Search results for: gamma function
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5380

Search results for: gamma function

370 Evaluation of Gesture-Based Password: User Behavioral Features Using Machine Learning Algorithms

Authors: Lakshmidevi Sreeramareddy, Komalpreet Kaur, Nane Pothier

Abstract:

Graphical-based passwords have existed for decades. Their major advantage is that they are easier to remember than an alphanumeric password. However, their disadvantage (especially recognition-based passwords) is the smaller password space, making them more vulnerable to brute force attacks. Graphical passwords are also highly susceptible to the shoulder-surfing effect. The gesture-based password method that we developed is a grid-free, template-free method. In this study, we evaluated the gesture-based passwords for usability and vulnerability. The results of the study are significant. We developed a gesture-based password application for data collection. Two modes of data collection were used: Creation mode and Replication mode. In creation mode (Session 1), users were asked to create six different passwords and reenter each password five times. In replication mode, users saw a password image created by some other user for a fixed duration of time. Three different duration timers, such as 5 seconds (Session 2), 10 seconds (Session 3), and 15 seconds (Session 4), were used to mimic the shoulder-surfing attack. After the timer expired, the password image was removed, and users were asked to replicate the password. There were 74, 57, 50, and 44 users participated in Session 1, Session 2, Session 3, and Session 4 respectfully. In this study, the machine learning algorithms have been applied to determine whether the person is a genuine user or an imposter based on the password entered. Five different machine learning algorithms were deployed to compare the performance in user authentication: namely, Decision Trees, Linear Discriminant Analysis, Naive Bayes Classifier, Support Vector Machines (SVMs) with Gaussian Radial Basis Kernel function, and K-Nearest Neighbor. Gesture-based password features vary from one entry to the next. It is difficult to distinguish between a creator and an intruder for authentication. For each password entered by the user, four features were extracted: password score, password length, password speed, and password size. All four features were normalized before being fed to a classifier. Three different classifiers were trained using data from all four sessions. Classifiers A, B, and C were trained and tested using data from the password creation session and the password replication with a timer of 5 seconds, 10 seconds, and 15 seconds, respectively. The classification accuracies for Classifier A using five ML algorithms are 72.5%, 71.3%, 71.9%, 74.4%, and 72.9%, respectively. The classification accuracies for Classifier B using five ML algorithms are 69.7%, 67.9%, 70.2%, 73.8%, and 71.2%, respectively. The classification accuracies for Classifier C using five ML algorithms are 68.1%, 64.9%, 68.4%, 71.5%, and 69.8%, respectively. SVMs with Gaussian Radial Basis Kernel outperform other ML algorithms for gesture-based password authentication. Results confirm that the shorter the duration of the shoulder-surfing attack, the higher the authentication accuracy. In conclusion, behavioral features extracted from the gesture-based passwords lead to less vulnerable user authentication.

Keywords: authentication, gesture-based passwords, machine learning algorithms, shoulder-surfing attacks, usability

Procedia PDF Downloads 110
369 Innovative Food Related Modification of the Day-Night Task Demonstrates Impaired Inhibitory Control among Patients with Binge-Purge Eating Disorder

Authors: Sigal Gat-Lazer, Ronny Geva, Dan Ramon, Eitan Gur, Daniel Stein

Abstract:

Introduction: Eating disorders (ED) are common psychopathologies which involve distorted body image and eating disturbances. Binge-purge eating disorders (B/P ED) are characterized by repetitive events of binge eating followed by purges. Patients with B/P ED behavior may be seen as impulsive especially when relate to food stimulation and affective conditions. The current study included innovative modification of the day-night task targeted to assess inhibitory control among patients with B/P ED. Methods: This prospective study included 50 patients with B/P ED during acute phase of illness (T1) upon their admission to specialized ED department in tertiary center. 34 patients repeated the study towards discharge to ambulatory care (T2). Treatment effect was evaluated by BMI and emotional questionnaires regarding depression and anxiety by the Beck Depression Inventory and State Trait Anxiety Inventory questionnaires. Control group included 36 healthy controls with matched demographic parameters who performed both T1 and T2 assessments. The current modification is based on the emotional day-night task (EDNT) which involves five emotional stimulation added to the sun and moon pictures presented to participants. In the current study, we designed the food-emotional modification day night task (F-EDNT) food stimulations of egg and banana which resemble the sun and moon, respectively, in five emotional states (angry, sad, happy, scrambled and neutral). During this computerized task, participants were instructed to push on “day” bottom in response to moon and banana stimulations and on “night” bottom when sun and egg were presented. Accuracy (A) and reaction time (RT) were evaluated and compared between EDNT and F-EDNT as a reflection of participants’ inhibitory control. Results: Patients with B/P ED had significantly improved BMI, depression and anxiety scores on T2 compared to T1 (all p<0.001). Task performance was similar among patients and controls in the EDNT without significant A or RT differences in both T1 and T2. On F-EDNT during T1, B/P ED patients had significantly reduced accuracy in 4/5 emotional stimulation compared to controls: angry (73±25% vs. 84±15%, respectively), sad (69±25% vs. 80±18%, respectively), happy (73±24% vs. 82±18%, respectively) and scrambled (74±24% vs. 84±13%, respectively, all p<0.05). Additionally, patients’ RT to food stimuli was significantly faster compared to neutral ones, in both cry and neutral emotional stimulations (356±146 vs. 400±141 and 378±124 vs. 412±116 msec, respectively, p<0.05). These significant differences between groups as a function of stimulus type were diminished on T2. Conclusion: Having to process food related content, in particular in emotional context seems to be impaired in patients with B/P ED during the acute phase of their illness and elicits greater impulsivity. Innovative modification using such procedures seem to be sensitive to patients’ illness phase and thus may be implemented during screening and follow up through the clinical management of these patients.

Keywords: binge purge eating disorders, day night task modification, eating disorders, food related stimulations

Procedia PDF Downloads 382
368 Educational Institutional Approach for Livelihood Improvement and Sustainable Development

Authors: William Kerua

Abstract:

The PNG University of Technology (Unitech) has mandatory access to teaching, research and extension education. Given such function, the Agriculture Department has established the ‘South Pacific Institute of Sustainable Agriculture and Rural Development (SPISARD)’ in 2004. SPISARD is established as a vehicle to improve farming systems practiced in selected villages by undertaking pluralistic extension method through ‘Educational Institutional Approach’. Unlike other models, SPISARD’s educational institutional approach stresses on improving the whole farming systems practiced in a holistic manner and has a two-fold focus. The first is to understand the farming communities and improve the productivity of the farming systems in a sustainable way to increase income, improve nutrition and food security as well as livelihood enhancement trainings. The second is to enrich the Department’s curriculum through teaching, research, extension and getting inputs from farming community. SPISARD has established number of model villages in various provinces in Papua New Guinea (PNG) and with many positive outcome and success stories. Adaption of ‘educational institutional approach’ thus binds research, extension and training into one package with the use of students and academic staff through model village establishment in delivering development and extension to communities. This centre (SPISARD) coordinates the activities of the model village programs and linkages. The key to the development of the farming systems is establishing and coordinating linkages, collaboration, and developing partnerships both within and external institutions, organizations and agencies. SPISARD has a six-point step strategy for the development of sustainable agriculture and rural development. These steps are (i) establish contact and identify model villages, (ii) development of model village resource centres for research and trainings, (iii) conduct baseline surveys to identify problems/needs of model villages, (iv) development of solution strategies, (v) implementation and (vi) evaluation of impact of solution programs. SPISARD envisages that the farming systems practiced being improved if the villages can be made the centre of SPISARD activities. Therefore, SPISARD has developed a model village approach to channel rural development. The model village when established become the conduit points where teaching, training, research, and technology transfer takes place. This approach is again different and unique to the existing ones, in that, the development process take place in the farmers’ environment with immediate ‘real time’ feedback mechanisms based on the farmers’ perspective and satisfaction. So far, we have developed 14 model villages and have conducted 75 trainings in 21 different areas/topics in 8 provinces to a total of 2,832 participants of both sex. The aim of these trainings is to directly participate with farmers in the pursuit to improving their farming systems to increase productivity, income and to secure food security and nutrition, thus to improve their livelihood.

Keywords: development, educational institutional approach, livelihood improvement, sustainable agriculture

Procedia PDF Downloads 158
367 Spatial Setting in Translation: A Comparative Evaluation of translations from Pre-Islamic Poetry

Authors: Raja Lahiani

Abstract:

This study is concerned with scrutinising translations into English and French of references to locations in the desert of pre-Islamic Arabia. These references are used in the Source Text (ST) within a poetic image. Reference is made to the names of three different mountains in Arabia, namely Qatan, Sitar, and Yadhbul. As these mountains are referred to in the context of the poet’s description of the density and expansion of the clouds, it is crucial to know that while Sitar and Yadhbul are close to each other, Qatan is far away from them. This distance was functional for the poet to describe the expansion of the clouds. This reflects the spacious place (desert) he handled, and the fact that it was possible for him to physically see what he described. The purpose of this image is for the poet to communicate the vastness of the space he managed to see as he was in a moment of contemplation. Thus, knowledge of this characteristic about the setting is capital for the receiver to understand the communicative function of the verse. A corpus of eighteen translations is gathered. These vary between verse and prose renderings. The methodology adopted in this research work is comparative. Comparison is conducted at both the synchronic and diachronic levels; every translation shall be compared to the ST and then to previous translations. The comparative work will prove at the end that the translators who target historical facts do not necessarily succeed in preserving the image of the ST. It also proves that the more recent the translation is, the deeper the translator’s awareness is the link between imagery, setting, and point of view. Since the late eighteenth century and until nowadays, pre-Islamic poetry has been translated into Western languages. Translators differ as to motives, sources, priorities and intellectual backgrounds. A translator's skopoi undoubtedly affect the way s/he handles aspects of the ST. When it comes to culture-specific aspects and details related to setting, the problem is even more complex. Setting is a very important factor that reveals a great deal of the culture of pre-Islamic Arabia as this is remote in place, historical framework and literary tradition from its translators. History is present in pre-Islamic poetry, which justifies the important literature that has been written to extract information and data from it. These are imbedded not only by signalling given facts, events, and meditations but also by means of references to specific locations and landmarks that used to exist at the time. Spatial setting is an integral part of a literary text as it places it within its historical context. The importance of the translator’s awareness of spatial anthropological data before indulging in the process of translation is tested. This is also crucial in measuring the effect of setting loss and setting gain in translation. The findings of this research would ultimately evaluate the extent to which a comparative methodology is reliable in investigating the role of spatial setting awareness in translation.

