Search results for: learning vector quantization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8066

Search results for: learning vector quantization

3026 Waters Colloidal Phase Extraction and Preconcentration: Method Comparison

Authors: Emmanuelle Maria, Pierre Crançon, Gaëtane Lespes

Abstract:

Colloids are ubiquitous in the environment and are known to play a major role in enhancing the transport of trace elements, thus being an important vector for contaminants dispersion. Colloids study and characterization are necessary to improve our understanding of the fate of pollutants in the environment. However, in stream water and groundwater, colloids are often very poorly concentrated. It is therefore necessary to pre-concentrate colloids in order to get enough material for analysis, while preserving their initial structure. Many techniques are used to extract and/or pre-concentrate the colloidal phase from bulk aqueous phase, but yet there is neither reference method nor estimation of the impact of these different techniques on the colloids structure, as well as the bias introduced by the separation method. In the present work, we have tested and compared several methods of colloidal phase extraction/pre-concentration, and their impact on colloids properties, particularly their size distribution and their elementary composition. Ultrafiltration methods (frontal, tangential and centrifugal) have been considered since they are widely used for the extraction of colloids in natural waters. To compare these methods, a ‘synthetic groundwater’ was used as a reference. The size distribution (obtained by Field-Flow Fractionation (FFF)) and the chemical composition of the colloidal phase (obtained by Inductively Coupled Plasma Mass Spectrometry (ICPMS) and Total Organic Carbon analysis (TOC)) were chosen as comparison factors. In this way, it is possible to estimate the pre-concentration impact on the colloidal phase preservation. It appears that some of these methods preserve in a more efficient manner the colloidal phase composition while others are easier/faster to use. The choice of the extraction/pre-concentration method is therefore a compromise between efficiency (including speed and ease of use) and impact on the structural and chemical composition of the colloidal phase. In perspective, the use of these methods should enhance the consideration of colloidal phase in the transport of pollutants in environmental assessment studies and forensics.

Keywords: chemical composition, colloids, extraction, preconcentration methods, size distribution

Procedia PDF Downloads 214
3025 Predicting Loss of Containment in Surface Pipeline using Computational Fluid Dynamics and Supervised Machine Learning Model to Improve Process Safety in Oil and Gas Operations

Authors: Muhammmad Riandhy Anindika Yudhy, Harry Patria, Ramadhani Santoso

Abstract:

Loss of containment is the primary hazard that process safety management is concerned within the oil and gas industry. Escalation to more serious consequences all begins with the loss of containment, starting with oil and gas release from leakage or spillage from primary containment resulting in pool fire, jet fire and even explosion when reacted with various ignition sources in the operations. Therefore, the heart of process safety management is avoiding loss of containment and mitigating its impact through the implementation of safeguards. The most effective safeguard for the case is an early detection system to alert Operations to take action prior to a potential case of loss of containment. The detection system value increases when applied to a long surface pipeline that is naturally difficult to monitor at all times and is exposed to multiple causes of loss of containment, from natural corrosion to illegal tapping. Based on prior researches and studies, detecting loss of containment accurately in the surface pipeline is difficult. The trade-off between cost-effectiveness and high accuracy has been the main issue when selecting the traditional detection method. The current best-performing method, Real-Time Transient Model (RTTM), requires analysis of closely positioned pressure, flow and temperature (PVT) points in the pipeline to be accurate. Having multiple adjacent PVT sensors along the pipeline is expensive, hence generally not a viable alternative from an economic standpoint.A conceptual approach to combine mathematical modeling using computational fluid dynamics and a supervised machine learning model has shown promising results to predict leakage in the pipeline. Mathematical modeling is used to generate simulation data where this data is used to train the leak detection and localization models. Mathematical models and simulation software have also been shown to provide comparable results with experimental data with very high levels of accuracy. While the supervised machine learning model requires a large training dataset for the development of accurate models, mathematical modeling has been shown to be able to generate the required datasets to justify the application of data analytics for the development of model-based leak detection systems for petroleum pipelines. This paper presents a review of key leak detection strategies for oil and gas pipelines, with a specific focus on crude oil applications, and presents the opportunities for the use of data analytics tools and mathematical modeling for the development of robust real-time leak detection and localization system for surface pipelines. A case study is also presented.

Keywords: pipeline, leakage, detection, AI

Procedia PDF Downloads 189
3024 Disaster Education and Children with Visual Impairment

Authors: Vassilis Argyropoulos, Magda Nikolaraizi, Maria Papazafiri

Abstract:

This study describes a series of learning workshops, which took place within CUIDAR project. The workshops aimed to empower children to share their experiences and views in relation to natural hazards and disasters. The participants in the workshops were ten primary school students who had severe visual impairments or multiple disabilities and visual impairments (MDVI). The main objectives of the workshops were: a) to promote access of the children through the use of appropriate educational material such as texts in braille, enlarged text, tactile maps and the implementation of differentiated instruction, b) to make children aware regarding their rights to have access to information and to participate in planning and decision-making especially in relation to disaster education programs, and c) to encourage children to have an active role during the workshops through child-led and experiential learning activities. The children expressed their views regarding the meaning of hazards and disasters. Following, they discussed their experiences and emotions regarding natural hazards and disasters, and they chose to place the emphasis on a hazard, which was more pertinent to them, their community and their region, namely fires. Therefore, they recalled fires that have caused major disasters, and they discussed about the impact that these fires had on their community or on their country. Furthermore, they were encouraged to become aware regarding their own role and responsibility to prevent a fire or get prepared and know how to behave if a fire occurs. They realized that prevention and preparation are a matter of personal responsibility. They also felt the responsibility to inform their own families. Finally, they met important people involved in fire protection such as rescuers and firefighters and had the opportunity to carry dialogues. In conclusion, through child led workshops, experiential and accessible activities, the students had the opportunity to share their own experiences, to express their views and their questions, to broaden their knowledge and to realize their personal responsibility in disaster risk reduction, specifically in relation to fires.

Keywords: accessibility, children, disasters, visual impairment

Procedia PDF Downloads 211
3023 The Relationship between Representational Conflicts, Generalization, and Encoding Requirements in an Instance Memory Network

Authors: Mathew Wakefield, Matthew Mitchell, Lisa Wise, Christopher McCarthy

Abstract:

The properties of memory representations in artificial neural networks have cognitive implications. Distributed representations that encode instances as a pattern of activity across layers of nodes afford memory compression and enforce the selection of a single point in instance space. These encoding schemes also appear to distort the representational space, as well as trading off the ability to validate that input information is within the bounds of past experience. In contrast, a localist representation which encodes some meaningful information into individual nodes in a network layer affords less memory compression while retaining the integrity of the representational space. This allows the validity of an input to be determined. The validity (or familiarity) of input along with the capacity of localist representation for multiple instance selections affords a memory sampling approach that dynamically balances the bias-variance trade-off. When the input is familiar, bias may be high by referring only to the most similar instances in memory. When the input is less familiar, variance can be increased by referring to more instances that capture a broader range of features. Using this approach in a localist instance memory network, an experiment demonstrates a relationship between representational conflict, generalization performance, and memorization demand. Relatively small sampling ranges produce the best performance on a classic machine learning dataset of visual objects. Combining memory validity with conflict detection produces a reliable confidence judgement that can separate responses with high and low error rates. Confidence can also be used to signal the need for supervisory input. Using this judgement, the need for supervised learning as well as memory encoding can be substantially reduced with only a trivial detriment to classification performance.

