retention time of 13 days were used for the activated sludge process and using ultrasound as tertiary treatment. Different ultrasonic frequencies, powers and sonication times were applied to the samples and results were analysed for chemical oxygen demand (COD), biological oxygen demand (BOD), total suspended solids, pH, total coliforms and total viable counts. Additionally, both mechanical and chemical effects of ultrasound were quantified for organic matter removal (COD and BOD) and disinfection (microorganism inactivation) using different techniques such as aluminum foil pitting, flow cytometry, and KI dosimetry.

Keywords: abattoir wastewater, ultrasound, wastewater treatment, water disinfection

Procedia PDF Downloads 287
1438 Nanobiomaterials: Revolutionizing Drug Delivery and Tissue Engineering for Advanced Therapeutic Applications

Authors: Mohammad Hamed Asosheh

Abstract:

The development of nanobiomaterials has opened new avenues in the field of biomedical engineering, offering unparalleled possibilities for advanced therapeutic applications. This study explores the synthesis and characterization of a distinct class of nanobiomaterials designed to enhance drug delivery systems and support tissue engineering. By integrating biodegradable polymers with bioactive nanoparticles, we have engineered a multifunctional platform that ensures controlled drug release, targeted delivery, and improved biocompatibility. Our findings demonstrate that these nanobiomaterials not only exhibit excellent mechanical properties but also promote cell proliferation and differentiation, making them ideal candidates for regenerative medicine. Furthermore, in vitro and in vivo assessments reveal that the engineered materials significantly reduce cytotoxicity while enhancing the therapeutic efficacy of encapsulated drugs. This research presents a promising approach to addressing current challenges in drug delivery and tissue regeneration, with the potential to revolutionize the treatment of chronic diseases and injury repair. Future work will focus on optimizing the material composition for specific clinical applications and conducting large-scale studies to evaluate long-term safety and effectiveness.

Keywords: nanobiomaterials, drug delivery systems, therapeutic efficacy, bioactive nanoparticles

Procedia PDF Downloads 28
1437 Effect of UV/Ozone Treatment on the Adhesion Strength of Polymeric Systems

Authors: Marouen Hamdi, Johannes A. Poulis

Abstract:

This study investigates the impact of UV/ozone treatment on the adhesion of ethylene propylene diene methylene (EPDM) rubber, polyvinyl chloride (PVC), and acrylonitrile butadiene styrene (ABS) materials. The experimental tests consist of contact angle measurements, standardized adhesion tests, and spectroscopic and microscopic observations. Also, commonly-used surface free energy models were applied to characterize the wettability of the materials. Preliminary results show that the treatment enhances the wettability of the examined polymers. Also, it considerably improved the adhesion strength of PVC and ABS and shifted their failure modes from adhesive to cohesive, without a significant effect on EPDM. Spectroscopic characterization showed significant oxidation-induced changes in the chemical structures of treated PVC and ABS surfaces. Also, new morphological changes (microcracks, micro-holes, and wrinkles) were observed on these two materials using the SEM. These chemical and morphological changes on treated PVC and ABS promote more reactivity and mechanical interlocking with the adhesive, which explains the improvement in their adhesion strength. After characterizing the adhesion strength of the systems, accelerated ageing tests in controlled environment chambers will be conducted to determine the effect of temperature, moisture, and UV radiation on the performance of the polymeric bonded joints.

Keywords: accelerated tests, adhesion strength, ageing of polymers, UV/ozone treatment

Procedia PDF Downloads 148
1436 Sublethal Effects of Clothianidin and Summer Oil on the Demographic Parameters and Population Projection of Bravicoryne Brassicae(Hemiptera: Aphididae)

Authors: Mehdi Piri Ouchtapeh, Fariba Mehrkhou, Maryam Fourouzan

Abstract:

The cabbage aphid, Bravicoryne brassicae (Hemiptera: Aphididae), is known as an economically important and oligophagous pest of different cole crops. The polyvolitine characteristics of B. brassicae resulted in resistance to insecticides. For this purpose, in this study, the sub-lethal concentration (LC25) of two insecticides, clothianidin and summer oil, on the life table parameters and population projection of cabbage aphid were studied at controlled condition (20±1 ℃, R.H. 60 ±5 % and a photoperiod of 16:8 h (L:D). The dipping method was used in bioassay and life table studies. Briefly, the leaves of cabbage containing 15 the same-aged (24h) adults of cabbage aphid (four replicates) were dipped into the related concentrations of insecticides for 10 s. The sub-lethal (LC25) obtained concentration were used 5.822 and 108.741 p.p.m for clothianidin and summer oil, respectively. The biological and life table studies were done using at least 100, 93 and 82 the same age of eggs for control, summer oil and clothianidin treatments respectively. The life history data of the greenhouse whitefly cohorts exposed to sublethal concentration of the aforementioned insecticides were analyzed using the computer program TWOSEX–MSChart based on the age-stage, two-sex life table theory. The results of this study showed that the used insecticides affected the developmental time, survival rate, adult longevity, and fecundity of the F1 generation. The developmental time on control, clothianidin and summer oil treatments was obtained (5.91 ± 0.10 days), (7.64 ± 0.12 days) and (6.66 ± 0.10 days), respectively. The sublethal concentration of clothianidin resulted in decreasing of adult longevity (8.63 ± 0.30 days), fecundity (14.14 ± 87 nymphs), survival rate (71%) and the life expectancy (10.26 days) of B. brassicae, as well. Additionally, usage of LC25 insecticides led to decreasing of the net reproductive rate (R0) of the cabbage aphid compared to summer oil and control treatments. The intrinsic rate of increase (r) (day-1) was decreased in F1 adults of cabbage aphid compared with other treatments. Additionally, the population projection results were accordance with the population growth rate of cabbage aphid. Therefore, the findings of this research showed that, however, both of the insecticides were effective on cabbage aphid population, but clothianidin was more effective and could be consider in the management of aforementioned pest.