Keywords: historical context, translation, comparative literature, spatial setting

Procedia PDF Downloads 251
366 Immunoprotective Role of Baker's Yeast (Saccharomyces cerevisiae) against Experimentally Induced Aflatoxicosis in Broiler Chicks

Authors: Zain Ul Abadeen, Muhammad Zargham Khan, Muhammad Kashif Saleemi, Ahrar Khan, Ijaz Javed Hassan, Aisha Khatoon, Qasim Altaf

Abstract:

Aflatoxins are secondary metabolites produced by toxigenic fungi, and there are four types of aflatoxins include AFB1, AFB2, AFG1 and AFG2. Aflatoxin B1 (AFB1) is considered as most toxic form. It is mainly responsible for the contamination of poultry feed and produces a condition called aflatoxicosis leads to immunosuppression in poultry birds. Saccharomyces cerevisiae is a single cell microorganism and acts as a source of growth factors, minerals and amino acids which improve the immunity and digestibility in poultry birds as probiotics. Saccharomyces cerevisiae is well recognized to cause the biological degradation of mycotoxins (toxin binder) because its cell wall contains β-glucans and mannans which specifically bind with aflatoxins and reduce their absorption or transfer them to some non-toxic compounds. The present study was designed to investigate the immunosuppressive effects of aflatoxins in broiler chicks and the reduction of severity of these effects by the use of Baker’s Yeast (Saccharomyces cerevisiae). One-day-old broiler chicks were procured from local hatchery and were divided into various groups (A-I). These groups were treated with different levels of AFB1 @ 400 µg/kg and 600 µg/kg along with different levels of Baker’s Yeast (Saccharomyces cerevisiae) 0.1% and 0.5 % in the feed. The total duration of the experiment was six weeks and different immunological parameters including the cellular immune response by injecting PHA-P (Phytohemagglutinin-P) in the skin of the birds, phagocytic function of mononuclear cells by Carbon clearance assay from blood samples and humoral immune response against intravenously injected sheep RBCs from the serum samples were determined. The birds from each group were slaughtered at the end of the experiment to determine the presence of gross lesions in the immune organs and these tissues were fixed in 10% neutral buffered formalin for histological investigations. The results showed that AFB1 intoxicated groups had reduced body weight gain, feed intake, organs weight and immunological responses compared to the control and Baker’s Yeast (Saccharomyces cerevisiae) treated groups. Different gross and histological degenerative changes were recorded in the immune organs of AFB1 intoxicated groups compared to control and Baker’s Yeast (Saccharomyces cerevisiae) treated groups. The present study concluded that Baker’s Yeast (Saccharomyces cerevisiae) addition in the feed helps to ameliorate the immunotoxigenic effects produced by AFB1 in broiler chicks.

Keywords: aflatoxins, body weight gain, feed intake, immunological response, toxigenic effect

Procedia PDF Downloads 314
365 Stochastic Nuisance Flood Risk for Coastal Areas

Authors: Eva L. Suarez, Daniel E. Meeroff, Yan Yong

Abstract:

The U.S. Federal Emergency Management Agency (FEMA) developed flood maps based on experts’ experience and estimates of the probability of flooding. Current flood-risk models evaluate flood risk with regional and subjective measures without impact from torrential rain and nuisance flooding at the neighborhood level. Nuisance flooding occurs in small areas in the community, where a few streets or blocks are routinely impacted. This type of flooding event occurs when torrential rainstorm combined with high tide and sea level rise temporarily exceeds a given threshold. In South Florida, this threshold is 1.7 ft above Mean Higher High Water (MHHW). The National Weather Service defines torrential rain as rain deposition at a rate greater than 0.3-inches per hour or three inches in a single day. Data from the Florida Climate Center, 1970 to 2020, shows 371 events with more than 3-inches of rain in a day in 612 months. The purpose of this research is to develop a data-driven method to determine comprehensive analytical damage-avoidance criteria that account for nuisance flood events at the single-family home level. The method developed uses the Failure Mode and Effect Analysis (FMEA) method from the American Society of Quality (ASQ) to estimate the Damage Avoidance (DA) preparation for a 1-day 100-year storm. The Consequence of Nuisance Flooding (CoNF) is estimated from community mitigation efforts to prevent nuisance flooding damage. The Probability of Nuisance Flooding (PoNF) is derived from the frequency and duration of torrential rainfall causing delays and community disruptions to daily transportation, human illnesses, and property damage. Urbanization and population changes are related to the U.S. Census Bureau's annual population estimates. Data collected by the United States Department of Agriculture (USDA) Natural Resources Conservation Service’s National Resources Inventory (NRI) and locally by the South Florida Water Management District (SFWMD) track the development and land use/land cover changes with time. The intent is to include temporal trends in population density growth and the impact on land development. Results from this investigation provide the risk of nuisance flooding as a function of CoNF and PoNF for coastal areas of South Florida. The data-based criterion provides awareness to local municipalities on their flood-risk assessment and gives insight into flood management actions and watershed development.

Keywords: flood risk, nuisance flooding, urban flooding, FMEA

Procedia PDF Downloads 102
364 Study of Chemical State Analysis of Rubidium Compounds in Lα, Lβ₁, Lβ₃,₄ and Lγ₂,₃ X-Ray Emission Lines with Wavelength Dispersive X-Ray Fluorescence Spectrometer

Authors: Harpreet Singh Kainth

Abstract:

Rubidium salts have been commonly used as an electrolyte to improve the efficiency cycle of Li-ion batteries. In recent years, it has been implemented into the large scale for further technological advances to improve the performance rate and better cyclability in the batteries. X-ray absorption spectroscopy (XAS) is a powerful tool for obtaining the information in the electronic structure which involves the chemical state analysis in the active materials used in the batteries. However, this technique is not well suited for the industrial applications because it needs a synchrotron X-ray source and special sample file for in-situ measurements. In contrast to this, conventional wavelength dispersive X-ray fluorescence (WDXRF) spectrometer is nondestructive technique used to study the chemical shift in all transitions (K, L, M, …) and does not require any special pre-preparation planning. In the present work, the fluorescent Lα, Lβ₁ , Lβ₃,₄ and Lγ₂,₃ X-ray spectra of rubidium in different chemical forms (Rb₂CO₃ , RbCl, RbBr, and RbI) have been measured first time with high resolution wavelength dispersive X-ray fluorescence (WDXRF) spectrometer (Model: S8 TIGER, Bruker, Germany), equipped with an Rh anode X-ray tube (4-kW, 60 kV and 170 mA). In ₃₇Rb compounds, the measured energy shifts are in the range (-0.45 to - 1.71) eV for Lα X-ray peak, (0.02 to 0.21) eV for Lβ₁ , (0.04 to 0.21) eV for Lβ₃ , (0.15 to 0.43) eV for Lβ₄ and (0.22 to 0.75) eV for Lγ₂,₃ X-ray emission lines. The chemical shifts in rubidium compounds have been measured by considering Rb₂CO₃ compounds taking as a standard reference. A Voigt function is used to determine the central peak position of all compounds. Both positive and negative shifts have been observed in L shell emission lines. In Lα X-ray emission lines, all compounds show negative shift while in Lβ₁, Lβ₃,₄, and Lγ₂,₃ X-ray emission lines, all compounds show a positive shift. These positive and negative shifts result increase or decrease in X-ray energy shifts. It looks like that ligands attached with central metal atom attract or repel the electrons towards or away from the parent nucleus. This pulling and pushing character of rubidium affects the central peak position of the compounds which causes a chemical shift. To understand the chemical effect more briefly, factors like electro-negativity, line intensity ratio, effective charge and bond length are responsible for the chemical state analysis in rubidium compounds. The effective charge has been calculated from Suchet and Pauling method while the line intensity ratio has been calculated by calculating the area under the relevant emission peak. In the present work, it has been observed that electro-negativity, effective charge and intensity ratio (Lβ₁/Lα, Lβ₃,₄/Lα and Lγ₂,₃/Lα) are inversely proportional to the chemical shift (RbCl > RbBr > RbI), while bond length has been found directly proportional to the chemical shift (RbI > RbBr > RbCl).

