Search results for: accuracy improvement
2858 Artificial Neural Network Approach for Modeling Very Short-Term Wind Speed Prediction
Authors: Joselito Medina-Marin, Maria G. Serna-Diaz, Juan C. Seck-Tuoh-Mora, Norberto Hernandez-Romero, Irving Barragán-Vite
Abstract:
Wind speed forecasting is an important issue for planning wind power generation facilities. The accuracy in the wind speed prediction allows a good performance of wind turbines for electricity generation. A model based on artificial neural networks is presented in this work. A dataset with atmospheric information about air temperature, atmospheric pressure, wind direction, and wind speed in Pachuca, Hidalgo, México, was used to train the artificial neural network. The data was downloaded from the web page of the National Meteorological Service of the Mexican government. The records were gathered for three months, with time intervals of ten minutes. This dataset was used to develop an iterative algorithm to create 1,110 ANNs, with different configurations, starting from one to three hidden layers and every hidden layer with a number of neurons from 1 to 10. Each ANN was trained with the Levenberg-Marquardt backpropagation algorithm, which is used to learn the relationship between input and output values. The model with the best performance contains three hidden layers and 9, 6, and 5 neurons, respectively; and the coefficient of determination obtained was r²=0.9414, and the Root Mean Squared Error is 1.0559. In summary, the ANN approach is suitable to predict the wind speed in Pachuca City because the r² value denotes a good fitting of gathered records, and the obtained ANN model can be used in the planning of wind power generation grids.Keywords: wind power generation, artificial neural networks, wind speed, coefficient of determination
Procedia PDF Downloads 1292857 Multiscale Entropy Analysis of Electroencephalogram (EEG) of Alcoholic and Control Subjects
Authors: Lal Hussain, Wajid Aziz, Imtiaz Ahmed Awan, Sharjeel Saeed
Abstract:
Multiscale entropy analysis (MSE) is a useful technique recently developed to quantify the dynamics of physiological signals at different time scales. This study is aimed at investigating the electroencephalogram (EEG) signals to analyze the background activity of alcoholic and control subjects by inspecting various coarse-grained sequences formed at different time scales. EEG recordings of alcoholic and control subjects were taken from the publically available machine learning repository of University of California (UCI) acquired using 64 electrodes. The MSE analysis was performed on the EEG data acquired from all the electrodes of alcoholic and control subjects. Mann-Whitney rank test was used to find significant differences between the groups and result were considered statistically significant for p-values<0.05. The area under receiver operator curve was computed to find the degree separation between the groups. The mean ranks of MSE values at all the times scales for all electrodes were higher control subject as compared to alcoholic subjects. Higher mean ranks represent higher complexity and vice versa. The finding indicated that EEG signals acquired through electrodes C3, C4, F3, F7, F8, O1, O2, P3, T7 showed significant differences between alcoholic and control subjects at time scales 1 to 5. Moreover, all electrodes exhibit significance level at different time scales. Likewise, the highest accuracy and separation was obtained at the central region (C3 and C4), front polar regions (P3, O1, F3, F7, F8 and T8) while other electrodes such asFp1, Fp2, P4 and F4 shows no significant results.Keywords: electroencephalogram (EEG), multiscale sample entropy (MSE), Mann-Whitney test (MMT), Receiver Operator Curve (ROC), complexity analysis
Procedia PDF Downloads 3782856 An Efficient Hybrid Feedstock Pretreatment Technique for the Release of Fermentable Sugar from Cassava Peels for Biofuel Production
Authors: Gabriel Sanjo Aruwajoye, E. B. Gueguim Kana
Abstract:
Agricultural residues present a low-cost feedstock for bioenergy production around the world. Cassava peels waste are rich in organic molecules that can be readily converted to value added products such as biomaterials and biofuels. However, due to the presence of high proportion of structural carbohydrates and lignin, the hydrolysis of this feedstock is imperative to achieve maximum substrate utilization and energy yield. This study model and optimises the release of Fermentable Sugar (FS) from cassava peels waste using the Response Surface Methodology. The investigated pretreatment input parameters consisted of soaking temperature (oC), soaking time (hours), autoclave duration (minutes), acid concentration (% v/v), substrate solid loading (% w/v) within the range of 30 to 70, 0 to 24, 5 to 20, 0 to 5 and 2 to 10 respectively. The Box-Behnken design was used to generate 46 experimental runs which were investigated for FS release. The obtained data were used to fit a quadratic model. A coefficient of determination of 0.87 and F value of 8.73 was obtained indicating the good fitness of the model. The predicted optimum pretreatment conditions were 69.62 oC soaking temperature, 2.57 hours soaking duration, 5 minutes autoclave duration, 3.68 % v/v HCl and 9.65 % w/v solid loading corresponding to FS yield of 91.83g/l (0.92 g/g cassava peels) thus 58% improvement on the non-optimised pretreatment. Our findings demonstrate an efficient pretreatment model for fermentable sugar release from cassava peels waste for various bioprocesses.Keywords: feedstock pretreatment, cassava peels, fermentable sugar, response surface methodology
Procedia PDF Downloads 3722855 Child Maltreatment Prevention Readiness Assessment in the Kingdom of Saudi Arabia
Authors: Majid Al-Eissa, Hassan Saleheen, Fatimah Al Shehri, Maha AlMuneef
Abstract:
Global efforts are being made to combat child maltreatment (CM); however, in 2011 the Kingdom of Saudi Arabia’s (KSA) response to this issue was found to be mediocre. Several developments have been implemented in KSA since then, and reevaluation is now necessary. The aim of this study is to assess the CM-prevention readiness (CMPR) of KSA in regard to implementing large-scale, evidence-based CM-prevention programs. Participants were decision makers and senior managers in the field of CM. Face-to-face interviews were conducted in the participants’ offices. This was a cross-sectional study. We used the multi-dimensional tool “Readiness Assessment for the Prevention of Child Maltreatment - short version,” which examines ten dimensions concerning this topic. Comparison between the results of this study and those of the 2011 examination was performed to determine how the situation in KSA has changed. Sixty informants were interviewed; the majority being females (57%) and from governmental institutions (56%). The average total score for the ten dimensions was 47.4%, an increase from the 43.7% reported in 2011. The strongest dimensions were legislations and mandates (8.3/10), followed by knowledge (7.1/10) and institutional links and resources (5.8/10). The lowest scores concerned human and technical resources (1.7/10) and attitude towards CM (2.8/10). Compared to the 2011 results, some dimensions showed significant improvements, but the majority had remained consistent. Time and commitment are necessary to secure CMPR improvement. Periodic assessment of CMPR is required to provide proper recommendations to the government regarding the progress of CM-prevention strategies.Keywords: assessment, child maltreatment, prevention, readiness, Saudi Arabia