Keywords: the cabbage aphid, sublethal effects, survival rate, population projection, life expectancy

Procedia PDF Downloads 79
1435 Optimization of Parameters for Electrospinning of Pan Nanofibers by Taguchi Method

Authors: Gamze Karanfil Celep, Kevser Dincer

Abstract:

The effects of polymer concentration and electrospinning process parameters on the average diameters of electrospun polyacrylonitrile (PAN) nanofibers were experimentally investigated. Besides, mechanical and thermal properties of PAN nanofibers were examined by tensile test and thermogravimetric analysis (TGA), respectively. For this purpose, the polymer concentration, solution feed rate, supply voltage and tip-to-collector distance were determined as the control factors. To succeed these aims, Taguchi’s L16 orthogonal design (4 parameters, 4 level) was employed for the experimental design. Optimal electrospinning conditions were defined using the signal-to-noise (S/N) ratio that was calculated from diameters of the electrospun PAN nanofibers according to "the-smaller-the-better" approachment. In addition, analysis of variance (ANOVA) was evaluated to conclude the statistical significance of the process parameters. The smallest diameter of PAN nanofibers was observed. According to the S/N ratio response results, the most effective parameter on finding out of nanofiber diameter was determined. Finally, the Taguchi design of experiments method has been found to be an effective method to statistically optimize the critical electrospinning parameters used in nanofiber production. After determining the optimum process parameters of nanofiber production, electrical conductivity and fuel cell performance of electrospun PAN nanofibers on the carbon papers will be evaluated.

Keywords: nanofiber, electrospinning, polyacrylonitrile, Taguchi method

Procedia PDF Downloads 206
1434 Hollowfiber Poly Lactid Co-Glycolic Acid (PLGA)-Collagen Coated by Chitosan as a Candidate of Small Diameter Vascular Graft

Authors: Dita Mayasari, Zahrina Mardina, Riki Siswanto, Agresta Ifada, Ova Oktavina, Prihartini Widiyanti

Abstract:

Heart failure is a serious major health problem with high number of mortality per year. Bypass is one of the solutions that has often been taken. Natural vascular graft (xenograft) as the substitute in bypass is inconvenient due to ethic problems and the risk of infection transmission caused by the usage of another species transgenic vascular. Nowadays, synthetic materials have been fabricated from polymers. The aim of this research is to make a synthetic vascular graft with great physical strength, high biocompatibility, and good affordability. The method of this research was mixing PLGA and collagen by magnetic stirrer. This composite were shaped by spinneret with water as coagulant. Then it was coated by chitosan with 3 variations of weight (1 gram, 2 grams, and 3 grams) to increase hemo and cytocompatibility, proliferation, and cell attachment in order for the vascular graft candidates to be more biocompatible. Mechanical strength for each variation was 5,306 MPa (chitosan 1 gram), 3,433 MPa (chitosan 2 grams) and 3,745 MPa (chitosan 3 grams). All the tensile values were higher than human vascular tensile strength. Toxicity test showed that the living cells in all variations were more than 60% in number, thus the vascular graft is not toxic.

Keywords: chitosan, collagen, PLGA, spinneret

Procedia PDF Downloads 398
1433 Analyzing the Causes Behind Gas Turbine Blade Failure: A Comprehensive Case Study

Authors: Med. A. Djeridane, M. Ferhat, H. A. Benhorma, O. Bouledroua

Abstract:

This research is dedicated to exploring the failure of a turbine blade within a gas transportation plant, with a primary focus on conducting a comprehensive examination through advanced metallurgical and mechanical analyses of the identified failed blade. Crafted from the nickel superalloy Inconel IN738LC, the turbine engine had accumulated approximately 61,000 operational hours before the blades failed, causing severe damage to the transportation plant and necessitating a prolonged shutdown. The investigative procedure commenced with an in-depth visual inspection of the blade surfaces, succeeded by fractography analysis of the fracture surfaces, microstructural investigations, chemical analysis, and hardness measurements. The findings unveiled distinctive fatigue marks on the fracture surface. Critical microstructural changes were identified as a consequence of the blade's operation at high temperatures. The investigation determined that the crack initiation resulted from coating damage at the leading edge, subsequently propagating through fatigue. Ultimately, due to a reduction in cross-sectional area, the fracture was completed. This comprehensive analysis sheds light on the intricate factors contributing to turbine blade failure and offers valuable insights for enhancing operational reliability in similar environments.