Keywords: chemical shift in L emission lines, bond length, electro-negativity, effective charge, intensity ratio, Rubidium compounds, WDXRF spectrometer

Procedia PDF Downloads 515
363 Construction and Analysis of Tamazight (Berber) Text Corpus

Authors: Zayd Khayi

Abstract:

This paper deals with the construction and analysis of the Tamazight text corpus. The grammatical structure of the Tamazight remains poorly understood, and a lack of comparative grammar leads to linguistic issues. In order to fill this gap, even though it is small, by constructed the diachronic corpus of the Tamazight language, and elaborated the program tool. In addition, this work is devoted to constructing that tool to analyze the different aspects of the Tamazight, with its different dialects used in the north of Africa, specifically in Morocco. It also focused on three Moroccan dialects: Tamazight, Tarifiyt, and Tachlhit. The Latin version was good choice because of the many sources it has. The corpus is based on the grammatical parameters and features of that language. The text collection contains more than 500 texts that cover a long historical period. It is free, and it will be useful for further investigations. The texts were transformed into an XML-format standardization goal. The corpus counts more than 200,000 words. Based on the linguistic rules and statistical methods, the original user interface and software prototype were developed by combining the technologies of web design and Python. The corpus presents more details and features about how this corpus provides users with the ability to distinguish easily between feminine/masculine nouns and verbs. The interface used has three languages: TMZ, FR, and EN. Selected texts were not initially categorized. This work was done in a manual way. Within corpus linguistics, there is currently no commonly accepted approach to the classification of texts. Texts are distinguished into ten categories. To describe and represent the texts in the corpus, we elaborated the XML structure according to the TEI recommendations. Using the search function may provide us with the types of words we would search for, like feminine/masculine nouns and verbs. Nouns are divided into two parts. The gender in the corpus has two forms. The neutral form of the word corresponds to masculine, while feminine is indicated by a double t-t affix (the prefix t- and the suffix -t), ex: Tarbat (girl), Tamtut (woman), Taxamt (tent), and Tislit (bride). However, there are some words whose feminine form contains only the prefix t- and the suffix –a, ex: Tasa (liver), tawja (family), and tarwa (progenitors). Generally, Tamazight masculine words have prefixes that distinguish them from other words. For instance, 'a', 'u', 'i', ex: Asklu (tree), udi (cheese), ighef (head). Verbs in the corpus are for the first person singular and plural that have suffixes 'agh','ex', 'egh', ex: 'ghrex' (I study), 'fegh' (I go out), 'nadagh' (I call). The program tool permits the following characteristics of this corpus: list of all tokens; list of unique words; lexical diversity; realize different grammatical requests. To conclude, this corpus has only focused on a small group of parts of speech in Tamazight language verbs, nouns. Work is still on the adjectives, prounouns, adverbs and others.

Keywords: Tamazight (Berber) language, corpus linguistic, grammar rules, statistical methods

Procedia PDF Downloads 73
362 Temporal and Spatio-Temporal Stability Analyses in Mixed Convection of a Viscoelastic Fluid in a Porous Medium

Authors: P. Naderi, M. N. Ouarzazi, S. C. Hirata, H. Ben Hamed, H. Beji

Abstract:

The stability of mixed convection in a Newtonian fluid medium heated from below and cooled from above, also known as the Poiseuille-Rayleigh-Bénard problem, has been extensively investigated in the past decades. To our knowledge, mixed convection in porous media has received much less attention in the published literature. The present paper extends the mixed convection problem in porous media for the case of a viscoelastic fluid flow owing to its numerous environmental and industrial applications such as the extrusion of polymer fluids, solidification of liquid crystals, suspension solutions and petroleum activities. Without a superimposed through-flow, the natural convection problem of a viscoelastic fluid in a saturated porous medium has already been treated. The effects of the viscoelastic properties of the fluid on the linear and nonlinear dynamics of the thermoconvective instabilities have also been treated in this work. Consequently, the elasticity of the fluid can lead either to a Hopf bifurcation, giving rise to oscillatory structures in the strongly elastic regime, or to a stationary bifurcation in the weakly elastic regime. The objective of this work is to examine the influence of the main horizontal flow on the linear and characteristics of these two types of instabilities. Under the Boussinesq approximation and Darcy's law extended to a viscoelastic fluid, a temporal stability approach shows that the conditions for the appearance of longitudinal rolls are identical to those found in the absence of through-flow. For the general three-dimensional (3D) perturbations, a Squire transformation allows the deduction of the complex frequencies associated with the 3D problem using those obtained by solving the two-dimensional one. The numerical resolution of the eigenvalue problem concludes that the through-flow has a destabilizing effect and selects a convective configuration organized in purely transversal rolls which oscillate in time and propagate in the direction of the main flow. In addition, by using the mathematical formalism of absolute and convective instabilities, we study the nature of unstable three-dimensional disturbances. It is shown that for a non-vanishing through-flow, general three-dimensional instabilities are convectively unstable which means that in the absence of a continuous noise source these instabilities are drifted outside the porous medium, and no long-term pattern is observed. In contrast, purely transversal rolls may exhibit a transition to absolute instability regime and therefore affect the porous medium everywhere including in the absence of a noise source. The absolute instability threshold, the frequency and the wave number associated with purely transversal rolls are determined as a function of the Péclet number and the viscoelastic parameters. Results are discussed and compared to those obtained from laboratory experiments in the case of Newtonian fluids.

Keywords: instability, mixed convection, porous media, and viscoelastic fluid

Procedia PDF Downloads 343
361 Exploring the Motivations That Drive Paper Use in Clinical Practice Post-Electronic Health Record Adoption: A Nursing Perspective

Authors: Sinead Impey, Gaye Stephens, Lucy Hederman, Declan O'Sullivan

Abstract:

Continued paper use in the clinical area post-Electronic Health Record (EHR) adoption is regularly linked to hardware and software usability challenges. Although paper is used as a workaround to circumvent challenges, including limited availability of a computer, this perspective does not consider the important role paper, such as the nurses’ handover sheet, play in practice. The purpose of this study is to confirm the hypothesis that paper use post-EHR adoption continues as paper provides both a cognitive tool (that assists with workflow) and a compensation tool (to circumvent usability challenges). Distinguishing the different motivations for continued paper-use could assist future evaluations of electronic record systems. Methods: Qualitative data were collected from three clinical care environments (ICU, general ward and specialist day-care) who used an electronic record for at least 12 months. Data were collected through semi-structured interviews with 22 nurses. Data were transcribed, themes extracted using an inductive bottom-up coding approach and a thematic index constructed. Findings: All nurses interviewed continued to use paper post-EHR adoption. While two distinct motivations for paper use post-EHR adoption were confirmed by the data - paper as a cognitive tool and paper as a compensation tool - further finding was that there was an overlap between the two uses. That is, paper used as a compensation tool could also be adapted to function as a cognitive aid due to its nature (easy to access and annotate) or vice versa. Rather than present paper persistence as having two distinctive motivations, it is more useful to describe it as presenting on a continuum with compensation tool and cognitive tool at either pole. Paper as a cognitive tool referred to pages such as nurses’ handover sheet. These did not form part of the patient’s record, although information could be transcribed from one to the other. Findings suggest that although the patient record was digitised, handover sheets did not fall within this remit. These personal pages continued to be useful post-EHR adoption for capturing personal notes or patient information and so continued to be incorporated into the nurses’ work. Comparatively, the paper used as a compensation tool, such as pre-printed care plans which were stored in the patient's record, appears to have been instigated in reaction to usability challenges. In these instances, it is expected that paper use could reduce or cease when the underlying problem is addressed. There is a danger that as paper affords nurses a temporary information platform that is mobile, easy to access and annotate, its use could become embedded in clinical practice. Conclusion: Paper presents a utility to nursing, either as a cognitive or compensation tool or combination of both. By fully understanding its utility and nuances, organisations can avoid evaluating all incidences of paper use (post-EHR adoption) as arising from usability challenges. Instead, suitable remedies for paper-persistence can be targeted at the root cause.

Keywords: cognitive tool, compensation tool, electronic record, handover sheet, nurse, paper persistence

Procedia PDF Downloads 455
360 Tracing a Timber Breakthrough: A Qualitative Study of the Introduction of Cross-Laminated-Timber to the Student Housing Market in Norway

Authors: Marius Nygaard, Ona Flindall

Abstract:

The Palisaden student housing project was completed in August 2013 and was, with its eight floors, Norway’s tallest timber building at the time of completion. It was the first time cross-laminated-timber (CLT) was utilized at this scale in Norway. The project was the result of a concerted effort by a newly formed management company to establish CLT as a sustainable and financially competitive alternative to conventional steel and concrete systems. The introduction of CLT onto the student housing market proved so successful that by 2017 more than 4000 individual student residences will have been built using the same model of development and construction. The aim of this paper is to identify the key factors that enabled this breakthrough for CLT. It is based on an in-depth study of a series of housing projects and the role of the management company who both instigated and enabled this shift of CLT from the margin to the mainstream. Specifically, it will look at how a new building system was integrated into a marketing strategy that identified a market potential within the existing structure of the construction industry and within the economic restrictions inherent to student housing in Norway. It will show how a key player established a project model that changed both the patterns of cooperation and the information basis for decisions. Based on qualitative semi-structured interviews with managers, contractors and the interdisciplinary teams of consultants (architects, structural engineers, acoustical experts etc.) this paper will trace the introduction, expansion and evolution of CLT-based building systems in the student housing market. It will show how the project management firm’s position in the value chain enabled them to function both as a liaison between contractor and client, and between contractor and producer. A position that allowed them to improve the flow of information. This ensured that CLT was handled on equal terms to other structural solutions in the project specifications, enabling realistic pricing and risk evaluation. Secondly, this paper will describe and discuss how the project management firm established and interacted with a growing network of contractors, architects and engineers to pool expertise and broaden the knowledge base across Norway’s regional markets. Finally, it will examine the role of the client, the building typology, and the industrial and technological factors in achieving this breakthrough for CLT in the construction industry. This paper gives an in-depth view of the progression of a single case rather than a broad description of the state of the art of large-scale timber building in Norway. However, this type of study may offer insights that are important to the understanding not only of specific markets but also of how new technologies should be introduced in big and well-established industries.

