Search results for: polysaccharide structure
2981 Impact of Different Tillage Practices on Soil Health Status: Carbon Storage and Pools, Soil Aggregation, and Nutrient Use
Authors: Denis Constantin Topa, Irina Gabriela Cara, Gerard Jitareanu
Abstract:
Tillage is a fundamental soil practice with different soil disturbance intensities and unique implications in soil organic carbon, soil structure, and nutrient dynamics. However, the implication of tillage practice on soil organic carbon and soil health is complex and specific to the context. it study evaluated soil health status based on soil carbon sequestration and pools, soil aggregation, and nutrient use under two different tillage practices: conventional and minimum tillage. The results of our study are consistent with the hypothesis that, over time, minimum tillage typically boosts soil health in the 0-10 cm soil layer. Compared to the conventional practice (19.36 t C ha-1) there was a significant accumulation of soil organic carbon (0-30 cm) in the minimum-tillage practice (23.21 t C ha-1). Below 10 cm depth, the soil organic carbon stocks are close to that of the conventional layer (0-30 cm). Soil aggregate stability was improved under conservative tillage, due to soil carbon improvement which facilitated a greater volume of mesopores and micropores. Total nitrogen (TN), available potassium (AK) and phosphorus (AP) content in 0-10 cm depth under minimum-tillage practice were 26%, 6% and 32%, greater respectively, compared to the conventional treatment. Overall, the TN, AP and AK values decreased with depth within the soil profiles as a consequence of soil practice and minimum disturbance. The data show that minimum tillage is a sustainable and effective management practice that maintain soil health with soil carbon increase and efficient nutrient use.Keywords: minimum tillage, conventional tillage, soil organic carbon, nutrients, soil aggregation, soil health
Procedia PDF Downloads 202980 QSRR Analysis of 17-Picolyl and 17-Picolinylidene Androstane Derivatives Based on Partial Least Squares and Principal Component Regression
Authors: Sanja Podunavac-Kuzmanović, Strahinja Kovačević, Lidija Jevrić, Evgenija Djurendić, Jovana Ajduković
Abstract:
There are several methods for determination of the lipophilicity of biologically active compounds, however chromatography has been shown as a very suitable method for this purpose. Chromatographic (C18-RP-HPLC) analysis of a series of 24 17-picolyl and 17-picolinylidene androstane derivatives was carried out. The obtained retention indices (logk, methanol (90%) / water (10%)) were correlated with calculated physicochemical and lipophilicity descriptors. The QSRR analysis was carried out applying principal component regression (PCR) and partial least squares regression (PLS). The PCR and PLS model were selected on the basis of the highest variance and the lowest root mean square error of cross-validation. The obtained PCR and PLS model successfully correlate the calculated molecular descriptors with logk parameter indicating the significance of the lipophilicity of compounds in chromatographic process. On the basis of the obtained results it can be concluded that the obtained logk parameters of the analyzed androstane derivatives can be considered as their chromatographic lipophilicity. These results are the part of the project No. 114-451-347/2015-02, financially supported by the Provincial Secretariat for Science and Technological Development of Vojvodina and CMST COST Action CM1105.Keywords: androstane derivatives, chromatography, molecular structure, principal component regression, partial least squares regression
Procedia PDF Downloads 2822979 The Diffusion of Membrane Nanodomains with Specific Ganglioside Composition
Authors: Barbora Chmelova, Radek Sachl
Abstract:
Gangliosides are amphipathic membrane lipids. Due to the composition of bulky oligosaccharide chains containing one or more sialic acids linked to the hydrophobic ceramide base, gangliosides are classified among glycosphingolipids. This unique structure induces a high self-aggregating tendency of gangliosides and, therefore, the formation of nanoscopic clusters called nanodomains. Gangliosides are preferentially present in an extracellular membrane leaflet of all human tissues and thus have an impact on a huge number of biological processes, such as intercellular communication, cell signalling, membrane trafficking, and regulation of receptor activity. Defects in their metabolism, impairment of proper ganglioside function, or changes in their organization lead to serious health conditions such as Alzheimer´s and Parkinson´s diseases, autoimmune diseases, tumour growth, etc. This work mainly focuses on ganglioside organization into nanodomains and their dynamics within the plasma membrane. Current research investigates static ganglioside nanodomains characterization; nevertheless, the information about their diffusion is missing. In our study, fluorescence correlation spectroscopy is implemented together with stimulated emission depletion (STED-FCS), which combines the diffraction-unlimited spatial resolution with high temporal resolution. By comparison of the experiments performed on model vesicles containing 4 % of either GM1, GM2, or GM3 and Monte Carlo simulations of diffusion on the plasma membrane, the description of ganglioside clustering, diffusion of nanodomains, and even diffusion of ganglioside molecules inside investigated nanodomains are described.Keywords: gangliosides, nanodomains, STED-FCS, flourescence microscopy, membrane diffusion
