Search results for: soil-blade contact modeling
741 Blockchain-Based Decentralized Architecture for Secure Medical Records Management
Authors: Saeed M. Alshahrani
Abstract:
This research integrated blockchain technology to reform medical records management in healthcare informatics. It was aimed at resolving the limitations of centralized systems by establishing a secure, decentralized, and user-centric platform. The system was architected with a sophisticated three-tiered structure, integrating advanced cryptographic methodologies, consensus algorithms, and the Fast Healthcare Interoperability Resources (HL7 FHIR) standard to ensure data security, transaction validity, and semantic interoperability. The research has profound implications for healthcare delivery, patient care, legal compliance, operational efficiency, and academic advancements in blockchain technology and healthcare IT sectors. The methodology adapted in this research comprises of Preliminary Feasibility Study, Literature Review, Design and Development, Cryptographic Algorithm Integration, Modeling the data and testing the system. The research employed a permissioned blockchain with a Practical Byzantine Fault Tolerance (PBFT) consensus algorithm and Ethereum-based smart contracts. It integrated advanced cryptographic algorithms, role-based access control, multi-factor authentication, and RESTful APIs to ensure security, regulate access, authenticate user identities, and facilitate seamless data exchange between the blockchain and legacy healthcare systems. The research contributed to the development of a secure, interoperable, and decentralized system for managing medical records, addressing the limitations of the centralized systems that were in place. Future work will delve into optimizing the system further, exploring additional blockchain use cases in healthcare, and expanding the adoption of the system globally, contributing to the evolution of global healthcare practices and policies.Keywords: healthcare informatics, blockchain, medical records management, decentralized architecture, data security, cryptographic algorithms
Procedia PDF Downloads 55740 Exchanging Radiology Reporting System with Electronic Health Record: Designing a Conceptual Model
Authors: Azadeh Bashiri
Abstract:
Introduction: In order to better designing of electronic health record system in Iran, integration of health information systems based on a common language must be done to interpret and exchange this information with this system is required. Background: This study, provides a conceptual model of radiology reporting system using unified modeling language. The proposed model can solve the problem of integration this information system with electronic health record system. By using this model and design its service based, easily connect to electronic health record in Iran and facilitate transfer radiology report data. Methods: This is a cross-sectional study that was conducted in 2013. The student community was 22 experts that working at the Imaging Center in Imam Khomeini Hospital in Tehran and the sample was accorded with the community. Research tool was a questionnaire that prepared by the researcher to determine the information requirements. Content validity and test-retest method was used to measure validity and reliability of questioner respectively. Data analyzed with average index, using SPSS. Also, Visual Paradigm software was used to design a conceptual model. Result: Based on the requirements assessment of experts and related texts, administrative, demographic and clinical data and radiological examination results and if the anesthesia procedure performed, anesthesia data suggested as minimum data set for radiology report and based it class diagram designed. Also by identifying radiology reporting system process, use case was drawn. Conclusion: According to the application of radiology reports in electronic health record system for diagnosing and managing of clinical problem of the patient, provide the conceptual Model for radiology reporting system; in order to systematically design it, the problem of data sharing between these systems and electronic health records system would eliminate.Keywords: structured radiology report, information needs, minimum data set, electronic health record system in Iran
Procedia PDF Downloads 254739 Women's Pathways to Prison in Thailand
Authors: Samantha Jeffries, Chontit Chuenurah
Abstract:
Thailand incarcerates the largest number of women and has the highest female incarceration rate in South East Asia. Since the 1990s, there has been a substantial increase in the number, rate and proportion of women imprisoned. Thailand places a high priority on the gender specific contexts out of which offending arises and the different needs of women in the criminal justice system. This is manifested in work undertaken to guide the development of the United Nations Rules for the Treatment of Women Prisoners and Non-Custodial Measures for Women Offenders (the Bangkok Rules); adopted by the United Nations General Assembly in 2010. The Bangkok Rules make a strong statement about Thailand’s recognition of and commitment to the fair and equitable treatment of women throughout their contact with the criminal justice system including at sentencing and in prison. This makes the comparatively high use of imprisonment for women in Thailand particularly concerning and raises questions about the relationship between gender, crime and criminal justice. While there is an extensive body of research in Western jurisdictions exploring women’s pathways to prison, there is a relative dearth of methodologically robust research examining the possible gendered circumstances leading to imprisonment in Thailand. In this presentation, we will report preliminary findings from a qualitative study of women’s pathways to prison in Thailand. Our research aims were to ascertain: 1) the type, frequency, and context of criminal behavior that led to women’s incarceration, 2) women’s experiences of the criminal justice system, 3) the broader life experiences and circumstances that led women to prison in Thailand. In-depth life history interviews (n=77) were utilized to gain a comprehensive understanding of women’s journeys into prison. The interview schedule was open-ended consisting of prisoner responses to broad discussion topics. This approach provided women with the opportunity to describe significant experiences in their lives, to bring together distinct chronologies of events, and to analyze links between their varied life experiences, offending, and incarceration. Analyses showed that women’s journey’s to prison take one of eight pathways which tentatively labelled as follows, the: 1) harmed and harming pathway, 2) domestic/family violence victimization pathway, 3) drug connected pathway, 4) street woman pathway, 5) economically motivated pathway, 6) jealousy anger and/or revenge pathway, 7) naivety pathway, 8) unjust and/or corrupted criminal justice pathway. Each will be fully discussed during the presentation. This research is significant because it is the first in-depth methodologically robust exploration of women’s journeys to prison in Thailand and one of a few studies to explore gendered pathways outside of western contexts. Understanding women’s pathways into Thailand’s prisons is crucial to the development of effective planning, policy and program responses not only while women are in prison but also post-release. To best meet women’s needs in prison and effectively support their reintegration, we must have a comprehensive understanding of who these women are, what offenses they commit, the reasons that trigger their confrontations with the criminal justice system and the impact of the criminal justice system on them.Keywords: pathways, prison, women, Thailand
Procedia PDF Downloads 246738 Numerical Simulation and Analysis of Axially Restrained Steel Cellular Beams in Fire
Authors: Asal Pournaghshband
Abstract:
This paper presents the development of a finite element model to study the large deflection behavior of restrained stainless steel cellular beams at elevated temperature. Cellular beams are widely used for efficient utilization of raw materials to facilitate long spans with faster construction resulting sustainable design solution that can enhance the performance and merit of any construction project. However, their load carrying capacity is less than the equivalent beams without opening due to developing shear-moment interaction at the openings. In structural frames due to elements continuity, such beams are restrained by their adjoining members which has a substantial effect on beams behavior in fire. Stainless steel has also become integral part of the build environment due to its excellent corrosion resistance, whole life-cycle costs, and sustainability. This paper reports the numerical investigations into the effect of structural continuity on the thermo-mechanical performance of restrained steel beams with circle and elongated circle shapes of web opening in fire. The numerical model is firstly validated using existing numerical results from the literature, and then employed to perform a parametric study. The structural continuity is evaluated through the application of different levels of axial restraints on the response of carbon steel and stainless steel cellular beam in fire. The transit temperature for stainless steel cellular beam is shown to be less affected by the level of axial stiffness than the equivalent carbon steel cellular beam. Overall, it was established that whereas stainless steel cellular beams show similar stages of behavior of carbon steel cellular beams in fire, they are capable of withstanding higher temperatures prior to the onset of catenary action in large deflection, despite the higher thermal expansion of stainless steel material.Keywords: axial restraint, catenary action, cellular beam, fire, numerical modeling, stainless steel, transit temperature
Procedia PDF Downloads 80737 Toward Indoor and Outdoor Surveillance using an Improved Fast Background Subtraction Algorithm
Authors: El Harraj Abdeslam, Raissouni Naoufal
Abstract:
The detection of moving objects from a video image sequences is very important for object tracking, activity recognition, and behavior understanding in video surveillance. The most used approach for moving objects detection / tracking is background subtraction algorithms. Many approaches have been suggested for background subtraction. But, these are illumination change sensitive and the solutions proposed to bypass this problem are time consuming. In this paper, we propose a robust yet computationally efficient background subtraction approach and, mainly, focus on the ability to detect moving objects on dynamic scenes, for possible applications in complex and restricted access areas monitoring, where moving and motionless persons must be reliably detected. It consists of three main phases, establishing illumination changes in variance, background/foreground modeling and morphological analysis for noise removing. We handle illumination changes using Contrast Limited Histogram Equalization (CLAHE), which limits the intensity of each pixel to user determined maximum. Thus, it mitigates the degradation due to scene illumination changes and improves the visibility of the video signal. Initially, the background and foreground images are extracted from the video sequence. Then, the background and foreground images are separately enhanced by applying CLAHE. In order to form multi-modal backgrounds we model each channel of a pixel as a mixture of K Gaussians (K=5) using Gaussian Mixture Model (GMM). Finally, we post process the resulting binary foreground mask using morphological erosion and dilation transformations to remove possible noise. For experimental test, we used a standard dataset to challenge the efficiency and accuracy of the proposed method on a diverse set of dynamic scenes.Keywords: video surveillance, background subtraction, contrast limited histogram equalization, illumination invariance, object tracking, object detection, behavior understanding, dynamic scenes
Procedia PDF Downloads 256736 Impact of Contemporary Performance Measurement System and Organization Justice on Academic Staff Work Performance
Authors: Amizawati Mohd Amir, Ruhanita Maelah, Zaidi Mohd Noor
Abstract:
As part of the Malaysia Higher Institutions' Strategic Plan in promoting high-quality research and education, the Ministry of Higher Education has introduced various instrument to assess the universities performance. The aims are that university will produce more commercially-oriented research and continue to contribute in producing professional workforce for domestic and foreign needs. Yet the spirit of the success lies in the commitment of university particularly the academic staff to translate the vision into reality. For that reason, the element of fairness and justice in assessing individual academic staff performance is crucial to promote directly linked between university and individual work goals. Focusing on public research universities (RUs) in Malaysia, this study observes at the issue through the practice of university contemporary performance measurement system. Accordingly management control theory has conceptualized that contemporary performance measurement consisting of three dimension namely strategic, comprehensive and dynamic building upon equity theory, the relationships between contemporary performance measurement system and organizational justice and in turn the effect on academic staff work performance are tested based on online survey data administered on 365 academic staff from public RUs, which were analyzed using statistics analysis SPSS and Equation Structure Modeling. The findings validated the presence of strategic, comprehensive and dynamic in the contemporary performance measurement system. The empirical evidence also indicated that contemporary performance measure and procedural justice are significantly associated with work performance but not for distributive justice. Furthermore, procedural justice does mediate the relationship between contemporary performance measurement and academic staff work performance. Evidently, this study provides evidence on the importance of perceptions of justice towards influencing academic staff work performance. This finding may be a fruitful input in the setting up academic staff performance assessment policy.Keywords: comprehensive, dynamic, distributive justice, contemporary performance measurement system, strategic, procedure justice, work performance
Procedia PDF Downloads 408735 Impact of Electric Field on the Optical Properties of Hydrophilic Quantum Dots
Authors: Valentina V. Goftman, Vladislav A. Pankratov, Alexey V. Markin, Tangi Aubert, Zeger Hens, Sarah De Saeger, Irina Yu. Goryacheva
Abstract:
The most important requirements for biochemical applicability of quantum dots (QDs) are: 1) the surface cap should render intact or improved optical properties; 2) mono-dispersion and good stability in aqueous phase in a wide range of pH and ionic strength values; 3) presence of functional groups, available for bioconjugation; 4) minimal impact from the environment on the QDs’ properties and, vice versa, minimal influence of the QDs’ components on the environment; and 5) stability against chemical/biochemical/physical influence. The latter is especially important for in vitro and in vivo applications. For example, some physical intracellular delivery strategies (e.g., electroporation) imply a rapid high-voltage electric field impulse in order to temporarily generate hydrophilic pores in the cell plasma membrane, necessary for the passive transportation of QDs into the cell. In this regard, it is interesting to investigate how different capping layers, which can provide high stability and sufficient fluorescent properties of QDs in a water solution, behave under these abnormal conditions. In this contribution, hydrophobic core-shell CdSe/CdS/CdZnS/ZnS QDs (λem=600 nm), produced by means of the Successive Ion Layer Adsorption and Reaction (SILAR) technique, were transferred to a water solution using two of the most commonly used methods: (i) encapsulation in an amphiphilic brush polymer based on poly(maleic anhydride-alt-1-octadecene) (PMAO) modified with polyethylene glycol (PEG) chains and (ii) silica covering. Polymer encapsulation preserves the initial ligands on the QDs’ surface owing to the hydrophobic attraction between the hydrophobic groups of the amphiphilic molecules and the surface hydrophobic groups of the QDs. This covering process allows maintaining the initial fluorescent properties, but it leads to a considerable increase of the QDs’ size. However, covering with a silica shell, by means of the reverse microemulsion method, allows maintaining both size and fluorescent properties of the initial QDs. The obtained water solutions of polymer covered and silica-coated QDs in three different concentrations were exposed to a low-voltage electric field for a short time and the fluorescent properties were investigated. It is shown that the PMAO-PEG polymer acquires some additional charges in the presence of the electric field, which causes repulsion between the polymer and the QDs’ surface. This process destroys the homogeneity of the whole amphiphilic shell and it dramatically decreases the fluorescent properties (dropping to 10% from its initial value) because of the direct contact of the QDs with the strongly oxidative environment (water). In contrast, a silica shell possesses dielectric properties which allow retaining 90% of its initial fluorescence intensity, even after a longer electric impact. Thus, silica shells are clearly a preferable covering for bio-application of QDs, because – besides the high uniform morphology, controlled size and biocompatibility – it allows protecting QDs from oxidation, even under the influence of an electric field.Keywords: electric field, polymer coating, quantum dots, silica covering, stability