Keywords: cross-laminated-timber (CLT), industry breakthrough, student housing, timber market

Procedia PDF Downloads 225
359 Source-Detector Trajectory Optimization for Target-Based C-Arm Cone Beam Computed Tomography

Authors: S. Hatamikia, A. Biguri, H. Furtado, G. Kronreif, J. Kettenbach, W. Birkfellner

Abstract:

Nowadays, three dimensional Cone Beam CT (CBCT) has turned into a widespread clinical routine imaging modality for interventional radiology. In conventional CBCT, a circular sourcedetector trajectory is used to acquire a high number of 2D projections in order to reconstruct a 3D volume. However, the accumulated radiation dose due to the repetitive use of CBCT needed for the intraoperative procedure as well as daily pretreatment patient alignment for radiotherapy has become a concern. It is of great importance for both health care providers and patients to decrease the amount of radiation dose required for these interventional images. Thus, it is desirable to find some optimized source-detector trajectories with the reduced number of projections which could therefore lead to dose reduction. In this study we investigate some source-detector trajectories with the optimal arbitrary orientation in the way to maximize performance of the reconstructed image at particular regions of interest. To achieve this approach, we developed a box phantom consisting several small target polytetrafluoroethylene spheres at regular distances through the entire phantom. Each of these spheres serves as a target inside a particular region of interest. We use the 3D Point Spread Function (PSF) as a measure to evaluate the performance of the reconstructed image. We measured the spatial variance in terms of Full-Width-Half-Maximum (FWHM) of the local PSFs each related to a particular target. The lower value of FWHM shows the better spatial resolution of reconstruction results at the target area. One important feature of interventional radiology is that we have very well-known imaging targets as a prior knowledge of patient anatomy (e.g. preoperative CT) is usually available for interventional imaging. Therefore, we use a CT scan from the box phantom as the prior knowledge and consider that as the digital phantom in our simulations to find the optimal trajectory for a specific target. Based on the simulation phase we have the optimal trajectory which can be then applied on the device in real situation. We consider a Philips Allura FD20 Xper C-arm geometry to perform the simulations and real data acquisition. Our experimental results based on both simulation and real data show our proposed optimization scheme has the capacity to find optimized trajectories with minimal number of projections in order to localize the targets. Our results show the proposed optimized trajectories are able to localize the targets as good as a standard circular trajectory while using just 1/3 number of projections. Conclusion: We demonstrate that applying a minimal dedicated set of projections with optimized orientations is sufficient to localize targets, may minimize radiation.

Keywords: CBCT, C-arm, reconstruction, trajectory optimization

Procedia PDF Downloads 136
358 Different Types of Bismuth Selenide Nanostructures for Targeted Applications: Synthesis and Properties

Authors: Jana Andzane, Gunta Kunakova, Margarita Baitimirova, Mikelis Marnauza, Floriana Lombardi, Donats Erts

Abstract:

Bismuth selenide (Bi₂Se₃) is known as a narrow band gap semiconductor with pronounced thermoelectric (TE) and topological insulator (TI) properties. Unique TI properties offer exciting possibilities for fundamental research as observing the exciton condensate and Majorana fermions, as well as practical application in spintronic and quantum information. In turn, TE properties of this material can be applied for wide range of thermoelectric applications, as well as for broadband photodetectors and near-infrared sensors. Nanostructuring of this material results in improvement of TI properties due to suppression of the bulk conductivity, and enhancement of TE properties because of increased phonon scattering at the nanoscale grains and interfaces. Regarding TE properties, crystallographic growth direction, as well as orientation of the nanostructures relative to the growth substrate, play significant role in improvement of TE performance of nanostructured material. For instance, Bi₂Se₃ layers consisting of randomly oriented nanostructures and/or of combination of them with planar nanostructures show significantly enhanced in comparison with bulk and only planar Bi₂Se₃ nanostructures TE properties. In this work, a catalyst-free vapour-solid deposition technique was applied for controlled obtaining of different types of Bi₂Se₃ nanostructures and continuous nanostructured layers for targeted applications. For example, separated Bi₂Se₃ nanoplates, nanobelts and nanowires can be used for investigations of TI properties; consisting from merged planar and/or randomly oriented nanostructures Bi₂Se₃ layers are useful for applications in heat-to-power conversion devices and infrared detectors. The vapour-solid deposition was carried out using quartz tube furnace (MTI Corp), equipped with an inert gas supply and pressure/temperature control system. Bi₂Se₃ nanostructures/nanostructured layers of desired type were obtained by adjustment of synthesis parameters (process temperature, deposition time, pressure, carrier gas flow) and selection of deposition substrate (glass, quartz, mica, indium-tin-oxide, graphene and carbon nanotubes). Morphology, structure and composition of obtained Bi₂Se₃ nanostructures and nanostructured layers were inspected using SEM, AFM, EDX and HRTEM techniques, as well as home-build experimental setup for thermoelectric measurements. It was found that introducing of temporary carrier gas flow into the process tube during the synthesis and deposition substrate choice significantly influence nanostructures formation mechanism. Electrical, thermoelectric, and topological insulator properties of different types of deposited Bi₂Se₃ nanostructures and nanostructured coatings are characterized as a function of thickness and discussed.

Keywords: bismuth seleinde, nanostructures, topological insulator, vapour-solid deposition

Procedia PDF Downloads 238
357 Tailoring Quantum Oscillations of Excitonic Schrodinger’s Cats as Qubits

Authors: Amit Bhunia, Mohit Kumar Singh, Maryam Al Huwayz, Mohamed Henini, Shouvik Datta

Abstract:

We report [https://arxiv.org/abs/2107.13518] experimental detection and control of Schrodinger’s Cat like macroscopically large, quantum coherent state of a two-component Bose-Einstein condensate of spatially indirect electron-hole pairs or excitons using a resonant tunneling diode of III-V Semiconductors. This provides access to millions of excitons as qubits to allow efficient, fault-tolerant quantum computation. In this work, we measure phase-coherent periodic oscillations in photo-generated capacitance as a function of an applied voltage bias and light intensity over a macroscopically large area. Periodic presence and absence of splitting of excitonic peaks in the optical spectra measured by photocapacitance point towards tunneling induced variations in capacitive coupling between the quantum well and quantum dots. Observation of negative ‘quantum capacitance’ due to a screening of charge carriers by the quantum well indicates Coulomb correlations of interacting excitons in the plane of the sample. We also establish that coherent resonant tunneling in this well-dot heterostructure restricts the available momentum space of the charge carriers within this quantum well. Consequently, the electric polarization vector of the associated indirect excitons collective orients along the direction of applied bias and these excitons undergo Bose-Einstein condensation below ~100 K. Generation of interference beats in photocapacitance oscillation even with incoherent white light further confirm the presence of stable, long-range spatial correlation among these indirect excitons. We finally demonstrate collective Rabi oscillations of these macroscopically large, ‘multipartite’, two-level, coupled and uncoupled quantum states of excitonic condensate as qubits. Therefore, our study not only brings the physics and technology of Bose-Einstein condensation within the reaches of semiconductor chips but also opens up experimental investigations of the fundamentals of quantum physics using similar techniques. Operational temperatures of such two-component excitonic BEC can be raised further with a more densely packed, ordered array of QDs and/or using materials having larger excitonic binding energies. However, fabrications of single crystals of 0D-2D heterostructures using 2D materials (e.g. transition metal di-chalcogenides, oxides, perovskites etc.) having higher excitonic binding energies are still an open challenge for semiconductor optoelectronics. As of now, these 0D-2D heterostructures can already be scaled up for mass production of miniaturized, portable quantum optoelectronic devices using the existing III-V and/or Nitride based semiconductor fabrication technologies.

Keywords: exciton, Bose-Einstein condensation, quantum computation, heterostructures, semiconductor Physics, quantum fluids, Schrodinger's Cat

Procedia PDF Downloads 186
356 Multi-Objective Optimization (Pareto Sets) and Multi-Response Optimization (Desirability Function) of Microencapsulation of Emamectin

Authors: Victoria Molina, Wendy Franco, Sergio Benavides, José M. Troncoso, Ricardo Luna, Jose R. PéRez-Correa

Abstract:

Emamectin Benzoate (EB) is a crystal antiparasitic that belongs to the avermectin family. It is one of the most common treatments used in Chile to control Caligus rogercresseyi in Atlantic salmon. However, the sea lice acquired resistance to EB when it is exposed at sublethal EB doses. The low solubility rate of EB and its degradation at the acidic pH in the fish digestive tract are the causes of the slow absorption of EB in the intestine. To protect EB from degradation and enhance its absorption, specific microencapsulation technologies must be developed. Amorphous Solid Dispersion techniques such as Spray Drying (SD) and Ionic Gelation (IG) seem adequate for this purpose. Recently, Soluplus® (SOL) has been used to increase the solubility rate of several drugs with similar characteristics than EB. In addition, alginate (ALG) is a widely used polymer in IG for biomedical applications. Regardless of the encapsulation technique, the quality of the obtained microparticles is evaluated with the following responses, yield (Y%), encapsulation efficiency (EE%) and loading capacity (LC%). In addition, it is important to know the percentage of EB released from the microparticles in gastric (GD%) and intestinal (ID%) digestions. In this work, we microencapsulated EB with SOL (EB-SD) and with ALG (EB-IG) using SD and IG, respectively. Quality microencapsulation responses and in vitro gastric and intestinal digestions at pH 3.35 and 7.8, respectively, were obtained. A central composite design was used to find the optimum microencapsulation variables (amount of EB, amount of polymer and feed flow). In each formulation, the behavior of these variables was predicted with statistical models. Then, the response surface methodology was used to find the best combination of the factors that allowed a lower EB release in gastric conditions, while permitting a major release at intestinal digestion. Two approaches were used to determine this. The desirability approach (DA) and multi-objective optimization (MOO) with multi-criteria decision making (MCDM). Both microencapsulation techniques allowed to maintain the integrity of EB in acid pH, given the small amount of EB released in gastric medium, while EB-IG microparticles showed greater EB release at intestinal digestion. For EB-SD, optimal conditions obtained with MOO plus MCDM yielded a good compromise among the microencapsulation responses. In addition, using these conditions, it is possible to reduce microparticles costs due to the reduction of 60% of BE regard the optimal BE proposed by (DA). For EB-GI, the optimization techniques used (DA and MOO) yielded solutions with different advantages and limitations. Applying DA costs can be reduced 21%, while Y, GD and ID showed 9.5%, 84.8% and 2.6% lower values than the best condition. In turn, MOO yielded better microencapsulation responses, but at a higher cost. Overall, EB-SD with operating conditions selected by MOO seems the best option, since a good compromise between costs and encapsulation responses was obtained.