Keywords: gas turbine, blade failure, TCP phases, fatigue, quantitative analysis

Procedia PDF Downloads 61
1432 Assessing the Impact of Antiretroviral Mediated Drug-Drug Interactions on Piperaquine Antimalarial Treatment in Pregnant Women Using Physiologically Based Pharmacokinetic Modelling

Authors: Olusola Omolola Olafuyi, Michael Coleman, Raj Kumar Singh Badhan

Abstract:

Introduction: Malaria in pregnancy has morbidity and mortality implication on both mother and unborn child. Piperaquine (PQ) based antimalarial treatment is emerging as a choice antimalarial for pregnant women in the face of resistance to current antimalarial treatment recommendation in pregnancy. Physiological and biochemical changes in pregnant women may affect the pharmacokinetics of the antimalarial drug in these. In malaria endemic regions other infectious diseases like HIV/AIDs are prevalent. Pregnant women who are co-infected with malaria and HIV/AID are at even more greater risk of death not only due to complications of the diseases but also due to drug-drug interactions (DDIs) between antimalarials (AMT) and antiretroviral (ARVs). In this study, physiologically based pharmacokinetic (PBPK) modelling was used to investigate the effect of physiological and biochemical changes on the impact of ARV mediated DDIs in pregnant women in three countries. Method: A PBPK model for PQ was developed on SimCYP® using published physicochemical and pharmacokinetic data of PQ from literature, this was validated in three customized population groups from Thailand, Sudan and Papua New Guinea with clinical data. Validation of PQ model was also done in presence of interaction with efavirenz (pre-validated on SimCYP®). Different albumin levels and pregnancy stages was simulated in the presence of interaction with standard doses of efavirenz and ritonavir. PQ day 7 concentration of 30ng/ml was used as the efficacy endpoint for PQ treatment.. Results: The median day 7 concentration of PQ remained virtually consistent throughout pregnancy and were satisfactory across the three population groups ranging from 26-34.1ng/ml; this implied the efficacy of PQ throughout pregnancy. DDI interaction with ritonavir and efavirenz resulted in modest effect on the day 7 concentrations of PQ with AUCratio ranging from 0.56-0.8 and 1.64-1.79 for efavirenz and ritonavir respectively over 10-40 gestational weeks, however, a reduction in human serum albumin level reflective of severe malaria resulted in significantly reduced the number of subjects attaining the PQ day 7 concentration in the presence of both DDIs. The model demonstrated that the DDI between PQ and ARV in pregnant women with different malaria severities can alter the pharmacokinetic of PQ.

Keywords: antiretroviral, malaria, piperaquine, pregnancy, physiologically-based pharmacokinetics

Procedia PDF Downloads 185
1431 Characterization of Porosity and Flow in Solid Oxide Fuel Cell with 3D Focused Ion Beam Serial Slicing

Authors: Daniel Phifer, Anna Prokhodtseva

Abstract:

DualBeam (FIB-SEM) has long been the technology of choice to sub-sample and characterize materials at site-specific locations which are difficult or impossible to extract by conventional embedding/polishing methods. Whereas Ga based FIB provides excellent resolution and enables precise material removal, the current is usually limited and only allows the extraction of small material biopsies typically ranging from 5-70um wide. Xe Plasma FIB, by contrast, has around 38x more current and can remove more material at the same time to extract significant sized chunks (100-1000um) of materials for further analysis. This increased volume has enabled time-prohibitive investigations like large grain 3D serial sectioning and EBSD and micro-machining for micro-mechanical testing. Investigation of the pore spaces with 3D modeling can determine the relative characteristics of the materials to help design or select properties for best function. Pore spaces can be described with a tortuosity number which is calculated by modules in the 3D analysis software. Xe Plasma FIB technology provides a workflow with sufficient volume to characterize porosity when both large-volume 3D materials characterization and nanometer resolution is required to understand the system.

Keywords: dual-beam, FIB-SEM, porosity, SOFC, solid oxide fuel cell

Procedia PDF Downloads 207
1430 Air-Blast Ultrafast Disconnectors and Solid-State Medium Voltage DC Breaker: A Modified Version to Lower Losses and Higher Speed

Authors: Ali Kadivar, Kaveh Niayesh

Abstract:

MVDC markets for green power generations, Navy, subsea oil and gas electrification, and transportation electrification are extending rapidly. The lack of fast and powerful DC circuit breakers (CB) is the most significant barrier to realizing the medium voltage DC (MVDC) networks. A concept of hybrid circuit breakers (HCBs) benefiting from ultrafast disconnectors (UFD) is proposed. A set of mechanical switches substitute the power electronic commutation switches to reduce the losses during normal operation in HCB. The success of current commutation in such breakers relies on the behaviour of elongated, wall constricted arcs during the opening across the contacts inside the UFD. The arc voltage dependencies on the contact speed of UFDs is discussed through multiphysics simulations contact opening speeds of 10, 20 and 40 m/s. The arc voltage at a given current increases exponentially with the contact opening velocity. An empirical equation for the dynamic arc characteristics is presented for the tested UFD, and the experimentally verfied characteristics for voltage-current are utilized for the current commutation simulation prior to apply on a 14 kV experimental setup. Different failures scenarios due to the current commutation are investigated

