Search results for: mixed-frequency data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 25337

Search results for: mixed-frequency data

20447 The Prediction of Sound Absorbing Coefficient for Multi-Layer Non-Woven

Authors: Un-Hwan Park, Jun-Hyeok Heo, In-Sung Lee, Tae-Hyeon Oh, Dae-Gyu Park

Abstract:

Automotive interior material consisting of several material layers has the sound-absorbing function. It is difficult to predict sound absorbing coefficient because of several material layers. So, many experimental tunings are required to achieve the target of sound absorption. Therefore, while the car interior materials are developed, so much time and money is spent. In this study, we present a method to predict the sound absorbing performance of the material with multi-layer using physical properties of each material. The properties are predicted by Foam-X software using the sound absorption coefficient data measured by impedance tube. Then, we will compare and analyze the predicted sound absorption coefficient with the data measured by scaled reverberation chamber and impedance tubes for a prototype. If the method is used instead of experimental tuning in the development of car interior material, the time and money can be saved, and then, the development effort can be reduced because it can be optimized by simulation.

Keywords: multi-layer nonwoven, sound absorption coefficient, scaled reverberation chamber, impedance tubes

Procedia PDF Downloads 380
20446 Exploring Psychosocial Stressors in Crack Cocaine Use

Authors: Yaa Asuaba Duopah, Lisa Moran, Khalifa Elmusharaf, Dervla Kelly

Abstract:

Background: Research has identified a strong link between stress and drug use behaviours. Also, it has been established that the prolonged use of crack cocaine stimulates emotional, cognitive, neurological, and social changes. This paper examines the psychosocial stressors associated with crack cocaine use. Methodology: The study is qualitative and adopts a critical realist approach. Data was collected through 26 face-to-face, in-depth, semi-structured interviews with people who use crack cocaine. Study participants were recruited through two addiction services using purposive. Participants consisted of 15 males and 11 females between the ages of 24-57 years. Data were analysed using thematic analysis. Results: Cravings, financial hardship, family breakdown, and emotional stimulation were revealed as psychosocial stressors associated with crack cocaine use. Conclusion: Addressing the psychosocial stressors identified in this paper through targeted interventions and supportive policies is crucial for improving the well-being of persons who use crack cocaine. Collaboration between addiction, mental health, and support services is recommended to develop and deliver these interventions.

Keywords: psychological stress, substance misuse disorder, mental health, coping

Procedia PDF Downloads 58
20445 A Study of Using Different Printed Circuit Board Design Methods on Ethernet Signals

Authors: Bahattin Kanal, Nursel Akçam

Abstract:

Data transmission size and frequency requirements are increasing rapidly in electronic communication protocols. Increasing data transmission speeds have made the design of printed circuit boards much more important. It is important to carefully examine the requirements and make analyses before and after the design of the digital electronic circuit board. It delves into impedance matching techniques, signal trace routing considerations, and the impact of layer stacking on signal performance. The paper extensively explores techniques for minimizing crosstalk issues and interference, presenting a holistic perspective on design strategies to optimize the quality of high-speed signals. Through a comprehensive review of these design methodologies, this study aims to provide insights into achieving reliable and high-performance printed circuit board layouts for these signals. In this study, the effect of different design methods on Ethernet signals was examined from the type of S parameters. Siemens company HyperLynx software tool was used for the analyses.

Keywords: HyperLynx, printed circuit board, s parameters, ethernet

Procedia PDF Downloads 41
20444 The Problem of the Use of Learning Analytics in Distance Higher Education: An Analytical Study of the Open and Distance University System in Mexico

Authors: Ismene Ithai Bras-Ruiz

Abstract:

Learning Analytics (LA) is employed by universities not only as a tool but as a specialized ground to enhance students and professors. However, not all the academic programs apply LA with the same goal and use the same tools. In fact, LA is formed by five main fields of study (academic analytics, action research, educational data mining, recommender systems, and personalized systems). These fields can help not just to inform academic authorities about the situation of the program, but also can detect risk students, professors with needs, or general problems. The highest level applies Artificial Intelligence techniques to support learning practices. LA has adopted different techniques: statistics, ethnography, data visualization, machine learning, natural language process, and data mining. Is expected that any academic program decided what field wants to utilize on the basis of his academic interest but also his capacities related to professors, administrators, systems, logistics, data analyst, and the academic goals. The Open and Distance University System (SUAYED in Spanish) of the University National Autonomous of Mexico (UNAM), has been working for forty years as an alternative to traditional programs; one of their main supports has been the employ of new information and communications technologies (ICT). Today, UNAM has one of the largest network higher education programs, twenty-six academic programs in different faculties. This situation means that every faculty works with heterogeneous populations and academic problems. In this sense, every program has developed its own Learning Analytic techniques to improve academic issues. In this context, an investigation was carried out to know the situation of the application of LA in all the academic programs in the different faculties. The premise of the study it was that not all the faculties have utilized advanced LA techniques and it is probable that they do not know what field of study is closer to their program goals. In consequence, not all the programs know about LA but, this does not mean they do not work with LA in a veiled or, less clear sense. It is very important to know the grade of knowledge about LA for two reasons: 1) This allows to appreciate the work of the administration to improve the quality of the teaching and, 2) if it is possible to improve others LA techniques. For this purpose, it was designed three instruments to determinate the experience and knowledge in LA. These were applied to ten faculty coordinators and his personnel; thirty members were consulted (academic secretary, systems manager, or data analyst, and coordinator of the program). The final report allowed to understand that almost all the programs work with basic statistics tools and techniques, this helps the administration only to know what is happening inside de academic program, but they are not ready to move up to the next level, this means applying Artificial Intelligence or Recommender Systems to reach a personalized learning system. This situation is not related to the knowledge of LA, but the clarity of the long-term goals.

Keywords: academic improvements, analytical techniques, learning analytics, personnel expertise

Procedia PDF Downloads 130
20443 Functional Instruction Set Simulator (ISS) of a Neural Network (NN) IP with Native BF-16 Generator

Authors: Debajyoti Mukherjee, Arathy B. S., Arpita Sahu, Saranga P. Pogula

Abstract:

A Functional Model to mimic the functional correctness of a Neural Network Compute Accelerator IP is very crucial for design validation. Neural network workloads are based on a Brain Floating Point (BF-16) data type. The major challenge we were facing was the incompatibility of gcc compilers to BF-16 datatype, which we addressed with a native BF-16 generator integrated to our functional model. Moreover, working with big GEMM (General Matrix Multiplication) or SpMM (Sparse Matrix Multiplication) Work Loads (Dense or Sparse) and debugging the failures related to data integrity is highly painstaking. In this paper, we are addressing the quality challenge of such a complex Neural Network Accelerator design by proposing a Functional Model-based scoreboard or Software model using SystemC. The proposed Functional Model executes the assembly code based on the ISA of the processor IP, decodes all instructions, and executes as expected to be done by the DUT. The said model would give a lot of visibility and debug capability in the DUT bringing up micro-steps of execution.