Procedia PDF Downloads 862978 Biosynthesis of Silver Nanoparticles from Leaf Extract of Tithonia diversifolia and Its Antimicrobial Properties
Authors: Babatunde Oluwole Ogunsile, Omosola Monisola Fasoranti
Abstract:
High costs and toxicological hazards associated with the physicochemical methods of producing nanoparticles have limited their widespread use in clinical and biomedical applications. An ethically sound alternative is the utilization of plant bioresources as a low cost and eco–friendly biological approach. Silver nanoparticles (AgNPs) were synthesized from aqueous leaf extract of Tithonia diversifolia plant. The UV-Vis Spectrophotometer was used to monitor the formation of the AgNPs at different time intervals and different ratios of plant extract to the AgNO₃ solution. The biosynthesized AgNPs were characterized by FTIR, X-ray Diffraction (XRD) and Scanning Electron Microscope (SEM). Antimicrobial activities of the AgNPs were investigated against ten human pathogens using agar well diffusion method. The AgNPs yields were modeled using a second-order factorial design. The result showed that the rate of formation of the AgNPs increased with respect to time while the optimum ratio of plant extract to the AgNO₃ solution was 1:1. The hydroxyl group was strongly involved in the bioreduction of the silver salt as indicated by the FTIR spectra. The synthesized AgNPs were crystalline in nature, with a uniformly distributed network of the web-like structure. The factorial model predicted the nanoparticles yields with minimal errors. The nanoparticles were active against all the tested pathogens and thus have great potentials as antimicrobial agents.Keywords: antimicrobial activities, green synthesis, silver nanoparticles, Tithonia diversifolia
Procedia PDF Downloads 1522977 The Postcolonial Everyday: the Construction of Daily Barriers in the Experience of Asylum Seekers and Refugees in the UK
Authors: Sarah Elmammeri
Abstract:
This paper will represent the postcolonial every day in the journey of asylum seekers through the asylum process in the UK. It represents everyday borders, which are defined as everyday barriers, and obstacles facing asylum seekers and refugees in the host country. These everyday barriers can be legal, financial, social and educational under the umbrella of the racialized administrative border creating a package. The arguments build on a set of 21 semi-structured interviews in English and Arabic. The interviews were conducted in the UK, online via zoom lasting between 25 minutes and 2 hours with asylum seekers, refugees, Non-governmental organisations workers and volunteers. The interviews focus on the meaning of borders both physical and metaphorical and ways to challenge the ongoing postcolonial everyday border practices. The findings conclude that these barriers are there deliberately and intentionally to target asylum seekers and limit their legal right to claim asylum in a form of policy and regulations. People in the asylum process, NGO workers, and refugees relate to this aspect of the everyday borders. Second, these barriers come intertwined together creating a structure that interferes with the daily life of an asylum seeker and later affects people with refugee status creating racialised barriers starting with the structural and official form of it: the asylum process. These structural barriers will be linked forming a multi-level barrier enhancing the racialisation of people who are categorised and selected.Keywords: everyday borders, asylum policies, inclusion and exclusion, refugees and asylum seekers
Procedia PDF Downloads 1242976 Domain Switching Characteristics of Lead Zirconate Titanate Piezoelectric Ceramic
Authors: Mitsuhiro Okayasu
Abstract:
To better understand the lattice characteristics of lead zirconate titanate (PZT) ceramics, the lattice orientations and domain-switching characteristics have been directly examined during loading and unloading using various experimental techniques. Upon loading, the PZT ceramics are fractured linear and nonlinearly during the compressive loading process. The strain characteristics of the PZT ceramic were directly affected by both the lattice and domain switching strain. Due to the piezoelectric ceramic, electrical activity of lightning-like behavior occurs in the PZT ceramics, which attributed to the severe domain-switching leading to weak piezoelectric property. The characteristics of domain-switching and reverse switching are detected during the loading and unloading processes. The amount of domain-switching depends on the grain, due to different stress levels. In addition, two patterns of 90˚ domain-switching systems are characterized, namely (i) 90˚ turn about the tetragonal c-axis and (ii) 90˚ rotation of the tetragonal a-axis. In this case, PZT ceramic was loaded by the thermal stress at 80°C. Extent of domain switching is related to the direction of c-axis of the tetragonal structure, e.g., that axis, orientated close to the loading direction, makes severe domain switching. It is considered that there is 90˚ domain switching, but in actual, the angle of domain switching is less than 90˚, e.g., 85.4° ~ 90.0°. In situ TEM observation of the domain switching characteristics of PZT ceramic has been conducted with increasing the sample temperature from 25°C to 300°C, and the domain switching like behavior is directly observed from the lattice image, where the severe domain switching occurs less than 100°C.Keywords: PZT, lead zirconate titanate, piezoelectric ceramic, domain switching, material property
