Search results for: linear multistep methods
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 17940

Search results for: linear multistep methods

13020 Numerical Analysis for Soil Compaction and Plastic Points Extension in Pile Drivability

Authors: Omid Tavasoli, Mahmoud Ghazavi

Abstract:

A numerical analysis of drivability of piles in different geometry is presented. In this paper, a three-dimensional finite difference analysis for plastic point extension and soil compaction in the effect of pile driving is analyzed. Four pile configurations such as cylindrical pile, fully tapered pile, T-C pile consists of a top tapered segment and a lower cylindrical segment and C-T pile has a top cylindrical part followed by a tapered part are investigated. All piles which driven up to a total penetration depth of 16 m have the same length with equivalent surface area and approximately with identical material volumes. An idealization for pile-soil system in pile driving is considered for this approach. A linear elastic material is assumed to model the vertical pile behaviors and the soil obeys the elasto-plastic constitutive low and its failure is controlled by the Mohr-Coulomb failure criterion. A slip which occurred at the pile-soil contact surfaces along the shaft and the toe in pile driving procedures is simulated with interface elements. All initial and boundary conditions are the same in all analyses. Quiet boundaries are used to prevent wave reflection in the lateral and vertical directions for the soil. The results obtained from numerical analyses were compared with available other numerical data and laboratory tests, indicating a satisfactory agreement. It will be shown that with increasing the angle of taper, the permanent piles toe settlement increase and therefore, the extension of plastic points increase. These are interesting phenomena in pile driving and are on the safe side for driven piles.

Keywords: pile driving, finite difference method, non-uniform piles, pile geometry, pile set, plastic points, soil compaction

Procedia PDF Downloads 484
13019 Antioxidant Activity of the Methanolic Extract and Antimicrobial Activity of the Essential Oil of Rosmarinus officinalis L. Grown in Algeria

Authors: Nassim Belkacem, Amina Azzam, Dalila Haouchine, Kahina Bennacer, Samira Soufit

Abstract:

Objective: To evaluate the antioxidant activity of the methanolic extract along with the antimicrobial activity of the essential oil of the aerial parts of Rosmarinus officinalis L. collected in the region of Bejaia (northern center of Algeria). Materials and methods: The polyphenols and flavonoids contents of the methanolic extract were measured. The antioxidant activity was evaluated using two methods: the ABTS method and DPPH assay. The antimicrobial activity was studied by the agar diffusion method against five bacterial strains (Three Gram positive strains and two Gram negative strains) and one fungus. Results: The total polyphenol and flavonoid content was about 43.8 mg gallic acid equivalent per gram (GA Eq/g) and 7.04 mg quercetin equivalent per gram (Q Eq/g), respectively. In the ABTS assay, the rosemary extract has shown an inhibition of 98.02% at the concentration of 500ug/ml with a half maximal inhibitory concentration value (IC50) of 194.92ug/ml. The results of DPPH assay have shown that the rosemary extract has an inhibition of 94.67 % with an IC50 value of 17.87ug/ml, which is lower than that of Butylhydroxyanisol (BHA) about 6.03ug/ml and ascorbic acid about 1.24μg/ml. The yield in essential oil of rosemary obtained by hydrodistillation was 1.42%. Based on the determination of the diameter of inhibition, different antimicrobial activity of the essential oil was revealed against the six tested microbes. Escherichia coli from the University Hospital (UH), Streptococcus aureus (UH) and Pseudomonas aeruginosa ATCC have a minimum inhibitory concentration value (MIC) of 62.5µl/ml. However, Bacillus sp (UH) and Staphylococcus aureus ATCC have an MIC value of 125μl/ml. The inhibition zone against Candida sp was about 24 mm. The aromatograms showed that the essential oil of rosemary exercises an antifungal activity more important than the antibacterial one.

Keywords: Rosmarinus officinalis L., maceration, essential oil, antioxidant, antimicrobial activity

Procedia PDF Downloads 522
13018 Micropropagation of Rhododendron tomentosum (Ledum palustre): An Endangered Plant of Scientific Interest as the Example of Ex Situ Conservation

Authors: Anna Jesionek, Aleksandra Szreniawa-Sztajnert, Zbigniew Jaremicz, Adam Kokotkiewicz, Natalia Filipowicz, Renata Ochocka, Bozena Zabiegala, Maria Luczkiewicz

Abstract:

Rhododendron tomentosum (formerly Ledum palustre), an evergreen shrub grows in peaty soils in northern Europe, Asia and North America. In Poland, it is classified as an endangered species not only due to the drainage of wetlands, but also to the excessive collection of this repellent plant by human. The other valuable biological properties of R. tomentosum, used for years in folk medicine, include anti-inflammatory, analgesic and anti-microbial activity, conditioned by the essential oil content. Taking into account the importance of biodiversity and the potential therapeutic application, it was decided to establish, for the first time, the micropropagation protocol for R. tomentosum, for ex-situ conservation of this endangered species as well as to obtain the continuous source of in vivo and in-vitro plant material for further studies. This object was achieved by the selection of the explant and the media, which were modified within the scope of mineral composition, sugar content, pH and the growth regulators. As a result, the four-stage micropropagation protocol for R. tomentosum was specified, including shoot multiplication, elongation, rooting and ex-vitro adaptation. The genetic identification of the examined species and the compatibility of progeny plants with maternal ones was tested with molecular biology methods. Moreover, during the research process, the chemical composition of initial and regenerated plant and in vitro shoots was controlled in terms of volatile fraction by phytochemical analysis (GC and TLC methods). The correctness of the micropropagation procedure was confirmed by both types of studies.