Keywords: ISA (instruction set architecture), NN (neural network), TLM (transaction-level modeling), GEMM (general matrix multiplication)

Procedia PDF Downloads 90
20442 Assessment of Efficiency of Underwater Undulatory Swimming Strategies Using a Two-Dimensional CFD Method

Authors: Dorian Audot, Isobel Margaret Thompson, Dominic Hudson, Joseph Banks, Martin Warner

Abstract:

In competitive swimming, after dives and turns, athletes perform underwater undulatory swimming (UUS), copying marine mammals’ method of locomotion. The body, performing this wave-like motion, accelerates the fluid downstream in its vicinity, generating propulsion with minimal resistance. Through this technique, swimmers can maintain greater speeds than surface swimming and take advantage of the overspeed granted by the dive (or push-off). Almost all previous work has considered UUS when performed at maximum effort. Critical parameters to maximize UUS speed are frequently discussed; however, this does not apply to most races. In only 3 out of the 16 individual competitive swimming events are athletes likely to attempt to perform UUS with the greatest speed, without thinking of the cost of locomotion. In the other cases, athletes will want to control the speed of their underwater swimming, attempting to maximise speed whilst considering energy expenditure appropriate to the duration of the event. Hence, there is a need to understand how swimmers adapt their underwater strategies to optimize the speed within the allocated energetic cost. This paper develops a consistent methodology that enables different sets of UUS kinematics to be investigated. These may have different propulsive efficiencies and force generation mechanisms (e.g.: force distribution along with the body and force magnitude). The developed methodology, therefore, needs to: (i) provide an understanding of the UUS propulsive mechanisms at different speeds, (ii) investigate the key performance parameters when UUS is not performed solely for maximizing speed; (iii) consistently determine the propulsive efficiency of a UUS technique. The methodology is separated into two distinct parts: kinematic data acquisition and computational fluid dynamics (CFD) analysis. For the kinematic acquisition, the position of several joints along the body and their sequencing were either obtained by video digitization or by underwater motion capture (Qualisys system). During data acquisition, the swimmers were asked to perform UUS at a constant depth in a prone position (facing the bottom of the pool) at different speeds: maximum effort, 100m pace, 200m pace and 400m pace. The kinematic data were input to a CFD algorithm employing a two-dimensional Large Eddy Simulation (LES). The algorithm adopted was specifically developed in order to perform quick unsteady simulations of deforming bodies and is therefore suitable for swimmers performing UUS. Despite its approximations, the algorithm is applied such that simulations are performed with the inflow velocity updated at every time step. It also enables calculations of the resistive forces (total and applied to each segment) and the power input of the modeled swimmer. Validation of the methodology is achieved by comparing the data obtained from the computations with the original data (e.g.: sustained swimming speed). This method is applied to the different kinematic datasets and provides data on swimmers’ natural responses to pacing instructions. The results show how kinematics affect force generation mechanisms and hence how the propulsive efficiency of UUS varies for different race strategies.

Keywords: CFD, efficiency, human swimming, hydrodynamics, underwater undulatory swimming

Procedia PDF Downloads 224
20441 An Empirical Exploration of Factors Influencing Lecturers' Acceptance of Open Educational Resources for Enhanced Knowledge Sharing in North-East Nigerian Universities

Authors: Bello, A., Muhammed Ibrahim Abba., Abdullahi, M., Dauda, Sabo, & Shittu, A. T.

Abstract:

This study investigated the Predictors of Lecturers Knowledge Sharing Acceptance on Open Educational Resources (OER) in North-East Nigerian in Universities. The study population comprised of 632 lecturers of Federal Universities in North-east Nigeria. The study sample covered 338 lecturers who were selected purposively from Adamawa, Bauchi and Borno State Federal Universities in Nigeria. The study adopted a prediction correlational research design. The instruments used for data collection was the questionnaire. Experts in the field of educational technology validated the instrument and tested it for reliability checks using Cronbach’s alpha. The constructs on lecturers’ acceptance to share OER yielded a reliability coefficient of; α = .956 for Performance Expectancy, α = .925; for Effort Expectancy, α = .955; for Social Influence, α = .879; for Facilitating Conditions and α = .948 for acceptance to share OER. the researchers contacted the Deanery of faculties of education and enlisted local coordinators to facilitate the data collection process at each university. The data was analysed using multiple sequential regression statistic at a significance level of 0.05 using SPSS version 23.0. The findings of the study revealed that performance expectancy (β = 0.658; t = 16.001; p = 0.000), effort expectancy (β = 0.194; t = 3.802; p = 0.000), social influence (β = 0.306; t = 5.246; p = 0.000), collectively indicated that the variables have a predictive capacity to stimulate lecturer’s acceptance to share their resources on OER repository. However, the finding revealed that facilitating conditions (β = .053; t = .899; p = 0.369), does not have a predictive capacity to stimulate lecturer’s acceptance to share their resources on OER repository. Based on these findings, the study recommends among others that the university management should consider adjusting OER policy to be centered around actualizing lecturers career progression.

Keywords: acceptance, lecturers, open educational resources, knowledge sharing

Procedia PDF Downloads 75
20440 A Computational Study of the Effect of Intake Design on Volumetric Efficiency for Best Performance in Motorsport

Authors: Dominic Wentworth-Linton, Shian Gao

Abstract:

This project was aimed at investigating the effect of velocity stacks on the intakes of internal combustion engines for motorsport applications. The intake systems in motorsport are predominantly fuel injection with a plate mounted for the stacks. Using Computational Fluid Dynamics software, the relationship between the stack length and power and torque delivery across the engine’s rev range was investigated and the results were used to choose the best option for its intended motorsport discipline. The test results are expected to vary with engine geometry and its natural manufacturer characteristics. The test was also relevant in bridging between computational data and real simulation as the results show flow, pressure and velocity readings but the behaviour of the engine is inferred from the nature of each test. The results of the data analysis were tested in a real-life simulation on a dynamometer to prove the theory of stack length on power and torque delivery, which helps determine the most suitable stack for the Vauxhall engine for rallying in the Caribbean.