Keywords: artificial neural networks, representation, memory, conflict monitoring, confidence

Procedia PDF Downloads 127
3022 The Effect of Excel on Undergraduate Students’ Understanding of Statistics and the Normal Distribution

Authors: Masomeh Jamshid Nejad

Abstract:

Nowadays, statistical literacy is no longer a necessary skill but an essential skill with broad applications across diverse fields, especially in operational decision areas such as business management, finance, and economics. As such, learning and deep understanding of statistical concepts are essential in the context of business studies. One of the crucial topics in statistical theory and its application is the normal distribution, often called a bell-shaped curve. To interpret data and conduct hypothesis tests, comprehending the properties of normal distribution (the mean and standard deviation) is essential for business students. This requires undergraduate students in the field of economics and business management to visualize and work with data following a normal distribution. Since technology is interconnected with education these days, it is important to teach statistics topics in the context of Python, R-studio, and Microsoft Excel to undergraduate students. This research endeavours to shed light on the effect of Excel-based instruction on learners’ knowledge of statistics, specifically the central concept of normal distribution. As such, two groups of undergraduate students (from the Business Management program) were compared in this research study. One group underwent Excel-based instruction and another group relied only on traditional teaching methods. We analyzed experiential data and BBA participants’ responses to statistic-related questions focusing on the normal distribution, including its key attributes, such as the mean and standard deviation. The results of our study indicate that exposing students to Excel-based learning supports learners in comprehending statistical concepts more effectively compared with the other group of learners (teaching with the traditional method). In addition, students in the context of Excel-based instruction showed ability in picturing and interpreting data concentrated on normal distribution.

Keywords: statistics, excel-based instruction, data visualization, pedagogy

Procedia PDF Downloads 53
3021 Crossing the Interdisciplinary Border: A Multidimensional Linguistics Analysis of a Legislative Discourse

Authors: Manvender Kaur Sarjit Singh

Abstract:

There is a crucial mismatch between classroom written language tasks and real world written language requirements. Realizing the importance of reducing the gap between the professional needs of the legal practitioners and the higher learning institutions that offer the legislative education in Malaysia, it is deemed necessary to develop a framework that integrates real-life written communication with the teaching of content-based legislative discourse to future legal practitioners. By highlighting the actual needs of the legal practitioners in the country, the present teaching practices will be enhanced and aligned with the actual needs of the learners thus realizing the vision and aspirations of the Malaysian Education Blueprint 2013-2025 and Legal Profession Qualifying Board. The need to focus future education according to the actual needs of the learners can be realized by developing a teaching framework which is designed within the prospective requirements of its real-life context. This paper presents the steps taken to develop a specific teaching framework that fulfills the fundamental real-life context of the prospective legal practitioners. The teaching framework was developed based on real-life written communication from the legal profession in Malaysia, using the specific genre analysis approach which integrates a corpus-based approach and a structural linguistics analysis. This approach was adopted due to its fundamental nature of intensive exploration of the real-life written communication according to the established strategies used. The findings showed the use of specific moves and parts-of-speech by the legal practitioners, in order to prepare the selected genre. The teaching framework is hoped to enhance the teachings of content-based law courses offered at present in the higher learning institutions in Malaysia.

Keywords: linguistics analysis, corpus analysis, genre analysis, legislative discourse

Procedia PDF Downloads 382
3020 Challenges and Success Factors in Introducing Information Systems for Students' Online Registration

Authors: Stanley Fore, Sharon Chipeperekwa

Abstract:

The start of the 2011 academic year in South Africa saw a number of Institutions of Higher Learning introducing online registration for their students. The efficiency and effectiveness of Information Systems are increasingly becoming a necessity and not an option for many organizations. An information system should be able to allow end users to access information easily and navigate with ease. The selected University of Technology (UoT) in this research is one of the largest public institution of higher learning in the Western Cape Province and boasts of an enrolment of more than 30000 students per academic year. An observation was made that, during registration students’ stand in long queues waiting to register or for assistance to register. The system tends to ‘freeze’ whilst students are registering and students are in most cases unfamiliar with the system interface. They constantly have to enquire what to do next when going through online registration process. A mixed method approach will be adopted which comprises of quantitative and qualitative approaches. The study uses constructs of the updated DeLone and McLean IS success model (2003) to analyse and explain the student’s perceptions of the online registration system. The research was undertaken to establish the student’s perceptions of the online registration system. This research seeks to identify and analyse the challenges and success factors of introducing an online registration system whilst highlighting the extent to which this system has been able to solve the numerous problems associated with the manual era. The study will assist management and those responsible for managing the current system to determine how well the system is working or not working to achieve user satisfaction. It will also assist them going forward on what to consider before, during and after implementation of an information system. Respondents will be informed of the objectives of the research, and their consent to participate will be sought. Ethical considerations that will be applied to this study include; informed consent and protection from harm, right to privacy and involvement of the research.

Keywords: online registration, information systems, University of Technology, end-users

Procedia PDF Downloads 258
3019 Epidemiological Study on Prevalence of Bovine Trypanosomosis and Tsetse Fly Density in Some Selected of Pastoral Areas of South Omo Zone

Authors: Tekle Olbamo, Tegegn Tesfaye, Dikaso Unbushe, Belete Jorga

Abstract:

Bovine trypanosomosis is a haemoprotozoan parasitic disease, mostly transmitted by the tsetse fly (Glossina species) and poses significant losses to the livestock industry in pastoral and agro-pastoral areas. Therefore, the current study was aimed to determine the prevalence of bovine trypanosomosis and its vectorial density in some selected tsetse suppression and non-tsetse suppression areas of South Omo Zonefrom December 2018- November 2019. Dark phase contrast buffy coat, hematocrit techniques, and thin blood smear method were used for determination of prevalence and packed cell volume of trypanosomosis infection, respectively. For entomological investigation, 96 NGU traps were deployed (64 traps in tsetse suppression areas, 32 traps in tsetse non-suppression areas) in vector breeding areas. The overall prevalence of bovine trypanosomosis was 11.05% (142/1284), and overall seasonal prevalence of disease was 14.33% (92/642) and 7.78% (50/642) for dry and wet seasons, respectively. There was a statistically significant difference (P <0.05) in disease prevalence between the two seasons. Trypanosomacongolensewas the dominant parasite species; 80% and 71.64%, followed by Trypanosomavivax. Overall mean packed cell volume indicated parasitaemic animals (23.57±3.13) had significantly lower PCV than aparasitaemic animals (27.80±4.95), and animals examined during dry season (26.22±4.37) had lower mean PCV than animals examined during wet season with the significant association. Entomological study result revealed a total of 2.64 F/T/D and 2.03 F/T/D respectively from tsetse suppression areas and tsetse non-suppression areas during dry season and 0.42 F/T/D and 0.56 F/T/D during the wet season. Glossinapallidipes was the only cyclical vectors collected and identified from current study areas along with numerous mechanical vectors of genus Tabanus, Stomoxys, and Haematopota. Therefore integrated and safe control and prevention effort should be engaged to uphold cattle production and productivity in the area.