Procedia PDF Downloads 458734 Education-based, Graphical User Interface Design for Analyzing Phase Winding Inter-Turn Faults in Permanent Magnet Synchronous Motors
Authors: Emir Alaca, Hasbi Apaydin, Rohullah Rahmatullah, Necibe Fusun Oyman Serteller
Abstract:
In recent years, Permanent Magnet Synchronous Motors (PMSMs) have found extensive applications in various industrial sectors, including electric vehicles, wind turbines, and robotics, due to their high performance and low losses. Accurate mathematical modeling of PMSMs is crucial for advanced studies in electric machines. To enhance the effectiveness of graduate-level education, incorporating virtual or real experiments becomes essential to reinforce acquired knowledge. Virtual laboratories have gained popularity as cost-effective alternatives to physical testing, mitigating the risks associated with electrical machine experiments. This study presents a MATLAB-based Graphical User Interface (GUI) for PMSMs. The GUI offers a visual interface that allows users to observe variations in motor outputs corresponding to different input parameters. It enables users to explore healthy motor conditions and the effects of short-circuit faults in the one-phase winding. Additionally, the interface includes menus through which users can access equivalent circuits related to the motor and gain hands-on experience with the mathematical equations used in synchronous motor calculations. The primary objective of this paper is to enhance the learning experience of graduate and doctoral students by providing a GUI-based approach in laboratory studies. This interactive platform empowers students to examine and analyze motor outputs by manipulating input parameters, facilitating a deeper understanding of PMSM operation and control.Keywords: magnet synchronous motor, mathematical modelling, education tools, winding inter-turn fault
Procedia PDF Downloads 53733 Investigation of Projected Organic Waste Impact on a Tropical Wetland in Singapore
Authors: Swee Yang Low, Dong Eon Kim, Canh Tien Trinh Nguyen, Yixiong Cai, Shie-Yui Liong
Abstract:
Nee Soon swamp forest is one of the last vestiges of tropical wetland in Singapore. Understanding the hydrological regime of the swamp forest and implications for water quality is critical to guide stakeholders in implementing effective measures to preserve the wetland against anthropogenic impacts. In particular, although current field measurement data do not indicate a concern with organic pollution, reviewing the ways in which the wetland responds to elevated organic waste influx (and the corresponding impact on dissolved oxygen, DO) can help identify potential hotspots, and the impact on the outflow from the catchment which drains into downstream controlled watercourses. An integrated water quality model is therefore developed in this study to investigate spatial and temporal concentrations of DO levels and organic pollution (as quantified by biochemical oxygen demand, BOD) within the catchment’s river network under hypothetical, projected scenarios of spiked upstream inflow. The model was developed using MIKE HYDRO for modelling the study domain, as well as the MIKE ECO Lab numerical laboratory for characterising water quality processes. Model parameters are calibrated against time series of observed discharges at three measurement stations along the river network. Over a simulation period of April 2014 to December 2015, the calibrated model predicted that a continuous spiked inflow of 400 mg/l BOD will elevate downstream concentrations at the catchment outlet to an average of 12 mg/l, from an assumed nominal baseline BOD of 1 mg/l. Levels of DO were decreased from an initial 5 mg/l to 0.4 mg/l. Though a scenario of spiked organic influx at the swamp forest’s undeveloped upstream sub-catchments is currently unlikely to occur, the outcomes nevertheless will be beneficial for future planning studies in understanding how the water quality of the catchment will be impacted should urban redevelopment works be considered around the swamp forest.Keywords: hydrology, modeling, water quality, wetland
Procedia PDF Downloads 140732 Establishing an Evidence-Based Trauma Informed Care Pathway for Survivors of Modern Slavery
Authors: I. Brezeanu, J. Mackrill, A. Cajo, C. Mogollon
Abstract:
Modern Slavery is a serious crime, where often the victims are unable to leave their situation of exploitation, being controlled by threats, punishment, violence, coercion, and deception. In the UK, this term encompasses both Slavery and Human Trafficking. The number of potential victims who were referred to the National Referral Mechanism (NRM) increased exponentially in the past decade, passing from fewer than 700 potential victims referred in 2010 to more than 12.000 in 2021. Our study aims to explore how the concept of Trauma-Informed Care (TIC) approach can be adopted by services working with survivors of Modern Slavery and Trafficking (MST). Notably, in this paper, we will elaborate on how the complex needs of survivors are related to their traumatic experiences and what are the necessary steps and resources for implementing a Modern Slavery Trauma-Informed model. While there are relatively few services in the UK that have a deep understanding of the survivors’ and practitioners’ views of how trauma impacts their daily life, there is a strong need for developing services that are organised and delivered in ways that prevent retraumatisation and enable trauma survivors to engage safely with the right professionals at the right time, promoting healing through positive relationships. Such models, known as Trauma-Informed Approaches (TIAs), are seen as crucial to the empowerment of survivors, yet they remain a marginal implementation model by governments, law enforcement, judiciary, or care providers, who are frequently survivors’ first point of contact in the recovery process. In order to understand better how to provide best practice and to adopt the concept, this study is based on a multi-disciplinary approach, encompassing both theoretical perspectives and co-production. By combining qualitative and quantitative research and comparing different analysis of applied examples of TIC in the US and the UK, we gained important insights about the prevention and impact of trauma on survivors’ life. The articulation between more general expertise on Trauma-Informed Care developed by other institutions operating in the field, and the SJOG delivery, based on the Salvation Army’s Modern Slavery Victim Care and Coordination Contract (MSVCC) and the Care Quality Commission regulations, allowed to identify on one side what are the complex needs of survivors derived from their traumatic experiences, and on the other side, how could MST services prevent retraumatisation. Additional, two in-depth interviews with survivors, who receive support from one of our services at Olallo House in London, and a survey shared among all colleagues working with MST services completed the findings of the research with their personal experience and knowledge. Ultimately, we developed an evidence-based Trauma-Informed Care Pathway that aims to improve the wellbeing of survivors and to support them to live a meaningful life. The establishedpathway delivers three main outcomes belonging to the social determinants of health criteria – health and wellbeing, purpose and relationship, and covers key themes of the context of trauma, needs of individuals, and service support.Keywords: trauma-informed care, modern slavery, human trafficking, trauma, retraumatisation
Procedia PDF Downloads 96731 Chemometric Regression Analysis of Radical Scavenging Ability of Kombucha Fermented Kefir-Like Products
Authors: Strahinja Kovacevic, Milica Karadzic Banjac, Jasmina Vitas, Stefan Vukmanovic, Radomir Malbasa, Lidija Jevric, Sanja Podunavac-Kuzmanovic
Abstract:
The present study deals with chemometric regression analysis of quality parameters and the radical scavenging ability of kombucha fermented kefir-like products obtained with winter savory (WS), peppermint (P), stinging nettle (SN) and wild thyme tea (WT) kombucha inoculums. Each analyzed sample was described by milk fat content (MF, %), total unsaturated fatty acids content (TUFA, %), monounsaturated fatty acids content (MUFA, %), polyunsaturated fatty acids content (PUFA, %), the ability of free radicals scavenging (RSA Dₚₚₕ, % and RSA.ₒₕ, %) and pH values measured after each hour from the start until the end of fermentation. The aim of the conducted regression analysis was to establish chemometric models which can predict the radical scavenging ability (RSA Dₚₚₕ, % and RSA.ₒₕ, %) of the samples by correlating it with the MF, TUFA, MUFA, PUFA and the pH value at the beginning, in the middle and at the end of fermentation process which lasted between 11 and 17 hours, until pH value of 4.5 was reached. The analysis was carried out applying univariate linear (ULR) and multiple linear regression (MLR) methods on the raw data and the data standardized by the min-max normalization method. The obtained models were characterized by very limited prediction power (poor cross-validation parameters) and weak statistical characteristics. Based on the conducted analysis it can be concluded that the resulting radical scavenging ability cannot be precisely predicted only on the basis of MF, TUFA, MUFA, PUFA content, and pH values, however, other quality parameters should be considered and included in the further modeling. This study is based upon work from project: Kombucha beverages production using alternative substrates from the territory of the Autonomous Province of Vojvodina, 142-451-2400/2019-03, supported by Provincial Secretariat for Higher Education and Scientific Research of AP Vojvodina.Keywords: chemometrics, regression analysis, kombucha, quality control
Procedia PDF Downloads 142730 Spatial Analysis of the Impact of City Developments Degradation of Green Space in Urban Fringe Eastern City of Yogyakarta Year 2005-2010
Authors: Pebri Nurhayati, Rozanah Ahlam Fadiyah
Abstract:
In the development of the city often use rural areas that can not be separated from the change in land use that lead to the degradation of urban green space in the city fringe. In the long run, the degradation of green open space this can impact on the decline of ecological, psychological and public health. Therefore, this research aims to (1) determine the relationship between the parameters of the degradation rate of urban development with green space, (2) develop a spatial model of the impact of urban development on the degradation of green open space with remote sensing techniques and Geographical Information Systems in an integrated manner. This research is a descriptive research with data collection techniques of observation and secondary data . In the data analysis, to interpret the direction of urban development and degradation of green open space is required in 2005-2010 ASTER image with NDVI. Of interpretation will generate two maps, namely maps and map development built land degradation green open space. Secondary data related to the rate of population growth, the level of accessibility, and the main activities of each city map is processed into a population growth rate, the level of accessibility maps, and map the main activities of the town. Each map is used as a parameter to map the degradation of green space and analyzed by non-parametric statistical analysis using Crosstab thus obtained value of C (coefficient contingency). C values were then compared with the Cmaximum to determine the relationship. From this research will be obtained in the form of modeling spatial map of the City Development Impact Degradation Green Space in Urban Fringe eastern city of Yogyakarta 2005-2010. In addition, this research also generate statistical analysis of the test results of each parameter to the degradation of green open space in the Urban Fringe eastern city of Yogyakarta 2005-2010.Keywords: spatial analysis, urban development, degradation of green space, urban fringe
Procedia PDF Downloads 313729 Integrated Risk Assessment of Storm Surge and Climate Change for the Coastal Infrastructure
Authors: Sergey V. Vinogradov
Abstract:
Coastal communities are presently facing increased vulnerabilities due to rising sea levels and shifts in global climate patterns, a trend expected to escalate in the long run. To address the needs of government entities, the public sector, and private enterprises, there is an urgent need to thoroughly investigate, assess, and manage the present and projected risks associated with coastal flooding, including storm surges, sea level rise, and nuisance flooding. In response to these challenges, a practical approach to evaluating storm surge inundation risks has been developed. This methodology offers an integrated assessment of potential flood risk in targeted coastal areas. The physical modeling framework involves simulating synthetic storms and utilizing hydrodynamic models that align with projected future climate and ocean conditions. Both publicly available and site-specific data form the basis for a risk assessment methodology designed to translate inundation model outputs into statistically significant projections of expected financial and operational consequences. This integrated approach produces measurable indicators of impacts stemming from floods, encompassing economic and other dimensions. By establishing connections between the frequency of modeled flood events and their consequences across a spectrum of potential future climate conditions, our methodology generates probabilistic risk assessments. These assessments not only account for future uncertainty but also yield comparable metrics, such as expected annual losses for each inundation event. These metrics furnish stakeholders with a dependable dataset to guide strategic planning and inform investments in mitigation. Importantly, the model's adaptability ensures its relevance across diverse coastal environments, even in instances where site-specific data for analysis may be limited.Keywords: climate, coastal, surge, risk
Procedia PDF Downloads 56728 Consumer’s Behavioral Responses to Corporate Social Responsibility Marketing: Mediating Impact of Customer Trust, Emotions, Brand Image, and Brand Attitude
Authors: Yasir Ali Soomro
Abstract:
Companies that demonstrate corporate social responsibilities (CSR) are more likely to withstand any downturn or crises because of the trust built with stakeholders. Many firms are utilizing CSR marketing to improve the interactions with their various stakeholders, mainly the consumers. Most previous research on CSR has focused on the impact of CSR on customer responses and behaviors toward a company. As online food ordering and grocery shopping remains inevitable. This study will investigate structural relationships among consumer positive emotions (CPE) and negative emotions (CNE), Corporate Reputation (CR), Customer Trust (CT), Brand Image (BI), and Brand attitude (BA) on behavioral outcomes such as Online purchase intention (OPI) and Word of mouth (WOM) in retail grocery and food restaurants setting. Hierarchy of Effects Model will be used as theoretical, conceptual framework. The model describes three stages of consumer behavior: (i) cognitive, (ii) affective, and (iii) conative. The study will apply a quantitative method to test the hypotheses; a self-developed questionnaire with non-probability sampling will be utilized to collect data from 500 consumers belonging to generation X, Y, and Z residing in KSA. The study will contribute by providing empirical evidence to support the link between CSR and customer affective and conative experiences in Saudi Arabia. The theoretical contribution of this study will be empirically tested comprehensive model where CPE, CNE, CR, CT, BI, and BA act as mediating variables between the perceived CSR & Online purchase intention (OPI) and Word of mouth (WOM). Further, the study will add more to how the emotional/ psychological process mediates in the CSR literature, especially in the Middle Eastern context. The proposed study will also explain the effect of perceived CSR marketing initiatives directly and indirectly on customer behavioral responses.Keywords: corporate social responsibility, corporate reputation, consumer emotions, loyalty, online purchase intention, word-of-mouth, structural equation modeling
Procedia PDF Downloads 91727 Long-Term Modal Changes in International Traffic - Modelling Exercise
Authors: Tomasz Komornicki
Abstract:
The primary aim of the presentation is to try to model border traffic and, at the same time to explain on which economic variables the intensity of border traffic depended in the long term. For this purpose, long series of traffic data on the Polish borders were used. Models were estimated for three variants of explanatory variables: a) for total arrivals and departures (total movement of Poles and foreigners), b) for arrivals and departures of Poles, and c) for arrivals and departures of foreigners. Each of the defined explanatory variables in the models appeared as the logarithm of the natural number of persons. Data from 1994-2017 were used for modeling (for internal Schengen borders for the years 1994-2007). Information on the number of people arriving in and leaving Poland was collected for a total of 303 border crossings. On the basis of the analyses carried out, it was found that one of the main factors determining border traffic is generally differences in the level of economic development (GDP) and the condition of the economy (level of unemployment) and the degree of border permeability. Also statistically significant for border traffic are differences in the prices of goods (fuels, tobacco, and alcohol products) and services (mainly basic ones, e.g., hairdressing services). Such a relationship exists mainly on the eastern border (border traffic determined largely by differences in the prices of goods) and on the border with Germany (in the first analysed period, border traffic was determined mainly by the prices of goods, later - after Poland's accession to the EU and the Schengen area - also by the prices of services). The models also confirmed differences in the set of factors shaping the volume and structure of border traffic on the Polish borders resulting from general geopolitical conditions, with the year 2007 being an important caesura, after which the classical population mobility factors became visible. The results obtained were additionally related to changes in traffic that occurred as a result of the CPOVID-19 pandemic and as a result of the Russian aggression against Ukraine.Keywords: border, modal structure, transport, Ukraine
Procedia PDF Downloads 115726 Streamlining Cybersecurity Risk Assessment for Industrial Control and Automation Systems: Leveraging the National Institute of Standard and Technology’s Risk Management Framework (RMF) Using Model-Based System Engineering (MBSE)
Authors: Gampel Alexander, Mazzuchi Thomas, Sarkani Shahram
Abstract:
The cybersecurity landscape is constantly evolving, and organizations must adapt to the changing threat environment to protect their assets. The implementation of the NIST Risk Management Framework (RMF) has become critical in ensuring the security and safety of industrial control and automation systems. However, cybersecurity professionals are facing challenges in implementing RMF, leading to systems operating without authorization and being non-compliant with regulations. The current approach to RMF implementation based on business practices is limited and insufficient, leaving organizations vulnerable to cyberattacks resulting in the loss of personal consumer data and critical infrastructure details. To address these challenges, this research proposes a Model-Based Systems Engineering (MBSE) approach to implementing cybersecurity controls and assessing risk through the RMF process. The study emphasizes the need to shift to a modeling approach, which can streamline the RMF process and eliminate bloated structures that make it difficult to receive an Authorization-To-Operate (ATO). The study focuses on the practical application of MBSE in industrial control and automation systems to improve the security and safety of operations. It is concluded that MBSE can be used to solve the implementation challenges of the NIST RMF process and improve the security of industrial control and automation systems. The research suggests that MBSE provides a more effective and efficient method for implementing cybersecurity controls and assessing risk through the RMF process. The future work for this research involves exploring the broader applicability of MBSE in different industries and domains. The study suggests that the MBSE approach can be applied to other domains beyond industrial control and automation systems.Keywords: authorization-to-operate (ATO), industrial control systems (ICS), model-based system’s engineering (MBSE), risk management framework (RMF)
Procedia PDF Downloads 95725 Indian Premier League (IPL) Score Prediction: Comparative Analysis of Machine Learning Models
Authors: Rohini Hariharan, Yazhini R, Bhamidipati Naga Shrikarti
Abstract:
In the realm of cricket, particularly within the context of the Indian Premier League (IPL), the ability to predict team scores accurately holds significant importance for both cricket enthusiasts and stakeholders alike. This paper presents a comprehensive study on IPL score prediction utilizing various machine learning algorithms, including Support Vector Machines (SVM), XGBoost, Multiple Regression, Linear Regression, K-nearest neighbors (KNN), and Random Forest. Through meticulous data preprocessing, feature engineering, and model selection, we aimed to develop a robust predictive framework capable of forecasting team scores with high precision. Our experimentation involved the analysis of historical IPL match data encompassing diverse match and player statistics. Leveraging this data, we employed state-of-the-art machine learning techniques to train and evaluate the performance of each model. Notably, Multiple Regression emerged as the top-performing algorithm, achieving an impressive accuracy of 77.19% and a precision of 54.05% (within a threshold of +/- 10 runs). This research contributes to the advancement of sports analytics by demonstrating the efficacy of machine learning in predicting IPL team scores. The findings underscore the potential of advanced predictive modeling techniques to provide valuable insights for cricket enthusiasts, team management, and betting agencies. Additionally, this study serves as a benchmark for future research endeavors aimed at enhancing the accuracy and interpretability of IPL score prediction models.Keywords: indian premier league (IPL), cricket, score prediction, machine learning, support vector machines (SVM), xgboost, multiple regression, linear regression, k-nearest neighbors (KNN), random forest, sports analytics
Procedia PDF Downloads 53724 Study on Capability of the Octocopter Configurations in Finite Element Analysis Simulation Environment
Authors: Jeet Shende, Leonid Shpanin, Misko Abramiuk, Mattew Goodwin, Nicholas Pickett
Abstract:
Energy harvesting on board the Unmanned Ariel Vehicle (UAV) is one of the most rapidly growing emerging technologies and consists of the collection of small amounts of energy, for different applications, from unconventional sources that are incidental to the operation of the parent system or device. Different energy harvesting techniques have already been investigated in the multirotor drones, where the energy collected comes from the systems surrounding ambient environment and typically involves the conversion of solar, kinetic, or thermal energies into electrical energy. The energy harvesting from the vibrated propeller using the piezoelectric components inside the propeller has also been proven to be feasible. However, the impact on the UAV flight performance using this technology has not been investigated. In this contribution the impact on the multirotor drone operation has been investigated at different flight control configurations which support the efficient performance of the propeller vibration energy harvesting. The industrially made MANTIS X8-PRO octocopter frame kit was used to explore the octocopter operation which was modelled using SolidWorks 3D CAD package for simulation studies. The octocopter flight control strategy is developed through integration of the SolidWorks 3D CAD software and MATLAB/Simulink simulation environment for evaluation of the octocopter behaviour under different simulated flight modes and octocopter geometries. Analysis of the two modelled octocopter geometries and their flight performance is presented via graphical representation of simulated parameters. The possibility of not using the landing gear in octocopter geometry is demonstrated. The conducted study evaluates the octocopter’s flight control technique and its impact on the energy harvesting mechanism developed on board the octocopter. Finite Element Analysis (FEA) simulation results of the modelled octocopter in operation are presented exploring the performance of the octocopter flight control and structural configurations. Applications of both octocopter structures and their flight control strategy are discussed.Keywords: energy harvesting, flight control modelling, object modeling, unmanned aerial vehicle
Procedia PDF Downloads 77723 The Disease That 'Has a Woman Face': Feminization of HIV/AIDS in Nagaland, North-East India
Authors: Kitoholi V. Zhimo
Abstract:
Unlike the cases of cases of homosexuals, haemophilic and or drug users in USA, France, Africa and other countries, in India the first case of HIV/AIDS was detected in heterosexual female sex workers (FSW) in Chennai in 1986. This image played an important role in understanding HIV/AIDS scenario in the country. Similar to popular and dominant metaphors on HIV/AIDS such as ‘gay plague’, ‘new cancer’, ‘lethal disease’, ‘slim disease’, ‘foreign disease’, ‘junkie disease’, etc. around the world, the social construction of the virus was largely attributed to women in India. It was established that women particularly sex workers are ‘carrier’ and ‘transmitter’ of virus and were categorised as High Risk Groups (HRG’s) alongside homosexuals, transgenders and injecting drug users. Recent literature reveals growing rate of HIV infection among housewives since 1997 which revolutionised public health scenario in India. This means shift from high risk group to general public through ‘bridge population’ encompassing long distance truckers and migrant labours who at the expense of their nature of work and mobility comes in contact with HRG’s and transmit the virus to the general public especially women who are confined to the domestic space. As HIV epidemic expands, married women in monogamous relationship/marriage stand highly susceptible to infection with limited control, right and access over their sexual and reproductive health and planning. In context of Nagaland, a small state in North-eastern part of India HIV/AIDS transmission through injecting drug use dominated the early scene of the epidemic. However, paradigm shift occurred with declining trend of HIV prevalence among injecting drug users (IDU’s) over the past years with the introduction of Opioid Substitution Therapy (OST) and easy access/availability of syringes and injecting needles. Reflection on statistical data reveals that out of 36 states and union territories in India, the position of Nagaland in HIV prevalence among IDU’s has significantly dropped down from 6th position in 2003 to 16th position in 2017. The present face of virus in Nagaland is defined by (hetero) sexual mode of transmission which accounts for about 91% of as reported by Nagaland state AIDS control society (NSACS) in 2016 wherein young and married woman were found to be most affected leading to feminization of HIV/AIDS epidemic in the state. Thus, not only is HIV epidemic feminised but emerged victim to domestic violence which is more often accepted as normal part of heterosexual relationship. In the backdrop of these understanding, the present paper based on ethnographic fieldwork explores the plight, lived experiences and images of HIV+ve women with regard to sexual and reproductive rights against the backdrop of patriarchal system in Nagaland.Keywords: HIV/AIDS, monogamy, Nagaland, sex worker disease, women
Procedia PDF Downloads 161722 Numerical Modelling of Shear Zone and Its Implications on Slope Instability at Letšeng Diamond Open Pit Mine, Lesotho
Authors: M. Ntšolo, D. Kalumba, N. Lefu, G. Letlatsa
Abstract:
Rock mass damage due to shear tectonic activity has been investigated largely in geoscience where fluid transport is of major interest. However, little has been studied on the effect of shear zones on rock mass behavior and its impact on stability of rock slopes. At Letšeng Diamonds open pit mine in Lesotho, the shear zone composed of sheared kimberlite material, calcite and altered basalt is forming part of the haul ramp into the main pit cut 3. The alarming rate at which the shear zone is deteriorating has triggered concerns about both local and global stability of pit the walls. This study presents the numerical modelling of the open pit slope affected by shear zone at Letšeng Diamond Mine (LDM). Analysis of the slope involved development of the slope model by using a two-dimensional finite element code RS2. Interfaces between shear zone and host rock were represented by special joint elements incorporated in the finite element code. The analysis of structural geological mapping data provided a good platform to understand the joint network. Major joints including shear zone were incorporated into the model for simulation. This approach proved successful by demonstrating that continuum modelling can be used to evaluate evolution of stresses, strain, plastic yielding and failure mechanisms that are consistent with field observations. Structural control due to geological shear zone structure proved to be important in its location, size and orientation. Furthermore, the model analyzed slope deformation and sliding possibility along shear zone interfaces. This type of approach can predict shear zone deformation and failure mechanism, hence mitigation strategies can be deployed for safety of human lives and property within mine pits.Keywords: numerical modeling, open pit mine, shear zone, slope stability
Procedia PDF Downloads 299721 Suitable Models and Methods for the Steady-State Analysis of Multi-Energy Networks
Authors: Juan José Mesas, Luis Sainz
Abstract:
The motivation for the development of this paper lies in the need for energy networks to reduce losses, improve performance, optimize their operation and try to benefit from the interconnection capacity with other networks enabled for other energy carriers. These interconnections generate interdependencies between some energy networks and others, which requires suitable models and methods for their analysis. Traditionally, the modeling and study of energy networks have been carried out independently for each energy carrier. Thus, there are well-established models and methods for the steady-state analysis of electrical networks, gas networks, and thermal networks separately. What is intended is to extend and combine them adequately to be able to face in an integrated way the steady-state analysis of networks with multiple energy carriers. Firstly, the added value of multi-energy networks, their operation, and the basic principles that characterize them are explained. In addition, two current aspects of great relevance are exposed: the storage technologies and the coupling elements used to interconnect one energy network with another. Secondly, the characteristic equations of the different energy networks necessary to carry out the steady-state analysis are detailed. The electrical network, the natural gas network, and the thermal network of heat and cold are considered in this paper. After the presentation of the equations, a particular case of the steady-state analysis of a specific multi-energy network is studied. This network is represented graphically, the interconnections between the different energy carriers are described, their technical data are exposed and the equations that have previously been presented theoretically are formulated and developed. Finally, the two iterative numerical resolution methods considered in this paper are presented, as well as the resolution procedure and the results obtained. The pros and cons of the application of both methods are explained. It is verified that the results obtained for the electrical network (voltages in modulus and angle), the natural gas network (pressures), and the thermal network (mass flows and temperatures) are correct since they comply with the distribution, operation, consumption and technical characteristics of the multi-energy network under study.Keywords: coupling elements, energy carriers, multi-energy networks, steady-state analysis
Procedia PDF Downloads 79720 Reliability and Maintainability Optimization for Aircraft’s Repairable Components Based on Cost Modeling Approach
Authors: Adel A. Ghobbar
Abstract:
The airline industry is continuously challenging how to safely increase the service life of the aircraft with limited maintenance budgets. Operators are looking for the most qualified maintenance providers of aircraft components, offering the finest customer service. Component owner and maintenance provider is offering an Abacus agreement (Aircraft Component Leasing) to increase the efficiency and productivity of the customer service. To increase the customer service, the current focus on No Fault Found (NFF) units must change into the focus on Early Failure (EF) units. Since the effect of EF units has a significant impact on customer satisfaction, this needs to increase the reliability of EF units at minimal cost, which leads to the goal of this paper. By identifying the reliability of early failure (EF) units with regards to No Fault Found (NFF) units, in particular, the root cause analysis with an integrated cost analysis of EF units with the use of a failure mode analysis tool and a cost model, there will be a set of EF maintenance improvements. The data used for the investigation of the EF units will be obtained from the Pentagon system, an Enterprise Resource Planning (ERP) system used by Fokker Services. The Pentagon system monitors components, which needs to be repaired from Fokker aircraft owners, Abacus exchange pool, and commercial customers. The data will be selected on several criteria’s: time span, failure rate, and cost driver. When the selected data has been acquired, the failure mode and root cause analysis of EF units are initiated. The failure analysis approach tool was implemented, resulting in the proposed failure solution of EF. This will lead to specific EF maintenance improvements, which can be set-up to decrease the EF units and, as a result of this, increasing the reliability. The investigated EFs, between the time period over ten years, showed to have a significant reliability impact of 32% on the total of 23339 unscheduled failures. Since the EFs encloses almost one-third of the entire population.Keywords: supportability, no fault found, FMEA, early failure, availability, operational reliability, predictive model