Keywords: CFD simulation, Internal combustion engine, Intake system, Dynamometer test

Procedia PDF Downloads 289
20439 Analysis of the Physical Behavior of Library Users in Reading Rooms through GIS: A Case Study of the Central Library of Tehran University

Authors: Roya Pournaghi

Abstract:

Measuring the extent of daily use of the libraries study space is of utmost significance in order to develop, re-organize and maintain the efficiency of the study space. The current study aimed to employ GIS in analyzing the study halls space of the document center and central library of Tehran University and determine the extent of use of the study chairs and desks by the students-intended users. This combination of survey methods - descriptive design system. In order to collect the required data and a description of the method, To implement and entering data into ArcGIS software. It also analyzes the data and displays the results on the library floor map design method were used. And spatial database design and plan has been done at the Central Library of Tehran University through the amount of space used by members of the Library and Information halls plans. Results showed that Biruni's hall is allocated the highest occupancy rate to tables and chairs compared to other halls. In the Hall of Science and Technology, with an average occupancy rate of 0.39 in the tables represents the lowest users and Rashid al-Dins hall, and Science and Technology’s hall with an average occupancy rate (0.40) represents the lowest users of seats. In this study, the comparison of the space is occupied at different period as a study’s hall in the morning, evenings, afternoons, and several months was performed through GIS. This system analyzed the space relationship effectively and efficiently. The output of this study can be used by administrators and librarians to determine the exact amount of using the Equipment of study halls and librarians can use the output map to design more efficient space at the library.

Keywords: geospatial information system, spatial analysis, reading room, academic libraries, library’s user, central library of Tehran university

Procedia PDF Downloads 238
20438 A Study of Life Expectancy in an Urban Set up of North-Eastern India under Dynamic Consideration Incorporating Cause Specific Mortality

Authors: Mompi Sharma, Labananda Choudhury, Anjana M. Saikia

Abstract:

Background: The period life table is entirely based on the assumption that the mortality patterns of the population existing in the given period will persist throughout their lives. However, it has been observed that the mortality rate continues to decline. As such, if the rates of change of probabilities of death are considered in a life table then we get a dynamic life table. Although, mortality has been declining in all parts of India, one may be interested to know whether these declines had appeared more in an urban area of underdeveloped regions like North-Eastern India. So, attempt has been made to know the mortality pattern and the life expectancy under dynamic scenario in Guwahati, the biggest city of North Eastern India. Further, if the probabilities of death changes then there is a possibility that its different constituent probabilities will also change. Since cardiovascular disease (CVD) is the leading cause of death in Guwahati. Therefore, an attempt has also been made to formulate dynamic cause specific death ratio and probabilities of death due to CVD. Objectives: To construct dynamic life table for Guwahati for the year 2011 based on the rates of change of probabilities of death over the previous 10 and 25 years (i.e.,2001 and 1986) and to compute corresponding dynamic cause specific death ratio and probabilities of death due to CVD. Methodology and Data: The study uses the method proposed by Denton and Spencer (2011) to construct dynamic life table for Guwahati. So, the data from the Office of the Birth and Death, Guwahati Municipal Corporation for the years 1986, 2001 and 2011 are taken. The population based data are taken from 2001 and 2011 census (India). However, the population data for 1986 has been estimated. Also, the cause of death ratio and probabilities of death due to CVD are computed for the aforementioned years and then extended to dynamic set up for the year 2011 by considering the rates of change of those probabilities over the previous 10 and 25 years. Findings: The dynamic life expectancy at birth (LEB) for Guwahati is found to be higher than the corresponding values in the period table by 3.28 (5.65) years for males and 8.30 (6.37) years for females during the period of 10 (25) years. The life expectancies under dynamic consideration in all the other age groups are also seen higher than the usual life expectancies, which may be possible due to gradual decline in probabilities of death since 1986-2011. Further, a continuous decline has also been observed in death ratio due to CVD along with cause specific probabilities of death for both sexes. As a consequence, dynamic cause of death probability due to CVD is found to be less in comparison to usual procedure. Conclusion: Since incorporation of changing mortality rates in period life table for Guwahati resulted in higher life expectancies and lower probabilities of death due to CVD, this would possibly bring out the real situation of deaths prevailing in the city.

Keywords: cause specific death ratio, cause specific probabilities of death, dynamic, life expectancy

Procedia PDF Downloads 234
20437 First 1000 Days: Mothers’ Understanding of an Attachment Bond and the Role That It Plays in Early Childhood

Authors: Athena Pedro, Carushca de Beer, Erin Cupido, Tarryn Johnson, Tawana Keneilwe, Crystal Stoffels, Carinne Annfred Lorraine Petersen, Kuan Michael Truskey

Abstract:

The early experiences of children during their first 1000 days of life are the main determining factor of their development. Therefore, the aim of this study was to explore mothers' understanding of an attachment bond and the role that it plays in early childhood. A qualitative exploratory research design guided this study. Ethics approval was granted by appropriate ethics committees. Data were gathered through the use of semi-structured interviews with 15 participants within the Cape Town area, South Africa. Participants completed informed consents and were informed of confidentiality, anonymity, their rights, and voluntary participation. Thematically analysed data revealed that many participants were unaware of the term ‘the first 1000 days of a child’s life’; however, they were aware of the methods to be used for forming an attachment bond with their children. There is a need for more awareness on the subject matter within South Africa.

Keywords: awareness, children, first 1000 days, milestones, South Africa, understanding

Procedia PDF Downloads 208
20436 Monitoring Deforestation Using Remote Sensing And GIS

Authors: Tejaswi Agarwal, Amritansh Agarwal

Abstract:

Forest ecosystem plays very important role in the global carbon cycle. It stores about 80% of all above ground and 40% of all below ground terrestrial organic carbon. There is much interest in the extent of tropical forests and their rates of deforestation for two reasons: greenhouse gas contributions and the impact of profoundly negative biodiversity. Deforestation has many ecological, social and economic consequences, one of which is the loss of biological diversity. The rapid deployment of remote sensing (RS) satellites and development of RS analysis techniques in the past three decades have provided a reliable, effective, and practical way to characterize terrestrial ecosystem properties. Global estimates of tropical deforestation vary widely and range from 50,000 to 170,000km2 /yr Recent FAO tropical deforestation estimates for 1990–1995 cite 116,756km2 / yr globally. Remote Sensing can prove to be a very useful tool in monitoring of forests and associated deforestation to a sufficient level of accuracy without the need of physically surveying the forest areas as many of them are physically inaccessible. The methodology for the assessment of forest cover using digital image processing (ERDAS) has been followed. The satellite data for the study was procured from Indian institute of remote Sensing (IIRS), Dehradoon in the digital format. While procuring the satellite data, care was taken to ensure that the data was cloud free and did not belong to dry and leafless season. The Normalized Difference Vegetation Index (NDVI) has been used as a numerical indicator of the reduction in ground biomass. NDVI = (near I.R - Red)/ (near I.R + Red). After calculating the NDVI variations and associated mean, we have analysed the change in ground biomass. Through this paper, we have tried to indicate the rate of deforestation over a given period of time by comparing the forest cover at different time intervals. With the help of remote sensing and GIS techniques, it is clearly shown that the total forest cover is continuously degrading and transforming into various land use/land cover category.