Keywords: bovine trypanosomiasis, South Omo, tsetse fly density, epidemiological study

Procedia PDF Downloads 161
3018 Business Intelligent to a Decision Support Tool for Green Entrepreneurship: Meso and Macro Regions

Authors: Anishur Rahman, Maria Areias, Diogo Simões, Ana Figeuiredo, Filipa Figueiredo, João Nunes

Abstract:

The circular economy (CE) has gained increased awareness among academics, businesses, and decision-makers as it stimulates resource circularity in the production and consumption systems. A large epistemological study has explored the principles of CE, but scant attention eagerly focused on analysing how CE is evaluated, consented to, and enforced using economic metabolism data and business intelligent framework. Economic metabolism involves the ongoing exchange of materials and energy within and across socio-economic systems and requires the assessment of vast amounts of data to provide quantitative analysis related to effective resource management. Limited concern, the present work has focused on the regional flows pilot region from Portugal. By addressing this gap, this study aims to promote eco-innovation and sustainability in the regions of Intermunicipal Communities Região de Coimbra, Viseu Dão Lafões and Beiras e Serra da Estrela, using this data to find precise synergies in terms of material flows and give companies a competitive advantage in form of valuable waste destinations, access to new resources and new markets, cost reduction and risk sharing benefits. In our work, emphasis on applying artificial intelligence (AI) and, more specifically, on implementing state-of-the-art deep learning algorithms is placed, contributing to construction a business intelligent approach. With the emergence of new approaches generally highlighted under the sub-heading of AI and machine learning (ML), the methods for statistical analysis of complex and uncertain production systems are facing significant changes. Therefore, various definitions of AI and its differences from traditional statistics are presented, and furthermore, ML is introduced to identify its place in data science and the differences in topics such as big data analytics and in production problems that using AI and ML are identified. A lifecycle-based approach is then taken to analyse the use of different methods in each phase to identify the most useful technologies and unifying attributes of AI in manufacturing. Most of macroeconomic metabolisms models are mainly direct to contexts of large metropolis, neglecting rural territories, so within this project, a dynamic decision support model coupled with artificial intelligence tools and information platforms will be developed, focused on the reality of these transition zones between the rural and urban. Thus, a real decision support tool is under development, which will surpass the scientific developments carried out to date and will allow to overcome imitations related to the availability and reliability of data.

Keywords: circular economy, artificial intelligence, economic metabolisms, machine learning

Procedia PDF Downloads 70
3017 Wearable Jacket for Game-Based Post-Stroke Arm Rehabilitation

Authors: A. Raj Kumar, A. Okunseinde, P. Raghavan, V. Kapila

Abstract:

Stroke is the leading cause of adult disability worldwide. With recent advances in immediate post-stroke care, there is an increasing number of young stroke survivors, under the age of 65 years. While most stroke survivors will regain the ability to walk, they often experience long-term arm and hand motor impairments. Long term upper limb rehabilitation is needed to restore movement and function, and prevent deterioration from complications such as learned non-use and learned bad-use. We have developed a novel virtual coach, a wearable instrumented rehabilitation jacket, to motivate individuals to participate in long-term skill re-learning, that can be personalized to their impairment profile. The jacket can estimate the movements of an individual’s arms using embedded off-the-shelf sensors (e.g., 9-DOF IMU for inertial measurements, flex-sensors for measuring angular orientation of fingers) and a Bluetooth Low Energy (BLE) powered microcontroller (e.g., RFduino) to non-intrusively extract data. The 9-DOF IMU sensors contain 3-axis accelerometer, 3-axis gyroscope, and 3-axis magnetometer to compute the quaternions, which are transmitted to a computer to compute the Euler angles and estimate the angular orientation of the arms. The data are used in a gaming environment to provide visual, and/or haptic feedback for goal-based, augmented-reality training to facilitate re-learning in a cost-effective, evidence-based manner. The full paper will elaborate the technical aspects of communication, interactive gaming environment, and physical aspects of electronics necessary to achieve our stated goal. Moreover, the paper will suggest methods to utilize the proposed system as a cheaper, portable, and versatile system vis-à-vis existing instrumentation to facilitate post-stroke personalized arm rehabilitation.

Keywords: feedback, gaming, Euler angles, rehabilitation, augmented reality

Procedia PDF Downloads 276
3016 Educational Engineering Tool on Smartphone

Authors: Maya Saade, Rafic Younes, Pascal Lafon

Abstract:

This paper explores the transformative impact of smartphones on pedagogy and presents a smartphone application developed specifically for engineering problem-solving and educational purposes. The widespread availability and advanced capabilities of smartphones have revolutionized the way we interact with technology, including in education. The ubiquity of smartphones allows learners to access educational resources anytime and anywhere, promoting personalized and self-directed learning. The first part of this paper discusses the overall influence of smartphones on pedagogy, emphasizing their potential to improve learning experiences through mobile technology. In the context of engineering education, this paper focuses on the development of a dedicated smartphone application that serves as a powerful tool for both engineering problem-solving and education. The application features an intuitive and user-friendly interface, allowing engineering students and professionals to perform complex calculations and analyses on their smartphones. The smartphone application primarily focuses on beam calculations and serves as a comprehensive beam calculator tailored to engineering education. It caters to various engineering disciplines by offering interactive modules that allow students to learn key concepts through hands-on activities and simulations. With a primary emphasis on beam analysis, this application empowers users to perform calculations for statically determinate beams, statically indeterminate beams, and beam buckling phenomena. Furthermore, the app includes a comprehensive library of engineering formulas and reference materials, facilitating a deeper understanding and practical application of the fundamental principles in beam analysis. By offering a wide range of features specifically tailored for beam calculation, this application provides an invaluable tool for engineering students and professionals looking to enhance their understanding and proficiency in this crucial aspect of a structural engineer.