Keywords: ex situ conservation, Ledum palustre, micropropagation, Rhododendron tomentosum

Procedia PDF Downloads 490
13017 Biosorption of Methylene Blue and Acid Red-88 from Wastewater by Using Cypress Cones

Authors: Onur Yel

Abstract:

This study represents the removal of harmful dye substances from wastewaters by using waste and cheap adsorbents. Rapid population growth and industrialization occasion anthropogenic pollution which gives irreversible damage to the environment. One of the ways in which water pollution occurs is caused by the release of the dyestuffs in the textile industry. The release of dyestuffs to the environment directly damages the living creatures that have acquired water habitat. Especially, wastewater cannot be used for nutritional purposes. In addition, some adsorbents have mutagenic and/or carcinogenic effects. By blocking photosynthesis, it hinders the inhibition of photosynthetic bacteria in the water, which damages the ecological balance and also causes the formation of malodorous compounds. Moreover, the lack of oxygen can pose a serious danger to the lives of other living organisms that need oxygen. In recent years, some physical and chemical methods are preferred for the removal of dyestuffs. However, the utilization of these methods is expensive. For this reason, the availability of new and cheap adsorbents becomes the more significant issue. In this study, an investigation of various variables on the removal of Methylene Blue and Acid Red-88 dyestuffs from wastewaters by the usage of pulverized cypress cones has been carried out. Thus, various masses of absorbent (0.1-0.25-0.5-1-2-4-5 grams) are used in 50, 100, 150, 200, 300 ppm concentrations of Methylene Blue and Acid Red-88 dyestuffs’ solutions, and with a variety of the interaction time (0.25-0.5-1-2-4-5 hours). The mixtures were centrifuged and the absorbance of the filtrates was measured on a UV spectrophotometer to determine their remaining concentrations. In the study, the highest removal ratio of Acid Red-88 dyestuff was found to be 81% at 200 ppm of dyestuff with 2 grams of adsorbent at 300 minutes. For Methylene Blue experiments, the removal percentage was found as 98% where 2 grams of adsorbent is used in 200 ppm dyestuff solution at 120 minutes of interaction.

Keywords: acid red-88, biosorption, methylene blue, cypress cones, water pollution

Procedia PDF Downloads 141
13016 On the Effect of Carbon on the Efficiency of Titanium as a Hydrogen Storage Material

Authors: Ghazi R. Reda Mahmoud Reda

Abstract:

Among the metal that forms hydride´s, Mg and Ti are known as the most lightweight materials; however, they are covered with a passive layer of oxides and hydroxides and require activation treatment under high temperature ( > 300 C ) and hydrogen pressure ( > 3 MPa) before being used for storage and transport applications. It is well known that small graphite addition to Ti or Mg, lead to a dramatic change in the kinetics of mechanically induced hydrogen sorption ( uptake) and significantly stimulate the Ti-Hydrogen interaction. Many explanations were given by different authors to explain the effect of graphite addition on the performance of Ti as material for hydrogen storage. Not only graphite but also the addition of a polycyclic aromatic compound will also improve the hydrogen absorption kinetics. It will be shown that the function of carbon addition is two-fold. First carbon acts as a vacuum cleaner, which scavenges out all the interstitial oxygen that can poison or slow down hydrogen absorption. It is also important to note that oxygen favors the chemisorption of hydrogen, which is not desirable for hydrogen storage. Second, during scavenging of the interstitial oxygen, the carbon reacts with oxygen in the nano and microchannel through a highly exothermic reaction to produce carbon dioxide and monoxide which provide the necessary heat for activation and thus in the presence of carbon lower heat of activation for hydrogen absorption which is observed experimentally. Furthermore, the product of the reaction of hydrogen with the carbon oxide will produce water which due to ball milling hydrolyze to produce the linear H5O2 + this will reconstruct the primary structure of the nanocarbon to form secondary structure, where the primary structure (a sheet of carbon) are connected through hydrogen bonding. It is the space between these sheets where physisorption or defect mediated sorption occurs.

Keywords: metal forming hydrides, polar molecule impurities, titanium, phase diagram, hydrogen absorption

Procedia PDF Downloads 363
13015 The Association of Smoking and Body Mass Index with Acne Vulgaris in Adolescents and Young Adults

Authors: Almutazballlah Qablan, Jihan M. Muhaidat, Bana Abu Rajab

Abstract:

Background: Acne vulgaris is the most common skin condition that general practitioners and dermatologists encounter. It represents a chronic inflammatory disease affecting the pilosebaceous unit. Although acne vulgaris is not a life-threatening condition, it has a considerable psychological impact on the affected person. Acne patients have poor body image, low self-esteem, social isolation, and restricted activities. As part of the emotional impact, increased levels of anxiety, anger, depression, and frustration have also been observed in acne patients. (1) In this study, we want to assess the association between two modifiable risk factors; BMI and smoking, regarding acne vulgaris. Methods: A case-control study was conducted at King Abdullah University Hospital in Irbid, north Jordan in 2019/2020. A total number of 163 Acne cases were collected and interviewed by the author; on the other hand, there were 162 control cases. Anthropometric measures for Acne patients and control individuals were taken, and BMI was calculated. Both groups were asked about smoking habits. Data on subjects between 14 and 33 years of age were extracted. The characteristics of people who reported acne were compared with those with no acne using univariate and multivariate analysis. The Statistical Package for Social Sciences (SPSS) was relied on to analyze the collected data. The crosstabs methods (chi-square) and odd ratios were relied on to test the study hypothesis. Results: Cigarette smoking was highly associated with no-acne, with an odds ratio of 0.4 (95% CI: 0.2–0.9), P-value = 0.018. BMI and waterpipe smoking were not significantly associated with acne in the multivariate analysis. Conclusion: Cigarette smoking was found to be protective from Acne. No significant relation between BMI nor waterpipe smoking and the development of Acne Vulgaris.

Keywords: acne, BMI, smoking, case-control

Procedia PDF Downloads 98
13014 An MIPSSTWM-based Emergency Vehicle Routing Approach for Quick Response to Highway Incidents

Authors: Siliang Luan, Zhongtai Jiang

Abstract:

The risk of highway incidents is commonly recognized as a major concern for transportation authorities due to the hazardous consequences and negative influence. It is crucial to respond to these unpredictable events as soon as possible faced by emergency management decision makers. In this paper, we focus on path planning for emergency vehicles, one of the most significant processes to avoid congestion and reduce rescue time. A Mixed-Integer Linear Programming with Semi-Soft Time Windows Model (MIPSSTWM) is conducted to plan an optimal routing respectively considering the time consumption of arcs and nodes of the urban road network and the highway network, especially in developing countries with an enormous population. Here, the arcs indicate the road segments and the nodes include the intersections of the urban road network and the on-ramp and off-ramp of the highway networks. An attempt in this research has been made to develop a comprehensive and executive strategy for emergency vehicle routing in heavy traffic conditions. The proposed Cuckoo Search (CS) algorithm is designed by imitating obligate brood parasitic behaviors of cuckoos and Lévy Flights (LF) to solve this hard and combinatorial problem. Using a Chinese city as our case study, the numerical results demonstrate the approach we applied in this paper outperforms the previous method without considering the nodes of the road network for a real-world situation. Meanwhile, the accuracy and validity of the CS algorithm also show better performances than the traditional algorithm.