Keywords: remote sensing, deforestation, supervised classification, NDVI, change detection

Procedia PDF Downloads 1214
20435 Role of QR Codes in Environmental Consciousness of Apparel Consumption

Authors: Eleanor L. Kutschera

Abstract:

This study explores the possible impact that QR codes play in helping individuals make more sustainable choices regarding apparel consumption. Data was collected via an online survey to ascertain individuals’ knowledge, attitudes, and behaviors with regard to QR codes and how this impacts their decisions to purchase apparel. Results from 250 participants provide both qualitative and quantitative data that provide valuable information regarding consumers’ use of QR codes and more sustainable purchases. Specifically, results indicate that QR codes are currently under-utilized in the apparel industry but have the potential to generate more environmentally conscious purchases. Also, results posit that while the cost of the item is the most influential factor in purchasing sustainable garments, other factors such as how, where, and what it is made of are in the middle, along with the company’s story/inspiration for creation have an impact. Moreover, participants posit the use of QR codes could make them more informed and empowered consumers, and they would be more likely to make purchases that are better for the environment. Participants’ qualitative responses provide useful incentives that could increase their future sustainable purchases. Finally, this study touches on the study’s limitations, implications, and future direction of research.

Keywords: digital ID, QR codes, environmental consciousness, sustainability, fashion industry, apparel consumption

Procedia PDF Downloads 108
20434 Extraction of Forest Plantation Resources in Selected Forest of San Manuel, Pangasinan, Philippines Using LiDAR Data for Forest Status Assessment

Authors: Mark Joseph Quinto, Roan Beronilla, Guiller Damian, Eliza Camaso, Ronaldo Alberto

Abstract:

Forest inventories are essential to assess the composition, structure and distribution of forest vegetation that can be used as baseline information for management decisions. Classical forest inventory is labor intensive and time-consuming and sometimes even dangerous. The use of Light Detection and Ranging (LiDAR) in forest inventory would improve and overcome these restrictions. This study was conducted to determine the possibility of using LiDAR derived data in extracting high accuracy forest biophysical parameters and as a non-destructive method for forest status analysis of San Manual, Pangasinan. Forest resources extraction was carried out using LAS tools, GIS, Envi and .bat scripts with the available LiDAR data. The process includes the generation of derivatives such as Digital Terrain Model (DTM), Canopy Height Model (CHM) and Canopy Cover Model (CCM) in .bat scripts followed by the generation of 17 composite bands to be used in the extraction of forest classification covers using ENVI 4.8 and GIS software. The Diameter in Breast Height (DBH), Above Ground Biomass (AGB) and Carbon Stock (CS) were estimated for each classified forest cover and Tree Count Extraction was carried out using GIS. Subsequently, field validation was conducted for accuracy assessment. Results showed that the forest of San Manuel has 73% Forest Cover, which is relatively much higher as compared to the 10% canopy cover requirement. On the extracted canopy height, 80% of the tree’s height ranges from 12 m to 17 m. CS of the three forest covers based on the AGB were: 20819.59 kg/20x20 m for closed broadleaf, 8609.82 kg/20x20 m for broadleaf plantation and 15545.57 kg/20x20m for open broadleaf. Average tree counts for the tree forest plantation was 413 trees/ha. As such, the forest of San Manuel has high percent forest cover and high CS.

Keywords: carbon stock, forest inventory, LiDAR, tree count

Procedia PDF Downloads 395
20433 Correlation between Fuel Consumption and Voyage Related Ship Operational Energy Efficiency Measures: An Analysis from Noon Data

Authors: E. Bal Beşikçi, O. Arslan

Abstract:

Fuel saving has become one of the most important issue for shipping in terms of fuel economy and environmental impact. Lowering fuel consumption is possible for both new ships and existing ships through enhanced energy efficiency measures, technical and operational respectively. The limitations of applying technical measures due to the long payback duration raise the potential of operational changes for energy efficient ship operations. This study identifies operational energy efficiency measures related voyage performance management. We use ‘noon’ data to examine the correlation between fuel consumption and operational parameters- revolutions per minute (RPM), draft, trim, (beaufort number) BN and relative wind direction, which are used as measures of ship energy efficiency. The results of this study reveal that speed optimization is the most efficient method as fuel consumption depends heavily on RPM. In conclusion, this study will provide ship operators with the strategic approach for evaluating the priority of the operational energy efficiency measures against high fuel prices and carbon emissions.

Keywords: ship, voyage related operational energy Efficiency measures, fuel consumption, pearson's correlation coefficient

Procedia PDF Downloads 618
20432 Unknown Groundwater Pollution Source Characterization in Contaminated Mine Sites Using Optimal Monitoring Network Design

Authors: H. K. Esfahani, B. Datta

Abstract:

Groundwater is one of the most important natural resources in many parts of the world; however it is widely polluted due to human activities. Currently, effective and reliable groundwater management and remediation strategies are obtained using characterization of groundwater pollution sources, where the measured data in monitoring locations are utilized to estimate the unknown pollutant source location and magnitude. However, accurately identifying characteristics of contaminant sources is a challenging task due to uncertainties in terms of predicting source flux injection, hydro-geological and geo-chemical parameters, and the concentration field measurement. Reactive transport of chemical species in contaminated groundwater systems, especially with multiple species, is a complex and highly non-linear geochemical process. Although sufficient concentration measurement data is essential to accurately identify sources characteristics, available data are often sparse and limited in quantity. Therefore, this inverse problem-solving method for characterizing unknown groundwater pollution sources is often considered ill-posed, complex and non- unique. Different methods have been utilized to identify pollution sources; however, the linked simulation-optimization approach is one effective method to obtain acceptable results under uncertainties in complex real life scenarios. With this approach, the numerical flow and contaminant transport simulation models are externally linked to an optimization algorithm, with the objective of minimizing the difference between measured concentration and estimated pollutant concentration at observation locations. Concentration measurement data are very important to accurately estimate pollution source properties; therefore, optimal design of the monitoring network is essential to gather adequate measured data at desired times and locations. Due to budget and physical restrictions, an efficient and effective approach for groundwater pollutant source characterization is to design an optimal monitoring network, especially when only inadequate and arbitrary concentration measurement data are initially available. In this approach, preliminary concentration observation data are utilized for preliminary source location, magnitude and duration of source activity identification, and these results are utilized for monitoring network design. Further, feedback information from the monitoring network is used as inputs for sequential monitoring network design, to improve the identification of unknown source characteristics. To design an effective monitoring network of observation wells, optimization and interpolation techniques are used. A simulation model should be utilized to accurately describe the aquifer properties in terms of hydro-geochemical parameters and boundary conditions. However, the simulation of the transport processes becomes complex when the pollutants are chemically reactive. Three dimensional transient flow and reactive contaminant transport process is considered. The proposed methodology uses HYDROGEOCHEM 5.0 (HGCH) as the simulation model for flow and transport processes with chemically multiple reactive species. Adaptive Simulated Annealing (ASA) is used as optimization algorithm in linked simulation-optimization methodology to identify the unknown source characteristics. Therefore, the aim of the present study is to develop a methodology to optimally design an effective monitoring network for pollution source characterization with reactive species in polluted aquifers. The performance of the developed methodology will be evaluated for an illustrative polluted aquifer sites, for example an abandoned mine site in Queensland, Australia.