Keywords: mobile devices in education, solving engineering problems, smartphone application, engineering education

Procedia PDF Downloads 65
3015 Particle Observation in Secondary School Using a Student-Built Instrument: Design-Based Research on a STEM Sequence about Particle Physics

Authors: J.Pozuelo-Muñoz, E. Cascarosa-Salillas, C. Rodríguez-Casals, A. de Echave, E. Terrado-Sieso

Abstract:

This study focuses on the development, implementation, and evaluation of an instructional sequence aimed at 16–17-year-old students, involving the design and use of a cloud chamber—a device that allows observation of subatomic particles. The research addresses the limited presence of particle physics in Spanish secondary and high school curricula, a gap that restricts students' learning of advanced physics concepts and diminishes engagement with complex scientific topics. The primary goal of this project is to introduce particle physics in the classroom through a practical, interdisciplinary methodology that promotes autonomous learning and critical thinking. The methodology is framed within Design-Based Research (DBR), an approach that enables iterative and pragmatic development of educational resources. The research proceeded in several phases, beginning with the design of an experimental teaching sequence, followed by its implementation in high school classrooms. This sequence was evaluated, redesigned, and reimplemented with the aim of enhancing students’ understanding and skills related to designing and using particle detection instruments. The instructional sequence was divided into four stages: introduction to the activity, research and design of cloud chamber prototypes, observation of particle tracks, and analysis of collected data. In the initial stage, students were introduced to the fundamentals of the activity and provided with bibliographic resources to conduct autonomous research on cloud chamber functioning principles. During the design stage, students sourced materials and constructed their own prototypes, stimulating creativity and understanding of physics concepts like thermodynamics and material properties. The third stage focused on observing subatomic particles, where students recorded and analyzed the tracks generated in their chambers. Finally, critical reflection was encouraged regarding the instrument's operation and the nature of the particles observed. The results show that designing the cloud chamber motivates students and actively engages them in the learning process. Additionally, the use of this device introduces advanced scientific topics beyond particle physics, promoting a broader understanding of science. The study’s conclusions emphasize the need to provide students with ample time and space to thoroughly understand the role of materials and physical conditions in the functioning of their prototypes and to encourage critical analysis of the obtained data. This project not only highlights the importance of interdisciplinarity in science education but also provides a practical framework for teachers to adapt complex concepts for educational contexts where these topics are often absent.

Keywords: cloud chamber, particle physics, secondary education, instructional design, design-based research, STEM

Procedia PDF Downloads 12
3014 Investigating Chinese Students' Perceptions of and Responses to Teacher Feedback: Multiple Case Studies in a UK University

Authors: Fangfei Li

Abstract:

Studies on teacher feedback have produced a wide range of findings in aspects of characteristics of good feedback, factors influencing the quality of feedback and teachers’ perspectives on teacher feedback. However, perspectives from students on how they perceive and respond to teacher feedback are still under scrutiny. Especially for Chinese overseas students who come from a feedback-sparse educational context in China, they might have different experiences when engaging with teacher feedback in the UK Higher Education. Therefore, the research aims to investigate and shed some new light on how Chinese students engage with teacher feedback in the UK higher education and how teacher feedback could enhance their learning. Research questions of this study are 1) What are Chinese overseas students’ perceptions of teacher feedback in courses of the UK higher education? 2) How do they respond to the teacher feedback they obtained? 3) What factors might influence their’ engagement with teacher feedback? Qualitative case studies of five Chinese postgraduate students in a UK university have been conducted by employing various types of interviews, such as background interviews, scenario-based interviews, stimulated recall interviews and retrospective interviews to address the research inquiries. Data collection lasted seven months, covering two phases – the pre-sessional language programme and the first semester of the Master’s degree programme. Research findings until now indicate that some factors, such as tutors’ handwriting, implicit instruction and value comments, influence students understanding and internalizing tutor feedback. Except for difficulties in understanding tutor feedback, students’ responses to tutor feedback are also influenced by quantity and quality of tutor-student communication, time constraints and trust to tutor feedback, etc. Findings also reveal that tutor feedback is able to improve students’ learning in aspects of promoting reflection on professional knowledge, promoting students’ communication with peers and tutors, increasing problem awareness and writing with the reader in mind. This paper will mainly introduce the research topic, the methodological procedure and research findings gained until now.

Keywords: Chinese students, students’ perceptions, teacher feedback, the UK higher education

Procedia PDF Downloads 264
3013 Communication Skills for Physicians: Adaptation to the Third Gender and Language Cross Cultural Influences

Authors: Virginia Guillén Cañas, Miren Agurtzane Ortiz-Jauregi, Sonia Ruiz De Azua, Naiara Ozamiz

Abstract:

We want to focus on relationship of the communicational skills in several key aspects of medicine. The most relevant competencies of a health professional are an adequate communication capacity, which will influence the satisfaction of professionals and patients, therapeutic compliance, conflict prevention, clinical outcomes’ improvement and efficiency of health services. We define empathy as it as Sympathy and connection to others and capability to communicate this understanding. Some outcomes favoring empathy are female gender, younger age, and specialty choice. Third gender or third sex is a concept in which allows a person not to be categorized in a dual way but as a continuous variable, giving the choice of moving along it. This point of view recognizes three or more genders. The subject of Ethics and Clinical Communication is dedicated to sensitizing students about the importance and effectiveness of a good therapeutic relationship. We are also interested in other communicational aspects related to empathy as active listening, assertivity and basic and advanced Social Skills. Objectives: 1. To facilitate the approach of the student in the Medicine Degree to the reality of the medical profession 2. Analyze interesting outcome variables in communication 3. Interactive process to detect the areas of improvement in the learning process of the Physician throughout his professional career needs. Design: A comparative study with a cross-sectional approach was conducted in successive academic year cohorts of health professional students at a public Basque university. Four communicational aspects were evaluated through these questionnaires in Basque, Spanish and English: The active listening questionnaire, the TECA empathy questionnaire, the ACDA questionnaire and the EHS questionnaire Social Skills Scale. Types of interventions for improving skills: Interpersonal skills training intervention, Empathy intervention, Writing about experiential learning, Drama through role plays, Communicational skills training, Problem-based learning, Patient interviews ´videos, Empathy-focused training, Discussion. Results: It identified the need for a cross cultural adaptation and no gender distinction. The students enjoyed all the techniques in comparison to the usual master class. There was medium participation but these participative methodologies are not so usual in the university. According to empathy, men have a greater empathic capacity to fully understand women (p < 0.05) With regard to assertiveness there have been no differences between men and women in self-assertiveness but nevertheless women are more heteroassertive than men. Conclusions: These findings suggest that educational interventions with adequate feedback can be effective in maintaining and enhancing empathy in undergraduate medical students.

Keywords: physician's communicational skills, patient satisfaction, third gender, cross cultural adaptation

Procedia PDF Downloads 191
3012 A Computational Approach for the Prediction of Relevant Olfactory Receptors in Insects

Authors: Zaide Montes Ortiz, Jorge Alberto Molina, Alejandro Reyes

Abstract:

Insects are extremely successful organisms. A sophisticated olfactory system is in part responsible for their survival and reproduction. The detection of volatile organic compounds can positively or negatively affect many behaviors in insects. Compounds such as carbon dioxide (CO2), ammonium, indol, and lactic acid are essential for many species of mosquitoes like Anopheles gambiae in order to locate vertebrate hosts. For instance, in A. gambiae, the olfactory receptor AgOR2 is strongly activated by indol, which accounts for almost 30% of human sweat. On the other hand, in some insects of agricultural importance, the detection and identification of pheromone receptors (PRs) in lepidopteran species has become a promising field for integrated pest management. For example, with the disruption of the pheromone receptor, BmOR1, mediated by transcription activator-like effector nucleases (TALENs), the sensitivity to bombykol was completely removed affecting the pheromone-source searching behavior in male moths. Then, the detection and identification of olfactory receptors in the genomes of insects is fundamental to improve our understanding of the ecological interactions, and to provide alternatives in the integrated pests and vectors management. Hence, the objective of this study is to propose a bioinformatic workflow to enhance the detection and identification of potential olfactory receptors in genomes of relevant insects. Applying Hidden Markov models (Hmms) and different computational tools, potential candidates for pheromone receptors in Tuta absoluta were obtained, as well as potential carbon dioxide receptors in Rhodnius prolixus, the main vector of Chagas disease. This study showed the validity of a bioinformatic workflow with a potential to improve the identification of certain olfactory receptors in different orders of insects.