Keywords: emergency vehicle, path planning, cs algorithm, urban traffic management and urban planning

Procedia PDF Downloads 80
13013 A High Content Screening Platform for the Accurate Prediction of Nephrotoxicity

Authors: Sijing Xiong, Ran Su, Lit-Hsin Loo, Daniele Zink

Abstract:

The kidney is a major target for toxic effects of drugs, industrial and environmental chemicals and other compounds. Typically, nephrotoxicity is detected late during drug development, and regulatory animal models could not solve this problem. Validated or accepted in silico or in vitro methods for the prediction of nephrotoxicity are not available. We have established the first and currently only pre-validated in vitro models for the accurate prediction of nephrotoxicity in humans and the first predictive platforms based on renal cells derived from human pluripotent stem cells. In order to further improve the efficiency of our predictive models, we recently developed a high content screening (HCS) platform. This platform employed automated imaging in combination with automated quantitative phenotypic profiling and machine learning methods. 129 image-based phenotypic features were analyzed with respect to their predictive performance in combination with 44 compounds with different chemical structures that included drugs, environmental and industrial chemicals and herbal and fungal compounds. The nephrotoxicity of these compounds in humans is well characterized. A combination of chromatin and cytoskeletal features resulted in high predictivity with respect to nephrotoxicity in humans. Test balanced accuracies of 82% or 89% were obtained with human primary or immortalized renal proximal tubular cells, respectively. Furthermore, our results revealed that a DNA damage response is commonly induced by different PTC-toxicants with diverse chemical structures and injury mechanisms. Together, the results show that the automated HCS platform allows efficient and accurate nephrotoxicity prediction for compounds with diverse chemical structures.

Keywords: high content screening, in vitro models, nephrotoxicity, toxicity prediction

Procedia PDF Downloads 313
13012 Parameter Optimization and Thermal Simulation in Laser Joining of Coach Peel Panels of Dissimilar Materials

Authors: Masoud Mohammadpour, Blair Carlson, Radovan Kovacevic

Abstract:

The quality of laser welded-brazed (LWB) joints were strongly dependent on the main process parameters, therefore the effect of laser power (3.2–4 kW), welding speed (60–80 mm/s) and wire feed rate (70–90 mm/s) on mechanical strength and surface roughness were investigated in this study. The comprehensive optimization process by means of response surface methodology (RSM) and desirability function was used for multi-criteria optimization. The experiments were planned based on Box– Behnken design implementing linear and quadratic polynomial equations for predicting the desired output properties. Finally, validation experiments were conducted on an optimized process condition which exhibited good agreement between the predicted and experimental results. AlSi3Mn1 was selected as the filler material for joining aluminum alloy 6022 and hot-dip galvanized steel in coach peel configuration. The high scanning speed could control the thickness of IMC as thin as 5 µm. The thermal simulations of joining process were conducted by the Finite Element Method (FEM), and results were validated through experimental data. The Fe/Al interfacial thermal history evidenced that the duration of critical temperature range (700–900 °C) in this high scanning speed process was less than 1 s. This short interaction time leads to the formation of reaction-control IMC layer instead of diffusion-control mechanisms.

Keywords: laser welding-brazing, finite element, response surface methodology (RSM), multi-response optimization, cross-beam laser

Procedia PDF Downloads 352
13011 Visual Thinking Routines: A Mixed Methods Approach Applied to Student Teachers at the American University in Dubai

Authors: Alain Gholam

Abstract:

Visual thinking routines are principles based on several theories, approaches, and strategies. Such routines promote thinking skills, call for collaboration and sharing of ideas, and above all, make thinking and learning visible. Visual thinking routines were implemented in the teaching methodology graduate course at the American University in Dubai. The study used mixed methods. It was guided by the following two research questions: 1). To what extent do visual thinking inspire learning in the classroom, and make time for students’ questions, contributions, and thinking? 2). How do visual thinking routines inspire learning in the classroom and make time for students’ questions, contributions, and thinking? Eight student teachers enrolled in the teaching methodology course at the American University in Dubai (Spring 2017) participated in the following study. First, they completed a survey that measured to what degree they believed visual thinking routines inspired learning in the classroom and made time for students’ questions, contributions, and thinking. In order to build on the results from the quantitative phase, the student teachers were next involved in a qualitative data collection phase, where they had to answer the question: How do visual thinking routines inspire learning in the classroom and make time for students’ questions, contributions, and thinking? Results revealed that the implementation of visual thinking routines in the classroom strongly inspire learning in the classroom and make time for students’ questions, contributions, and thinking. In addition, student teachers explained how visual thinking routines allow for organization, variety, thinking, and documentation. As with all original, new, and unique resources, visual thinking routines are not free of challenges. To make the most of this useful and valued resource, educators, need to comprehend, model and spread an awareness of the effective ways of using such routines in the classroom. It is crucial that such routines become part of the curriculum to allow for and document students’ questions, contributions, and thinking.

Keywords: classroom display, student engagement, thinking classroom, visual thinking routines

Procedia PDF Downloads 228
13010 Exploring Antimicrobial Resistance in the Lung Microbial Community Using Unsupervised Machine Learning

Authors: Camilo Cerda Sarabia, Fernanda Bravo Cornejo, Diego Santibanez Oyarce, Hugo Osses Prado, Esteban Gómez Terán, Belén Diaz Diaz, Raúl Caulier-Cisterna, Jorge Vergara-Quezada, Ana Moya-Beltrán

Abstract:

Antimicrobial resistance (AMR) represents a significant and rapidly escalating global health threat. Projections estimate that by 2050, AMR infections could claim up to 10 million lives annually. Respiratory infections, in particular, pose a severe risk not only to individual patients but also to the broader public health system. Despite the alarming rise in resistant respiratory infections, AMR within the lung microbiome (microbial community) remains underexplored and poorly characterized. The lungs, as a complex and dynamic microbial environment, host diverse communities of microorganisms whose interactions and resistance mechanisms are not fully understood. Unlike studies that focus on individual genomes, analyzing the entire microbiome provides a comprehensive perspective on microbial interactions, resistance gene transfer, and community dynamics, which are crucial for understanding AMR. However, this holistic approach introduces significant computational challenges and exposes the limitations of traditional analytical methods such as the difficulty of identifying the AMR. Machine learning has emerged as a powerful tool to overcome these challenges, offering the ability to analyze complex genomic data and uncover novel insights into AMR that might be overlooked by conventional approaches. This study investigates microbial resistance within the lung microbiome using unsupervised machine learning approaches to uncover resistance patterns and potential clinical associations. it downloaded and selected lung microbiome data from HumanMetagenomeDB based on metadata characteristics such as relevant clinical information, patient demographics, environmental factors, and sample collection methods. The metadata was further complemented by details on antibiotic usage, disease status, and other relevant descriptions. The sequencing data underwent stringent quality control, followed by a functional profiling focus on identifying resistance genes through specialized databases like Antibiotic Resistance Database (CARD) which contains sequences of AMR gene sequence and resistance profiles. Subsequent analyses employed unsupervised machine learning techniques to unravel the structure and diversity of resistomes in the microbial community. Some of the methods employed were clustering methods such as K-Means and Hierarchical Clustering enabled the identification of sample groups based on their resistance gene profiles. The work was implemented in python, leveraging a range of libraries such as biopython for biological sequence manipulation, NumPy for numerical operations, Scikit-learn for machine learning, Matplotlib for data visualization and Pandas for data manipulation. The findings from this study provide insights into the distribution and dynamics of antimicrobial resistance within the lung microbiome. By leveraging unsupervised machine learning, we identified novel resistance patterns and potential drivers within the microbial community.

Keywords: antibiotic resistance, microbial community, unsupervised machine learning., sequences of AMR gene

Procedia PDF Downloads 23
13009 Numerical Performance Evaluation of a Savonius Wind Turbines Using Resistive Torque Modeling

Authors: Guermache Ahmed Chafik, Khelfellah Ismail, Ait-Ali Takfarines

Abstract:

The Savonius vertical axis wind turbine is characterized by sufficient starting torque at low wind speeds, simple design and does not require orientation to the wind direction; however, the developed power is lower than other types of wind turbines such as Darrieus. To increase these performances several studies and researches have been developed, such as optimizing blades shape, using passive controls and also minimizing power losses sources like the resisting torque due to friction. This work aims to estimate the performance of a Savonius wind turbine introducing a User Defined Function to the CFD model analyzing resisting torque. This User Defined Function is developed to simulate the action of the wind speed on the rotor; it receives the moment coefficient as an input to compute the rotational velocity that should be imposed on computational domain rotating regions. The rotational velocity depends on the aerodynamic moment applied on the turbine and the resisting torque, which is considered a linear function. Linking the implemented User Defined Function with the CFD solver allows simulating the real functioning of the Savonius turbine exposed to wind. It is noticed that the wind turbine takes a while to reach the stationary regime where the rotational velocity becomes invariable; at that moment, the tip speed ratio, the moment and power coefficients are computed. To validate this approach, the power coefficient versus tip speed ratio curve is compared with the experimental one. The obtained results are in agreement with the available experimental results.

Keywords: resistant torque modeling, Savonius wind turbine, user-defined function, vertical axis wind turbine performances

Procedia PDF Downloads 155
13008 Integration Between Seismic Planning and Urban Planning for Improving the City Image of Tehran - Case of Tajrish

Authors: Samira Eskandari

Abstract:

The image of Tehran has been impacted in recent years due to poor urban management and fragmented governance. There is no cohesive urban beautification framework in Tehran to enforce builders take aesthetic factors seriously when design and construct new buildings. The existing guidelines merely provide people with recommendations, not regulations. Obviously, Tehran needs a more comprehensive and strict urban beautification framework to restore its image. The damaged image has impacted the city’s social, economic and environmental growth. This research aims to find and examine a solution by which the employment of urban beautification regulation would be guaranteed, and city image would be organized. The methodology is based on a qualitative approach associated with analytical methods, in-depth surveys and interviews with Tehran citizens, authorities and experts, and use of academic resources as well as simulation. As a result, one practical solution is to incorporate aesthetic guidelines into a survival-related framework like a seismic guideline. Tehran is a seismic site, and all the buildings in Tehran have to be retrofitted against earthquake during construction. Hence, by integrating seismic regulations and aesthetic disciplines, urban beautification will be somehow guaranteed. Besides, the seismic image can turn into Tehran’s brand and enhances city identity. This research is trying to increase the social, environmental, and economic interconnectedness between urban planning and seismic planning by the usage of landscape architecture methods. As a case study, the potential outcomes are simulated in Tajrish, a suburb located in the north of Tehran. The result is that, by the redefinition of the morphology of seismic retrofitting systems, used in the significant city image elements, and re-function them in accordance with the Iranian culture and traditions, the city image would become more harmonized and legible.

Keywords: earthquake, retrofitting systems, Tehran image, urban beautification

Procedia PDF Downloads 133
13007 Machine Learning Based Anomaly Detection in Hydraulic Units of Governors in Hydroelectric Power Plants

Authors: Mehmet Akif Bütüner, İlhan Koşalay

Abstract:

Hydroelectric power plants (HEPPs) are renewable energy power plants with the highest installed power in the world. While the control systems operating in these power plants ensure that the system operates at the desired operating point, it is also responsible for stopping the relevant unit safely in case of any malfunction. While these control systems are expected not to miss signals that require stopping, on the other hand, it is desired not to cause unnecessary stops. In traditional control systems including modern systems with SCADA infrastructure, alarm conditions to create warnings or trip conditions to put relevant unit out of service automatically are usually generated with predefined limits regardless of different operating conditions. This approach results in alarm/trip conditions to be less likely to detect minimal changes which may result in serious malfunction scenarios in near future. With the methods proposed in this research, routine behavior of the oil circulation of hydraulic governor of a HEPP will be modeled with machine learning methods using historical data obtained from SCADA system. Using the created model and recently gathered data from control system, oil pressure of hydraulic accumulators will be estimated. Comparison of this estimation with the measurements made and recorded instantly by the SCADA system will help to foresee failure before becoming worse and determine remaining useful life. By using model outputs, maintenance works will be made more planned, so that undesired stops are prevented, and in case of any malfunction, the system will be stopped or several alarms are triggered before the problem grows.