Keywords: MVDC breakers, DC circuit breaker, fast operating breaker, ultra-fast elongated arc

Procedia PDF Downloads 81
1429 Experimental investigation on the lithium-Ion Battery Thermal Management System Based on Micro Heat Pipe Array in High Temperature Environment

Authors: Ruyang Ren, Yaohua Zhao, Yanhua Diao

Abstract:

The intermittent and unstable characteristics of renewable energy such as solar energy can be effectively solved through battery energy storage system. Lithium-ion battery is widely used in battery energy storage system because of its advantages of high energy density, small internal resistance, low self-discharge rate, no memory effect and long service life. However, the performance and service life of lithium-ion battery is seriously affected by its operating temperature. Thus, the safety operation of the lithium-ion battery module is inseparable from an effective thermal management system (TMS). In this study, a new type of TMS based on micro heat pipe array (MHPA) for lithium-ion battery is established, and the TMS is applied to a battery energy storage box that needs to operate at a high temperature environment of 40 °C all year round. MHPA is a flat shape metal body with high thermal conductivity and excellent temperature uniformity. The battery energy storage box is composed of four battery modules, with a nominal voltage of 51.2 V, a nominal capacity of 400 Ah. Through the excellent heat transfer characteristics of the MHPA, the heat generated by the charge and discharge process can be quickly transferred out of the battery module. In addition, if only the MHPA cannot meet the heat dissipation requirements of the battery module, the TMS can automatically control the opening of the external fan outside the battery module according to the temperature of the battery, so as to further enhance the heat dissipation of the battery module. The thermal management performance of lithium-ion battery TMS based on MHPA is studied experimentally under different ambient temperatures and the condition to turn on the fan or not. Results show that when the ambient temperature is 40 °C and the fan is not turned on in the whole charge and discharge process, the maximum temperature of the battery in the energy storage box is 53.1 °C and the maximum temperature difference in the battery module is 2.4 °C. After the fan is turned on in the whole charge and discharge process, the maximum temperature is reduced to 50.1 °C, and the maximum temperature difference is reduced to 1.7 °C. Obviously, the lithium-ion battery TMS based on MHPA not only could control the maximum temperature of the battery below 55 °C, but also ensure the excellent temperature uniformity of the battery module. In conclusion, the lithium-ion battery TMS based on MHPA can ensure the safe and stable operation of the battery energy storage box in high temperature environment.

Keywords: heat dissipation, lithium-ion battery thermal management, micro heat pipe array, temperature uniformity

Procedia PDF Downloads 181
1428 Antibiotic Prescribing in the Acute Care in Iraq

Authors: Ola A. Nassr, Ali M. Abd Alridha, Rua A. Naser, Rasha S. Abbas

Abstract:

Background: Excessive and inappropriate use of antimicrobial agents among hospitalized patients remains an important patient safety and public health issue worldwide. Not only does this behavior incur unnecessary cost but it is also associated with increased morbidity and mortality. The objective of this study is to obtain an insight into the prescribing patterns of antibiotics in surgical and medical wards, to help identify a scope for improvement in service delivery. Method: A simple point prevalence survey included a convenience sample of 200 patients admitted to medical and surgical wards in a government teaching hospital in Baghdad between October 2017 and April 2018. Data were collected by a trained pharmacy intern using a standardized form. Patient’s demographics and details of the prescribed antibiotics, including dose, frequency of dosing and route of administration, were reported. Patients were included if they had been admitted at least 24 hours before the survey. Patients under 18 years of age, having a diagnosis of cancer or shock, or being admitted to the intensive care unit, were excluded. Data were checked and entered by the authors into Excel and were subjected to frequency analysis, which was carried out on anonymized data to protect patient confidentiality. Results: Overall, 88.5% of patients (n=177) received 293 antibiotics during their hospital admission, with a small variation between wards (80%-97%). The average number of antibiotics prescribed per patient was 1.65, ranging from 1.3 for medical patients to 1.95 for surgical patients. Parenteral third-generation cephalosporins were the most commonly prescribed at a rate of 54.3% (n=159) followed by nitroimidazole 29.4% (n=86), quinolones 7.5% (n=22) and macrolides 4.4% (n=13), while carbapenems and aminoglycosides were the least prescribed together accounting for only 4.4% (n=13). The intravenous route was the most common route of administration, used for 96.6% of patients (n=171). Indications were reported in only 63.8% of cases. Culture to identify pathogenic organisms was employed in only 0.5% of cases. Conclusion: Broad-spectrum antibiotics are prescribed at an alarming rate. This practice may provoke antibiotic resistance and adversely affect the patient outcome. Implementation of an antibiotic stewardship program is warranted to enhance the efficacy, safety and cost-effectiveness of antimicrobial agents.