Keywords: bioinformatic workflow, insects, olfactory receptors, protein prediction

Procedia PDF Downloads 148
3011 The Enquiry of Food Culture Products, Practices and Perspectives: An Action Research on Teaching and Learning Food Culture from International Food Documentary Films

Authors: Tsuiping Chen

Abstract:

It has always been an international consensus that food forms a big part of any culture since the old times. However, this idea has not been globally concretized until the announcement of including food or cuisine as intangible cultural heritage by UNESCO in 2010. This announcement strengthens the value of food culture, which is getting more and more notice by every country. Although Taiwan is not one of the members of the United Nations, we cannot detach ourselves from this important global trend, especially when we have a lot of culinary students expected to join the world culinary job market. These students should have been well educated with the knowledge of world food culture to make them have the sensibility and perspectives for the occurring global food issues before joining the culinary jobs. Under the premise of the above concern, the researcher and also the instructor took on action research with one class of students in the 'Food Culture' course watching, discussing, and analyzing 12 culinary documentary films selected from one decade’s (2007-2016) of Berlin Culinary Cinema in one semester of class hours. In addition, after class, the students separated themselves into six groups and joined 12 times of one-hour-long focus group discussion on the 12 films conducted by the researcher. Furthermore, during the semester, the students submitted their reflection reports on each film to the university e-portfolio system. All the focus discussions and reflection reports were recorded and collected for further analysis by the researcher and one invited film researcher. Glaser and Strauss’ Grounded Theory (1967) constant comparison method was employed to analyze the collected data. Finally, the findings' results were audited by all participants of the research. All the participants and the researchers created 200 items of food culture products, 74 items of food culture practices, and 50 items of food culture perspectives from the action research journey through watching culinary documentaries. The journey did broaden students’ points of view on world food culture and enhance their capability on perspective construction for food culture. Four aspects of significant findings were demonstrated. First, learning food culture through watching Berlin culinary films helps students link themselves to the happening global food issues such as food security, food poverty, and food sovereignty, which direct them to rethink how people should grow, share and consume food. Second, watching different categories of documentary food films enhances students’ strong sense of responsibility for ensuring healthy lives and promoting well-being for all people in every corner of the world. Third, watching these documentary films encourages students to think if the culinary education they have accepted in this island is inclusive and the importance of quality education, which can promote lifelong learning. Last but not least, the journey of the culinary documentary film watching in the 'Food Culture' course inspires students to take pride in their profession. It is hoped the model of teaching food culture with culinary documentary films will inspire more food culture educators, researchers, and the culinary curriculum designers.

Keywords: food culture, action research, culinary documentary films, food culture products, practices, perspectives

Procedia PDF Downloads 110
3010 Ending Wars Over Water: Evaluating the Extent to Which Artificial Intelligence Can Be Used to Predict and Prevent Transboundary Water Conflicts

Authors: Akhila Potluru

Abstract:

Worldwide, more than 250 bodies of water are transboundary, meaning they cross the political boundaries of multiple countries. This creates a system of hydrological, economic, and social interdependence between communities reliant on these water sources. Transboundary water conflicts can occur as a result of this intense interdependence. Many factors contribute to the sparking of transboundary water conflicts, ranging from natural hydrological factors to hydro-political interactions. Previous attempts to predict transboundary water conflicts by analysing changes or trends in the contributing factors have typically failed because patterns in the data are hard to identify. However, there is potential for artificial intelligence and machine learning to fill this gap and identify future ‘hotspots’ up to a year in advance by identifying patterns in data where humans can’t. This research determines the extent to which AI can be used to predict and prevent transboundary water conflicts. This is done via a critical literature review of previous case studies and datasets where AI was deployed to predict water conflict. This research not only delivered a more nuanced understanding of previously undervalued factors that contribute toward transboundary water conflicts (in particular, culture and disinformation) but also by detecting conflict early, governance bodies can engage in processes to de-escalate conflict by providing pre-emptive solutions. Looking forward, this gives rise to significant policy implications and water-sharing agreements, which may be able to prevent water conflicts from developing into wide-scale disasters. Additionally, AI can be used to gain a fuller picture of water-based conflicts in areas where security concerns mean it is not possible to have staff on the ground. Therefore, AI enhances not only the depth of our knowledge about transboundary water conflicts but also the breadth of our knowledge. With demand for water constantly growing, competition between countries over shared water will increasingly lead to water conflict. There has never been a more significant time for us to be able to accurately predict and take precautions to prevent global water conflicts.

Keywords: artificial intelligence, machine learning, transboundary water conflict, water management

Procedia PDF Downloads 105
3009 Solving LWE by Pregressive Pumps and Its Optimization

Authors: Leizhang Wang, Baocang Wang

Abstract:

General Sieve Kernel (G6K) is considered as currently the fastest algorithm for the shortest vector problem (SVP) and record holder of open SVP challenge. We study the lattice basis quality improvement effects of the Workout proposed in G6K, which is composed of a series of pumps to solve SVP. Firstly, we use a low-dimensional pump output basis to propose a predictor to predict the quality of high-dimensional Pumps output basis. Both theoretical analysis and experimental tests are performed to illustrate that it is more computationally expensive to solve the LWE problems by using a G6K default SVP solving strategy (Workout) than these lattice reduction algorithms (e.g. BKZ 2.0, Progressive BKZ, Pump, and Jump BKZ) with sieving as their SVP oracle. Secondly, the default Workout in G6K is optimized to achieve a stronger reduction and lower computational cost. Thirdly, we combine the optimized Workout and the Pump output basis quality predictor to further reduce the computational cost by optimizing LWE instances selection strategy. In fact, we can solve the TU LWE challenge (n = 65, q = 4225, = 0:005) 13.6 times faster than the G6K default Workout. Fourthly, we consider a combined two-stage (Preprocessing by BKZ- and a big Pump) LWE solving strategy. Both stages use dimension for free technology to give new theoretical security estimations of several LWE-based cryptographic schemes. The security estimations show that the securities of these schemes with the conservative Newhope’s core-SVP model are somewhat overestimated. In addition, in the case of LAC scheme, LWE instances selection strategy can be optimized to further improve the LWE-solving efficiency even by 15% and 57%. Finally, some experiments are implemented to examine the effects of our strategies on the Normal Form LWE problems, and the results demonstrate that the combined strategy is four times faster than that of Newhope.