Keywords: monitoring network design, source characterization, chemical reactive transport process, contaminated mine site

Procedia PDF Downloads 234
20431 Nonparametric Path Analysis with Truncated Spline Approach in Modeling Rural Poverty in Indonesia

Authors: Usriatur Rohma, Adji Achmad Rinaldo Fernandes

Abstract:

Nonparametric path analysis is a statistical method that does not rely on the assumption that the curve is known. The purpose of this study is to determine the best nonparametric truncated spline path function between linear and quadratic polynomial degrees with 1, 2, and 3-knot points and to determine the significance of estimating the best nonparametric truncated spline path function in the model of the effect of population migration and agricultural economic growth on rural poverty through the variable unemployment rate using the t-test statistic at the jackknife resampling stage. The data used in this study are secondary data obtained from statistical publications. The results showed that the best model of nonparametric truncated spline path analysis is quadratic polynomial degree with 3-knot points. In addition, the significance of the best-truncated spline nonparametric path function estimation using jackknife resampling shows that all exogenous variables have a significant influence on the endogenous variables.

Keywords: nonparametric path analysis, truncated spline, linear, quadratic, rural poverty, jackknife resampling

Procedia PDF Downloads 57
20430 Application of Digital Technologies as Tools for Transformative Agricultural Science Instructional Delivery in Secondary Schools

Authors: Cajethan U. Ugwuoke

Abstract:

Agriculture is taught in secondary schools to develop skills in students which will empower them to contribute to national economic development. Unfortunately, our educational system emphasizes the application of conventional teaching methods in delivering instructions, which fails to produce students competent enough to carry out agricultural production. This study was therefore aimed at examining the application of digital technologies as tools for transformative instructional delivery. Four specific purposes, research questions and hypotheses guided the study. The study adopted a descriptive survey research design where 80 subjects representing 64 teachers of agriculture and 16 principals in the Udenu local government area of Enugu State, Nigeria, participated in the study. A structured questionnaire was used to collect data. The assumption of normality was ascertained by subjecting the data collected to a normality test. Data collected were later subjected to mean, Pearson product-moment correlation, ANOVA and t-test to answer the research questions and test the hypotheses at a 5% significant level. The result shows that the application of digital technologies helps to reduce learners’ boredom (3.52.75), improves learners’ performance (3.63.51), and is used as a visual aid for learners (3.56.61), among others. There was a positive, strong and significant relationship between the application of digital technologies and effective instructional delivery (+.895, p=.001<.05, F=17.73), competency of teachers to the application of digital technologies and effective instructional delivery (+998, p=.001<0.5, F=16263.45), and frequency of the application of digital technologies and effective instructional delivery (+.999, p=.001<.05, F=31436.14). There was no evidence of autocorrelation and multicollinearity in the regression models between the application of digital technologies and effective instructional delivery (2.03, Tolerance=1.00, VIF=1.00), competency of teachers in the application of digital technologies and effective instructional delivery (2.38, Tolerance=1.00, VIF=1.00) and frequency of the application of digital technologies and effective instructional delivery (2.00, Tolerance=1.00, VIF=1.00). Digital technologies should be therefore applied in teaching to facilitate effective instructional delivery in agriculture.

Keywords: agricultural science, digital technologies, instructional delivery, learning

Procedia PDF Downloads 74
20429 Correlation of Hematological Indices with Fasting Blood Glucose Level and Anthropometric Measurements in Geriatric Diabetes Mellitus Subjects in Lagos State University Teaching Hospital, Ikeja, Lagos, Nigeria

Authors: Dada. O.Akinola, Uche. I. Ebele, Bamiro .A.Rafatu, Akinbami A. Akinsegun, Dada O. Adeyemi, Adeyemi. O. Ibukun, Okunowo O.Bolanle, Abdulateef O. Kareem, Ibrahim.N. Ismaila, Dosu Rihanat

Abstract:

Background: Hyperglycaemia alters qualitatively and quantitatively all the full blood count parameters. The alterations among other factors are responsible for the macrovascular and microvascular complications associated with diabetes mellitus (DM). This study is aimed at correlating haematological parameters in DM subjects with their fasting blood glucose (FBG) and anthropometric parameters. Materials and Methods: This was a cross-sectional study of participants attending DM clinic of Lagos State University Teaching Hospital (LASUTH), Ikeja. The study recruited one hundred and two (102) DM subjects and one hundred (100) non-DM controls. Venous blood samples were collected for full blood count (FBC) assay while FBG was done, structured questionnaires were administered, and anthropometric measurements of all participants were done. Data were analyzed with Statistical Package for Social Science (SPSS) version 23. P was set at ≤0.05. Results: The mean age of DM patients was 64.32± 11.31 years. Using a haemoglobin concentration cut-off of 11g/dl, 39.2%, and 13% DM and control participants respectively had values lower than 11g/dl. A total of 22.5% and 3% of DM and controls respectively gave a history of previous blood transfusion.White blood cells count and platelet count means were (6.12±1.60 and 5.30±7.52,p=0.59) and (213.31±73.58 and 228.91±73.21,p = 0.26) *109/L in DM subjects and controls respectively. FBG and all the anthropometric data in DM subjects were significantly higher than in controls. Conclusions: The prevalence of anaemia in DM subjects was three times higher than in controls. The white blood cell count was higher but not statistically significant in DM compared with controls. But platelet count was higher but not statistically significant in controls compared with DM subjects.