Procedia PDF Downloads 2092975 Effective Governance and Administrative Structures for Virile Trade Unions and Cordial Labour Relations
Authors: Theophilius Adekunle Tinuoye
Abstract:
Trade unions are groups formed essentially to promote, articulate and enhance the welfare of workers. They are expected to defend the workers interests and participate actively in workplace exchanges. But for trade unions to function effectively and actualize their lofty aspirations in the context of the current dynamic and ever-changing industrial relations context, they must not only have qualified and competent leaders, but also flexible and effective structure, systems, organograms, constitution, and administrative processes in place to compliment their policies and programmes. An important aspect of industrial relations is the existence of cordial tripartite or bipartite interactions between stakeholders and other social partners that are indispensable to the creation of positive and mutually beneficial exchanges and outcomes. This paper canvassed that unions must be structurally viable and administratively cohesive in order to be effective, pragmatic, functional and remain relevant. It also argued that weak, structurally deficient and less organized unions often find it immensely difficult to actualize workers goals. Finally, it outlined basic principles that will enhance union administration, guarantee that unions will continue to satisfy the yearnings of its members in these trying times and finally foster peaceful industrial relations climate and cordial labor relations between trade unions, employers /management and government.Keywords: governance, labor relations, trade unions, workers
Procedia PDF Downloads 3502974 Cladding Technology for Metal-Hybrid Composites with Network-Structure
Authors: Ha-Guk Jeong, Jong-Beom Lee
Abstract:
Cladding process is very typical technology for manufacturing composite materials by the hydrostatic extrusion. Because there is no friction between the metal and the container, it can be easily obtained in uniform flow during the deformation. The general manufacturing process for a metal-matrix composite in the solid state, mixing metal powders and ceramic powders with a suited volume ratio, prior to be compressed or extruded at the cold or hot condition in a can. Since through a plurality of unit processing steps of dispersing the materials having a large difference in their characteristics and physical mixing, the process is complicated and leads to non-uniform dispersion of ceramics. It is difficult and hard to reach a uniform ideal property in the coherence problems at the interface between the metal and the ceramic reinforcements. Metal hybrid composites, which presented in this report, are manufactured through the traditional plastic deformation processes like hydrostatic extrusion, caliber-rolling, and drawing. By the previous process, the realization of uniform macro and microstructure is surely possible. In this study, as a constituent material, aluminum, copper, and titanium have been used, according to the component ratio, excellent characteristics of each material were possible to produce a metal hybrid composite that appears to maximize. MgB₂ superconductor wire also fabricated via the same process. It will be introduced to their unique artistic and thermal characteristics.Keywords: cladding process, metal-hybrid composites, hydrostatic extrusion, electronic/thermal characteristics
Procedia PDF Downloads 1852973 Explorative Approach to the Evolving Administrative Landscape of South Africa
Authors: Z. I Jeeva
Abstract:
The establishment of municipalities in South Africa has been a long and difficult process; 25 years later, it still appears to be evolving. In 1994, the new democratic government undertook to restructure the country’s racially segregated administrative structure by integrating areas to form cohesive municipal entities that would allow for the more efficient administration management of the regions. It planned to achieve this within a short seven-year period from 1993 to 2000, which was to be divided into three phases, namely, the pre-interim phase from 1994 to1995, the interim phase from 1996 to 1999, and the post-interim phase from 2000 onwards. However, the extensive integrated municipal approach was easier to pen on paper than to implement in practice. This paper seeks to explore the South African spatial reform process from 1993 to 2020, by analyzing policy documents and literature in order to determine how exactly the government attempted to achieve this. The study found that the spatial restructuring process was particularly complex since the democratic government inherited an unequal society located on a fragmented spatial landscape of which there was limited knowledge with many unresolved issues. Furthermore, the study found that there is a lack of literature on the topic from an urban planning perspective and calls for further research to ensure the formation of more efficient administrative regions.Keywords: categorization, demarcation, municipalities, racial integration, spatial reform
Procedia PDF Downloads 1122972 Histological Changes in the Culex pipiens Mosquito Larvae Treated by the Entomopathogenic Fungus Beauveria bassiana
Authors: Fatma Sahir- Halouane, Sonia Hamid, Farida Tihar-Benzina, Fatiha Bouhlali, Souad Lourchane
Abstract:
The Culicidae are biting insects, the most harmful to people, they are almost all bloodsuckers, and they are responsible of the spread of many important diseases such as malaria, yellow fever, and elephantiasis. Entomopathogenic microorganisms occupy an important place among the alternative methods of fighting against pests insect. The fungus Beauveria bassiana is an entomopathogenic agent naturally present in the ecosystems. It offers a very interesting potential for controlling populations of mosquitoes. This study aimed to show the histological changes that occured in Culex pipiens larvae infected with Beauveria bassiana. The 4th instar larvae were infected with B. bassiana in 10-7 spore/ml dilution, the histological section was studied showing that the fungi infected all the body parts specially Cuticle, Epiderms, fat bodies and midgut. After then the insect have a white appearance and covered with a thick coat of hyphea. The obtained results show that the application of Beauveria bassiana on cuticle of the fourth stage larvae of Culex pipiens was dependent of an apparent disturbance on the structure of the cuticle or there has been the degeneration of its different parts, infection of the fungus does not stop at the body walls. Therefore, it affects even the Adipose tissue, epidermal cells and intestine.Keywords: Culex pipiens, Beauveria bassiana, histological changes, cuticle, intestine and adipose tissue
Procedia PDF Downloads 2832971 Merging Appeal to Ignorance, Composition, and Division Argument Schemes with Bayesian Networks
Authors: Kong Ngai Pei
Abstract:
The argument scheme approach to argumentation has two components. One is to identify the recurrent patterns of inferences used in everyday discourse. The second is to devise critical questions to evaluate the inferences in these patterns. Although this approach is intuitive and contains many insightful ideas, it has been noted to be not free of problems. One is that due to its disavowing the probability calculus, it cannot give the exact strength of an inference. In order to tackle this problem, thereby paving the way to a more complete normative account of argument strength, it has been proposed, the most promising way is to combine the scheme-based approach with Bayesian networks (BNs). This paper pursues this line of thought, attempting to combine three common schemes, Appeal to Ignorance, Composition, and Division, with BNs. In the first part, it is argued that most (if not all) formulations of the critical questions corresponding to these schemes in the current argumentation literature are incomplete and not very informative. To remedy these flaws, more thorough and precise formulations of these questions are provided. In the second part, how to use graphical idioms (e.g. measurement and synthesis idioms) to translate the schemes as well as their corresponding critical questions to graphical structure of BNs, and how to define probability tables of the nodes using functions of various sorts are shown. In the final part, it is argued that many misuses of these schemes, traditionally called fallacies with the same names as the schemes, can indeed be adequately accounted for by the BN models proposed in this paper.Keywords: appeal to ignorance, argument schemes, Bayesian networks, composition, division
Procedia PDF Downloads 2922970 Harnessing of Electricity from Distillery Effluent and Simultaneous Effluent Treatment by Microbial Fuel Cell
Authors: Hanish Mohammed, C. H. Muthukumar Muthuchamy
Abstract:
The advancement in the science and technology has made it possible to convert electrical energy into any desired form. It has given electrical energy a place of pride in the modern world. The survival of industrial undertakings and our social structure depends primarily upon low cost and uninterrupted supply of electrical energy. Microbial fuel cell (MFC) is a promising and emerging technique for sustainable bioelectricity generation and wastewater treatment. MFCs are devices which are capable of converting organic matter to electricity/hydrogen with help of microorganisms. Different kinds of wastewater could be used in this technique, distillery effluent is one of the most troublesome and complex and strong organic effluent with high chemical oxygen demand of 1,53,846 mg/L. A single cell MFC unit was designed and fabricated for the distillery effluent treatment and to generate electricity. Due to the high COD value of the distillery effluent helped in the production of energy for 74 days. The highest voltage got from the fuel cell is 206 mV on the 30th day. A maximum power density obtained from the MFC was 9.8 mW, treatment efficiency was evaluated in terms of COD removal and other parameters. COD removal efficiencies were around 68.5 % and other parameters such as Total Hardness (81.5%), turbidity (70 %), chloride (66%), phosphate (79.5%), Nitrate (77%) and sulphate (71%). MFC using distillery effluent is a promising new unexplored substrate for the power generation and sustainable treatment technique through harnessing of bioelectricity.Keywords: microbial fuel cell (MFC), bioelectricity, distillery effluent, wastewater treatment
Procedia PDF Downloads 2162969 Molecular Simulation Study on the Catalytic Role of Silicon-Doped Graphene in Carbon Dioxide Hydrogenation
Authors: Wilmer Esteban Vallejo Narváez, Serguei Fomine
Abstract:
The theoretical investigation of Si-doped graphene nanoflakes (NFs) was conducted to understand their catalytic impact on CO₂ reduction using molecular hydrogen at the Density Functional Theory (DFT) level. The introduction of silicon by substituting carbon induces defects in the NF structure, resulting in a polyradical ground state. This silicon defect significantly boosts reactivity towards substrates, making Si-doped graphene NFs more catalytically active in CO₂ reduction to formic acid compared to silicene. Notably, Si-doped graphene demonstrates a preference for formic acid over carbon monoxide, mirroring the behavior of silicene. Furthermore, investigations into formic acid-to-formaldehyde and formaldehyde-to-methanol conversions reveal instances where Si-doped graphene outperforms silicene in terms of efficacy. In the final reduction step, the methanol-to-methane reaction unfolds in four stages, with the rate-determining step involving hydrogen transfer from silicon to methyl. Notably, the activation energy for this step is lower in Si-doped graphene compared to silicene. Consequently, Si-doped graphene NFs emerge as superior catalysts with lower activation energies overall. Remarkably, throughout these catalytic processes, Si-doped graphene maintains environmental stability, further highlighting its enhanced catalytic activity without compromising graphene's inherent stability.Keywords: silicon-doped graphene, CO₂ reduction, DFT, catalysis
Procedia PDF Downloads 592968 Notched Bands in Ultra-Wideband UWB Filter Design for Advanced Wireless Applications
Authors: Abdul Basit, Amil Daraz, Guoqiang Zhang
Abstract:
With the increasing demand for wireless communication systems for unlicensed indoor applications, the FCC, in February 2002, allocated unlicensed bands ranging from 3.1 GHZ to 10.6 GHz with fractional bandwidth of about 109 %, because it plays a key role in the radiofrequency (RF) front ends devices and has been widely applied in many other microwave circuits. Targeting the proposed band defined by the FCC for the UWB system, this article presents a UWB bandpass filter with three stop bands for the mitigation of wireless bands that may interfere with the UWB range. For this purpose, two resonators are utilized for the implementation of triple-notched bands. The C-shaped resonator is used for the first notch band creation at 3.4 GHz to suppress the WiMAX signal, while the H-shaped resonator is employed in the initial UWB design to introduce the dual notched characteristic at 4.5 GHz and 8.1 GHz to reject the WLAN and Satellite Communication signals. The overall circuit area covered by the proposed design is 30.6 mm × 20 mm, or in terms of guided wavelength at the first stopband, its size is 0.06 λg × 0.02 λg. The presented structure shows a good return loss under -10 dB over most of the passband and greater than -15 dB for the notched frequency bands. Finally, the filter is simulated and analyzed in HFSS 15.0. All the bands for the rejection of wireless signals are independently controlled, which makes this work superior to the rest of the UWB filters presented in the literature.Keywords: a bandpass filter (BPF), ultra-wideband (UWB), wireless communication, C-shaped resonator, triple notch
Procedia PDF Downloads 862967 Social Media Retailing in the Creator Economy
Authors: Julianne Cai, Weili Xue, Yibin Wu
Abstract:
Social media retailing (SMR) platforms have become popular nowadays. It is characterized by a creative combination of content creation and product selling, which differs from traditional e-tailing (TE) with product selling alone. Motivated by real-world practices like social media platforms “TikTok” and douyin.com, we endeavor to study if the SMR model performs better than the TE model in a monopoly setting. By building a stylized economic model, we find that the SMR model does not always outperform the TE model. Specifically, when the SMR platform collects less commission from the seller than the TE platform, the seller, consumers, and social welfare all benefit more from the SMR model. In contrast, the platform benefits more from the SMR model if and only if the creator’s social influence is high enough or the cost of content creation is small enough. For the incentive structure of the content rewards in the SMR model, we found that a strong incentive mechanism (e.g., the quadratic form) is more powerful than a weak one (e.g., the linear form). The previous one will encourage the creator to choose a much higher quality level of content creation and meanwhile allowing the platform, consumers, and social welfare to become better off. Counterintuitively, providing more generous content rewards is not always helpful for the creator (seller), and it may reduce her profit. Our findings will guide the platform to effectively design incentive mechanisms to boost the content creation and retailing in the SMR model and help the influencers efficiently create content, engage their followers (fans), and price their products sold on the SMR platform.Keywords: content creation, creator economy, incentive strategy, platform retailing
Procedia PDF Downloads 1212966 Synthesis of Antibacterial Bone Cement from Re-Cycle Biowaste Containing Methylmethacrylate (MMA) Matrix
Authors: Sungging Pintowantoro, Yuli Setiyorini, Rochman Rochim, Agung Purniawan
Abstract:
The bacterial infections are frequent and undesired occurrences after bone fracture treatment. One approach to reduce the incidence of bone fracture infection is the additional of microbial agents into bone cement. In this study, the synthesis of bone cement from re-cycles biowaste was successfully conducted completed with anti-bacterial function. The re-cycle of biowaste using microwave assisted was done in our previous studies in order to produce some of powder (calcium carbonate, carbonated-hydroxyapatite and chitosan). The ratio of these powder combined with methylmethacrylate (MMA) as the matrix in bone cement were investigated using XRD, FTIR, SEM-EDX, hardness test and anti-bacterial test, respectively. From the XRD, FTIR and EDX were resulted the formation of carbonated-hydroxyapatite, calcium carbonate and chitosan. The morphology was revealed porous structure both C2H3K1L and C2H1K3L, respectively. The antibacterial activity was tested against Staphylococcus aureus (S. aureus) for 24 hours. The inhibition of S. aureus was clearly shown, the hollow zone was resulted in various distance 14.2mm, 7.5mm, and 7.7mm, respectively. The hardness test was depicted in various results, however, C2H1K3L can be achived 36.84HV which is closed to dry cancelous bone 35HV. In general, this study results was promising materials to use as bone cement materials.Keywords: biomaterials, biowaste recycling, materials processing, microwave processing
Procedia PDF Downloads 3572965 Recommendation of Semi Permanent Buildings for Tsunami Prone Areas
Authors: Fitri Nugraheni, Adwitya Bhaskara, N. Faried Hanafi
Abstract:
Coastal is one area that can be a place to live. Various buildings can be built in the area around the beach. Many Indonesians use beaches as housing and work, but we know that coastal areas are identical to tsunami and wind. Costs incurred due to permanent damage caused by tsunamis and wind disasters in Indonesia can be minimized by replacing permanent buildings into semi-permanent buildings. Semi-permanent buildings can be realized by using cold-formed steel as a building. Thus, the purpose of this research is to provide efficient semi-permanent building recommendations for residents around the coast. The research is done by first designing the building model by using sketch-up software, then the validation phase is done in consultation with the expert consultant of cold form steel structure. Based on the results of the interview there are several revisions on several sides of the building by adding some bracing rods on the roof, walls and floor frame. The result of this research is recommendation of semi-permanent building model, where the nature of the building; easy to disassemble and install (knockdown), tsunami-friendly (continue the tsunami load), cost and time efficient (using cold-formed-steel and prefabricated GRC), zero waste, does not require many workers (less labor). The recommended building design concept also keeps the architecture side in mind thus it remains a comfortable occupancy for the residents.Keywords: construction method, cold-formed steel, efficiency, semi-permanent building, tsunami
Procedia PDF Downloads 2872964 Investigating Iraqi EFL University Students' Productive Knowledge of Grammatical Collocations in English
Authors: Adnan Z. Mkhelif
Abstract:
Grammatical collocations (GCs) are word combinations containing a preposition or a grammatical structure, such as an infinitive (e.g. smile at, interested in, easy to learn, etc.). Such collocations tend to be difficult for Iraqi EFL university students (IUS) to master. To help address this problem, it is important to identify the factors causing it. This study aims at investigating the effects of L2 proficiency, frequency of GCs and their transparency on IUSs’ productive knowledge of GCs. The study involves 112 undergraduate participants with different proficiency levels, learning English in formal contexts in Iraq. The data collection instruments include (but not limited to) a productive knowledge test (designed by the researcher using the British National Corpus (BNC)), as well as the grammar part of the Oxford Placement Test (OPT). The study findings have shown that all the above-mentioned factors have significant effects on IUSs’ productive knowledge of GCs. In addition to establishing evidence of which factors of L2 learning might be relevant to learning GCs, it is hoped that the findings of the present study will contribute to more effective methods of teaching that can better address and help overcome the problems IUSs encounter in learning GCs. The study is thus hoped to have significant theoretical and pedagogical implications for researchers, syllabus designers as well as teachers of English as a foreign/second language.Keywords: corpus linguistics, frequency, grammatical collocations, L2 vocabulary learning, productive knowledge, proficiency, transparency
Procedia PDF Downloads 2562963 The Effect of Internal Electrical Ion Mobility on Molten Salts through Atomistic Simulations
Authors: Carlos F. Sanz-Navarro, Sonia Fereres
Abstract:
Binary and ternary mixtures of molten salts are excellent thermal energy storage systems and have been widely used in commercial tanks both in nuclear and solar thermal applications. However, the energy density of the commercially used mixtures is still insufficient, and therefore, new systems based on latent heat storage (or phase change materials, PCM) are currently being investigated. In order to shed some light on the macroscopic physical properties of the molten salt phases, knowledge of the microscopic structure and dynamics is required. Several molecular dynamics (MD) simulations have been performed to model the thermal behavior of (Li,K)2CO3 mixtures. Up to this date, this particular molten salt mixture has not been extensively studied but it is of fundamental interest for understanding the behavior of other commercial salts. Molten salt diffusivities, the internal electrical ion mobility, and the physical properties of the solid-liquid phase transition have been calculated and compared to available data from literature. The effect of anion polarization and the application of a strong external electric field have also been investigated. The influence of electrical ion mobility on local composition is explained through the Chemla effect, well known in electrochemistry. These results open a new way to design optimal high temperature energy storage materials.Keywords: atomistic simulations, thermal storage, latent heat, molten salt, ion mobility