Keywords: LWE, G6K, pump estimator, LWE instances selection strategy, dimension for free

Procedia PDF Downloads 59
3008 Reshaping of Indian Education System with the Help of Multi-Media: Promises and Pitfalls

Authors: Geetu Gahlawat

Abstract:

The education system accustomed information on daily basis in term of variety i.e Multimedia channel. This can create a challenge to pedagogue to get hold on learner. Multimedia enhance the education system with its technology. Educators deliver their content effectively and beyond any limit through multimedia elements on another side it gives easy learning to learners and they are able to get their goals fast. This paper gives an overview of how multimedia reshape the Indian education system with its promises and pitfalls.

Keywords: multimedia, technology, techniques, development, pedagogy

Procedia PDF Downloads 279
3007 Analysis of the Discursive Dynamics of Preservice Physics Teachers in a Context of Curricular Innovation

Authors: M. A. Barros, M. V. Barros

Abstract:

The aim of this work is to analyze the discursive dynamics of preservice teachers during the implementation of a didactic sequence on topics of Quantum Mechanics for High School. Our research methodology was qualitative, case study type, in which we selected two prospective teachers on the Physics Teacher Training Course of the Sao Carlos Institute of Physics, at the University of Sao Paulo/Brazil. The set of modes of communication analyzed were the intentions and interventions of the teachers, the established communicative approach, the patterns and the contents of the interactions between teachers and students. Data were collected through video recording, interviews and questionnaires conducted before and after an 8 hour mini-course, which was offered to a group of 20 secondary students. As teaching strategy we used an active learning methodology, called: Peer Instruction. The episodes pointed out that both future teachers used interactive dialogic and authoritative communicative approaches to mediate the discussion between peers. In the interactive dialogic dimension the communication pattern was predominantly I-R-F (initiation-response-feedback), in which the future teachers assisted the students in the discussion by providing feedback to their initiations and contributing to the progress of the discussions between peers. Although the interactive dialogic dimension has been preferential during the use of the Peer Instruction method the authoritative communicative approach was also employed. In the authoritative dimension, future teachers used predominantly the type I-R-E (initiation-response-evaluation) communication pattern by asking the students several questions and leading them to the correct answer. Among the main implications the work contributes to the improvement of the practices of future teachers involved in applying active learning methodologies in classroom by identifying the types of communicative approaches and communication patterns used, as well as researches on curriculum innovation in physics in high school.

Keywords: curricular innovation, high school, physics teaching, discursive dynamics

Procedia PDF Downloads 181
3006 Assessing an Instrument Usability: Response Interpolation and Scale Sensitivity

Authors: Betsy Ng, Seng Chee Tan, Choon Lang Quek, Peter Looker, Jaime Koh

Abstract:

The purpose of the present study was to determine the particular scale rating that stands out for an instrument. The instrument was designed to assess student perceptions of various learning environments, namely face-to-face, online and blended. The original instrument had a 5-point Likert items (1 = strongly disagree and 5 = strongly agree). Alternate versions were modified with a 6-point Likert scale and a bar scale rating. Participants consisted of undergraduates in a local university were involved in the usability testing of the instrument in an electronic setting. They were presented with the 5-point, 6-point and percentage-bar (100-point) scale ratings, in response to their perceptions of learning environments. The 5-point and 6-point Likert scales were presented in the form of radio button controls for each number, while the percentage-bar scale was presented with a sliding selection. Among these responses, 6-point Likert scale emerged to be the best overall. When participants were confronted with the 5-point items, they either chose 3 or 4, suggesting that data loss could occur due to the insensitivity of instrument. The insensitivity of instrument could be due to the discreet options, as evidenced by response interpolation. To avoid the constraint of discreet options, the percentage-bar scale rating was tested, but the participant responses were not well-interpolated. The bar scale might have provided a variety of responses without a constraint of a set of categorical options, but it seemed to reflect a lack of perceived and objective accuracy. The 6-point Likert scale was more likely to reflect a respondent’s perceived and objective accuracy as well as higher sensitivity. This finding supported the conclusion that 6-point Likert items provided a more accurate measure of the participant’s evaluation. The 5-point and bar scale ratings might not be accurately measuring the participants’ responses. This study highlighted the importance of the respondent’s perception of accuracy, respondent’s true evaluation, and the scale’s ease of use. Implications and limitations of this study were also discussed.

Keywords: usability, interpolation, sensitivity, Likert scales, accuracy

Procedia PDF Downloads 405
3005 Insights into Insect Vectors: Liberibacter Interactions

Authors: Murad Ghanim

Abstract:

The citrus greening disease, also known as Huanglongbing, caused by the phloem-limited bacterium Candidatus Liberibacter asiaticus (CLas) has resulted in tremendous losses and the death of millions of citrus trees worldwide. CLas is transmitted by the Asian citrus psyllid (ACP) Diaphorina citri. The closely-related bacterium Candidatus Liberibacter solanacearum (CLso), which is associated with vegetative disorders in carrots and the zebra chips disease in potatoes, is transmitted by other psyllid species including Bactericera trigonica in carrots and B. ckockerelli in potatoes. Chemical sprays are currently the prevailing method for managing these diseases for limiting psyllid populations; however, they are limited in their effectiveness. A promising approach to prevent the transmission of these pathogens is to interfere with the vector-pathogen interactions, but our understanding of these processes is very limited. CLas induces changes in the nuclear architecture in the midgut of ACP and activates programmed cell death (apoptosis) in this organ. Strikingly, CLso displayed an opposite effect in the gut of B. trigonica, showing limited apoptosis, but widespread necrosis. Electron and fluorescent microscopy further showed that CLas induced the formation of Endoplasmic reticulum (ER) inclusion- and replication-like bodies, in which it increases and multiplies. ER involvement in bacterial replication is hypothesized to be the first stage of an immune response leading to the apoptotic and necrotic responses. ER exploitation and the subsequent events that lead to these cellular and stress responses might activate a cascade of molecular responses ending up with apoptosis and necrosis. Understanding the molecular interactions that underlay the necrotic/apoptotic responses to the bacteria will increase our knowledge of ACP-CLas, and BT-CLso interactions, and will set the foundation for developing novel, and efficient strategies to disturb these interactions and inhibit the transmission.