Keywords: microencapsulation, multiple decision-making criteria, multi-objective optimization, Soluplus®

Procedia PDF Downloads 134
355 Prolactin and Its Abnormalities: Its Implications on the Male Reproductive Tract and Male Factor Infertility

Authors: Rizvi Hasan

Abstract:

Male factor infertility due to abnormalities in prolactin levels is encountered in a significant proportion. This was a case-control study carried out to determine the effects of prolactin abnormalities in normal males with infertility, recruiting 297 male infertile patients with informed written consent. All underwent a Basic Seminal Fluid Analysis (BSA) and endocrine profiles of FSH, LH, testosterone and prolactin (PRL) hormones using the random access chemiluminescent immunoassay method (normal range 2.5-17ng/ml). Age, weight, and height matched voluntary controls were recruited for comparison. None of the cases had anatomical, medical or surgical disorders related to infertility. Among the controls; mean age 33.2yrs ± 5.2, BMI 21.04 ± 1.39kgm-2, BSA 34×106, a number of children fathered 2±1, PRL 6.78 ± 2.92ng/ml. Of the 297 patients, 28 were hyperprolactinaemic while one was hypoprolactinaemic. All the hyperprolactinaemic patients had oligoasthenospermia, abnormal morphology and decreased viability. The serum testosterone levels were markedly lowered in 26 (92.86%) of the hyperprolactinaemic subjects. In the other 2 hyperprolactinaemic subjects and the single hypoprolactinaemic subject, the serum testosterone levels were normal. FSH and LH were normal in all patients. The 29 male patients with abnormalities in their serum PRL profiles were followed up for 12 months. The 28 patients suffering from hyperprolactinaemia were treated with oral bromocriptine in a dose of 2.5 mg twice daily. The hypoprolactinaemic patient defaulted treatment. From the follow-up, it was evident that 19 (67.86%) of the treated patients responded after 3 months of therapy while 4 (14.29%) showed improvement after approximately 6 months of bromocriptine therapy. One patient responded after 1 year of therapy while 2 patients showed improvements although not up to normal levels within the same period. Response to treatment was assessed by improvement in their BSA parameters. Prolactin abnormalities affect the male reproductive system and semen parameters necessitating further studies to ascertain the exact role of prolactin on the male reproductive tract. A parallel study was carried out incorporating 200 male white rats that were grouped and subjected to variations in their serum PRL levels. At the end of 100 days of treatment, these rats were subjected to morphological studies of their male reproductive tracts.Varying morphological changes depending on the levels of PRL changes induced were evident. Notable changes were arrest of spermatogenesis at the spermatid stage, a reduced testicular cellularity, a reduction in microvilli of the pseudostratified epithelial lining of the epididymis, while measurement of the tubular diameter showed a 30% reduction compared to normal tissue. There were no changes in the vas deferens, seminal vesicles, and the prostate. It is evident that both hyperprolactinaemia and hypoprolactinaemia have a direct effect on the morphology and function of the male reproductive tract. The morphological studies carried out on the groups of rats who were subjected to variations in their PRL levels could be the basis for infertility in male human beings.

Keywords: male factor infertility, morphological studies, prolactin, seminal fluid analysis

Procedia PDF Downloads 347
354 A Computational Approach to Screen Antagonist’s Molecule against Mycobacterium tuberculosis Lipoprotein LprG (Rv1411c)

Authors: Syed Asif Hassan, Tabrej Khan

Abstract:

Tuberculosis (TB) caused by bacillus Mycobacterium tuberculosis (Mtb) continues to take a disturbing toll on human life and healthcare facility worldwide. The global burden of TB remains enormous. The alarming rise of multi-drug resistant strains of Mycobacterium tuberculosis calls for an increase in research efforts towards the development of new target specific therapeutics against diverse strains of M. tuberculosis. Therefore, the discovery of new molecular scaffolds targeting new drug sites should be a priority for a workable plan for fighting resistance in Mycobacterium tuberculosis (Mtb). Mtb non-acylated lipoprotein LprG (Rv1411c) has a Toll-like receptor 2 (TLR2) agonist actions that depend on its association with triacylated glycolipids binding specifically with the hydrophobic pocket of Mtb LprG lipoprotein. The detection of a glycolipid carrier function has important implications for the role of LprG in Mycobacterial physiology and virulence. Therefore, considering the pivotal role of glycolipids in mycobacterial physiology and host-pathogen interactions, designing competitive antagonist (chemotherapeutics) ligands that competitively bind to glycolipid binding domain in LprG lipoprotein, will lead to inhibition of tuberculosis infection in humans. In this study, a unified approach involving ligand-based virtual screening protocol USRCAT (Ultra Shape Recognition) software and molecular docking studies using Auto Dock Vina 1.1.2 using the X-ray crystal structure of Mtb LprG protein was implemented. The docking results were further confirmed by DSX (DrugScore eXtented), a robust program to evaluate the binding energy of ligands bound to the Ligand binding domain of the Mtb LprG lipoprotein. The ligand, which has the higher hypothetical affinity, also has greater negative value. Based on the USRCAT, Lipinski’s values and molecular docking results, [(2R)-2,3-di(hexadecanoyl oxy)propyl][(2S,3S,5S,6R)-3,4,5-trihydroxy-2,6-bis[[(2R,3S,4S,5R,6S)-3,4,5-trihydroxy-6 (hydroxymethyl)tetrahydropyran-2-yl]oxy]cyclohexyl] phosphate (XPX) was confirmed as a promising drug-like lead compound (antagonist) binding specifically to the hydrophobic domain of LprG protein with affinity greater than that of PIM2 (agonist of LprG protein) with a free binding energy of -9.98e+006 Kcal/mol and binding affinity of -132 Kcal/mol, respectively. A further, in vitro assay of this compound is required to establish its potency in inhibiting molecular evasion mechanism of MTB within the infected host macrophages. These results will certainly be helpful in future anti-TB drug discovery efforts against Multidrug-Resistance Tuberculosis (MDR-TB).

Keywords: antagonist, agonist, binding affinity, chemotherapeutics, drug-like, multi drug resistance tuberculosis (MDR-TB), RV1411c protein, toll-like receptor (TLR2)

Procedia PDF Downloads 274
353 Developing Offshore Energy Grids in Norway as Capability Platforms

Authors: Vidar Hepsø

Abstract:

The energy and oil companies on the Norwegian Continental shelf come from a situation where each asset control and manage their energy supply (island mode) and move towards a situation where the assets need to collaborate and coordinate energy use with others due to increased cost and scarcity of electric energy sharing the energy that is provided. Currently, several areas are electrified either with an onshore grid cable or are receiving intermittent energy from offshore wind-parks. While the onshore grid in Norway is well regulated, the offshore grid is still in the making, with several oil and gas electrification projects and offshore wind development just started. The paper will describe the shift in the mindset that comes with operating this new offshore grid. This transition process heralds an increase in collaboration across boundaries and integration of energy management across companies, businesses, technical disciplines, and engagement with stakeholders in the larger society. This transition will be described as a function of the new challenges with increased complexity of the energy mix (wind, oil/gas, hydrogen and others) coupled with increased technical and organization complexity in energy management. Organizational complexity denotes an increasing integration across boundaries, whether these boundaries are company, vendors, professional disciplines, regulatory regimes/bodies, businesses, and across numerous societal stakeholders. New practices must be developed, made legitimate and institutionalized across these boundaries. Only parts of this complexity can be mitigated technically, e.g.: by use of batteries, mixing energy systems and simulation/ forecasting tools. Many challenges must be mitigated with legitimated societal and institutionalized governance practices on many levels. Offshore electrification supports Norway’s 2030 climate targets but is also controversial since it is exploiting the larger society’s energy resources. This means that new systems and practices must also be transparent, not only for the industry and the authorities, but must also be acceptable and just for the larger society. The paper report from ongoing work in Norway, participant observation and interviews in projects and people working with offshore grid development in Norway. One case presented is the development of an offshore floating windfarm connected to two offshore installations and the second case is an offshore grid development initiative providing six installations electric energy via an onshore cable. The development of the offshore grid is analyzed using a capability platform framework, that describes the technical, competence, work process and governance capabilities that are under development in Norway. A capability platform is a ‘stack’ with the following layers: intelligent infrastructure, information and collaboration, knowledge sharing & analytics and finally business operations. The need for better collaboration and energy forecasting tools/capabilities in this stack will be given a special attention in the two use cases that are presented.