Keywords: hydroelectric, governor, anomaly detection, machine learning, regression

Procedia PDF Downloads 97
13006 Assessing the Celebrity Effects on Change in Brand Association and Consumer’s Attitude in a Celebrity-Collaborated Fashion Brand in Hong Kong

Authors: Chu Wai Ching, Kan Chi Wai

Abstract:

Fashion industry is fast moving with intense competitions; it is hard for fashion retailers to stand out among their peers. In order to promote and enhance uniqueness, fashion retailers have collaborated with different brands or celebrity in their marketing campaign recently. As brand-celebrity collaboration is a growing phenomenon in the Hong Kong fashion industry, this research aims to investigate the effect of celebrity on altering consumer’s brand association and the overall attitude towards the co-branded products. One of the popular celebrity-collaborated fashion brands was chosen for this study and a survey was conducted among university students in Hong Kong which yielded 222 responses. By using factor analysis, linear regression and bootstrap test for the mediation, the results show that three celebrity attributes namely “expertise”, “trustworthiness” and “attractiveness” affect the evaluation of the co-branded products. In addition, the change in the association of the brand and co-branded product attributes mediates the relationship between the characteristics of the celebrity and the overall attitude of the co-branded product. The result shows “expertise” of the celebrity has a perfect mediation, while “trustworthiness” and “attractiveness” of the celebrity have partial mediation. This implies that expertise of the celebrity is capable in altering the association towards both the brand and core product attributes and bringing a positive attitude towards the co-brand. The trustworthiness and the attractiveness of the celebrity are able to alter the consumer association towards the brand, but do not guarantee a complete positive attitude towards the co-branded product. This means that change in brand attributes is not a definite mediator as direct relationship may happen or there may be other factors that can affect the relationship between the celebrity’s persuasiveness and the overall attitude towards the co-branded collection.

Keywords: brand attribute, brand-celebrity collaborations, co-branding, fashion industry

Procedia PDF Downloads 330
13005 Basins of Attraction for Quartic-Order Methods

Authors: Young Hee Geum

Abstract:

We compare optimal quartic order method for the multiple zeros of nonlinear equations illustrating the basins of attraction. To construct basins of attraction effectively, we take a 600×600 uniform grid points at the origin of the complex plane and paint the initial values on the basins of attraction with different colors according to the iteration number required for convergence.

Keywords: basins of attraction, convergence, multiple-root, nonlinear equation

Procedia PDF Downloads 252
13004 Responding to the Mental Health Service Needs of Rural-to-Urban Migrant Workers in China: Current Situation and Future Directions

Authors: Yujun Liu, Maosheng Ran

Abstract:

Background: Chinese rural-to-urban migrant workers’ mental health problems raise attentions from different social sectors. However, situation of present mental health services provided to this population has not been discovered. This study attempts to describe the current mental health service situation, identify the gaps and give the future directions based on the quantitative data. Methods: Questionnaire surveys were conducted among 2017 rural-to-urban migrant workers in 13 cities and 100 social work service organizations in 5 cities in 2014. Data was collected by face-to-face structured interview by trained interviewers. Findings: Migrant workers’ mental health status was not good. Compared to the severity of mental distress, mental health service for this population was lacking and insufficient, which accounted for only 14.4% of all services in our sample. And the group work and case work were the most frequently-used methods. By estimating a series of regression models, we revealed that life experiences and working conditions were significantly associated with migrant workers’ mental health status. Therefore, the macro social work practices aimed at this whole group were advocated to promote their mental wellbeing. That is, practitioners should not only focus on the improvement of migrant workers’ emotion management capacity, but also pay attention to raise awareness and improve their living and working condition; not only concentrate on the solving of individuals’ dilemma, but also promote gradual reformation of present labor regime and hukou system in China.

Keywords: Chinese rural-to-urban migrant workers, macro social work practice, mental health service needs, mental health status

Procedia PDF Downloads 281
13003 Interaction between Space Syntax and Agent-Based Approaches for Vehicle Volume Modelling

Authors: Chuan Yang, Jing Bie, Panagiotis Psimoulis, Zhong Wang

Abstract:

Modelling and understanding vehicle volume distribution over the urban network are essential for urban design and transport planning. The space syntax approach was widely applied as the main conceptual and methodological framework for contemporary vehicle volume models with the help of the statistical method of multiple regression analysis (MRA). However, the MRA model with space syntax variables shows a limitation in vehicle volume predicting in accounting for the crossed effect of the urban configurational characters and socio-economic factors. The aim of this paper is to construct models by interacting with the combined impact of the street network structure and socio-economic factors. In this paper, we present a multilevel linear (ML) and an agent-based (AB) vehicle volume model at an urban scale interacting with space syntax theoretical framework. The ML model allowed random effects of urban configurational characteristics in different urban contexts. And the AB model was developed with the incorporation of transformed space syntax components of the MRA models into the agents’ spatial behaviour. Three models were implemented in the same urban environment. The ML model exhibit superiority over the original MRA model in identifying the relative impacts of the configurational characters and macro-scale socio-economic factors that shape vehicle movement distribution over the city. Compared with the ML model, the suggested AB model represented the ability to estimate vehicle volume in the urban network considering the combined effects of configurational characters and land-use patterns at the street segment level.

Keywords: space syntax, vehicle volume modeling, multilevel model, agent-based model

Procedia PDF Downloads 145
13002 On Lie-Central Derivations and Almost Inner Lie-Derivations of Leibniz Algebras

Authors: Natalia Pacheco Rego

Abstract:

The Liezation functor is a map from the category of Leibniz algebras to the category of Lie algebras, which assigns a Leibniz algebra to the Lie algebra given by the quotient of the Leibniz algebra by the ideal spanned by the square elements of the Leibniz algebra. This functor is left adjoint to the inclusion functor that considers a Lie algebra as a Leibniz algebra. This environment fits in the framework of central extensions and commutators in semi-abelian categories with respect to a Birkhoff subcategory, where classical or absolute notions are relative to the abelianization functor. Classical properties of Leibniz algebras (properties relative to the abelianization functor) were adapted to the relative setting (with respect to the Liezation functor); in general, absolute properties have the corresponding relative ones, but not all absolute properties immediately hold in the relative case, so new requirements are needed. Following this line of research, it was conducted an analysis of central derivations of Leibniz algebras relative to the Liezation functor, called as Lie-derivations, and a characterization of Lie-stem Leibniz algebras by their Lie-central derivations was obtained. In this paper, we present an overview of these results, and we analyze some new properties concerning Lie-central derivations and almost inner Lie-derivations. Namely, a Leibniz algebra is a vector space equipped with a bilinear bracket operation satisfying the Leibniz identity. We define the Lie-bracket by [x, y]lie = [x, y] + [y, x] , for all x, y . The Lie-center of a Leibniz algebra is the two-sided ideal of elements that annihilate all the elements in the Leibniz algebra through the Lie-bracket. A Lie-derivation is a linear map which acts as a derivative with respect to the Lie-bracket. Obviously, usual derivations are Lie-derivations, but the converse is not true in general. A Lie-derivation is called a Lie-central derivation if its image is contained in the Lie-center. A Lie-derivation is called an almost inner Lie-derivation if the image of an element x is contained in the Lie-commutator of x and the Leibniz algebra. The main results we present in this talk refer to the conditions under which Lie-central derivation and almost inner Lie-derivations coincide.