Procedia PDF Downloads 1812854 Investigate the Effect and the Main Influencing Factors of the Accelerated Reader Programme on Chinese Primary School Students’ Reading Achievement
Authors: Fujia Yang
Abstract:
Alongside technological innovation, the current “double reduction” policy and English Curriculum Standards for Compulsory Education in China both emphasise and encourage appropriately integrating educational technologies into the classroom. Therefore, schools are increasingly using digital means to engage students in English reading, but the impact of such technologies on Chinese pupils’ reading achievement remains unclear. To serve as a reference for reforming English reading education in primary schools under the double reduction policy, this study investigates the effects and primary influencing factors of a specific reading programme, Accelerated Reader (AR), on Chinese primary school students’ reading achievement. A quantitative online survey was used to collect 37 valid questionnaires from teachers, and the results demonstrate that, from teachers’ perspectives, the AR program seemed to positively affect students’ reading achievement by recommending material at the appropriate reading levels and developing students’ reading habits. Although the reading enjoyment derived from the AR program does not directly influence students’ reading achievement, these factors are strongly correlated. This can be explained by the self-paced, independent learning AR format, its high accuracy in predicting reading level, the quiz format and external motivation, and the importance of examinations and resource limitations in China. The results of this study may support reforming English reading education in Chinese primary schools.Keywords: educational technology, reading programme, primary students, accelerated reader, reading effects
Procedia PDF Downloads 882853 Improving Human Resources Management in Indian Civil Service
Authors: Anant Deogaonkar, Archana Nanoty
Abstract:
The term civil service plays a vital role in functioning of any government. In today’s modern era of globalization civil services essentially contribute for the success of the good governance system. The civil service in India refers to the body of government officials employed in civil occupations that are neither political nor judicial. The Indian Civil Services were created to foster the idea of unity in diversity with the expectation of giving continuity and change in administration independent of the political scenario and turmoil affecting the country. The civil service is an integral part of administration and the structures of administration to determine the way civil service functions. The concept of good governance necessarily precludes the effective human resource management ensuring the root level reach of the good governance. The serious matter of concern is the element of change. The civil service in general has maintained status quo instead of sweeping changes in social and economic scenario. One may disagree for this but it is a fact on the street that the Indian civil service was not able to deliver up to the expectations of the people and was lacking on the service front. The effective management of human resources at civil service needs to be prioritized and will form a key factor in successful delivery of the desired results may be in minimum duration. This paper focuses on the various ways of effective management of human resources in civil services. It also highlights the importance of improvement in human resource management in civil services with the detailed discussion of positives and negatives if any of the human resource management in civil services.Keywords: civil services, human resources management, India, governance
Procedia PDF Downloads 3212852 Good Governance in Perspective: An Example of Transition from Corruption towards Integrity within a Developing Country (Pakistan)
Authors: Saifullah Khalid
Abstract:
Governance and good governance are among the main topics in international discussions about the success factors for social and economic development. The image of developing countries as for example Pakistan in this respect is bad (in TI Corruption Index nr. among countries). Additionally, the police are among the sectors and organizations which are seen as most corrupt in many countries. However, in case of Pakistan there seem to be exceptions to the rule, and improvement can be brought in specific police departments. This paper represents the findings of Islamabad traffic police (ITP). In Pakistan, the police, in general, have been stigmatized for being the most corrupt department in the country. However, the few recent examples of Motorway police and its replicated model of Islamabad traffic police changed the perception about police and policing. These police forces have shown that Policing in Pakistan can be changed for better. In this paper, the research question that is addressed is: How corrupt are (traffic) police forces in Pakistan and what factors influence corruption within that police force? And What lessons can be learned from that to improve police integrity? Both qualitative and quantitative tools are utilized for data collection. The overall picture of the factors is not so easy to interpret and summarise. Nevertheless paying a better salary does not seem to limit integrity violations, neither does recruitment and selection and leadership, while supervision and control, training and stimulating the positive and limiting the negative elements of culture appear to be important in curbing (sometimes specific) integrity violations in the context of Pakistani police forces. The study also leads to a number of suggestions for curbing corruption and other integrity violations in the Pakistan police.Keywords: corruption control, governance, integrity violations, Islamabad traffic police, Pakistan
Procedia PDF Downloads 2182851 Artificial Intelligence Based Abnormality Detection System and Real Valuᵀᴹ Product Design
Authors: Junbeom Lee, Jaehyuck Cho, Wookyeong Jeong, Jonghan Won, Jungmin Hwang, Youngseok Song, Taikyeong Jeong
Abstract:
This paper investigates and analyzes meta-learning technologies that use multiple-cameras to monitor and check abnormal behavior in people in real-time in the area of healthcare fields. Advances in artificial intelligence and computer vision technologies have confirmed that cameras can be useful for individual health monitoring and abnormal behavior detection. Through this, it is possible to establish a system that can respond early by automatically detecting abnormal behavior of the elderly, such as patients and the elderly. In this paper, we use a technique called meta-learning to analyze image data collected from cameras and develop a commercial product to determine abnormal behavior. Meta-learning applies machine learning algorithms to help systems learn and adapt quickly to new real data. Through this, the accuracy and reliability of the abnormal behavior discrimination system can be improved. In addition, this study proposes a meta-learning-based abnormal behavior detection system that includes steps such as data collection and preprocessing, feature extraction and selection, and classification model development. Various healthcare scenarios and experiments analyze the performance of the proposed system and demonstrate excellence compared to other existing methods. Through this study, we present the possibility that camera-based meta-learning technology can be useful for monitoring and testing abnormal behavior in the healthcare area.Keywords: artificial intelligence, abnormal behavior, early detection, health monitoring
Procedia PDF Downloads 922850 An Anthropometric and Postural Risk Assessment of Students in Computer Laboratories of a State University
Authors: Sarah Louise Cruz, Jemille Venturina
Abstract:
Ergonomics considers the capabilities and limitations of a person as they interact with tools, equipment, facilities and tasks in their work environment. Workplace is one example of physical work environment, be it a workbench or a desk. In school laboratories, sitting is the most common working posture of the students. Students maintain static sitting posture as they perform different computer-aided activities. The College of Engineering and College of Information and Communication Technology of a State University consist of twenty-two computer laboratories. Normally, students aren’t usually aware of the importance of sustaining proper sitting posture while doing their long hour computer laboratory activities. The study evaluates the perceived discomfort and working postures of students as they are exposed on current workplace design of computer laboratories. The current study utilizes Rapid Upper Limb Assessment (RULA), Body Discomfort Chart using Borg’s CR-10 Scale Rating and Quick Exposure Checklist in order to assess the posture and the current working condition. The result of the study may possibly minimize the body discomfort experienced by the students. The researchers redesign the individual workstations which includes working desk, sitting stool and other workplace design components. Also, the economic variability of each alternative was considered given that the study focused on improvement of facilities of a state university.Keywords: computer workstation, ergonomics, posture, students, workplace
Procedia PDF Downloads 3162849 A Neurofeedback Learning Model Using Time-Frequency Analysis for Volleyball Performance Enhancement
Authors: Hamed Yousefi, Farnaz Mohammadi, Niloufar Mirian, Navid Amini
Abstract:
Investigating possible capacities of visual functions where adapted mechanisms can enhance the capability of sports trainees is a promising area of research, not only from the cognitive viewpoint but also in terms of unlimited applications in sports training. In this paper, the visual evoked potential (VEP) and event-related potential (ERP) signals of amateur and trained volleyball players in a pilot study were processed. Two groups of amateur and trained subjects are asked to imagine themselves in the state of receiving a ball while they are shown a simulated volleyball field. The proposed method is based on a set of time-frequency features using algorithms such as Gabor filter, continuous wavelet transform, and a multi-stage wavelet decomposition that are extracted from VEP signals that can be indicative of being amateur or trained. The linear discriminant classifier achieves the accuracy, sensitivity, and specificity of 100% when the average of the repetitions of the signal corresponding to the task is used. The main purpose of this study is to investigate the feasibility of a fast, robust, and reliable feature/model determination as a neurofeedback parameter to be utilized for improving the volleyball players’ performance. The proposed measure has potential applications in brain-computer interface technology where a real-time biomarker is needed.Keywords: visual evoked potential, time-frequency feature extraction, short-time Fourier transform, event-related spectrum potential classification, linear discriminant analysis
Procedia PDF Downloads 1432848 Iris Cancer Detection System Using Image Processing and Neural Classifier
Authors: Abdulkader Helwan
Abstract:
Iris cancer, so called intraocular melanoma is a cancer that starts in the iris; the colored part of the eye that surrounds the pupil. There is a need for an accurate and cost-effective iris cancer detection system since the available techniques used currently are still not efficient. The combination of the image processing and artificial neural networks has a great efficiency for the diagnosis and detection of the iris cancer. Image processing techniques improve the diagnosis of the cancer by enhancing the quality of the images, so the physicians diagnose properly. However, neural networks can help in making decision; whether the eye is cancerous or not. This paper aims to develop an intelligent system that stimulates a human visual detection of the intraocular melanoma, so called iris cancer. The suggested system combines both image processing techniques and neural networks. The images are first converted to grayscale, filtered, and then segmented using prewitt edge detection algorithm to detect the iris, sclera circles and the cancer. The principal component analysis is used to reduce the image size and for extracting features. Those features are considered then as inputs for a neural network which is capable of deciding if the eye is cancerous or not, throughout its experience adopted by many training iterations of different normal and abnormal eye images during the training phase. Normal images are obtained from a public database available on the internet, “Mile Research”, while the abnormal ones are obtained from another database which is the “eyecancer”. The experimental results for the proposed system show high accuracy 100% for detecting cancer and making the right decision.Keywords: iris cancer, intraocular melanoma, cancerous, prewitt edge detection algorithm, sclera
Procedia PDF Downloads 5072847 Dow Polyols near Infrared Chemometric Model Reduction Based on Clustering: Reducing Thirty Global Hydroxyl Number (OH) Models to Less Than Five
Authors: Wendy Flory, Kazi Czarnecki, Matthijs Mercy, Mark Joswiak, Mary Beth Seasholtz
Abstract:
Polyurethane Materials are present in a wide range of industrial segments such as Furniture, Building and Construction, Composites, Automotive, Electronics, and more. Dow is one of the leaders for the manufacture of the two main raw materials, Isocyanates and Polyols used to produce polyurethane products. Dow is also a key player for the manufacture of Polyurethane Systems/Formulations designed for targeted applications. In 1990, the first analytical chemometric models were developed and deployed for use in the Dow QC labs of the polyols business for the quantification of OH, water, cloud point, and viscosity. Over the years many models have been added; there are now over 140 models for quantification and hundreds for product identification, too many to be reasonable for support. There are 29 global models alone for the quantification of OH across > 70 products at many sites. An attempt was made to consolidate these into a single model. While the consolidated model proved good statistics across the entire range of OH, several products had a bias by ASTM E1655 with individual product validation. This project summary will show the strategy for global model updates for OH, to reduce the number of models for quantification from over 140 to 5 or less using chemometric methods. In order to gain an understanding of the best product groupings, we identify clusters by reducing spectra to a few dimensions via Principal Component Analysis (PCA) and Uniform Manifold Approximation and Projection (UMAP). Results from these cluster analyses and a separate validation set allowed dow to reduce the number of models for predicting OH from 29 to 3 without loss of accuracy.Keywords: hydroxyl, global model, model maintenance, near infrared, polyol
Procedia PDF Downloads 1392846 The Effect of Compound Exercises Emphasizing Local and Global Stability on the Dynamic Balance in Elite Taekwondo Athletes
Authors: Elnaz Sabzehparvar, Pouya Rabiei, Houman Rezaei
Abstract:
Few studies have been conducted about the effects of compound exercises emphasizing local stability and global stabilization subsystems on the performance of athletes. The present research aimed to study the effect of 6 weeks of compound exercises emphasizing local and global stability on the dynamic balance of elite male Taekwondo athletes. Twenty-seven elite male Taekwondo athletes (with a mean age, mass, and height of 24.4 ± 4.9 years, 75.7 ± 15.1kg, and 181.4 ± 7.8 cm, respectively) were assigned to two groups of control (n=12) and exercise (n=15). 6 weeks of compound exercises in 2 local and global phases. The first phase included activation exercises which were done separately and locally for 3 weeks. Then, integrative exercises specific to the global stabilization subsystems (longitudinal-depth, posterior oblique and anterior, and lateral) was carried out for next 3 weeks. The dynamic balance of subjects was measured in the pre-test and post-test using the Y Balance Test (YBT). After 6 weeks of compound exercises, scores of the YBT in the exercise group showed a significant improvement in all three anterior (p=0.035), posterolateral (p=0.017) and medial (p=0.001) directions in the post-test compared to the control group (p ≤ 0.05 for all comparisons). The findings of the present study suggested that compound exercises focusing on muscle as separate units and then as interdependent chains (muscular subsystems) can significantly increase YBT on elite male Taekwondo athletes in all three directions.Keywords: Taekwondo, compound exercises, local and global stability, muscular subsystems
Procedia PDF Downloads 2252845 Improving the Quality of Staff Performance with a Talent-Driven Approach: Case Study of SAIPA Automotive Manufacturing Company in Iran
Authors: Abdolmajid Mosleh, Afzal Ghasimi
Abstract:
The purpose of this research is to investigate and identify effective factors that can improve the quality of personal performance in industrial companies. In the present study, it was assumed that the hidden variables of talent management could be explained by an important part of the variance in improving the quality of employee performance. This research is targeted in terms of applied research. The statistical population of the research is SAIPA automobile company with a number (N=10291); the sample of 380 people was selected based on the Cochran formula in a random sampling method among employed people. The measurement tool in this research was a questionnaire of 33 items with a control questionnaire that included two talent management departments (talent identification and talent exploitation) and improvements in staff performance (enhancement of technical and specialized capabilities, managerial capability, organizational interaction, and communication). The reliability of the internal consistency method was confirmed by the Cronbach's alpha coefficient and the two half-ways. In order to determine the validity of the questionnaire structure, confirmatory factor analysis was used. Based on the results of the data analysis, the effect of talent management on improving the quality of staff performance was confirmed. Based on the results of inferential statistics and structural equations of the proposed model, it had high fitness.Keywords: employee performance, talent management, performance improvement, SAIPA automobile manufacturing company
Procedia PDF Downloads 942844 Development of Self Emulsifying Drug Delivery Systems (SEDDS) of Anticancer Agents Used in AYUSH System of Medicine for Improved Oral Bioavailability Followed by Their Pharmacological Evaluation Using Biotechnological Techniques
Authors: Meenu Mehta, Munish Garg
Abstract:
The use of oral anticancer drugs from AYUSH system of medicine is widely increased among the society due to their low cost, enhanced efficacy, increased patient preference, lack of inconveniences related to infusion and they provide an opportunity to develop chronic treatment regimens. However, oral delivery of these drugs usually laid down by the limited bioavailability of the drug, which is associated with a wide variation. As most of the cytotoxic agents have a narrow therapeutic window and are dosed at or near the maximum tolerated dose, a wide variability in the bioavailability can negatively affect treatment result. It is estimated that 40% of active substances are poorly soluble in water. The improvement of bio-availability of drugs with such properties presents one of the greatest challenges in drug formulations. There are several techniques reported in literature. Among all these Self Emulsifying Drug Delivery System (SEDDS) has gained more attention due to enhanced oral bio-availability enabling a reduction in dose. Thus, SEDDS anticancer drugs will have the increased bioavailability and efficacy. These dosage form will provide societal benefit in a cost-effective manner as compared to other oral dosage forms. Present study reflects on the formulation strategies as SEDDS for oral anticancer agents of AYUSH system for enhanced bioavailability with proven efficacy by cancer cell lines.Keywords: anticancer agents, AYUSH system, bioavailability, SEDDS
Procedia PDF Downloads 3082843 IoT-Based Early Identification of Guava (Psidium guajava) Leaves and Fruits Diseases
Authors: Daudi S. Simbeye, Mbazingwa E. Mkiramweni
Abstract:
Plant diseases have the potential to drastically diminish the quantity and quality of agricultural products. Guava (Psidium guajava), sometimes known as the apple of the tropics, is one of the most widely cultivated fruits in tropical regions. Monitoring plant health and diagnosing illnesses is an essential matter for sustainable agriculture, requiring the inspection of visually evident patterns on plant leaves and fruits. Due to minor variations in the symptoms of various guava illnesses, a professional opinion is required for disease diagnosis. Due to improper pesticide application by farmers, erroneous diagnoses may result in economic losses. This study proposes a method that uses artificial intelligence (AI) to detect and classify the most widespread guava plant by comparing images of its leaves and fruits to datasets. ESP32 CAM is responsible for data collection, which includes images of guava leaves and fruits. By comparing the datasets, these image formats are used as datasets to help in the diagnosis of plant diseases through the leaves and fruits, which is vital for the development of an effective automated agricultural system. The system test yielded the most accurate identification findings (99 percent accuracy in differentiating four guava fruit diseases (Canker, Mummification, Dot, and Rust) from healthy fruit). The proposed model has been interfaced with a mobile application to be used by smartphones to make a quick and responsible judgment, which can help the farmers instantly detect and prevent future production losses by enabling them to take precautions beforehand.Keywords: early identification, guava plants, fruit diseases, deep learning
Procedia PDF Downloads 802842 AI-Powered Models for Real-Time Fraud Detection in Financial Transactions to Improve Financial Security
Authors: Shanshan Zhu, Mohammad Nasim
Abstract:
Financial fraud continues to be a major threat to financial institutions across the world, causing colossal money losses and undermining public trust. Fraud prevention techniques, based on hard rules, have become ineffective due to evolving patterns of fraud in recent times. Against such a background, the present study probes into distinct methodologies that exploit emergent AI-driven techniques to further strengthen fraud detection. We would like to compare the performance of generative adversarial networks and graph neural networks with other popular techniques, like gradient boosting, random forests, and neural networks. To this end, we would recommend integrating all these state-of-the-art models into one robust, flexible, and smart system for real-time anomaly and fraud detection. To overcome the challenge, we designed synthetic data and then conducted pattern recognition and unsupervised and supervised learning analyses on the transaction data to identify which activities were fishy. With the use of actual financial statistics, we compare the performance of our model in accuracy, speed, and adaptability versus conventional models. The results of this study illustrate a strong signal and need to integrate state-of-the-art, AI-driven fraud detection solutions into frameworks that are highly relevant to the financial domain. It alerts one to the great urgency that banks and related financial institutions must rapidly implement these most advanced technologies to continue to have a high level of security.Keywords: AI-driven fraud detection, financial security, machine learning, anomaly detection, real-time fraud detection
Procedia PDF Downloads 512841 Strategic Thinking to Change Behavior and Improve Sanitation in Jodipan and Kesatrian, Malang, East Java, Indonesia
Authors: Prasanti Widyasih Sarli, Prayatni Soewondo
Abstract:
Greater access to sanitation in developing countries is urgent. However even though sanitation is crucial, overall budget for sanitation is limited. With this budget limitation, it is important to (1) allocate resources strategically to maximize impact and (2) take into account communal agency to potentially be a source for sanitation improvements. The Jodipan and Kesatrian Project in Malang, Indonesia is an interesting alternative for solving the sanitation problem in which resources were allocated strategically and communal agency was also observed. Although the projects initial goal was only to improve visually the situation in the slums, it became a new tourist destination, and the economic benefit that came with it had an effect also on the change of behavior of the residents and the government towards sanitation. It also grew from only including the Kesatrian Village to expanding to the Jodipan Village in the course of less than a year. To investigate the success of this project, in this paper a descriptive model will be used and data will be drawn from intensive interviews with the initiators of the project, residents affected by the project and government officials. In this research it is argued that three points mark the success of the project: (1) the strategic initial impact due to choice of location, (2) the influx of tourists that triggered behavioral change among residents and, (3) the direct economic impact which ensured its sustainability and growth by gaining government officials support and attention for more public spending in the area for slum development and sanitation improvement.Keywords: behaviour change, sanitation, slum, strategic thinking
Procedia PDF Downloads 3322840 System Identification of Timber Masonry Walls Using Shaking Table Test
Authors: Timir Baran Roy, Luis Guerreiro, Ashutosh Bagchi
Abstract:
Dynamic study is important in order to design, repair and rehabilitation of structures. It has played an important role in the behavior characterization of structures; such as bridges, dams, high-rise buildings etc. There had been a substantial development in this area over the last few decades, especially in the field of dynamic identification techniques of structural systems. Frequency Domain Decomposition (FDD) and Time Domain Decomposition are most commonly used methods to identify modal parameters; such as natural frequency, modal damping, and mode shape. The focus of the present research is to study the dynamic characteristics of typical timber masonry walls commonly used in Portugal. For that purpose, a multi-storey structural prototypes of such walls have been tested on a seismic shake table at the National Laboratory for Civil Engineering, Portugal (LNEC). Signal processing has been performed of the output response, which is collected from the shaking table experiment of the prototype using accelerometers. In the present work signal processing of the output response, based on the input response has been done in two ways: FDD and Stochastic Subspace Identification (SSI). In order to estimate the values of the modal parameters, algorithms for FDD are formulated, and parametric functions for the SSI are computed. Finally, estimated values from both the methods are compared to measure the accuracy of both the techniques.Keywords: frequency domain decomposition (fdd), modal parameters, signal processing, stochastic subspace identification (ssi), time domain decomposition
Procedia PDF Downloads 2692839 Situated Professional Development: Examining Strengths, Challenges, and Ways Forward
Authors: Youmen Chaaban
Abstract:
The study examined the influence of a situated professional development program (PD) aimed at enhancing English language teachers’ knowledge and skills and improving their instructional practices. The PD model under examination was developed upon sound theoretical underpinnings, taking into consideration research-based principles of effective PD. However, the implementation of the PD model within several school contexts required further investigation from the perspectives of the teachers, who were receiving the PD activities, and the instructional coaches, who were providing them. The paper, thus, presents the results of a qualitative study examining the perceptions of seventeen English language teachers and nineteen instructional coaches about the strengths of the PD program, the challenges they faced in the implementation of the program, and their suggestions for the improvement of the program’s implementation and outcomes. Comparisons were further made between the two groups of participants to uncover agreements and contradictions in their perceptions. Data were collected from the teachers through in-depth interviews and observations, while the data collected from the instructional coaches were open-ended surveys followed by focus group interviews. The findings of the study confirm the necessity of structuring PD activities around sound theoretical underpinnings. However, practical considerations specific to the contexts where the PD activities take place should be considered when evaluating the PD’s effectiveness. Finally, the study provides several recommendations for maximizing the influence of the PD program on teachers’ practices and beliefs.Keywords: English language teachers, situated professional development, teacher beliefs, teacher practices
Procedia PDF Downloads 1622838 Fabrication of Pure and Doped MAPbI3 Thin Films by One Step Chemical Vapor Deposition Method for Energy Harvesting Applications
Authors: S. V. N. Pammi, Soon-Gil Yoon
Abstract:
In the present study, we report a facile chemical vapor deposition (CVD) method for Perovskite MAPbI3 thin films by doping with Br and Cl. We performed a systematic optimization of CVD parameters such as deposition temperature, working pressure and annealing time and temperature to obtain high-quality films of CH3NH3PbI3, CH3NH3PbI3-xBrx and CH3NH3PbI3-xClx perovskite. Scanning electron microscopy and X-ray Diffraction pattern showed that the perovskite films have a large grain size when compared to traditional spin coated thin films. To the best of our knowledge, there are very few reports on highly quality perovskite thin films by various doping such as Br and Cl using one step CVD and there is scope for significant improvement in device efficiency. In addition, their band-gap can be conveniently and widely tuned via doping process. This deposition process produces perovskite thin films with large grain size, long diffusion length and high surface coverage. The enhancement of the output power, CH3NH3PbI3 (MAPbI3) dye films when compared to spin coated films and enhancement in output power by doping in doped films was demonstrated in detail. The facile one-step method for deposition of perovskite thin films shows a potential candidate for photovoltaic and energy harvesting applications.Keywords: perovskite thin films, chemical vapor deposition, energy harvesting, photovoltaics
Procedia PDF Downloads 3122837 Transperineal Repair Is Ideal for the Management of Rectocele with Faecal Incontinence
Authors: Tia Morosin, Marie Shella De Robles
Abstract:
Rectocele may be associated with symptoms of both obstructed defecation and faecal incontinence. Currently, numerous operative techniques exist to treat patients with rectocele; however, no single technique has emerged as the optimal approach in patients with post-partum faecal incontinence. The purpose of this study was to evaluate the clinical outcome in a consecutive series of patients who underwent transperineal repair of rectocele for patients presenting with faecal incontinence as the predominant symptom. Twenty-three consecutive patients from April 2000 to July 2015 with symptomatic rectocele underwent transperineal repair by a single surgeon. All patients had a history of vaginal delivery, with or without evidence of associated anal sphincter injury at the time. The median age of the cohort was 53 years (range 21 to 90 years). The median operating time and length of hospital stay were 2 hours and 7 days, respectively. Two patients developed urinary retention post-operatively, which required temporary bladder catheterization. One patient had wound dehiscence, which was managed by absorbent dressing applied by the patient and her carer. There was no operative mortality. In all patients with rectocele, there was a concomitant anal sphincter disruption. All patients had satisfactory improvement with regard to faecal incontinence on follow-up. This study suggests this method provides excellent anatomic and physiologic results with minimal morbidity. However, because none of the patients gained full continence postoperatively, pelvic floor rehabilitation might be also needed to achieve better sphincter function in patients with incontinence.Keywords: anal sphincter defect, faecal incontinence, rectocele, transperineal repair
Procedia PDF Downloads 1322836 Finite Element Analysis of Cold Formed Steel Screwed Connections
Authors: Jikhil Joseph, S. R. Satish Kumar
Abstract:
Steel Structures are commonly used for rapid erections and multistory constructions due to its inherent advantages. However, the high accuracy required in detailing and heavier sections, make it difficult to erect in place and transport. Cold Formed steel which are specially made by reducing carbon and other alloys are used nowadays to make thin-walled structures. Various types of connections are being reported as well as practiced for the thin-walled members such as bolting, riveting, welding and other mechanical connections. Commonly self-drilling screw connections are used for cold-formed purlin sheeting connection. In this paper an attempt is made to develop a moment resting frame which can be rapidly and remotely constructed with thin walled sections and self-drilling screws. Semi-rigid Moment connections are developed with Rectangular thin-walled tubes and the screws. The Finite Element Analysis programme ABAQUS is used for modelling the screwed connections. The various modelling procedures for simulating the connection behavior such as tie-constraint model, oriented spring model and solid interaction modelling are compared and are critically reviewed. From the experimental validations the solid-interaction modelling identified to be the most accurate one and are used for predicting the connection behaviors. From the finite element analysis, hysteresis curves and the modes of failure were identified. Parametric studies were done on the connection model to optimize the connection configurations to get desired connection characteristics.Keywords: buckling, cold formed steel, finite element analysis, screwed connections
Procedia PDF Downloads 1912835 An Empirical Assessment of Indoor Environmental Quality in Developing Sub-Saharan Countries: Evaluation of Existing Gaps and Potential Risk
Authors: Jean-Paul Kapuya Bulaba Nyembwe, John Omomoluwa Ogundiran, Manuel Carlos Gameiro da Silva
Abstract:
Indoor environmental quality (IEQ) remains a global concern because it impacts people's comfort, health, performance, and general well-being. People spend a significant amount of time in buildings or while commuting, hence ensuring the minimal risk in indoor spaces by ensuring suitable IEQ. IEQ studies are limited regarding developing sub-Saharan countries, whereas there is also a huge risk and concern for the current population and geometric growth as many cities in the region will become mega-cities by 2040 (World Bank report). The absence of suitable IEQ regulations and energy poverty are reasons to assess the IEQ gaps for increased awareness of sustainable interventions to minimize the associated risk. This study evaluates the gaps and potential hazards that exist in the IEQ of sub-Saharan countries using empirical studies of hospital occupants and BRT bus passengers and drivers. The Surveys were conducted in 3 cities of the Democratic Republic of Congo and Lagos metropolis of Nigeria. The results suggest that gaps exist in IEQ for these regions. The gaps indicate existential risk to people’s health, comfort, and well-being. The inferential conclusions are that there is a need for further scientific studies, improvement in IEQ conditions, and ensuring suitable regulations for developing sub-Saharan countries.Keywords: health hazards, hospitals indoor environmental quality, indoor spaces, occupants, sub-Saharan countries, vehicles
Procedia PDF Downloads 772834 Suitability Number of Coarse-Grained Soils and Relationships among Fineness Modulus, Density and Strength Parameters
Authors: Khandaker Fariha Ahmed, Md. Noman Munshi, Tarin Sultana, Md. Zoynul Abedin
Abstract:
Suitability number (SN) is perhaps one of the most important parameters of coarse-grained soil in assessing its appropriateness to use as a backfill in retaining structures, sand compaction pile, Vibro compaction, and other similar foundation and ground improvement works. Though determined in an empirical manner, it is imperative to study SN to understand its relation with other aggregate properties like fineness modulus (FM), and strength and density properties of sandy soil. The present paper reports the findings of the study on the examination of the properties of sandy soil, as mentioned. Random numbers were generated to obtain the percent fineness on various sieve sizes, and fineness modulus and suitability numbers were predicted. Sand samples were collected from the field, and test samples were prepared to determine maximum density, minimum density and shear strength parameter φ against particular fineness modulus and corresponding suitability number Five samples of SN value of excellent (0-10) and three samples of SN value fair (20-30) were taken and relevant tests were done. The data obtained from the laboratory tests were statistically analyzed. Results show that with the increase of SN, the value of FM decreases. Within the SN value rated as excellent (0-10), there is a decreasing trend of φ for a higher value of SN. It is found that SN is dependent on various combinations of grain size properties like D10, D30, and D20, D50. Strong linear relationships were obtained between SN and FM (R²=.0.93) and between SN value and φ (R²=.94). Correlation equations are proposed to define relationships among SN, φ, and FM.Keywords: density, fineness modulus, shear strength parameter, suitability number
Procedia PDF Downloads 1102833 Waterborne Platooning: Cost and Logistic Analysis of Vessel Trains
Authors: Alina P. Colling, Robert G. Hekkenberg
Abstract:
Recent years have seen extensive technological advancement in truck platooning, as reflected in the literature. Its main benefits are the improvement of traffic stability and the reduction of air drag, resulting in less fuel consumption, in comparison to using individual trucks. Platooning is now being adapted to the waterborne transport sector in the NOVIMAR project through the development of a Vessel Train (VT) concept. The main focus of VT’s, as opposed to the truck platoons, is the decrease in manning on board, ultimately working towards autonomous vessel operations. This crew reduction can prove to be an important selling point in achieving economic competitiveness of the waterborne approach when compared to alternative modes of transport. This paper discusses the expected benefits and drawbacks of the VT concept, in terms of the technical logistic performance and generalized costs. More specifically, VT’s can provide flexibility in destination choices for shippers but also add complexity when performing special manoeuvres in VT formation. In order to quantify the cost and performances, a model is developed and simulations are carried out for various case studies. These compare the application of VT’s in the short sea and inland water transport, with specific sailing regimes and technologies installed on board to allow different levels of autonomy. The results enable the identification of the most important boundary conditions for the successful operation of the waterborne platooning concept. These findings serve as a framework for future business applications of the VT.Keywords: autonomous vessels, NOVIMAR, vessel trains, waterborne platooning
Procedia PDF Downloads 2282832 Assessing Performance of Data Augmentation Techniques for a Convolutional Network Trained for Recognizing Humans in Drone Images
Authors: Masood Varshosaz, Kamyar Hasanpour
Abstract:
In recent years, we have seen growing interest in recognizing humans in drone images for post-disaster search and rescue operations. Deep learning algorithms have shown great promise in this area, but they often require large amounts of labeled data to train the models. To keep the data acquisition cost low, augmentation techniques can be used to create additional data from existing images. There are many techniques of such that can help generate variations of an original image to improve the performance of deep learning algorithms. While data augmentation is potentially assumed to improve the accuracy and robustness of the models, it is important to ensure that the performance gains are not outweighed by the additional computational cost or complexity of implementing the techniques. To this end, it is important to evaluate the impact of data augmentation on the performance of the deep learning models. In this paper, we evaluated the most currently available 2D data augmentation techniques on a standard convolutional network which was trained for recognizing humans in drone images. The techniques include rotation, scaling, random cropping, flipping, shifting, and their combination. The results showed that the augmented models perform 1-3% better compared to a base network. However, as the augmented images only contain the human parts already visible in the original images, a new data augmentation approach is needed to include the invisible parts of the human body. Thus, we suggest a new method that employs simulated 3D human models to generate new data for training the network.Keywords: human recognition, deep learning, drones, disaster mitigation
Procedia PDF Downloads 1012831 Varietal Behavior of Some Chickpea Genotypes to Wilt Disease Induced by Fusarium oxysporum f.sp. ciceris
Authors: Rouag N., Khalifa M. W., Bencheikh A., Abed H.