Keywords: capability platform, electrification, carbon footprint, control rooms, energy forecsting, operational model

Procedia PDF Downloads 71
352 Interactivity as a Predictor of Intent to Revisit Sports Apps

Authors: Young Ik Suh, Tywan G. Martin

Abstract:

Sports apps in a smartphone provide up-to-date information and fast and convenient access to live games. The market of sports apps has emerged as the second fastest growing app category worldwide. Further, many sports fans use their smartphones to know the schedule of sporting events, players’ position and bios, videos and highlights. In recent years, a growing number of scholars and practitioners alike have emphasized the importance of interactivity with sports apps, hypothesizing that interactivity plays a significant role in enticing sports apps users and that it is a key component in measuring the success of sports apps. Interactivity in sports apps focuses primarily on two functions: (1) two-way communication and (2) active user control, neither of which have been applicable through traditional mass media and communication technologies. Therefore, the purpose of this study is to examine whether the interactivity function on sports apps leads to positive outcomes such as intent to revisit. More specifically, this study investigates how three major functions of interactivity (i.e., two-way communication, active user control, and real-time information) influence the attitude of sports apps users and their intent to revisit the sports apps. The following hypothesis is proposed; interactivity functions will be positively associated with both attitudes toward sports apps and intent to revisit sports apps. The survey questionnaire includes four parts: (1) an interactivity scale, (2) an attitude scale, (3) a behavioral intention scale, and (4) demographic questions. Data are to be collected from ESPN apps users. To examine the relationships among the observed and latent variables and determine the reliability and validity of constructs, confirmatory factor analysis (CFA) is conducted. Structural equation modeling (SEM) is utilized to test hypothesized relationships among constructs. Additionally, this study compares the proposed interactivity model with a rival model to identify the role of attitude as a mediating factor. The findings of the current sports apps study provide several theoretical and practical contributions and implications by extending the research and literature associated with the important role of interactivity functions in sports apps and sports media consumption behavior. Specifically, this study may improve the theoretical understandings of whether the interactivity functions influence user attitudes and intent to revisit sports apps. Additionally, this study identifies which dimensions of interactivity are most important to sports apps users. From practitioners’ perspectives, this findings of this study provide significant implications. More entrepreneurs and investors in the sport industry need to recognize that high-resolution photos, live streams, and up-to-date stats are in the sports app, right at sports fans fingertips. The result will imply that sport practitioners may need to develop sports mobile apps that offer greater interactivity functions to attract sport fans.

Keywords: interactivity, two-way communication, active user control, real time information, sports apps, attitude, intent to revisit

Procedia PDF Downloads 149
351 Hydrological-Economic Modeling of Two Hydrographic Basins of the Coast of Peru

Authors: Julio Jesus Salazar, Manuel Andres Jesus De Lama

Abstract:

There are very few models that serve to analyze the use of water in the socio-economic process. On the supply side, the joint use of groundwater has been considered in addition to the simple limits on the availability of surface water. In addition, we have worked on waterlogging and the effects on water quality (mainly salinity). In this paper, a 'complex' water economy is examined; one in which demands grow differentially not only within but also between sectors, and one in which there are limited opportunities to increase consumptive use. In particular, high-value growth, the growth of the production of irrigated crops of high value within the basins of the case study, together with the rapidly growing urban areas, provides a rich context to examine the general problem of water management at the basin level. At the same time, the long-term aridity of nature has made the eco-environment in the basins located on the coast of Peru very vulnerable, and the exploitation and immediate use of water resources have further deteriorated the situation. The presented methodology is the optimization with embedded simulation. The wide basin simulation of flow and water balances and crop growth are embedded with the optimization of water allocation, reservoir operation, and irrigation scheduling. The modeling framework is developed from a network of river basins that includes multiple nodes of origin (reservoirs, aquifers, water courses, etc.) and multiple demand sites along the river, including places of consumptive use for agricultural, municipal and industrial, and uses of running water on the coast of Peru. The economic benefits associated with water use are evaluated for different demand management instruments, including water rights, based on the production and benefit functions of water use in the urban agricultural and industrial sectors. This work represents a new effort to analyze the use of water at the regional level and to evaluate the modernization of the integrated management of water resources and socio-economic territorial development in Peru. It will also allow the establishment of policies to improve the process of implementation of the integrated management and development of water resources. The input-output analysis is essential to present a theory about the production process, which is based on a particular type of production function. Also, this work presents the Computable General Equilibrium (CGE) version of the economic model for water resource policy analysis, which was specifically designed for analyzing large-scale water management. As to the platform for CGE simulation, GEMPACK, a flexible system for solving CGE models, is used for formulating and solving CGE model through the percentage-change approach. GEMPACK automates the process of translating the model specification into a model solution program.

Keywords: water economy, simulation, modeling, integration

Procedia PDF Downloads 158
350 Real-Time Monitoring of Complex Multiphase Behavior in a High Pressure and High Temperature Microfluidic Chip

Authors: Renée M. Ripken, Johannes G. E. Gardeniers, Séverine Le Gac

Abstract:

Controlling the multiphase behavior of aqueous biomass mixtures is essential when working in the biomass conversion industry. Here, the vapor/liquid equilibria (VLE) of ethylene glycol, glycerol, and xylitol were studied for temperatures between 25 and 200 °C and pressures of 1 to 10 bar. These experiments were performed in a microfluidic platform, which exhibits excellent heat transfer properties so that equilibrium is reached fast. Firstly, the saturated vapor pressure as a function of the temperature and the substrate mole fraction of the substrate was calculated using AspenPlus with a Redlich-Kwong-Soave Boston-Mathias (RKS-BM) model. Secondly, we developed a high-pressure and high-temperature microfluidic set-up for experimental validation. Furthermore, we have studied the multiphase flow pattern that occurs after the saturation temperature was achieved. A glass-silicon microfluidic device containing a 0.4 or 0.2 m long meandering channel with a depth of 250 μm and a width of 250 or 500 μm was fabricated using standard microfabrication techniques. This device was placed in a dedicated chip-holder, which includes a ceramic heater on the silicon side. The temperature was controlled and monitored by three K-type thermocouples: two were located between the heater and the silicon substrate, one to set the temperature and one to measure it, and the third one was placed in a 300 μm wide and 450 μm deep groove on the glass side to determine the heat loss over the silicon. An adjustable back pressure regulator and a pressure meter were added to control and evaluate the pressure during the experiment. Aqueous biomass solutions (10 wt%) were pumped at a flow rate of 10 μL/min using a syringe pump, and the temperature was slowly increased until the theoretical saturation temperature for the pre-set pressure was reached. First and surprisingly, a significant difference was observed between our theoretical saturation temperature and the experimental results. The experimental values were 10’s of degrees higher than the calculated ones and, in some cases, saturation could not be achieved. This discrepancy can be explained in different ways. Firstly, the pressure in the microchannel is locally higher due to both the thermal expansion of the liquid and the Laplace pressure that has to be overcome before a gas bubble can be formed. Secondly, superheating effects are likely to be present. Next, once saturation was reached, the flow pattern of the gas/liquid multiphase system was recorded. In our device, the point of nucleation can be controlled by taking advantage of the pressure drop across the channel and the accurate control of the temperature. Specifically, a higher temperature resulted in nucleation further upstream in the channel. As the void fraction increases downstream, the flow regime changes along the channel from bubbly flow to Taylor flow and later to annular flow. All three flow regimes were observed simultaneously. The findings of this study are key for the development and optimization of a microreactor for hydrogen production from biomass.

Keywords: biomass conversion, high pressure and high temperature microfluidics, multiphase, phase diagrams, superheating

Procedia PDF Downloads 221
349 The Role of the Corporate Social Responsibility in Poverty Reduction

Authors: M. Verde, G. Falzarano

Abstract:

The paper examines the connection between corporate social responsibility (CSR), capability approach and poverty reduction; in particular, the local employment development (LED) by way of CSR initiatives. The joint action of LED/CSR results in a win-win situation, not only for the enterprises but also for all the stakeholders involved; in this regard, subsidiarity and coordination between national and regional/local authorities are central to a socially-oriented market economy. In the first section, the CSR is analysed on the basis of its social function in the fight against poverty, as a 'capabilities deprivation'. In the central part, the attention is focused on the relationship between CSR and LED; ergo, on the role of the enterprises in fostering capabilities development (the employment). Besides, all the potential solutions are presented, stressing the possible combinations, in the last part. The benchmark is the enterprise as an economic and a social institution: the business should not be combined with profit merely, paying more attention to its sustainable impact and social contribution. In which way could it be possible? The answer is the CSR. The impact of CSR on poverty reduction is still little explored. The companies help to reduce poverty through economic contribution, human rights and social inclusion; hence, the business becomes an 'agent of development' in order to fight against 'inequality'. The starting point is the pyramid of social responsibility, where ethic and philanthropic responsibilities involve programmes and actions aimed at personal development of the individuals, improving human standard of living in all forms, including poverty, when people do not have a choice between different 'life options', ranging from level of education to employment. At this point, CSR comes into play and works on two dimensions: poverty reduction and poverty prevention, by means of a series of initiatives: first of all, job creation and precarious work reduction. Empowerment of the local actors, financial support and combination of top down and bottom up initiatives are some of CSR areas of activity. Several positive effects occur on individual levels of educations, access to capital, individual health status, empowerment of youth and woman, access to social networks and it was observed that these effects depend on the type of CSR strategy. Indeed, CSR programmes should take into account fundamental criteria, such as the transparency, the information about benefits, a coordination unit among institutions and more clear guidelines. In this way, the advantages to the corporate reputation and to the community translate into a better job matching on the labour market, inter alia. It is important to underline that the success depends on the specific measures of the areas in question, by adapting them to the local needs, in light of general principles and index; therefore, the concrete commitment of the all stakeholders involved is decisive in order to achieve the goals. The enterprise would represent a concrete contribution for the pursuit of sustainable development and for the dissemination of a social and well being awareness.