Keywords: haematological profile, diabetes mellitus, anthropometric data, fasting blood glucose

Procedia PDF Downloads 90
20428 Enhancing Fault Detection in Rotating Machinery Using Wiener-CNN Method

Authors: Mohamad R. Moshtagh, Ahmad Bagheri

Abstract:

Accurate fault detection in rotating machinery is of utmost importance to ensure optimal performance and prevent costly downtime in industrial applications. This study presents a robust fault detection system based on vibration data collected from rotating gears under various operating conditions. The considered scenarios include: (1) both gears being healthy, (2) one healthy gear and one faulty gear, and (3) introducing an imbalanced condition to a healthy gear. Vibration data was acquired using a Hentek 1008 device and stored in a CSV file. Python code implemented in the Spider environment was used for data preprocessing and analysis. Winner features were extracted using the Wiener feature selection method. These features were then employed in multiple machine learning algorithms, including Convolutional Neural Networks (CNN), Multilayer Perceptron (MLP), K-Nearest Neighbors (KNN), and Random Forest, to evaluate their performance in detecting and classifying faults in both the training and validation datasets. The comparative analysis of the methods revealed the superior performance of the Wiener-CNN approach. The Wiener-CNN method achieved a remarkable accuracy of 100% for both the two-class (healthy gear and faulty gear) and three-class (healthy gear, faulty gear, and imbalanced) scenarios in the training and validation datasets. In contrast, the other methods exhibited varying levels of accuracy. The Wiener-MLP method attained 100% accuracy for the two-class training dataset and 100% for the validation dataset. For the three-class scenario, the Wiener-MLP method demonstrated 100% accuracy in the training dataset and 95.3% accuracy in the validation dataset. The Wiener-KNN method yielded 96.3% accuracy for the two-class training dataset and 94.5% for the validation dataset. In the three-class scenario, it achieved 85.3% accuracy in the training dataset and 77.2% in the validation dataset. The Wiener-Random Forest method achieved 100% accuracy for the two-class training dataset and 85% for the validation dataset, while in the three-class training dataset, it attained 100% accuracy and 90.8% accuracy for the validation dataset. The exceptional accuracy demonstrated by the Wiener-CNN method underscores its effectiveness in accurately identifying and classifying fault conditions in rotating machinery. The proposed fault detection system utilizes vibration data analysis and advanced machine learning techniques to improve operational reliability and productivity. By adopting the Wiener-CNN method, industrial systems can benefit from enhanced fault detection capabilities, facilitating proactive maintenance and reducing equipment downtime.

Keywords: fault detection, gearbox, machine learning, wiener method

Procedia PDF Downloads 89
20427 Estimating the Relationship between Education and Political Polarization over Immigration across Europe

Authors: Ben Tappin, Ryan McKay

Abstract:

The political left and right appear to disagree not only over questions of value but, also, over questions of fact—over what is true “out there” in society and the world. Alarmingly, a large body of survey data collected during the past decade suggests that this disagreement tends to be greatest among the most educated and most cognitively sophisticated opposing partisans. In other words, the data show that these individuals display the widest political polarization in their reported factual beliefs. Explanations of this polarization pattern draw heavily on cultural and political factors; yet, the large majority of the evidence originates from one cultural and political context—the United States, a country with a rather unique cultural and political history. One consequence is that widening political polarization conditional on education and cognitive sophistication may be due to idiosyncratic cultural, political or historical factors endogenous to US society—rather than a more general, international phenomenon. We examined widening political polarization conditional on education across Europe, over a topic that is culturally and politically contested; immigration. To do so, we analyzed data from the European Social Survey, a premier survey of countries in and around the European area conducted biennially since 2002. Our main results are threefold. First, we see widening political polarization conditional on education over beliefs about the economic impact of immigration. The foremost countries showing this pattern are the most influential in Europe: Germany and France. However, we also see heterogeneity across countries, with some—such as Belgium—showing no evidence of such polarization. Second, we find that widening political polarization conditional on education is a product of sorting. That is, highly educated partisans exhibit stronger within-group consensus in their beliefs about immigration—the data do not support the view that the more educated partisans are more polarized simply because the less educated fail to adopt a position on the question. Third, and finally, we find some evidence that shocks to the political climate of countries in the European area—for example, the “refugee crisis” of summer 2015—were associated with a subsequent increase in political polarization over immigration conditional on education. The largest increase was observed in Germany, which was at the centre of the so-called refugee crisis in 2015. These results reveal numerous insights: they show that widening political polarization conditional on education is not restricted to the US or native English-speaking culture; that such polarization emerges in the domain of immigration; that it is a product of within-group consensus among the more educated; and, finally, that exogenous shocks to the political climate may be associated with subsequent increases in political polarization conditional on education.

Keywords: beliefs, Europe, immigration, political polarization

Procedia PDF Downloads 151
20426 Static Balance in the Elderly: Comparison Between Elderly Performing Physical Activity and Fine Motor Coordination Activity

Authors: Andreia Guimaraes Farnese, Mateus Fernandes Reu Urban, Leandro Procopio, Renato Zangaro, Regiane Albertini

Abstract:

Senescence changes include postural balance, inferring the risk of falls, and can lead to fractures, bedridden, and the risk of death. Physical activity, e.g., cardiovascular exercises, is notable for improving balance due to brain cell stimulations, but fine coordination exercises also elevate cell brain metabolism. This study aimed to verify whether the elderly person who performs fine motor activity has a balance similar to that of those who practice physical activity. The subjects were divided into three groups according to the activity practice: control group (CG) with seven participants for the sedentary individuals, motor coordination group (MCG) with six participants, and activity practitioner group (PAG) with eight participants. Data comparisons were from the Berg balance scale, Time up and Go test, and stabilometric analysis. Descriptive statistical and ANOVA analyses were performed for data analysis. The results reveal that including fine motor activities can improve the balance of the elderly and indirectly decrease the risk of falls.

Keywords: balance, barapodometer, coordination, elderly

Procedia PDF Downloads 174
20425 Ports and Airports: Gateways to Vector-Borne Diseases in Portugal Mainland

Authors: Maria C. Proença, Maria T. Rebelo, Maria J. Alves, Sofia Cunha

Abstract:

Vector-borne diseases are transmitted to humans by mosquitos, sandflies, bugs, ticks, and other vectors. Some are re-transmitted between vectors, if the infected human has a new contact when his levels of infection are high. The vector is infected for lifetime and can transmit infectious diseases not only between humans but also from animals to humans. Some vector borne diseases are very disabling and globally account for more than one million deaths worldwide. The mosquitoes from the complex Culex pipiens sl. are the most abundant in Portugal, and we dispose in this moment of a data set from the surveillance program that has been carried on since 2006 across the country. All mosquitos’ species are included, but the large coverage of Culex pipiens sl. and its importance for public health make this vector an interesting candidate to assess risk of disease amplification. This work focus on ports and airports identified as key areas of high density of vectors. Mosquitoes being ectothermic organisms, the main factor for vector survival and pathogen development is temperature. Minima and maxima local air temperatures for each area of interest are averaged by month from data gathered on a daily basis at the national network of meteorological stations, and interpolated in a geographic information system (GIS). The range of temperatures ideal for several pathogens are known and this work shows how to use it with the meteorological data in each port and airport facility, to focus an efficient implementation of countermeasures and reduce simultaneously risk transmission and mitigation costs. The results show an increased alert with decreasing latitude, which corresponds to higher minimum and maximum temperatures and a lower amplitude range of the daily temperature.