Keywords: almost inner Lie-derivation, Lie-center, Lie-central derivation, Lie-derivation

Procedia PDF Downloads 136
13001 Cutting Plane Methods for Integer Programming: NAZ Cut and Its Variations

Authors: A. Bari

Abstract:

Integer programming is a branch of mathematical programming techniques in operations research in which some or all of the variables are required to be integer valued. Various cuts have been used to solve these problems. We have also developed cuts known as NAZ cut & A-T cut to solve the integer programming problems. These cuts are used to reduce the feasible region and then reaching the optimal solution in minimum number of steps.

Keywords: Integer Programming, NAZ cut, A-T cut, Cutting plane method

Procedia PDF Downloads 364
13000 Dynamic Programming Based Algorithm for the Unit Commitment of the Transmission-Constrained Multi-Site Combined Heat and Power System

Authors: A. Rong, P. B. Luh, R. Lahdelma

Abstract:

High penetration of intermittent renewable energy sources (RES) such as solar power and wind power into the energy system has caused temporal and spatial imbalance between electric power supply and demand for some countries and regions. This brings about the critical need for coordinating power production and power exchange for different regions. As compared with the power-only systems, the combined heat and power (CHP) systems can provide additional flexibility of utilizing RES by exploiting the interdependence of power and heat production in the CHP plant. In the CHP system, power production can be influenced by adjusting heat production level and electric power can be used to satisfy heat demand by electric boiler or heat pump in conjunction with heat storage, which is much cheaper than electric storage. This paper addresses multi-site CHP systems without considering RES, which lay foundation for handling penetration of RES. The problem under study is the unit commitment (UC) of the transmission-constrained multi-site CHP systems. We solve the problem by combining linear relaxation of ON/OFF states and sequential dynamic programming (DP) techniques, where relaxed states are used to reduce the dimension of the UC problem and DP for improving the solution quality. Numerical results for daily scheduling with realistic models and data show that DP-based algorithm is from a few to a few hundred times faster than CPLEX (standard commercial optimization software) with good solution accuracy (less than 1% relative gap from the optimal solution on the average).

Keywords: dynamic programming, multi-site combined heat and power system, relaxed states, transmission-constrained generation unit commitment

Procedia PDF Downloads 365
12999 Assessing Renewal Needs of Urban Water Infrastructure Systems: Case Study of Linköping in Sweden

Authors: Eman Hegazy, Stefan Anderberg, Joakim Krook

Abstract:

Urban water infrastructure systems are central to functioning cities. For securing a continuous and efficient supply of the systems services, continuous investment, maintenance, and renewal are needed. Neglecting maintenance and renewal can lead to recurrent breakdown problems as systems age, which makes it more and more difficult to secure efficient long-term supply. Globally, many cities struggle with aging water infrastructure, often due to competing funding priorities. Investment in maintenance and renewal is not prioritized. The problem primarily stems from the challenge of reaping the benefits of investments promptly. The long-term benefits gained from investing in the renewal of water infrastructure may be achievable in the long run, resulting in the oversight of such investments. This leads to a build-up of "renewal debt" for future generations to inherit. Addressing this issue is difficult due to various contributing factors and the complex nature of the systems. The study aims to contribute to an increased understanding of the long-term management challenges of urban water infrastructure, the development of improved maintenance and renewal strategies through the examination of water infrastructure management, and the assessment of the adequacy of the maintenance and renewal in a case study, the city of Linköping, Sweden. Employing a multi-methods approach, this study utilized both qualitative and quantitative methods, including interviews, workshops, and data analysis. The findings of the study provided insights into the current status of the water and sewerage networks in Linkoping, highlighting the risks to ensuring reliable and sustainable water supply and discussing strategies for improving maintenance and renewal.

Keywords: case study, infrastructure management, renewal needs, Sweden, urban water infrastructure

Procedia PDF Downloads 68
12998 Modified Clusterwise Regression for Pavement Management

Authors: Mukesh Khadka, Alexander Paz, Hanns de la Fuente-Mella

Abstract:

Typically, pavement performance models are developed in two steps: (i) pavement segments with similar characteristics are grouped together to form a cluster, and (ii) the corresponding performance models are developed using statistical techniques. A challenge is to select the characteristics that define clusters and the segments associated with them. If inappropriate characteristics are used, clusters may include homogeneous segments with different performance behavior or heterogeneous segments with similar performance behavior. Prediction accuracy of performance models can be improved by grouping the pavement segments into more uniform clusters by including both characteristics and a performance measure. This grouping is not always possible due to limited information. It is impractical to include all the potential significant factors because some of them are potentially unobserved or difficult to measure. Historical performance of pavement segments could be used as a proxy to incorporate the effect of the missing potential significant factors in clustering process. The current state-of-the-art proposes Clusterwise Linear Regression (CLR) to determine the pavement clusters and the associated performance models simultaneously. CLR incorporates the effect of significant factors as well as a performance measure. In this study, a mathematical program was formulated for CLR models including multiple explanatory variables. Pavement data collected recently over the entire state of Nevada were used. International Roughness Index (IRI) was used as a pavement performance measure because it serves as a unified standard that is widely accepted for evaluating pavement performance, especially in terms of riding quality. Results illustrate the advantage of the using CLR. Previous studies have used CLR along with experimental data. This study uses actual field data collected across a variety of environmental, traffic, design, and construction and maintenance conditions.