Procedia PDF Downloads 127719 The Effect of Artificial Intelligence on Digital Factory
Authors: Sherif Fayez Lewis Ghaly
Abstract:
up to datefacupupdated planning has the mission of designing merchandise, plant life, procedures, enterprise, regions, and the development of a up to date. The requirements for up-to-date planning and the constructing of a updated have changed in recent years. everyday restructuring is turning inupupdated greater essential up-to-date hold the competitiveness of a manufacturing facilityupdated. restrictions in new regions, shorter existence cycles of product and manufacturing generation up-to-date a VUCA global (Volatility, Uncertainty, Complexity & Ambiguity) up-to-date greater frequent restructuring measures inside a manufacturing facilityupdated. A virtual up-to-date model is the making plans basis for rebuilding measures and up-to-date an fundamental up-to-date. short-time period rescheduling can now not be handled through on-web site inspections and manual measurements. The tight time schedules require 3177227fc5dac36e3e5ae6cd5820dcaa making plans fashions. updated the high variation fee of facup-to-dateries defined above, a method for rescheduling facupdatedries on the idea of a modern-day digital up to datery dual is conceived and designed for sensible software in updated restructuring projects. the point of interest is on rebuild approaches. The purpose is up-to-date preserve the planning basis (virtual up-to-date model) for conversions within a up to datefacupupdated updated. This calls for the application of a methodology that reduces the deficits of present techniques. The goal is up-to-date how a digital up to datery version may be up to date up to date during ongoing up to date operation. a method up-to-date on phoup to dategrammetry technology is presented. the focus is on developing a easy and fee-powerful up to date tune the numerous adjustments that arise in a manufacturing unit constructing in the course of operation. The method is preceded with the aid of a hardware and software assessment up-to-date become aware of the most cost effective and quickest version.Keywords: building information modeling, digital factory model, factory planning, maintenance digital factory model, photogrammetry, restructuring
Procedia PDF Downloads 28718 Application of Sentinel-2 Data to Evaluate the Role of Mangrove Conservation and Restoration on Aboveground Biomass
Authors: Raheleh Farzanmanesh, Christopher J. Weston
Abstract:
Mangroves are forest ecosystems located in the inter-tidal regions of tropical and subtropical coastlines that provide many valuable economic and ecological benefits for millions of people, such as preventing coastal erosion, providing breeding, and feeding grounds, improving water quality, and supporting the well-being of local communities. In addition, mangroves capture and store high amounts of carbon in biomass and soils that play an important role in combating climate change. The decline in mangrove area has prompted government and private sector interest in mangrove conservation and restoration projects to achieve multiple Sustainable Development Goals, from reducing poverty to improving life on land. Mangrove aboveground biomass plays an essential role in the global carbon cycle, climate change mitigation and adaptation by reducing CO2 emissions. However, little information is available about the effectiveness of mangrove sustainable management on mangrove change area and aboveground biomass (AGB). Here, we proposed a method for mapping, modeling, and assessing mangrove area and AGB in two Global Environment Facility (GEF) blue forests projects based on Sentinel-2 Level 1C imagery during their conservation lifetime. The SVR regression model was used to estimate AGB in Tahiry Honko project in Madagascar and the Abu Dhabi Blue Carbon Demonstration Project (Abu Dhabi Emirates. The results showed that mangrove forests and AGB declined in the Tahiry Honko project, while in the Abu Dhabi project increased after the conservation initiative was established. The results provide important information on the impact of mangrove conservation activities and contribute to the development of remote sensing applications for mapping and assessing mangrove forests in blue carbon initiatives.Keywords: blue carbon, mangrove forest, REDD+, aboveground biomass, Sentinel-2
Procedia PDF Downloads 73717 System Identification of Building Structures with Continuous Modeling
Authors: Ruichong Zhang, Fadi Sawaged, Lotfi Gargab
Abstract:
This paper introduces a wave-based approach for system identification of high-rise building structures with a pair of seismic recordings, which can be used to evaluate structural integrity and detect damage in post-earthquake structural condition assessment. The fundamental of the approach is based on wave features of generalized impulse and frequency response functions (GIRF and GFRF), i.e., wave responses at one structural location to an impulsive motion at another reference location in time and frequency domains respectively. With a pair of seismic recordings at the two locations, GFRF is obtainable as Fourier spectral ratio of the two recordings, and GIRF is then found with the inverse Fourier transformation of GFRF. With an appropriate continuous model for the structure, a closed-form solution of GFRF, and subsequent GIRF, can also be found in terms of wave transmission and reflection coefficients, which are related to structural physical properties above the impulse location. Matching the two sets of GFRF and/or GIRF from recordings and the model helps identify structural parameters such as wave velocity or shear modulus. For illustration, this study examines ten-story Millikan Library in Pasadena, California with recordings of Yorba Linda earthquake of September 3, 2002. The building is modelled as piecewise continuous layers, with which GFRF is derived as function of such building parameters as impedance, cross-sectional area, and damping. GIRF can then be found in closed form for some special cases and numerically in general. Not only does this study reveal the influential factors of building parameters in wave features of GIRF and GRFR, it also shows some system-identification results, which are consistent with other vibration- and wave-based results. Finally, this paper discusses the effectiveness of the proposed model in system identification.Keywords: wave-based approach, seismic responses of buildings, wave propagation in structures, construction
Procedia PDF Downloads 233716 DNA-Polycation Condensation by Coarse-Grained Molecular Dynamics
Authors: Titus A. Beu
Abstract:
Many modern gene-delivery protocols rely on condensed complexes of DNA with polycations to introduce the genetic payload into cells by endocytosis. In particular, polyethyleneimine (PEI) stands out by a high buffering capacity (enabling the efficient condensation of DNA) and relatively simple fabrication. Realistic computational studies can offer essential insights into the formation process of DNA-PEI polyplexes, providing hints on efficient designs and engineering routes. We present comprehensive computational investigations of solvated PEI and DNA-PEI polyplexes involving calculations at three levels: ab initio, all-atom (AA), and coarse-grained (CG) molecular mechanics. In the first stage, we developed a rigorous AA CHARMM (Chemistry at Harvard Macromolecular Mechanics) force field (FF) for PEI on the basis of accurate ab initio calculations on protonated model pentamers. We validated this atomistic FF by matching the results of extensive molecular dynamics (MD) simulations of structural and dynamical properties of PEI with experimental data. In a second stage, we developed a CG MARTINI FF for PEI by Boltzmann inversion techniques from bead-based probability distributions obtained from AA simulations and ensuring an optimal match between the AA and CG structural and dynamical properties. In a third stage, we combined the developed CG FF for PEI with the standard MARTINI FF for DNA and performed comprehensive CG simulations of DNA-PEI complex formation and condensation. Various technical aspects which are crucial for the realistic modeling of DNA-PEI polyplexes, such as options of treating electrostatics and the relevance of polarizable water models, are discussed in detail. Massive CG simulations (with up to 500 000 beads) shed light on the mechanism and provide time scales for DNA polyplex formation independence of PEI chain size and protonation pattern. The DNA-PEI condensation mechanism is shown to primarily rely on the formation of DNA bundles, rather than by changes of the DNA-strand curvature. The gained insights are expected to be of significant help for designing effective gene-delivery applications.Keywords: DNA condensation, gene-delivery, polyethylene-imine, molecular dynamics.