Keywords: Acute care, Antibiotic misuse, Iraq, Prescribing

Procedia PDF Downloads 122
1427 Identification of the Best Blend Composition of Natural Rubber-High Density Polyethylene Blends for Roofing Applications

Authors: W. V. W. H. Wickramaarachchi, S. Walpalage, S. M. Egodage

Abstract:

Thermoplastic elastomer (TPE) is a multifunctional polymeric material which possesses a combination of excellent properties of parent materials. Basically, TPE has a rubber phase and a thermoplastic phase which gives processability as thermoplastics. When the rubber phase is partially or fully crosslinked in the thermoplastic matrix, TPE is called as thermoplastic elastomer vulcanizate (TPV). If the rubber phase is non-crosslinked, it is called as thermoplastic elastomer olefin (TPO). Nowadays TPEs are introduced into the commercial market with different products. However, the application of TPE as a roofing material is limited. Out of the commercially available roofing products from different materials, only single ply roofing membranes and plastic roofing sheets are produced from rubbers and plastics. Natural rubber (NR) and high density polyethylene (HDPE) are used in various industrial applications individually with some drawbacks. Therefore, this study was focused to develop both TPO and TPV blends from NR and HDPE at different compositions and then to identify the best blend composition to use as a roofing material. A series of blends by varying NR loading from 10 wt% to 50 wt%, at 10 wt% intervals, were prepared using a twin screw extruder. Dicumyl peroxide was used as a crosslinker for TPV. The standard properties for a roofing material like tensile properties tear strength, hardness, impact strength, water absorption, swell/gel analysis and thermal characteristics of the blends were investigated. Change of tensile strength after exposing to UV radiation was also studied. Tensile strength, hardness, tear strength, melting temperature and gel content of TPVs show higher values compared to TPOs at every loading studied, while water absorption and swelling index show lower values, suggesting TPVs are more suitable than TPOs for roofing applications. Most of the optimum properties were shown at 10/90 (NR/HDPE) composition. However, high impact strength and gel content were shown at 20/80 (NR/HDPE) composition. Impact strength, as being an energy absorbing property, is the most important for a roofing material in order to resist impact loads. Therefore, 20/80 (NR/HDPE) is identified as the best blend composition. UV resistance and other properties required for a roofing material could be achieved by incorporating suitable additives to TPVs.

Keywords: thermoplastic elastomer, natural rubber, high density polyethylene, roofing material

Procedia PDF Downloads 126
1426 The Role of QX-314 and Capsaicin in Producing Long-Lasting Local Anesthesia in the Animal Model of Trigeminal Neuralgia

Authors: Ezzati Givi M., Ezzatigivi N., Eimani H.

Abstract:

Trigeminal Neuralgia (TN) consists of painful attacks often triggered with general activities, which cause impairment and disability. The first line of treatment consists of pharmacotherapy. However, the occurrence of many side-effects limits its application. Acute pain relief is crucial for titrating oral drugs and making time for neurosurgical intervention. This study aimed to examine the long-term anesthetic effect of QX-314 and capsaicin in trigeminal neuralgia using an animal model. TN was stimulated by surgical constriction of the infraorbital nerve in rats. After seven days, anesthesia infiltration was done, and the duration of mechanical allodynia was compared. Thirty-five male Wistar rats were randomly divided into seven groups as follows: control (normal saline); lidocaine (2%); QX314 (30 mM); lidocaine (2%)+QX314 (15 mM); lidocaine (2%)+QX314 (22 mM); lidocaine (2%)+QX314 (30 mM); and lidocaine (2%)+QX314 (30 mM) +capsaicin (1μg). QX314 in combination with lidocaine significantly increased the duration of anesthesia, which was dose-dependent. The combination of lidocaine+QX314+capsaicin could significantly increase the duration of anesthesia in trigeminal neuralgia. In the present study, we demonstrated that the combination of QX-314 with lidocaine and capsaicin produced a long-lasting, reversible local anesthesia and was superior to lidocaine alone in the fields of the duration of trigeminal neuropathic pain blockage.

Keywords: trigeminal neuralgia, capsaicin, lidocaine, long-lasting

Procedia PDF Downloads 114
1425 Political Coercion from Within: Theoretical Convergence in the Strategies of Terrorist Groups, Insurgencies, and Social Movements

Authors: John Hardy

Abstract:

The early twenty-first century national security environment has been characterized by political coercion. Despite an abundance of political commentary on the various forms of non-state coercion leveraged against the state, there is a lack of literature which distinguishes between the mechanisms and the mediums of coercion. Frequently non-state movements seeking to coerce the state are labelled by their tactics, not their strategies. Terrorists, insurgencies and social movements are largely defined by the ways in which they seek to influence the state, rather than by their political aims. This study examines the strategies of coercion used by non-state actors against states. This approach includes terrorist groups, insurgencies, and social movements who seek to coerce state politics. Not all non-state actors seek political coercion, so not all examples of different group types are considered. This approach also excludes political coercion by states, focusing on the non-state actor as the primary unit of analysis. The study applies a general theory of political coercion, which is defined as attempts to change the policies or action of a polity against its will, to the strategies employed by terrorist groups, insurgencies, and social movements. This distinguishes non-state actors’ strategic objectives from their actions and motives, which are variables that are often used to differentiate between types of non-state actors and the labels commonly used to describe them. It also allows for a comparative analysis of theoretical perspectives from the disciplines of terrorism, insurgency and counterinsurgency, and social movements. The study finds that there is a significant degree of overlap in the way that different disciplines conceptualize the mechanism of political coercion by non-state actors. Studies of terrorism and counterterrorism focus more on the notions of cost tolerance and collective punishment, while studies of insurgency focus on a contest of legitimacy between actors, and social movement theory tend to link political objectives, social capital, and a mechanism of influence to leverage against the state. Each discipline has a particular vernacular for the mechanism of coercion, which is often linked to the means of coercion, but they converge on three core theoretical components of compelling a polity to change its policies or actions: exceeding resistance to change, using political or violent punishments, and withholding legitimacy or consent from a government.