Abstract:
The behavior study of forty-two varieties and genotypes of chickpeas regarding root wilt disease induced by Fusarium oxysporum under the natural conditions of infection was conducted at the ITGC experimental station in Sétif. The infected plants of the different chickpea genotypes have shown multiple symptoms in the field caused by the local strain of Fusarium oxysporum f.sp.cecris belonging to race II of the pathogen. These symptoms ranged from lateral or partial wilting of some ramifications to total desiccation of the plant, sometimes combined with the very slow growth of symptomatic plants. The results of the search for sources of resistance to Fusarium wilt of chickpeas in the 42 genotypes tested revealed that in terms of infection rate, the presence of 7 groups and no genotype showed absolute resistance. While in terms of severity, the results revealed the presence of three homogeneous groups. The first group formed by the most resistant genotypes, in this case, Flip10-368C; Flip11-77C; Flip11-186C; Flip11-124C; Flip11-142C, Flip11-152C; Flip11-69C; Ghab 05; Flip11-159C; Flip11-90C; Flip10-357C and Flip11-37C while the second group is the FLIP genotype 10-382C which was found to be the most sensitive for the natural infection test. Thus, the genotypes of Cicer arietinum L., which have shown significant levels of resistance to Fusarium wilt, can be integrated into breeding and improvement programs.Keywords: chickpea, Cicer arietinum, Fusarium oxysporum, genotype resistance
Procedia PDF Downloads 902830 Interpretation and Prediction of Geotechnical Soil Parameters Using Ensemble Machine Learning
Authors: Goudjil kamel, Boukhatem Ghania, Jlailia Djihene
Abstract:
This paper delves into the development of a sophisticated desktop application designed to calculate soil bearing capacity and predict limit pressure. Drawing from an extensive review of existing methodologies, the study meticulously examines various approaches employed in soil bearing capacity calculations, elucidating their theoretical foundations and practical applications. Furthermore, the study explores the burgeoning intersection of artificial intelligence (AI) and geotechnical engineering, underscoring the transformative potential of AI- driven solutions in enhancing predictive accuracy and efficiency.Central to the research is the utilization of cutting-edge machine learning techniques, including Artificial Neural Networks (ANN), XGBoost, and Random Forest, for predictive modeling. Through comprehensive experimentation and rigorous analysis, the efficacy and performance of each method are rigorously evaluated, with XGBoost emerging as the preeminent algorithm, showcasing superior predictive capabilities compared to its counterparts. The study culminates in a nuanced understanding of the intricate dynamics at play in geotechnical analysis, offering valuable insights into optimizing soil bearing capacity calculations and limit pressure predictions. By harnessing the power of advanced computational techniques and AI-driven algorithms, the paper presents a paradigm shift in the realm of geotechnical engineering, promising enhanced precision and reliability in civil engineering projects.Keywords: limit pressure of soil, xgboost, random forest, bearing capacity
Procedia PDF Downloads 292829 Seawater Intrusion in the Coastal Aquifer of Wadi Nador (Algeria)
Authors: Abdelkader Hachemi & Boualem Remini
Abstract:
Seawater intrusion is a significant challenge faced by coastal aquifers in the Mediterranean basin. This study aims to determine the position of the sharp interface between seawater and freshwater in the aquifer of Wadi Nador, located in the Wilaya of Tipaza, Algeria. A numerical areal sharp interface model using the finite element method is developed to investigate the spatial and temporal behavior of seawater intrusion. The aquifer is assumed to be homogeneous and isotropic. The simulation results are compared with geophysical prospection data obtained through electrical methods in 2011 to validate the model. The simulation results demonstrate a good agreement with the geophysical prospection data, confirming the accuracy of the sharp interface model. The position of the sharp interface in the aquifer is found to be approximately 1617 meters from the sea. Two scenarios are proposed to predict the interface position for the year 2024: one without pumping and the other with pumping. The results indicate a noticeable retreat of the sharp interface position in the first scenario, while a slight decline is observed in the second scenario. The findings of this study provide valuable insights into the dynamics of seawater intrusion in the Wadi Nador aquifer. The predicted changes in the sharp interface position highlight the potential impact of pumping activities on the aquifer's vulnerability to seawater intrusion. This study emphasizes the importance of implementing measures to manage and mitigate seawater intrusion in coastal aquifers. The sharp interface model developed in this research can serve as a valuable tool for assessing and monitoring the vulnerability of aquifers to seawater intrusion.Keywords: seawater, intrusion, sharp interface, Algeria
Procedia PDF Downloads 80