Procedia PDF Downloads 120715 An Artificial Intelligence Framework to Forecast Air Quality
Authors: Richard Ren
Abstract:
Air pollution is a serious danger to international well-being and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Keywords: air quality prediction, air pollution, artificial intelligence, machine learning algorithms
Procedia PDF Downloads 127714 A Cooperative Signaling Scheme for Global Navigation Satellite Systems
Authors: Keunhong Chae, Seokho Yoon
Abstract:
Recently, the global navigation satellite system (GNSS) such as Galileo and GPS is employing more satellites to provide a higher degree of accuracy for the location service, thus calling for a more efficient signaling scheme among the satellites used in the overall GNSS network. In that the network throughput is improved, the spatial diversity can be one of the efficient signaling schemes; however, it requires multiple antenna that could cause a significant increase in the complexity of the GNSS. Thus, a diversity scheme called the cooperative signaling was proposed, where the virtual multiple-input multiple-output (MIMO) signaling is realized with using only a single antenna in the transmit satellite of interest and with modeling the neighboring satellites as relay nodes. The main drawback of the cooperative signaling is that the relay nodes receive the transmitted signal at different time instants, i.e., they operate in an asynchronous way, and thus, the overall performance of the GNSS network could degrade severely. To tackle the problem, several modified cooperative signaling schemes were proposed; however, all of them are difficult to implement due to a signal decoding at the relay nodes. Although the implementation at the relay nodes could be simpler to some degree by employing the time-reversal and conjugation operations instead of the signal decoding, it would be more efficient if we could implement the operations of the relay nodes at the source node having more resources than the relay nodes. So, in this paper, we propose a novel cooperative signaling scheme, where the data signals are combined in a unique way at the source node, thus obviating the need of the complex operations such as signal decoding, time-reversal and conjugation at the relay nodes. The numerical results confirm that the proposed scheme provides the same performance in the cooperative diversity and the bit error rate (BER) as the conventional scheme, while reducing the complexity at the relay nodes significantly. Acknowledgment: This work was supported by the National GNSS Research Center program of Defense Acquisition Program Administration and Agency for Defense Development.Keywords: global navigation satellite network, cooperative signaling, data combining, nodes
Procedia PDF Downloads 280713 Verification and Validation of Simulated Process Models of KALBR-SIM Training Simulator
Authors: T. Jayanthi, K. Velusamy, H. Seetha, S. A. V. Satya Murty
Abstract:
Verification and Validation of Simulated Process Model is the most important phase of the simulator life cycle. Evaluation of simulated process models based on Verification and Validation techniques checks the closeness of each component model (in a simulated network) with the real system/process with respect to dynamic behaviour under steady state and transient conditions. The process of Verification and validation helps in qualifying the process simulator for the intended purpose whether it is for providing comprehensive training or design verification. In general, model verification is carried out by comparison of simulated component characteristics with the original requirement to ensure that each step in the model development process completely incorporates all the design requirements. Validation testing is performed by comparing the simulated process parameters to the actual plant process parameters either in standalone mode or integrated mode. A Full Scope Replica Operator Training Simulator for PFBR - Prototype Fast Breeder Reactor has been developed at IGCAR, Kalpakkam, INDIA named KALBR-SIM (Kalpakkam Breeder Reactor Simulator) wherein the main participants are engineers/experts belonging to Modeling Team, Process Design and Instrumentation and Control design team. This paper discusses the Verification and Validation process in general, the evaluation procedure adopted for PFBR operator training Simulator, the methodology followed for verifying the models, the reference documents and standards used etc. It details out the importance of internal validation by design experts, subsequent validation by external agency consisting of experts from various fields, model improvement by tuning based on expert’s comments, final qualification of the simulator for the intended purpose and the difficulties faced while co-coordinating various activities.Keywords: Verification and Validation (V&V), Prototype Fast Breeder Reactor (PFBR), Kalpakkam Breeder Reactor Simulator (KALBR-SIM), steady state, transient state
Procedia PDF Downloads 266712 Assessment of Neurodevelopmental Needs in Duchenne Muscular Dystrophy
Authors: Mathula Thangarajh
Abstract:
Duchenne muscular dystrophy (DMD) is a severe form of X-linked muscular dystrophy caused by mutations in the dystrophin gene resulting in progressive skeletal muscle weakness. Boys with DMD also have significant cognitive disabilities. The intelligence quotient of boys with DMD, compared to peers, is approximately one standard deviation below average. Detailed neuropsychological testing has demonstrated that boys with DMD have a global developmental impairment, with verbal memory and visuospatial skills most significantly affected. Furthermore, the total brain volume and gray matter volume are lower in children with DMD compared to age-matched controls. These results are suggestive of a significant structural and functional compromise to the developing brain as a result of absent dystrophin protein expression. There is also some genetic evidence to suggest that mutations in the 3’ end of the DMD gene are associated with more severe neurocognitive problems. Our working hypothesis is that (i) boys with DMD do not make gains in neurodevelopmental skills compared to typically developing children and (ii) women carriers of DMD mutations may have subclinical cognitive deficits. We also hypothesize that there may be an intergenerational vulnerability of cognition, with boys of DMD-carrier mothers being more affected cognitively than boys of non-DMD-carrier mothers. The objectives of this study are: 1. Assess the neurodevelopment in boys with DMD at 4-time points and perform baseline neuroradiological assessment, 2. Assess cognition in biological mothers of DMD participants at baseline, 3. Assess possible correlation between DMD mutation and cognitive measures. This study also explores functional brain abnormalities in people with DMD by exploring how regional and global connectivity of the brain underlies executive function deficits in DMD. Such research can contribute to a better holistic understanding of the cognition alterations due to DMD and could potentially allow clinicians to create better-tailored treatment plans for the DMD population. There are four study visits for each participant (baseline, 2-4 weeks, 1 year, 18 months). At each visit, the participant completes the NIH Toolbox Cognition Battery, a validated psychometric measure that is recommended by NIH Common Data Elements for use in DMD. Visits 1, 3, and 4 also involve the administration of the BRIEF-2, ABAS-3, PROMIS/NeuroQoL, PedsQL Neuromuscular module 3.0, Draw a Clock Test, and an optional fMRI scan with the N-back matching task. We expect to enroll 52 children with DMD, 52 mothers of children with DMD, and 30 healthy control boys. This study began in 2020 during the height of the COVID-19 pandemic. Due to this, there were subsequent delays in recruitment because of travel restrictions. However, we have persevered and continued to recruit new participants for the study. We partnered with the Muscular Dystrophy Association (MDA) and helped advertise the study to interested families. Since then, we have had families from across the country contact us about their interest in the study. We plan to continue to enroll a diverse population of DMD participants to contribute toward a better understanding of Duchenne Muscular Dystrophy.Keywords: neurology, Duchenne muscular dystrophy, muscular dystrophy, cognition, neurodevelopment, x-linked disorder, DMD, DMD gene
Procedia PDF Downloads 99