Procedia PDF Downloads 3282962 Study of Wake Dynamics for a Rim-Driven Thruster Based on Numerical Method
Authors: Bao Liu, Maarten Vanierschot, Frank Buysschaert
Abstract:
The present work examines the wake dynamics of a rim-driven thruster (RDT) with Computational Fluid Dynamics (CFD). Unsteady Reynolds-averaged Navier-Stokes (URANS) equations were solved in the commercial solver ANSYS Fluent in combination with the SST k-ω turbulence model. The application of the moving reference frame (MRF) and sliding mesh (SM) approach to handling the rotational movement of the propeller were compared in the transient simulations. Validation and verification of the numerical model was performed to ensure numerical accuracy. Two representative scenarios were considered, i.e., the bollard condition (J=0) and a very light loading condition(J=0.7), respectively. From the results, it’s confirmed that compared to the SM method, the MRF method is not suitable for resolving the unsteady flow features as it only gives the general mean flow but smooths out lots of characteristic details in the flow field. By evaluating the simulation results with the SM technique, the instantaneous wake flow field under both conditions is presented and analyzed, most notably the helical vortex structure. It’s observed from the results that the tip vortices, blade shed vortices, and hub vortices are present in the wake flow field and convect downstream in a highly non-linear way. The shear layer vortices shedding from the duct displayed a strong interaction with the distorted tip vortices in an irregularmanner.Keywords: computational fluid dynamics, rim-driven thruster, sliding mesh, wake dynamics
Procedia PDF Downloads 2692961 Nanoindentation and Physical Properties of Polyvinyl Chloride/Styrene Co-Maleic Anhydride Blend Reinforced by Organo-Bentonite
Authors: D. E. Abulyazied, S. M. Mokhtar, A. M. Motawie
Abstract:
Polymer blends represent an important class of materials in engineering applications. The incorporation of clay nanofiller may provide new opportunities for this type of materials to enhance their applications. This article reports on the effects of clay on the structure and properties of polymer blends nanocomposites, based on Polyvinyl chloride PVC and styrene co-maleic anhydride SMA blend. Modification of the Egyptian Bentonite EB was carried out using organo-modifier namely; octadecylamine ODA. Before the modification, the cation exchange capacity CEC of the EB was measured. The octadecylamine bentonite ODA-B was characterized using Fourier transform infrared Spectroscopy FTIR, X-Ray Diffraction XRD, and Transition Electron Microscope TEM. A blend of Polyvinyl chloride PVC and styrene co-maleic anhydride SMA (50:50) was prepared in Tetra Hydro Furan (THF). Then nanocomposites of PVC/SMA/ODA-B were prepared by solution intercalation polymerization from 0.50% up to 5% by weight of ODA-B. The nanocomposites are characterized by XRD, TEM. Thermal, nanoindentation, swelling and electrical properties of the nanocomposites were measured. The morphology of the nanocomposites showed that ODA-B achieved good dispersion in the PVC/SMA matrix. Incorporation of 0.5 %, 1%, 3% and 5% by weight nanoclay into the PVC/SMA blends results in an improvement in nanohardness of 16%, 76%, 92%, and 68% respectively. The elastic modulus increased from 4.59 GPa for unreinforced PVC/SMA blend to 6.30 GPa (37% increase) with the introduction of 3% by weight nanoclay. The cross-link density of the nanocomposites increases with increasing the content of ODA-B.Keywords: PVC, SMA, nanocomposites, nanoindentation, organo-bentonite
Procedia PDF Downloads 3742960 Experimental Investigation on Effect of Different Heat Treatments on Phase Transformation and Superelasticity of NiTi Alloy
Authors: Erfan Asghari Fesaghandis, Reza Ghaffari Adli, Abbas Kianvash, Hossein Aghajani, Homa Homaie
Abstract:
NiTi alloys possess magnificent superelastic, shape memory, high strength and biocompatible properties. For improving mechanical properties, foremost, superelasticity behavior, heat treatment process is carried out. In this paper, two different heat treatment methods were undertaken: (1) solid solution, and (2) aging. The effect of each treatment in a constant time is investigated. Five samples were prepared to study the structure and optimize mechanical properties under different time and temperature. For measuring the upper plateau stress, lower plateau stress and residual strain, tensile test is carried out. The samples were aged at two different temperatures to see difference between aging temperatures. The sample aged at 500 °C has a bigger crystallite size and lower amount of Ni which causes the mentioned sample to possess poor pseudo elasticity behaviour than the other aged sample. The sample aged at 460 °C has shown remarkable superelastic properties. The mentioned sample’s higher plateau is 580 MPa with the lowest residual strain (0.17%) while other samples have possessed higher residual strains. X-ray diffraction was used to investigate the produced phases.Keywords: heat treatment, phase transformation, superelasticity, NiTi alloy
Procedia PDF Downloads 1332959 Multi-Scale Green Infrastructure: An Integrated Literature Review