Keywords: clusterwise regression, pavement management system, performance model, optimization

Procedia PDF Downloads 251
12997 Contractors Perspective on Causes of Delays in Power Transmission Projects

Authors: Goutom K. Pall

Abstract:

At the very heart of the power system, power transmission (PT) acts as an essential link between power generation and distribution. Timely completion of PT infrastructures is therefore crucial to support the development of power system as a whole. Yet despite the importance, studies on PT infrastructure development projects are embryonic and, hence, PT projects undergoing widespread delays worldwide. These delay factors are idiosyncratic and identifying the critical delay factors is essential if the PT industry professionals are to complete their projects efficiently and within the expected timeframes. This study identifies and categorizes 46 causes of PT project delay under ten major groups using six sector expert’s recommendations studied by a preliminary questionnaire survey. Based on the experts’ strong recommendations, two new groups are introduced in the final questionnaire survey: sector specific factors (SSF) and general factors (GF). SSF pertain to delay factors applicable only to the PT projects, while GF represents less biased samples with shared responsibilities of all project parties involved in a project. The study then uses 112 data samples from the contractors to rank the delay factors using relative importance index (RII). The results reveal that SSF, GF and external factors are the most critical groups, while the highest ranked delay factors include the right of way (RoW) problems of transmission lines (TL), delay in payments, frequent changes in TL routes, poor communication and coordination among the project parties and accessibility to TL tower locations. Finally, recommendations are made to minimize the identified delay. The findings are expected to be of substantial benefit to professionals in minimizing time overrun in PT projects implementation, as well as power generation, power distribution, and non-power linear construction projects worldwide.

Keywords: delay, project delay, power transmission projects, time-overruns

Procedia PDF Downloads 178
12996 Optimal Concentration of Fluorescent Nanodiamonds in Aqueous Media for Bioimaging and Thermometry Applications

Authors: Francisco Pedroza-Montero, Jesús Naín Pedroza-Montero, Diego Soto-Puebla, Osiris Alvarez-Bajo, Beatriz Castaneda, Sofía Navarro-Espinoza, Martín Pedroza-Montero

Abstract:

Nanodiamonds have been widely studied for their physical properties, including chemical inertness, biocompatibility, optical transparency from the ultraviolet to the infrared region, high thermal conductivity, and mechanical strength. In this work, we studied how the fluorescence spectrum of nanodiamonds quenches concerning the concentration in aqueous solutions systematically ranging from 0.1 to 10 mg/mL. Our results demonstrated a non-linear fluorescence quenching as the concentration increases for both of the NV zero-phonon lines; the 5 mg/mL concentration shows the maximum fluorescence emission. Furthermore, this behaviour is theoretically explained as an electronic recombination process that modulates the intensity in the NV centres. Finally, to gain more insight, the FRET methodology is used to determine the fluorescence efficiency in terms of the fluorophores' separation distance. Thus, the concentration level is simulated as follows, a small distance between nanodiamonds would be considered a highly concentrated system, whereas a large distance would mean a low concentrated one. Although the 5 mg/mL concentration shows the maximum intensity, our main interest is focused on the concentration of 0.5 mg/mL, which our studies demonstrate the optimal human cell viability (99%). In this respect, this concentration has the feature of being as biocompatible as water giving the possibility to internalize it in cells without harming the living media. To this end, not only can we track nanodiamonds on the surface or inside the cell with excellent precision due to their fluorescent intensity, but also, we can perform thermometry tests transforming a fluorescence contrast image into a temperature contrast image.

Keywords: nanodiamonds, fluorescence spectroscopy, concentration, bioimaging, thermometry

Procedia PDF Downloads 405
12995 Deubiquitinase USP35 Regulates Mitosis Progression by Blocking CDH1-Mediated Degradation of Aurora B.

Authors: Jinyoung Park, Eun Joo Song

Abstract:

Introduction: Deubiquitinating enzymes (DUBs) are proteases that cleave ubiquitin or ubiquitin-like modifications on substrates. Deubiquitination could regulate cellular physiology, such as signal transduction, DNA damage and repair, and cell cycle progression. Although more than 100 DUBs are encoded in the human and the importance of DUBs has been realized, the functions of most DUBs are unknown. This study aims to identify the molecular mechanism by which deubiquitinating enzyme USP35 regulates cell cycle progression for the first time. Methods: USP35 RNAi was mainly used to identify the function of USP35 in cell cycle progression. To find substrates of USP35, we analyzed protein-protein interaction using LC-MS. Several biological methods, such as ubiquitination assay, cell synchronization, immunofluorescence, and immunoprecipitation assay were used to investigate the exact mechanism by which USP35 affects successful completion of mitosis. Results: USP35 knockdown caused not only reduction of mitotic cell number but also induction of mitotic cells with abnormal spindle formation. Actually, cell proliferation was decreased by USP35 knockdown. Interestingly, we found that loss of USP35 decreased the stability and expression of Aurora B, a member of chromosomal passenger complex (CPC), and the phosphorylation of its substrate. Indeed, USP35 interacted with Aurora B and deubiquitinated it. In addition, USP35 knockdown induced abnormal localization of Aurora B in mitotic cells. Finally, CDH1-mediated ubiquitination of Aurora B level was rescued by USP35 overexpression, but not inactive form of USP35, USP35 C450A. Discussion: Our findings suggest that USP35 regulates Aurora B-mediated mitotic spindle assembly and G2-M transition by blocking CDH1-induced degradation of Aurora B.

Keywords: USP35, HSP90, Aurora B, cell cycle progression

Procedia PDF Downloads 358
12994 Design of Two-Channel Quadrature Mirror Filter Banks Using a Transformation Approach

Authors: Ju-Hong Lee, Yi-Lin Shieh

Abstract:

Two-dimensional (2-D) quadrature mirror filter (QMF) banks have been widely considered for high-quality coding of image and video data at low bit rates. Without implementing subband coding, a 2-D QMF bank is required to have an exactly linear-phase response without magnitude distortion, i.e., the perfect reconstruction (PR) characteristics. The design problem of 2-D QMF banks with the PR characteristics has been considered in the literature for many years. This paper presents a transformation approach for designing 2-D two-channel QMF banks. Under a suitable one-dimensional (1-D) to two-dimensional (2-D) transformation with a specified decimation/interpolation matrix, the analysis and synthesis filters of the QMF bank are composed of 1-D causal and stable digital allpass filters (DAFs) and possess the 2-D doubly complementary half-band (DC-HB) property. This facilitates the design problem of the two-channel QMF banks by finding the real coefficients of the 1-D recursive DAFs. The design problem is formulated based on the minimax phase approximation for the 1-D DAFs. A novel objective function is then derived to obtain an optimization for 1-D minimax phase approximation. As a result, the problem of minimizing the objective function can be simply solved by using the well-known weighted least-squares (WLS) algorithm in the minimax (L∞) optimal sense. The novelty of the proposed design method is that the design procedure is very simple and the designed 2-D QMF bank achieves perfect magnitude response and possesses satisfactory phase response. Simulation results show that the proposed design method provides much better design performance and much less design complexity as compared with the existing techniques.