Keywords: capability approach, local employment development, poverty, social inclusion

Procedia PDF Downloads 146
348 Cloning and Expression a Gene of β-Glucosidase from Penicillium echinulatum in Pichia pastoris

Authors: Amanda Gregorim Fernandes, Lorena Cardoso Cintra, Rosalia Santos Amorim Jesuino, Fabricia Paula De Faria, Marcio José Poças Fonseca

Abstract:

Bioethanol is one of the most promising biofuels and able to replace fossil fuels and reduce its different environmental impacts and can be generated from various agroindustrial waste. The Brazil is in first place in bioethanol production to be the largest producer of sugarcane. The bagasse sugarcane (SCB) has lignocellulose which is composed of three major components: cellulose, hemicellulose and lignin. Cellulose is a homopolymer of glucose units connected by glycosidic linkages. Among all species of Penicillium, Penicillium echinulatum has been the focus of attention because they produce high quantities of cellulase and the mutant strain 9A02S1 produces higher enzyme levels compared to the wild. Among the cellulases, the cellobiohydrolases enzymes are the main components of the cellulolytic system of fungi, and are also responsible for most of the potential hydrolytic in enzyme cocktails for the industrial processing of plant biomass and several cellobiohydrolases Penicillium had higher specific activity against cellulose compared to CBH I from Trichoderma reesei. This fact makes it an interesting pattern for higher yields in the enzymatic hydrolysis, and also they are important enzymes in the hydrolysis of crystalline regions of cellulose. Therefore, finding new and more active enzymes become necessary. Meanwhile, β-glycosidases act on soluble substrates and are highly dependent on cellobiohydrolases and endoglucanases action to provide the substrate in the hydrolysis of the biomass, but the cellobiohydrolases and endoglucanases are highly dependent β-glucosidases to maintain efficient hydrolysis. Thus, there is a need to understand the structure-function relationships that govern the catalytic activity of cellulolytic enzymes to elucidate its mechanism of action and optimize its potential as industrial biocatalysts. To evaluate the enzyme β-glucosidase of Penicillium echinulatum (PeBGL1) the gene was synthesized from the assembly sequence from a library in induction conditions and then the PeBGL1 gene was cloned in the vector pPICZαA and transformed into P. pastoris GS115. After processing, the producers of PeBGL1 were analyzed for enzyme activity and protein profile where a band of approximately 100 kDa was viewed. It was also carried out the zymogram. In partial characterization it was determined optimum temperature of 50°C and optimum pH of 6,5. In addition, to increase the secreted recombinant PeBGL1 production by Pichia pastoris, three parameters of P. pastoris culture medium were analysed: methanol, nitrogen source concentrations and the inoculum size. A 23 factorial design was effective in achieving the optimum condition. Altogether, these results point to the potential application of this P. echinulatum β-glucosidase in hydrolysis of cellulose for the production of bioethanol.

Keywords: bioethanol, biotechnology, beta-glucosidase, penicillium echinulatum

Procedia PDF Downloads 248
347 Separating Landform from Noise in High-Resolution Digital Elevation Models through Scale-Adaptive Window-Based Regression

Authors: Anne M. Denton, Rahul Gomes, David W. Franzen

Abstract:

High-resolution elevation data are becoming increasingly available, but typical approaches for computing topographic features, like slope and curvature, still assume small sliding windows, for example, of size 3x3. That means that the digital elevation model (DEM) has to be resampled to the scale of the landform features that are of interest. Any higher resolution is lost in this resampling. When the topographic features are computed through regression that is performed at the resolution of the original data, the accuracy can be much higher, and the reported result can be adjusted to the length scale that is relevant locally. Slope and variance are calculated for overlapping windows, meaning that one regression result is computed per raster point. The number of window centers per area is the same for the output as for the original DEM. Slope and variance are computed by performing regression on the points in the surrounding window. Such an approach is computationally feasible because of the additive nature of regression parameters and variance. Any doubling of window size in each direction only takes a single pass over the data, corresponding to a logarithmic scaling of the resulting algorithm as a function of the window size. Slope and variance are stored for each aggregation step, allowing the reported slope to be selected to minimize variance. The approach thereby adjusts the effective window size to the landform features that are characteristic to the area within the DEM. Starting with a window size of 2x2, each iteration aggregates 2x2 non-overlapping windows from the previous iteration. Regression results are stored for each iteration, and the slope at minimal variance is reported in the final result. As such, the reported slope is adjusted to the length scale that is characteristic of the landform locally. The length scale itself and the variance at that length scale are also visualized to aid in interpreting the results for slope. The relevant length scale is taken to be half of the window size of the window over which the minimum variance was achieved. The resulting process was evaluated for 1-meter DEM data and for artificial data that was constructed to have defined length scales and added noise. A comparison with ESRI ArcMap was performed and showed the potential of the proposed algorithm. The resolution of the resulting output is much higher and the slope and aspect much less affected by noise. Additionally, the algorithm adjusts to the scale of interest within the region of the image. These benefits are gained without additional computational cost in comparison with resampling the DEM and computing the slope over 3x3 images in ESRI ArcMap for each resolution. In summary, the proposed approach extracts slope and aspect of DEMs at the lengths scales that are characteristic locally. The result is of higher resolution and less affected by noise than existing techniques.

Keywords: high resolution digital elevation models, multi-scale analysis, slope calculation, window-based regression

Procedia PDF Downloads 132
346 Implementation of Active Recovery at Immediate, 12 and 24 Hours Post-Training in Young Soccer Players

Authors: C. Villamizar, M. Serrato

Abstract:

In the pursuit of athletic performance, the role of physical training which is determined by a number of charges or taxes on physiological stress and musculoskeletal systems of the human body generated by the intensity and duration is fundamental. Given the physical demands of these activities both training and competitive must take into account the optimal relationship with a straining process recovery post favoring the process of overcompensation which aims to facilitate the return and rising energy potential and protein synthesis also of different tissues. Allowing muscle function returns to baseline or pre-exercise states. If this recovery process is not performed or is not allowed in a proper way, will result in an increased state of fatigue. Active recovery, is one of the strategies implemented in the sport for a return to pre-exercise physiological states. However, there are some adverse assumptions regarding the negative effects, as is the possibility of increasing the degradation of muscle glycogen and thus delaying the synthesis thereof. For them, it is necessary to investigate what would be the effects generated application made at different times after the effort. The aim of this study was to determine the effects of active recovery post effort made at three different times: immediately, at 12 and 24 hours on biochemical markers creatine kinase in youth soccer player’s categories. A randomized controlled trial with allocation to three groups was performed: A. active recovery immediately after the effort; B. active recovery performed at 12 hours after the effort; C. active recovery made at 24 hours after the effort. This study included 27 subjects belonging to a Colombian soccer team of the second division. Vital signs, weight, height, BMI, the percentage of muscle mass, fat mass percentage, personal medical history, and family were valued. The velocity, explosive force and Creatin Kinase (CK) in blood were tested before and after interventions. SAFT 90 protocol (Soccer Field specific Aerobic Test) was applied to participants for generating fatigue. CK samples were taken one hour before the application of the fatigue test, one hour after the fatigue protocol and 48 of the initial CK sample. Mean age was 18.5 ± 1.1 years old. Improvements in jumping and speed recovery the 3 groups (p < 0.05), but no statistically significant differences between groups was observed after recuperation. In all participants, there was a significant increment of CK when applied SAFT 90 in all the groups (median 103.1-111.1). The CK measurement after 48 hours reflects a recovery in all groups, however the group C, a decline below baseline levels of -55.5 (-96.3 /-20.4) which is a significant find. Other research has shown that CK does not return quickly to their baseline, but our study shows that active recovery favors the clearance of CK and also to perform recovery 24 hours after the effort generates higher clearance of this biomarker.

Keywords: active recuperation, creatine phosphokinase, post training, young soccer players

Procedia PDF Downloads 161
345 Electrohydrodynamic Patterning for Surface Enhanced Raman Scattering for Point-of-Care Diagnostics

Authors: J. J. Rickard, A. Belli, P. Goldberg Oppenheimer

Abstract:

Medical diagnostics, environmental monitoring, homeland security and forensics increasingly demand specific and field-deployable analytical technologies for quick point-of-care diagnostics. Although technological advancements have made optical methods well-suited for miniaturization, a highly-sensitive detection technique for minute sample volumes is required. Raman spectroscopy is a well-known analytical tool, but has very weak signals and hence is unsuitable for trace level analysis. Enhancement via localized optical fields (surface plasmons resonances) on nanoscale metallic materials generates huge signals in surface-enhanced Raman scattering (SERS), enabling single molecule detection. This enhancement can be tuned by manipulation of the surface roughness and architecture at the sub-micron level. Nevertheless, the development and application of SERS has been inhibited by the irreproducibility and complexity of fabrication routes. The ability to generate straightforward, cost-effective, multiplex-able and addressable SERS substrates with high enhancements is of profound interest for SERS-based sensing devices. While most SERS substrates are manufactured by conventional lithographic methods, the development of a cost-effective approach to create nanostructured surfaces is a much sought-after goal in the SERS community. Here, a method is established to create controlled, self-organized, hierarchical nanostructures using electrohydrodynamic (HEHD) instabilities. The created structures are readily fine-tuned, which is an important requirement for optimizing SERS to obtain the highest enhancements. HEHD pattern formation enables the fabrication of multiscale 3D structured arrays as SERS-active platforms. Importantly, each of the HEHD-patterned individual structural units yield a considerable SERS enhancement. This enables each single unit to function as an isolated sensor. Each of the formed structures can be effectively tuned and tailored to provide high SERS enhancement, while arising from different HEHD morphologies. The HEHD fabrication of sub-micrometer architectures is straightforward and robust, providing an elegant route for high-throughput biological and chemical sensing. The superior detection properties and the ability to fabricate SERS substrates on the miniaturized scale, will facilitate the development of advanced and novel opto-fluidic devices, such as portable detection systems, and will offer numerous applications in biomedical diagnostics, forensics, ecological warfare and homeland security.