Keywords: counter terrorism, homeland security, insurgency, political coercion, social movement theory, terrorism

Procedia PDF Downloads 174
1424 Comparison of Monte Carlo Simulations and Experimental Results for the Measurement of Complex DNA Damage Induced by Ionizing Radiations of Different Quality

Authors: Ifigeneia V. Mavragani, Zacharenia Nikitaki, George Kalantzis, George Iliakis, Alexandros G. Georgakilas

Abstract:

Complex DNA damage consisting of a combination of DNA lesions, such as Double Strand Breaks (DSBs) and non-DSB base lesions occurring in a small volume is considered as one of the most important biological endpoints regarding ionizing radiation (IR) exposure. Strong theoretical (Monte Carlo simulations) and experimental evidence suggests an increment of the complexity of DNA damage and therefore repair resistance with increasing linear energy transfer (LET). Experimental detection of complex (clustered) DNA damage is often associated with technical deficiencies limiting its measurement, especially in cellular or tissue systems. Our groups have recently made significant improvements towards the identification of key parameters relating to the efficient detection of complex DSBs and non-DSBs in human cellular systems exposed to IR of varying quality (γ-, X-rays 0.3-1 keV/μm, α-particles 116 keV/μm and 36Ar ions 270 keV/μm). The induction and processing of DSB and non-DSB-oxidative clusters were measured using adaptations of immunofluorescence (γH2AX or 53PB1 foci staining as DSB probes and human repair enzymes OGG1 or APE1 as probes for oxidized purines and abasic sites respectively). In the current study, Relative Biological Effectiveness (RBE) values for DSB and non-DSB induction have been measured in different human normal (FEP18-11-T1) and cancerous cell lines (MCF7, HepG2, A549, MO59K/J). The experimental results are compared to simulation data obtained using a validated microdosimetric fast Monte Carlo DNA Damage Simulation code (MCDS). Moreover, this simulation approach is implemented in two realistic clinical cases, i.e. prostate cancer treatment using X-rays generated by a linear accelerator and a pediatric osteosarcoma case using a 200.6 MeV proton pencil beam. RBE values for complex DNA damage induction are calculated for the tumor areas. These results reveal a disparity between theory and experiment and underline the necessity for implementing highly precise and more efficient experimental and simulation approaches.

Keywords: complex DNA damage, DNA damage simulation, protons, radiotherapy

Procedia PDF Downloads 325
1423 Computer-Aided Drug Repurposing for Mycobacterium Tuberculosis by Targeting Tryptophanyl-tRNA Synthetase

Authors: Neslihan Demirci, Serdar Durdağı

Abstract:

Mycobacterium tuberculosis is still a worldwide disease-causing agent that, according to WHO, led to the death of 1.5 million people from tuberculosis (TB) in 2020. The bacteria reside in macrophages located specifically in the lung. There is a known quadruple drug therapy regimen for TB consisting of isoniazid (INH), rifampin (RIF), pyrazinamide (PZA), and ethambutol (EMB). Over the past 60 years, there have been great contributions to treatment options, such as recently approved delamanid (OPC67683) and bedaquiline (TMC207/R207910), targeting mycolic acid and ATP synthesis, respectively. Also, there are natural compounds that can block the tryptophanyl-tRNA synthetase (TrpRS) enzyme, chuangxinmycin, and indolmycin. Yet, already the drug resistance is reported for those agents. In this study, the newly released TrpRS enzyme structure is investigated for potential inhibitor drugs from already synthesized molecules to help the treatment of resistant cases and to propose an alternative drug for the quadruple drug therapy of tuberculosis. Maestro, Schrodinger is used for docking and molecular dynamic simulations. In-house library containing ~8000 compounds among FDA-approved indole-containing compounds, a total of 57 obtained from the ChemBL were used for both ATP and tryptophan binding pocket docking. Best of indole-containing 57 compounds were subjected to hit expansion and compared later with virtual screening workflow (VSW) results. After docking, VSW was done. Glide-XP docking algorithm was chosen. When compared, VSW alone performed better than the hit expansion module. Best scored compounds were kept for ten ns molecular dynamic simulations by Desmond. Further, 100 ns molecular dynamic simulation was performed for elected molecules according to Z-score. The top three MMGBSA-scored compounds were subjected to steered molecular dynamic (SMD) simulations by Gromacs. While SMD simulations are still being conducted, ponesimod (for multiple sclerosis), vilanterol (β₂ adrenoreceptor agonist), and silodosin (for benign prostatic hyperplasia) were found to have a significant affinity for tuberculosis TrpRS, which is the propulsive force for the urge to expand the research with in vitro studies. Interestingly, top-scored ponesimod has been reported to have a side effect that makes the patient prone to upper respiratory tract infections.