Keywords: Quincunx QMF bank, doubly complementary filter, digital allpass filter, WLS algorithm

Procedia PDF Downloads 225
12993 The Effect of Bath Composition for Hot-Dip Aluminizing of AISI 4140 Steel

Authors: Aptullah Karakas, Murat Baydogan

Abstract:

Hot-dip aluminizing (HDA) is one of the several aluminizing methods to form a wear-, corrosion- and oxidation-resistant aluminide layers on the surface. In this method, the substrate is dipped into a molten aluminum bath, hold in the bath for several minutes, and cooled down to the room temperature in air. A subsequent annealing after the HDA process is generally performed. The main advantage of HDA is its very low investment cost in comparison with other aluminizing methods such as chemical vapor deposition (CVD), pack aluminizing and metalizing. In the HDA process, Al or Al-Si molten baths are mostly used. However, in this study, three different Al alloys such as Al4043 (Al-Mg), Al5356 (Al-Si) and Al7020 (Al-Zn) were used as the molten bath in order to see their effects on morphological and mechanical properties of the resulting aluminide layers. AISI 4140 low alloyed steel was used as the substrate. Parameters of the HDA process were bath composition, bath temperature, and dipping time. These parameters were considered within a Taguchi L9 orthogonal array. After the HDA process and subsequent diffusion annealing, coating thickness measurement, microstructural analysis and hardness measurement of the aluminide layers were conducted. The optimum process parameters were evaluated according to coating morphology, such as cracks, Kirkendall porosity and hardness of the coatings. According to the results, smooth and clean aluminide layer with less Kirkendall porosity and cracks were observed on the sample, which was aluminized in the molten Al7020 bath at 700 C for 10 minutes and subsequently diffusion annealed at 750 C. Hardness of the aluminide layer was in between 1100-1300 HV and the coating thickness was approximately 400 µm. The results were promising such that a hard and thick aluminide layer with less Kirkendall porosity and cracks could be formed. It is, therefore, concluded that Al7020 bath may be used in the HDA process of AISI 4140 steel substrate.

Keywords: hot-dip aluminizing, microstructure, hardness measurement, diffusion annealing

Procedia PDF Downloads 76
12992 Determinants of Healthcare Team Effectiveness in Subterranean Settings: A Mixed-Methods Study

Authors: Nasra Idilbi, Jalal Tarabeia, Layalleh Masalha, Heiam Shoufani Kassis, Gizell Green

Abstract:

Background: Healthcare professionals working in underground facilities face unique challenges affecting their physical and mental health and team effectiveness. We aimed to examine how an underground work environment affects the physical and mental health and effectiveness of a multi-professional medical team in a medical center under continuous war threats and the contribution of various demographic and professional characteristics. Methods: A cross-sectional survey was disseminated electronically. The questionnaire assessed team effectiveness, the quality of the work, and the health symptoms reported by the team while working in the underground complex. Results: In total, 270 healthcare workers (mean age 40 years, 75.6% females, 88.4% nurses) completed the questionnaire. Women reported statistically significantly higher mean scores of physical strain, fatigue, and eye irritation associated with the work environment compared to men. Multiple regression analysis revealed that psychological distress, noise, and lighting in the underground compound significantly influenced team effectiveness. The qualitative analysis revealed two key themes: the mental health impact of working in an underground environment and the effects of noise and lighting on staff performance. Nurses reported feelings of suffocation, claustrophobia, and difficulty concentrating due to the enclosed space, with some expressing heightened stress levels that impaired their ability to work effectively and safely. Female staff reported more pronounced symptoms of physical strain, fatigue, and eye irritation. Additionally, the underground complex’s poor noise absorption created a highly disruptive work environment, while inadequate lighting hindered accurate patient assessments, leading to potential errors. These challenges were exacerbated by physical symptoms like headaches and nausea, which further impacted job performance. The findings underscore the significant role of environmental factors in influencing both mental health and operational effectiveness, aligning with quantitative data on the predictors of team performance. Conclusions: The underground work environment is crucial in influencing healthcare team effectiveness, with psychological distress, noise, and lighting as key factors. The study highlights the importance of creating a comfortable work environment to foster team efficiency. The findings provide valuable insights for managers in underground healthcare facilities to optimize team performance and well-being.

Keywords: team effectiveness, underground settings, healthcare, environmental factors, a mixed-methods study

Procedia PDF Downloads 5
12991 Through-Bolt Moment Connection in HSS Column

Authors: Bardia Khafaf, Mehrdad Ghaffari, Amir Hussein Samakar

Abstract:

It is currently desirable to use Hollow Square Sections (HSS) in moment resistant structures in construction of building because they offer fewer restrictions for designing and more useful space while adhering to build design codes. This paper present a through bolt connection in HSS column. This connection meets building code standards that require the moment resistant connections to deflect and absorb energy resulting from gravity and seismic loads. Connection through bolts is installed and pretension to provide the connection strength needed to make a beam–column moment rigid zone. A rigid joint is typically used to resist lateral forces by holding columns and beams fixed in relation to one another. With bolted moment frames using HSS columns, a through–bolt connection could be used to secure the beam and end plate to the column. However, when multiple columns and beams are used to span a length of building, the use of through-bolts would necessities aligning multiple beams simultaneously to the columns. In the case of a linear span, the assembly process requires the holes of a first beam end plate to be aligned with through bolt holes in a column and aligning the holes of a second, opposing beam plate with the column through bolt, then inserting the through bolts in each hole for tightening with nuts and washers. In moment resistant building, a problem arises when assembling beams to columns where multiple beams and columns are required. Through bolt, moment connections are among the economical, practical and not difficult rigid steel connection for HSS column building. In this paper, the results of numerous analytical studies performed for moment structures with HSS columns with through bolt based on AISC standard codes are shown.

Keywords: through bolt, moment resistant connection, HSS columns section, construction engineering

Procedia PDF Downloads 469