Keywords: Liberibacter, psyllid, transmission, apoptosis, necrosis

Procedia PDF Downloads 144
3004 Phenotypic and Genotypic Expression of Hylomma Anatolicum Ticks Silenced for Ferritin Genes through RNA Interference Technology

Authors: Muhammad Sohail Sajid, Mahvish Maqbool, Hafiz Muhammad Rizwan, Muhammad Saqib, Haroon Ahmad

Abstract:

Ticks are blood-sucking ectoparasite that causes a decrease in production and economic losses and affects mammals, reptiles, and birds. Hyalomma anatolicum is the main vector for CCHF transmission and Pakistan has faced several outbreaks of CCHF in the recent past. Ferritin (fer)is a highly conserved molecule that is ubiquitous in most tick tissues and responsible for iron metabolism and storage. It was hypothesized that the development of acaricidal resistance and residual effects of commercially used acaricides could be controlled by using alternative control methods, including RNA interference. The current study aimed to evaluate the fer silencing effects on tick feeding, average body weight, egg mass index, and mortality. Ticks, collected through the standard collection protocols were further subjected to RNA isolation using the Trizol method. Commercially available kit procedures were followed for cDNA and dsRNA synthesis. The soaking/Immersion method was used for dsRNA delivery. Our findings have shown a 27% reduction in body weight of fer silenced group and showed a significant association of fer and body weight. Silencing of fer had a significant effect on the engorgement percentage (P= 0.0007), oviposition (P=0.008), egg mass (P= 0.004) and hatching (P= 0.001). The soaking method was used for dsRNA delivery and 15°C was found to be an optimum temperature for inducing gene silencing in ticks as at this temperature, maximum survivability after immersion was attained. This study along with previous studies, described that iron toxicity due to the silencing of fer could play an important role in the control of ticks and fer can be used as a potent candidate for vaccine development.

Keywords: ticks, iron, ferritin, engorgement, oviposition, immersion, RNA interference

Procedia PDF Downloads 92
3003 Suicide Attempts and Gender: A Qualitative Analysis in Cuba

Authors: Alejandro Arnaldo Barroso Martinez

Abstract:

Unlike sex, which is constituted by anatomic-physiological differences, gender is a social construction. Our thoughts and behaviors as females and males are not etched in stone by our biology but rather from how society expects us to think and behave based on our sex assignment in the womb. Social expectations, values, and roles are taken on by individuals and shape the ways considered acceptable and linked to our bodies, feelings, and interpersonal relationships. Furthermore, these evolve into dire consequences for those who do not meet these disciplinary, economic, and cultural standards. Then, the social learning of gender identity implies the individual’s psychological sense of being, and it might be highly linked to a sense of life and suicide attempts. As a result, suicide has been considered a gender issue with differences in the rates and means used by men and women worldwide. Nevertheless, there has been a misunderstanding of the meaning of being male or female in a particular context and how it becomes a risk process for suicide attempts. For this reason, the general objective of the current research is to explain how this process occurs in Cuba. From a Critical Sociology and Social Psychology, a qualitative methodology was developed through six case studies and qualitative in-depth interviews. The analysis is focused on the sequence and interplay between two dimensions of meaning: signifiers and voices. Findings show that the risk process of suicide attempts in Cuba means some patriarchal beliefs and practices as part of informal educational models and some positivist practices in mental health attention. Findings also show that community relations create a sense of belonging, and it is a protection against suicide attempts in Cuba. Those frames of signifiers and voices explain in both males and females but differently when and how they are suffering from isolation, violence, the normalization of emotional awareness, and emotional distress expression. Suicide prevention programs should take gender learning into account as a cultural process.

Keywords: social constructions, gender identity, meanings, suicide attempt

Procedia PDF Downloads 213
3002 Methodological Issues of Teaching Vocabulary in a Technical University

Authors: Elza Salakhova

Abstract:

The purpose of this article is to consider some common difficulties encountered in teaching vocabulary in technical higher educational institutions. It deals with the problem of teaching special vocabulary in the process of teaching a foreign language. There have been analyzed some problems in teaching a foreign language to learners of a technical higher establishment. There are some recommendations for teachers to motivate their students to learn and master a foreign language through learning terminology.

Keywords: professionally-oriented study, motivation, technical university, foreign language

Procedia PDF Downloads 153
3001 The Detection of Implanted Radioactive Seeds on Ultrasound Images Using Convolution Neural Networks

Authors: Edward Holupka, John Rossman, Tye Morancy, Joseph Aronovitz, Irving Kaplan

Abstract:

A common modality for the treatment of early stage prostate cancer is the implantation of radioactive seeds directly into the prostate. The radioactive seeds are positioned inside the prostate to achieve optimal radiation dose coverage to the prostate. These radioactive seeds are positioned inside the prostate using Transrectal ultrasound imaging. Once all of the planned seeds have been implanted, two dimensional transaxial transrectal ultrasound images separated by 2 mm are obtained through out the prostate, beginning at the base of the prostate up to and including the apex. A common deep neural network, called DetectNet was trained to automatically determine the position of the implanted radioactive seeds within the prostate under ultrasound imaging. The results of the training using 950 training ultrasound images and 90 validation ultrasound images. The commonly used metrics for successful training were used to evaluate the efficacy and accuracy of the trained deep neural network and resulted in an loss_bbox (train) = 0.00, loss_coverage (train) = 1.89e-8, loss_bbox (validation) = 11.84, loss_coverage (validation) = 9.70, mAP (validation) = 66.87%, precision (validation) = 81.07%, and a recall (validation) = 82.29%, where train and validation refers to the training image set and validation refers to the validation training set. On the hardware platform used, the training expended 12.8 seconds per epoch. The network was trained for over 10,000 epochs. In addition, the seed locations as determined by the Deep Neural Network were compared to the seed locations as determined by a commercial software based on a one to three months after implant CT. The Deep Learning approach was within \strikeout off\uuline off\uwave off2.29\uuline default\uwave default mm of the seed locations determined by the commercial software. The Deep Learning approach to the determination of radioactive seed locations is robust, accurate, and fast and well within spatial agreement with the gold standard of CT determined seed coordinates.

Keywords: prostate, deep neural network, seed implant, ultrasound

Procedia PDF Downloads 197
3000 Action Research: Visual Dialogue: A Strategy for Managing Emotion of Autistic Students with Intellectual Disabilities

Authors: Tahmina Huq

Abstract:

Action research equips teachers with the skills needed to work on a particular situation in their classroom. This paper aims to introduce a strategy, visual dialogue between student and teacher, used by the researcher to help autistic students with intellectual disabilities to regulate their immediate emotions to achieve their academic goals. This research has been conducted to determine whether teaching self-regulation strategies can be effective instead of segregating them. The researcher has identified that visual dialogue between the student and teacher is a helpful technique for teaching self-regulation. For this particular research, action research suits the purpose as the findings can be applied immediately in the classroom. Like many autistic students, the teacher had two 15 years old autistic students with intellectual disabilities in class who had difficulty in controlling their emotions and impulses. They expressed their emotions through aggressive behavior, such as shouting, screaming, biting teachers or any adult who was in their sight, and destroying school property. They needed two to four hours to recover from their meltdowns with the help of a psychologist. The students missed the classes as they were often isolated from the classroom and stayed in the calming room until they calmed down. This negatively affected their learning. Therefore, the researcher decided to implement a self-regulation strategy, a visual dialogue between students and teachers, instead of isolating them to recover from the meltdown. The data was collected through personal observations, a log sheet, personal reflections, and pictures. The result shows that the students can regulate their emotions shortly in the classroom (15 to 30 minutes). Through visual dialogue, they can express their feelings and needs in socially appropriate ways. The finding indicates that autistic students can regulate their emotions through visual dialogues and participate in activities by staying in the classroom. Thus it positively impacted their learning and social lives. In this paper, the researcher discussed the findings of exploring how teachers can successfully implement a self-regulation strategy for autistic students in classroom settings. The action research describes the strategy that has been found effective for managing the emotions of autistic students with intellectual disabilities.