Keywords: drug repurposing, molecular dynamics, tryptophanyl-tRNA synthetase, tuberculosis

Procedia PDF Downloads 123
1422 Formulation and Evaluation of Curcumin-Zn (II) Microparticulate Drug Delivery System for Antimalarial Activity

Authors: M. R. Aher, R. B. Laware, G. S. Asane, B. S. Kuchekar

Abstract:

Objective: Studies have shown that a new combination therapy with Artemisinin derivatives and curcumin is unique, with potential advantages over known ACTs. In present study an attempt was made to prepare microparticulate drug delivery system of Curcumin-Zn complex and evaluate it in combination with artemether for antimalarial activity. Material and method: Curcumin Zn complex was prepared and encapsulated using sodium alginate. Microparticles thus obtained are further coated with various enteric polymers at different coating thickness to control the release. Microparticles are evaluated for encapsulation efficiency, drug loading and in vitro drug release. Roentgenographic Studies was conducted in rabbits with BaSO 4 tagged formulation. Optimized formulation was screened for antimalarial activity using P. berghei-infected mice survival test and % paracetemia inhibition, alone (three oral dose of 5mg/day) and in combination with arthemether (i.p. 500, 1000 and 1500µg). Curcumin-Zn(II) was estimated in serum after oral administration to rats by using spectroflurometry. Result: Microparticles coated with Cellulose acetate phthalate showed most satisfactory and controlled release with 479 min time for 60% drug release. X-ray images taken at different time intervals confirmed the retention of formulation in GI tract. Estimation of curcumin in serum by spectroflurometry showed that drug concentration is maintained in the blood for longer time with tmax of 6 hours. The survival time (40 days post treatment) of mice infected with P. berghei was compared to survival after treatment with either Curcumin-Zn(II) microparticles artemether combination, curcumin-Zn complex and artemether. Oral administration of Curcumin-Zn(II)-artemether prolonged the survival of P.berghei-infected mice. All the mice treated with Curcumin-Zn(II) microparticles (5mg/day) artemether (1000µg) survived for more than 40 days and recovered with no detectable parasitemia. Administration of Curcumin-Zn(II) artemether combination reduced the parasitemia in mice by more than 90% compared to that in control mice for the first 3 days after treatment. Conclusion: Antimalarial activity of the curcumin Zn-artemether combination was more pronounced than mono therapy. A single dose of 1000µg of artemether in curcumin-Zn combination gives complete protection in P. berghei-infected mice. This may reduce the chances of drug resistance in malaria management.

Keywords: formulation, microparticulate drug delivery, antimalarial, pharmaceutics

Procedia PDF Downloads 394
1421 Process Optimization of Electrospun Fish Sarcoplasmic Protein Based Nanofibers

Authors: Sena Su, Burak Ozbek, Yesim M. Sahin, Sevil Yucel, Dilek Kazan, Faik N. Oktar, Nazmi Ekren, Oguzhan Gunduz

Abstract:

In recent years, protein, lipid or polysaccharide-based polymers have been used in order to develop biodegradable materials and their chemical nature determines the physical properties of the resulting films. Among these polymers, proteins from different sources have been extensively employed because of their relative abundance, film forming ability, and nutritional qualities. In this study, the biodegradable composite nanofiber films based on fish sarcoplasmic protein (FSP) were prepared via electrospinning technique. Biodegradable polycaprolactone (PCL) was blended with the FSP to obtain hybrid FSP/PCL nanofiber mats with desirable physical properties. Mixture solutions of FSP and PCL were produced at different concentrations and their density, viscosity, electrical conductivity and surface tension were measured. Mechanical properties of electrospun nanofibers were evaluated. Morphology of composite nanofibers was observed using scanning electron microscopy (SEM). Moreover, Fourier transform infrared spectrometer (FTIR) studies were used for analysis chemical composition of composite nanofibers. This study revealed that the FSP based nanofibers have the potential to be used for different applications such as biodegradable packaging, drug delivery, and wound dressing, etc.