Keywords: human health, risk assessment, risk management, vector-borne diseases

Procedia PDF Downloads 424
20424 NDVI as a Measure of Change in Forest Biomass

Authors: Amritansh Agarwal, Tejaswi Agarwal

Abstract:

Forest ecosystem plays very important role in the global carbon cycle. It stores about 80% of all above ground and 40% of all below ground terrestrial organic carbon. There is much interest in the extent of tropical forests and their rates of deforestation for two reasons: greenhouse gas contributions and the impact of profoundly negative biodiversity. Deforestation has many ecological, social and economic consequences, one of which is the loss of biological diversity. The rapid deployment of remote sensing (RS) satellites and development of RS analysis techniques in the past three decades have provided a reliable, effective, and practical way to characterize terrestrial ecosystem properties. Global estimates of tropical deforestation vary widely and range from 50,000 to 170,000 km2 /yr Recent FAO tropical deforestation estimates for 1990–1995 cite 116,756km2 / yr globally. Remote Sensing can prove to be a very useful tool in monitoring of forests and associated deforestation to a sufficient level of accuracy without the need of physically surveying the forest areas as many of them are physically inaccessible. The methodology for the assessment of forest cover using digital image processing (ERDAS) has been followed. The satellite data for the study was procured from USGS website in the digital format. While procuring the satellite data, care was taken to ensure that the data was cloud and aerosol free by making using of FLAASH atmospheric correction technique. The Normalized Difference Vegetation Index (NDVI) has been used as a numerical indicator of the reduction in ground biomass. NDVI = (near I.R - Red)/ (near I.R + Red). After calculating the NDVI variations and associated mean we have analysed the change in ground biomass. Through this paper we have tried to indicate the rate of deforestation over a given period of time by comparing the forest cover at different time intervals. With the help of remote sensing and GIS techniques it is clearly shows that the total forest cover is continuously degrading and transforming into various land use/land cover category.

Keywords: remote sensing, deforestation, supervised classification, NDVI change detection

Procedia PDF Downloads 405
20423 Exploring Academic Writing Challenges of First Year English as an Additional Language Students at an ODeL Institution in South Africa

Authors: Tumelo Jaquiline Ntsopi

Abstract:

This study explored the academic writing challenges of first-year students who use English as an Additional Language (EAL) registered in the EAW101 module at an ODeL institution. Research shows that academic writing is a challenge for EAL teaching and learning contexts across the globe in higher education institutions (HEIs). Academic writing is an important aspect of academic literacy in any institution of higher learning, more so in an ODeL institution. This has probed research that shows that academic writing is and continues to pose challenges for EAL teaching and learning contexts in higher education institutions. This study stems from the researcher’s experience in teaching academic writing to first-year students in the EAW101 module. The motivation for this study emerged from the fact that EAW101 is a writing module that has a high number of students in the Department of English Studies with an average of between 50-80 percent pass rate. These statistics elaborate on the argument that most students registered in this module struggle with academic writing, and they need intervention to assist and support them in achieving competence in the module. This study is underpinned by Community of Inquiry (CoI) framework and Transactional distance theory. This study adopted a qualitative research methodology and utilised a case study approach as a research design. Furthermore, the study gathered data from first year students and the EAW101 module’s student support initiatives. To collect data, focus group discussions, structured open-ended evaluation questions, and an observation schedule were used to gather data. The study is vital towards exploring academic writing challenges that first-year students in EAW101 encounter so that lecturers in the module may consider re-evaluating their methods of teaching to improve EAL students’ academic writing skills. This study may help lecturers towards enhancing academic writing in a ODeL context by assisting first year students through using student support interventions.

Keywords: academic writing, academic writing challenge, ODeL, EAL

Procedia PDF Downloads 110
20422 Wind Energy Resources Assessment and Micrositting on Different Areas of Libya: The Case Study in Darnah

Authors: F. Ahwide, Y. Bouker, K. Hatem

Abstract:

This paper presents long term wind data analysis in terms of annual and diurnal variations at different areas of Libya. The data of the wind speed and direction are taken each ten minutes for a period, at least two years, are used in the analysis. ‘WindPRO’ software and Excel workbook were used for the wind statistics and energy calculations. As for Derna, average speeds are 10 m, 20 m, and 40 m, and respectively 6.57 m/s, 7.18 m/s, and 8.09 m/s. Highest wind speeds are observed at SSW, followed by S, WNW and NW sectors. Lowest wind speeds are observed between N and E sectors. Most frequent wind directions are NW and NNW. Hence, wind turbines can be installed against these directions. The most powerful sector is NW (29.4 % of total expected wind energy), followed by 19.9 % SSW, 11.9% NNW, 8.6% WNW and 8.2% S. Furthermore in Al-Maqrun: the most powerful sector is W (26.8 % of total expected wind energy), followed by 12.3 % WSW and 9.5% WNW. While in Goterria: the most powerful sector is S (14.8 % of total expected wind energy), followed by SSE, SE, and WSW. And Misalatha: the most powerful sector is S, by far represents 28.5% of the expected power, followed by SSE and SE. As for Tarhuna, it is by far SSE and SE, representing each one two times the expected energy of the third powerful sector (NW). In Al-Asaaba: it is SSE by far represents 50% of the expected power, followed by S. It can to be noted that the high frequency of the south direction winds, that come from the desert could cause a high frequency of dust episodes. This fact then, should be taken into account in order to take appropriate measures to prevent wind turbine deterioration. In Excel workbook, an estimation of annual energy yield at position of Derna, Al-Maqrun, Tarhuna, and Al-Asaaba meteorological mast has been done, considering a generic wind turbine of 1.65 MW. (mtORRES, TWT 82-1.65MW) in position of meteorological mast. Three other turbines have been tested. At 80 m, the estimation of energy yield for Derna, Al-Maqrun, Tarhuna, and Asaaba is 6.78 GWh or 3390 equivalent hours, 5.80 GWh or 2900 equivalent hours, 4.91 GWh or 2454 equivalent hours and 5.08 GWh or 2541 equivalent hours respectively. It seems a fair value in the context of a possible development of a wind energy project in the areas, considering a value of 2400 equivalent hours as an approximate limit to consider a wind warm economically profitable. Furthermore, an estimation of annual energy yield at positions of Misalatha, Azizyah and Goterria meteorological mast has been done, considering a generic wind turbine of 2 MW. We found that, at 80 m, the estimation of energy yield is 3.12 GWh or 1557 equivalent hours, 4.47 GWh or 2235 equivalent hours and 4.07GWh or 2033 respectively . It seems a very poor value in the context of possible development of a wind energy project in the areas, considering a value of 2400 equivalent hours as an approximate limit to consider a wind warm economically profitable. Anyway, more data and a detailed wind farm study would be necessary to draw conclusions.