Keywords: hierarchical electrohydrodynamic patterning, medical diagnostics, point-of care devices, SERS

Procedia PDF Downloads 348
344 Probing Mechanical Mechanism of Three-Hinge Formation on a Growing Brain: A Numerical and Experimental Study

Authors: Mir Jalil Razavi, Tianming Liu, Xianqiao Wang

Abstract:

Cortical folding, characterized by convex gyri and concave sulci, has an intrinsic relationship to the brain’s functional organization. Understanding the mechanism of the brain’s convoluted patterns can provide useful clues into normal and pathological brain function. During the development, the cerebral cortex experiences a noticeable expansion in volume and surface area accompanied by tremendous tissue folding which may be attributed to many possible factors. Despite decades of endeavors, the fundamental mechanism and key regulators of this crucial process remain incompletely understood. Therefore, to taking even a small role in unraveling of brain folding mystery, we present a mechanical model to find mechanism of 3-hinges formation in a growing brain that it has not been addressed before. A 3-hinge is defined as a gyral region where three gyral crests (hinge-lines) join. The reasons that how and why brain prefers to develop 3-hinges have not been answered very well. Therefore, we offer a theoretical and computational explanation to mechanism of 3-hinges formation in a growing brain and validate it by experimental observations. In theoretical approach, the dynamic behavior of brain tissue is examined and described with the aid of a large strain and nonlinear constitutive model. Derived constitute model is used in the computational model to define material behavior. Since the theoretical approach cannot predict the evolution of cortical complex convolution after instability, non-linear finite element models are employed to study the 3-hinges formation and secondary morphological folds of the developing brain. Three-dimensional (3D) finite element analyses on a multi-layer soft tissue model which mimics a small piece of the brain are performed to investigate the fundamental mechanism of consistent hinge formation in the cortical folding. Results show that after certain amount growth of cortex, mechanical model starts to be unstable and then by formation of creases enters to a new configuration with lower strain energy. By further growth of the model, formed shallow creases start to form convoluted patterns and then develop 3-hinge patterns. Simulation results related to 3-hinges in models show good agreement with experimental observations from macaque, chimpanzee and human brain images. These results have great potential to reveal fundamental principles of brain architecture and to produce a unified theoretical framework that convincingly explains the intrinsic relationship between cortical folding and 3-hinges formation. This achieved fundamental understanding of the intrinsic relationship between cortical folding and 3-hinges formation would potentially shed new insights into the diagnosis of many brain disorders such as schizophrenia, autism, lissencephaly and polymicrogyria.

Keywords: brain, cortical folding, finite element, three hinge

Procedia PDF Downloads 241
343 Evaluation of Rheological Properties, Anisotropic Shrinkage, and Heterogeneous Densification of Ceramic Materials during Liquid Phase Sintering by Numerical-Experimental Procedure

Authors: Hamed Yaghoubi, Esmaeil Salahi, Fateme Taati

Abstract:

The effective shear and bulk viscosity, as well as dynamic viscosity, describe the rheological properties of the ceramic body during the liquid phase sintering process. The rheological parameters depend on the physical and thermomechanical characteristics of the material such as relative density, temperature, grain size, and diffusion coefficient and activation energy. The main goal of this research is to acquire a comprehensive understanding of the response of an incompressible viscose ceramic material during liquid phase sintering process such as stress-strain relations, sintering and hydrostatic stress, the prediction of anisotropic shrinkage and heterogeneous densification as a function of sintering time by including the simultaneous influence of gravity field, and frictional force. After raw materials analysis, the standard hard porcelain mixture as a ceramic body was designed and prepared. Three different experimental configurations were designed including midpoint deflection, sinter bending, and free sintering samples. The numerical method for the ceramic specimens during the liquid phase sintering process are implemented in the CREEP user subroutine code in ABAQUS. The numerical-experimental procedure shows the anisotropic behavior, the complete difference in spatial displacement through three directions, the incompressibility for ceramic samples during the sintering process. The anisotropic shrinkage factor has been proposed to investigate the shrinkage anisotropy. It has been shown that the shrinkage along the normal axis of casting sample is about 1.5 times larger than that of casting direction, the gravitational force in pyroplastic deformation intensifies the shrinkage anisotropy more than the free sintering sample. The lowest and greatest equivalent creep strain occurs at the intermediate zone and around the central line of the midpoint distorted sample, respectively. In the sinter bending test sample, the equivalent creep strain approaches to the maximum near the contact area with refractory support. The inhomogeneity in Von-Misses, pressure, and principal stress intensifies the relative density non-uniformity in all samples, except in free sintering one. The symmetrical distribution of stress around the center of free sintering sample, cause to hinder the pyroplastic deformations. Densification results confirmed that the effective bulk viscosity was well-defined with relative density values. The stress analysis confirmed that the sintering stress is more than the hydrostatic stress from start to end of sintering time so, from both theoretically and experimentally point of view, the sintering process occurs completely.

Keywords: anisotropic shrinkage, ceramic material, liquid phase sintering process, rheological properties, numerical-experimental procedure

Procedia PDF Downloads 345
342 An Unified Model for Longshore Sediment Transport Rate Estimation

Authors: Aleksandra Dudkowska, Gabriela Gic-Grusza

Abstract:

Wind wave-induced sediment transport is an important multidimensional and multiscale dynamic process affecting coastal seabed changes and coastline evolution. The knowledge about sediment transport rate is important to solve many environmental and geotechnical issues. There are many types of sediment transport models but none of them is widely accepted. It is bacause the process is not fully defined. Another problem is a lack of sufficient measurment data to verify proposed hypothesis. There are different types of models for longshore sediment transport (LST, which is discussed in this work) and cross-shore transport which is related to different time and space scales of the processes. There are models describing bed-load transport (discussed in this work), suspended and total sediment transport. LST models use among the others the information about (i) the flow velocity near the bottom, which in case of wave-currents interaction in coastal zone is a separate problem (ii) critical bed shear stress that strongly depends on the type of sediment and complicates in the case of heterogeneous sediment. Moreover, LST rate is strongly dependant on the local environmental conditions. To organize existing knowledge a series of sediment transport models intercomparisons was carried out as a part of the project “Development of a predictive model of morphodynamic changes in the coastal zone”. Four classical one-grid-point models were studied and intercompared over wide range of bottom shear stress conditions, corresponding with wind-waves conditions appropriate for coastal zone in polish marine areas. The set of models comprises classical theories that assume simplified influence of turbulence on the sediment transport (Du Boys, Meyer-Peter & Muller, Ribberink, Engelund & Hansen). It turned out that the values of estimated longshore instantaneous mass sediment transport are in general in agreement with earlier studies and measurements conducted in the area of interest. However, none of the formulas really stands out from the rest as being particularly suitable for the test location over the whole analyzed flow velocity range. Therefore, based on the models discussed a new unified formula for longshore sediment transport rate estimation is introduced, which constitutes the main original result of this study. Sediment transport rate is calculated based on the bed shear stress and critical bed shear stress. The dependence of environmental conditions is expressed by one coefficient (in a form of constant or function) thus the model presented can be quite easily adjusted to the local conditions. The discussion of the importance of each model parameter for specific velocity ranges is carried out. Moreover, it is shown that the value of near-bottom flow velocity is the main determinant of longshore bed-load in storm conditions. Thus, the accuracy of the results depends less on the sediment transport model itself and more on the appropriate modeling of the near-bottom velocities.

Keywords: bedload transport, longshore sediment transport, sediment transport models, coastal zone

Procedia PDF Downloads 391
341 Story of Per-: The Radial Network of One Lithuanian Prefix

Authors: Samanta Kietytė

Abstract:

The object of this study is the verbal derivatives stemming from the Lithuanian prefix per-. The prefix under examination can be classified as prepositional, having descended from the preposition per, thereby sharing the same prototypical meaning – denoting movement OVER. These frequently co-occur within sentences (1). The aim of this paper is to conduct a semantic analysis of the prefix per- and to propose a possible radial network of its meanings. In essence, the aim is to identify the interrelationships existing between its meanings. 1) Jis peršoko per tvorą/ 3SG.NOM.M jump.PST.3 over fence.ACC.SG. /ʻHe jumped over the fenceʼ. The foundation of this work lies in the methodological and theoretical framework of cognitive linguistics. The prototypical meaning of prefixes consistently embodies spatial dimensions that can be described through image schemas. This entails the identification of the trajectory, the landmark, and the relation between them in the situation described by the prefixed verb. The meanings of linguistic units are not perceived as arbitrary, but rather, they are interconnected through semantic motivation. According to this perspective, a singular meaning within linguistic units is considered as prototypical, while additional meanings are descended (not necessarily directly) from it. For example, one of the per- meanings TRANSFER (2) is derived from the prototypical meaning OVER. 2) Prašau persiųsti vadovo laišką man./ Ask.PRS.1 forward.INF manager.GEN.SG email.ACC.SG 1.SG.DAT/ ʻPlease forward the manager‘s email to meʼ. Certain semantic relations are explained by the conceptual metaphor and metonymy theory. For instances, when prefixed verb has a meaning WIN (3) it is related to the prototypical meaning. In this case, the prefixed verb describes situations of winning in various ways. In the prototypical meaning, the trajector moves higher than the landmark, and winning is metaphorically perceived as being higher. 3) Sūnus peraugo tėvą./ Son.NOM.SG outgrow.PST.3 father.ACC.SG/ ʻThe son has outgrown the fatherʼ. The data utilized for this study was collected from the 2014 grammatically annotated text "Lithuanian Web (LithuanianWaC v2)", consisting of 63,645,700 words. Given that the corpus is grammatically lemmatized, the list of the 793 items was obtained using the wordlist function and specifying that verbs starting with per were searched. The list included not only prefixed verbs but also other verbs whose roots have the same letter sequences as prefixes. Also, words with misspellings, without diacritical marks, and words listed for lemmatization errors were rejected, and a total of 475 derivatives were left for further analysis. The semantic analysis revealed that there are 12 distinct meanings of the prefix per-. The spatial meanings were extracted by determining what a trajector is, what a landmark is, and what the relation between them is. The connection between non-spatial meanings and spatial ones occurs through semantic motivation established by identifying elements that correspond to the trajector and landmark. The analysis reveals that there are no strict boundaries among these meanings, instead showing a continuum that encompasses a central core and a peripheral association with their internal structure, i.e., some derivatives are more prototypical of a particular meaning than others.

Keywords: word-formation, cognitive semantics, metaphor, radial networks, prototype theory, prefix

Procedia PDF Downloads 81