Keywords: edible film, electrospinning, fish sarcoplasmic protein, nanofiber

Procedia PDF Downloads 297
1420 Coating of Cotton with Blend of Natural Rubber and Chloroprene Containing Ammonium Acetate for Producing Moisture Vapour Permeable Waterproof Fabric

Authors: Debasish Das, Mainak Mitra, A.Chaudhuri

Abstract:

For the purpose of producing moisture vapor permeable waterproof cotton fabric to be used for protective apparel against rain, cotton fabric was coated with the blend of natural rubber and chloroprene rubber containing ammonium acetate as the water-soluble salt, employing a calendar coating technique. Rubber formulations also contained filler, homogenizer, and a typical sulphur curing system. Natural rubber and chloroprene blend in the blend ratio of 30: 70, containing 25 parts of sodium acetate per hundred parts of rubber was coated on the fabric. The coated fabric was vulcanized thereafter at 140oC for 3 h. Coated and vulcanized fabric was subsequently dipped in water for 45 min, followed by drying in air. Such set of treatments produced optimum results. Coated, vulcanized, washed and dried cotton fabric showed optimum developments in the property profiles in respect of waterproofness, breathability as revealed by moisture vapor transmission rate, coating adhesion, tensile properties, abrasion resistance, flex endurance and fire retardancy. Incorporation of highly water-soluble ammonium acetate salt in the coating formulation and their subsequent removal from vulcanized coated layer affected by post washing in consequent to dipping in the water-bath produced holes of only a few microns in the coating matrix of the fabric. Such microporous membrane formed on the cotton fabric allowed only transportation of moisture vapor through them, giving a moisture vapor transmission rate of 3734 g/m2/24h, while acting as a barrier for large liquid water droplet resisting 120cm of the water column in the hydrostatic water-head tester, rendering the coated cotton fabric waterproof. Examination of surface morphology of vulcanized coating by scanning electron microscopy supported the mechanism proposed for development of breathable waterproof layer on cotton fabric by the process employed above. Such process provides an easy and cost-effective route for achieving moisture vapor permeable waterproof cotton.

Keywords: moisture vapour permeability, waterproofness, chloroprene, calendar coating, coating adhesion, fire retardancy

Procedia PDF Downloads 254
1419 Harnessing the Power of Mixed Ligand Complexes: Enhancing Antimicrobial Activities with Thiosemicarbazones

Authors: Sakshi Gupta, Seema Joshi

Abstract:

Thiosemicarbazones (TSCs) have garnered significant attention in coordination chemistry due to their versatile coordination modes and pharmacological properties. Mixed ligand complexes of TSCs represent a promising area of research, offering enhanced antimicrobial activities compared to their parent compounds. This review provides an overview of the synthesis, characterization, and antimicrobial properties of mixed ligand complexes incorporating thiosemicarbazones. The synthesis of mixed ligand complexes typically involves the reaction of a metal salt with TSC ligands and additional ligands, such as nitrogen- or oxygen-based ligands. Various transition metals, including copper, nickel, and cobalt, have been employed to form mixed ligand complexes with TSCs. Characterization techniques such as spectroscopy, X-ray crystallography, and elemental analysis are commonly utilized to confirm the structures of these complexes. One of the key advantages of mixed ligand complexes is their enhanced antimicrobial activity compared to pure TSC compounds. The synergistic effect between the TSC ligands and additional ligands contributes to increased efficacy, possibly through improved metal-ligand interactions or enhanced membrane permeability. Furthermore, mixed ligand complexes offer the potential for selective targeting of microbial species while minimizing toxicity to mammalian cells. This selectivity arises from the specific interactions between the metal center, TSC ligands, and biological targets within microbial cells. Such targeted antimicrobial activity is crucial for developing effective treatments with minimal side effects. Moreover, the versatility of mixed ligand complexes allows for the design of tailored antimicrobial agents with optimized properties. By varying the metal ion, TSC ligands, and additional ligands, researchers can fine-tune the physicochemical properties and biological activities of these complexes. This tunability opens avenues for the development of novel antimicrobial agents with improved efficacy and reduced resistance. In conclusion, mixed ligand complexes of thiosemicarbazones represent a promising class of compounds with potent antimicrobial activities. Further research in this field holds great potential for the development of novel therapeutic agents to combat microbial infections effectively.

Keywords: metal complex, thiosemicarbazones, mixed ligand, selective targeting, antimicrobial activity

Procedia PDF Downloads 60
1418 Characterizing the Fracture Toughness Properties of Aluminum I-Rod Removed from National Research Universal Reactor

Authors: Michael Bach

Abstract:

Extensive weld repair was carried out in 2009 after a leak was detected in the aluminum 5052 vessel of the National Research Universal (NRU) reactor. This was the second vessel installed since 1974. In support of the NRU vessel leak repair and fitness for service assessments, an estimate of property changes due to irradiation exposure is required to extend the service of the reactor until 2018. In order to fully evaluate the property changes in the vessel wall, an Iodine-125 rod (I rod) made from the same material and irradiated in the NRU reactor from 1974 1991, was retrieved and sectioned for microstructure characterization and mechanical testing. The different sections of the I rod were exposed to various levels of thermal neutron fluences from 0 to a maximum of 11.9 x 1022 n/cm2. The end of life thermal neutron fluence of the NRU vessel is estimated to be 2.2 x 1022 n/cm2 at 35 years of service. Tensile test and fracture toughness test was performed on the I-rod material at various axial locations. The changes in tensile properties were attributed primarily to the creation of finely dispersed Mg-Si precipitates that harden the material and reduced the ductility. Despite having a reduction in fracture toughness, the NRU vessel is still operation at the current fluence levels.

Keywords: aluminum alloy, fitness-for-service assessment , fracutre toughness, nuclear reactor, precipitate strengthening, radiation damage, tensile strength

Procedia PDF Downloads 185