Keywords: action research, self-regulation, autism, visual communication

Procedia PDF Downloads 64
2999 Modelling and Optimization of a Combined Sorption Enhanced Biomass Gasification with Hydrothermal Carbonization, Hot Gas Cleaning and Dielectric Barrier Discharge Plasma Reactor to Produce Pure H₂ and Methanol Synthesis

Authors: Vera Marcantonio, Marcello De Falco, Mauro Capocelli, Álvaro Amado-Fierro, Teresa A. Centeno, Enrico Bocci

Abstract:

Concerns about energy security, energy prices, and climate change led scientific research towards sustainable solutions to fossil fuel as renewable energy sources coupled with hydrogen as an energy vector and carbon capture and conversion technologies. Among the technologies investigated in the last decades, biomass gasification acquired great interest owing to the possibility of obtaining low-cost and CO₂ negative emission hydrogen production from a large variety of everywhere available organic wastes. Upstream and downstream treatment were then studied in order to maximize hydrogen yield, reduce the content of organic and inorganic contaminants under the admissible levels for the technologies which are coupled with, capture, and convert carbon dioxide. However, studies which analyse a whole process made of all those technologies are still missing. In order to fill this lack, the present paper investigated the coexistence of hydrothermal carbonization (HTC), sorption enhance gasification (SEG), hot gas cleaning (HGC), and CO₂ conversion by dielectric barrier discharge (DBD) plasma reactor for H₂ production from biomass waste by means of Aspen Plus software. The proposed model aimed to identify and optimise the performance of the plant by varying operating parameters (such as temperature, CaO/biomass ratio, separation efficiency, etc.). The carbon footprint of the global plant is 2.3 kg CO₂/kg H₂, lower than the latest limit value imposed by the European Commission to consider hydrogen as “clean”, that was set to 3 kg CO₂/kg H₂. The hydrogen yield referred to the whole plant is 250 gH₂/kgBIOMASS.

Keywords: biomass gasification, hydrogen, aspen plus, sorption enhance gasification

Procedia PDF Downloads 76
2998 dynr.mi: An R Program for Multiple Imputation in Dynamic Modeling

Authors: Yanling Li, Linying Ji, Zita Oravecz, Timothy R. Brick, Michael D. Hunter, Sy-Miin Chow

Abstract:

Assessing several individuals intensively over time yields intensive longitudinal data (ILD). Even though ILD provide rich information, they also bring other data analytic challenges. One of these is the increased occurrence of missingness with increased study length, possibly under non-ignorable missingness scenarios. Multiple imputation (MI) handles missing data by creating several imputed data sets, and pooling the estimation results across imputed data sets to yield final estimates for inferential purposes. In this article, we introduce dynr.mi(), a function in the R package, Dynamic Modeling in R (dynr). The package dynr provides a suite of fast and accessible functions for estimating and visualizing the results from fitting linear and nonlinear dynamic systems models in discrete as well as continuous time. By integrating the estimation functions in dynr and the MI procedures available from the R package, Multivariate Imputation by Chained Equations (MICE), the dynr.mi() routine is designed to handle possibly non-ignorable missingness in the dependent variables and/or covariates in a user-specified dynamic systems model via MI, with convergence diagnostic check. We utilized dynr.mi() to examine, in the context of a vector autoregressive model, the relationships among individuals’ ambulatory physiological measures, and self-report affect valence and arousal. The results from MI were compared to those from listwise deletion of entries with missingness in the covariates. When we determined the number of iterations based on the convergence diagnostics available from dynr.mi(), differences in the statistical significance of the covariate parameters were observed between the listwise deletion and MI approaches. These results underscore the importance of considering diagnostic information in the implementation of MI procedures.

Keywords: dynamic modeling, missing data, mobility, multiple imputation

Procedia PDF Downloads 162
2997 Enhancing Plant Throughput in Mineral Processing Through Multimodal Artificial Intelligence

Authors: Muhammad Bilal Shaikh

Abstract:

Mineral processing plants play a pivotal role in extracting valuable minerals from raw ores, contributing significantly to various industries. However, the optimization of plant throughput remains a complex challenge, necessitating innovative approaches for increased efficiency and productivity. This research paper investigates the application of Multimodal Artificial Intelligence (MAI) techniques to address this challenge, aiming to improve overall plant throughput in mineral processing operations. The integration of multimodal AI leverages a combination of diverse data sources, including sensor data, images, and textual information, to provide a holistic understanding of the complex processes involved in mineral extraction. The paper explores the synergies between various AI modalities, such as machine learning, computer vision, and natural language processing, to create a comprehensive and adaptive system for optimizing mineral processing plants. The primary focus of the research is on developing advanced predictive models that can accurately forecast various parameters affecting plant throughput. Utilizing historical process data, machine learning algorithms are trained to identify patterns, correlations, and dependencies within the intricate network of mineral processing operations. This enables real-time decision-making and process optimization, ultimately leading to enhanced plant throughput. Incorporating computer vision into the multimodal AI framework allows for the analysis of visual data from sensors and cameras positioned throughout the plant. This visual input aids in monitoring equipment conditions, identifying anomalies, and optimizing the flow of raw materials. The combination of machine learning and computer vision enables the creation of predictive maintenance strategies, reducing downtime and improving the overall reliability of mineral processing plants. Furthermore, the integration of natural language processing facilitates the extraction of valuable insights from unstructured textual data, such as maintenance logs, research papers, and operator reports. By understanding and analyzing this textual information, the multimodal AI system can identify trends, potential bottlenecks, and areas for improvement in plant operations. This comprehensive approach enables a more nuanced understanding of the factors influencing throughput and allows for targeted interventions. The research also explores the challenges associated with implementing multimodal AI in mineral processing plants, including data integration, model interpretability, and scalability. Addressing these challenges is crucial for the successful deployment of AI solutions in real-world industrial settings. To validate the effectiveness of the proposed multimodal AI framework, the research conducts case studies in collaboration with mineral processing plants. The results demonstrate tangible improvements in plant throughput, efficiency, and cost-effectiveness. The paper concludes with insights into the broader implications of implementing multimodal AI in mineral processing and its potential to revolutionize the industry by providing a robust, adaptive, and data-driven approach to optimizing plant operations. In summary, this research contributes to the evolving field of mineral processing by showcasing the transformative potential of multimodal artificial intelligence in enhancing plant throughput. The proposed framework offers a holistic solution that integrates machine learning, computer vision, and natural language processing to address the intricacies of mineral extraction processes, paving the way for a more efficient and sustainable future in the mineral processing industry.

Keywords: multimodal AI, computer vision, NLP, mineral processing, mining

Procedia PDF Downloads 65