Keywords: wind turbines, wind data, energy yield, micrositting

Procedia PDF Downloads 191
20421 A Qualitative Study: Teaching Fractions with Augmented Reality for 5th Grade Students in Turkey

Authors: Duygu Özdemir, Bilal Özçakır

Abstract:

Usage of augmented reality in education helps students to make sense of the three-dimensional world of mathematics. In this study, it was aimed to develop activities about fractions for 5th-grade students by augmented reality and also aimed to assess these activities in terms of students’ understanding and views. Data obtained from 60 students in a private school in Marmaris, Turkey was obtained through classroom observations, students’ worksheets and semi-structured interviews during two weeks. Data analysis was conducted by using constant-comparative analysis which leads to meaningful categories of findings. Findings of this study indicated that usage of augmented reality is a facilitator to make concretize and provide real-life application for fractions. Moreover, students’ opinions about its usage were lead to categories as benefit for learning, enjoyment and creating awareness of usage of augmented reality in mathematics education. In general, this study could be a bridge to show the contributions of augmented reality applications to mathematics education and also highlights that augmented reality could be used with subjects like fractions rather than subjects only in geometry learning domain.

Keywords: augmented reality, mathematics, fractions, students

Procedia PDF Downloads 204
20420 Impact of Radio on Rural Development: A Study of Ipokia Local Government Area, Nigeria

Authors: Haruna Shola Adeosun, Adeoye Odedeji

Abstract:

This paper examines the impact of radio on rural development. The researcher employed survey method to gather primary data. The objectives and questions were used from and hypotheses were formulated were raised from the statement of the problem. Cultivation theory was used as the theoretical study. The populations of the study were the inhabitant of Ipokia Local Government. Questionnaires were administered on the 400 respondents. Data gathered were analyzed, interpreted and hypotheses of the study were tested. The finding revealed that; radio has impacted on the rural dwellers and there is a significant relationship between radio and rural dwellers. Also, radio has brought socio-economic development on rural dwellers. The study recommended that radio messages should be designed in line with the pre-existing attitudes of the rural dwellers. It was also discovered that radio stations should endeavour to use local dialects especially when the radio programme is aimed at the rural dwellers that effective communication that can increase active participation of government and the public. Finally, the study recommends that radio stations should be well funded to produce programmes that would serve the purpose of educating and informing the public on issues relevant to them and there is need to establish community radio stations that will be closer to rural dwellers.

Keywords: impact, radio, rural, development

Procedia PDF Downloads 335
20419 Improving Chest X-Ray Disease Detection with Enhanced Data Augmentation Using Novel Approach of Diverse Conditional Wasserstein Generative Adversarial Networks

Authors: Malik Muhammad Arslan, Muneeb Ullah, Dai Shihan, Daniyal Haider, Xiaodong Yang

Abstract:

Chest X-rays are instrumental in the detection and monitoring of a wide array of diseases, including viral infections such as COVID-19, tuberculosis, pneumonia, lung cancer, and various cardiac and pulmonary conditions. To enhance the accuracy of diagnosis, artificial intelligence (AI) algorithms, particularly deep learning models like Convolutional Neural Networks (CNNs), are employed. However, these deep learning models demand a substantial and varied dataset to attain optimal precision. Generative Adversarial Networks (GANs) can be employed to create new data, thereby supplementing the existing dataset and enhancing the accuracy of deep learning models. Nevertheless, GANs have their limitations, such as issues related to stability, convergence, and the ability to distinguish between authentic and fabricated data. In order to overcome these challenges and advance the detection and classification of CXR normal and abnormal images, this study introduces a distinctive technique known as DCWGAN (Diverse Conditional Wasserstein GAN) for generating synthetic chest X-ray (CXR) images. The study evaluates the effectiveness of this Idiosyncratic DCWGAN technique using the ResNet50 model and compares its results with those obtained using the traditional GAN approach. The findings reveal that the ResNet50 model trained on the DCWGAN-generated dataset outperformed the model trained on the classic GAN-generated dataset. Specifically, the ResNet50 model utilizing DCWGAN synthetic images achieved impressive performance metrics with an accuracy of 0.961, precision of 0.955, recall of 0.970, and F1-Measure of 0.963. These results indicate the promising potential for the early detection of diseases in CXR images using this Inimitable approach.

Keywords: CNN, classification, deep learning, GAN, Resnet50

Procedia PDF Downloads 93
20418 A Game-Based Product Modelling Environment for Non-Engineer

Authors: Guolong Zhong, Venkatesh Chennam Vijay, Ilias Oraifige

Abstract:

In the last 20 years, Knowledge Based Engineering (KBE) has shown its advantages in product development in different engineering areas such as automation, mechanical, civil and aerospace engineering in terms of digital design automation and cost reduction by automating repetitive design tasks through capturing, integrating, utilising and reusing the existing knowledge required in various aspects of the product design. However, in primary design stages, the descriptive information of a product is discrete and unorganized while knowledge is in various forms instead of pure data. Thus, it is crucial to have an integrated product model which can represent the entire product information and its associated knowledge at the beginning of the product design. One of the shortcomings of the existing product models is a lack of required knowledge representation in various aspects of product design and its mapping to an interoperable schema. To overcome the limitation of the existing product model and methodologies, two key factors are considered. First, the product model must have well-defined classes that can represent the entire product information and its associated knowledge. Second, the product model needs to be represented in an interoperable schema to ensure a steady data exchange between different product modelling platforms and CAD software. This paper introduced a method to provide a general product model as a generative representation of a product, which consists of the geometry information and non-geometry information, through a product modelling framework. The proposed method for capturing the knowledge from the designers through a knowledge file provides a simple and efficient way of collecting and transferring knowledge. Further, the knowledge schema provides a clear view and format on the data that needed to be gathered in order to achieve a unified knowledge exchange between different platforms. This study used a game-based platform to make product modelling environment accessible for non-engineers. Further the paper goes on to test use case based on the proposed game-based product modelling environment to validate the effectiveness among non-engineers.

Keywords: game-based learning, knowledge based engineering, product modelling, design automation

Procedia PDF Downloads 158