Authors: Panpan Feng
Abstract:
The concept of green infrastructure originated in Europe and the United States. It aims to ensure smart growth of urban and rural ecosystems and achieve sustainable urban and rural ecological, social, and economic development by combining it with gray infrastructure in traditional planning. Based on the literature review of the theoretical origin, value connotation, and measurement methods of green infrastructure, this study summarizes the research content of green infrastructure at different scales from the three spatial levels of region, city, and block and divides it into functional dimensions, spatial dimension, and strategic dimension. The results show that in the functional dimension, from region-city-block, the research on green infrastructure gradually shifts from ecological function to social function. In the spatial dimension, from region-city-block, the research on the spatial form of green infrastructure has shifted from two-dimensional to three-dimensional, and the spatial structure of green infrastructure has shifted from single ecological elements to multiple composite elements. From a strategic perspective, green infrastructure research is more of a spatial planning tool based on land management, environmental livability and ecological psychology, providing certain decision-making support.Keywords: green infrastructure, multi-scale, social and ecological functions, spatial strategic decision-making tools
Procedia PDF Downloads 632958 The Study of Aluminum Effects Layer Austenite Twins Adjacent to K-Carbide Plates in the Cellular Structure of a Mn-Al Alloy Steel
Authors: Wu Wei-Ting, Liu Po-Yen, Chang Chin-Tzu, Cheng Wei-Chun
Abstract:
Three types of low-temperature phase transformations in an Fe-12.5 Mn-6.53 Al-1.28 C (wt %) alloy have been studied. The steel underwent solution heat treatment at 1100℃ and isothermal holding at low temperatures. γ’ phase appears in the austenite matrix in the air-cooled steel. Coherent ultra-fine particles of γ’ phase precipitated uniformly in the austenite matrix after the air-cooling process. These ultra-fine particles were very small and only could be detected by TEM through dark-field images. After short periods of isothermal holding at low temperatures these particles of γ’ phase grew and could be easily detected by TEM. A pro-eutectoid reaction happened after isothermal holding at temperatures below 875 ℃. Proeutectoid κ-carbide and ferrite appear in the austenite matrix as grain boundary precipitates and cellular precipitates. The cellular precipitates are composed of lamellar κ-carbide and austenite. The lamellar κ-carbide grains are always accompanied by layers of austenite twins. The presence of twin layers adhering to the κ-carbide plates might be attributed to the lower activation energy for the precipitation of κ-carbide plates in the austenite. The final form of phase transformation is the eutectoid reaction for the decomposition of supersaturated austenite into stable κ-carbide and ferrite phases at temperatures below 700℃. The ferrite and κ-carbide are in the form of pearlite lamellae.Keywords: austenite, austenite twin layers, κ-carbide, twins
Procedia PDF Downloads 2272957 Deformation of Particle-Laden Droplet in Viscous Liquid under DC Electric Fields
Authors: Khobaib Khobaib, Alexander Mikkelsen, Zbigniew Rozynek
Abstract:
Electric fields have proven useful for inducing droplet deformation and to structure particles adsorbed at droplet interfaces. In this experimental research, direct current electric fields were applied to deform particle-covered droplets made out of silicone oil and immersed in castor oil. The viscosity of the drop and surrounding fluid were changed by external heating. We designed an experimental system in such a way that electric field-induced electrohydrodynamic (EHD) flows were asymmetric and only present on one side of the drop, i.e., the droplet adjoined a washer and adhered to one of the electrodes constituting the sample cell. The study investigated the influence of viscosity on the steady-state deformation magnitude of particle-laden droplets, droplet compression, and relaxation, as well as particle arrangements at drop interfaces. Initially, before the application of an electric field, we changed the viscosity of the fluids by heating the sample cell at different temperatures. The viscosity of the fluids was varied by changing the temperature of the fluids from 25 to 50°C. Under the application of a uniform electric field of strength 290 Vmm⁻¹, electric stress was induced at the drop interface, yielding drop deformation. In our study, we found that by lowering the fluid viscosity, the velocity of the EHD flows was increased, which also increases the deformation of the drop.Keywords: drop deformation and relaxation, electric field, electrohydrodynamic flow, particle assembly, viscosity
Procedia PDF Downloads 2712956 Design and Development of Multi-Functional Intelligent Robot Arm Gripper
Authors: W. T. Asheber, L. Chyi-Yeu
Abstract:
An intelligent robot arm is expected to recognize the desired object, grasp it with appropriate force without dropping or damaging it, and also manipulate and deliver the object to the desired destination safely. This paper presents an intelligent multi-finger robot arm gripper design along with vision, proximity, and tactile sensor for efficient grasping and manipulation tasks. The generic design of the gripper makes it convenient for improved parts manipulation, multi-tasking and ease for components assembly. The proposed design emulates the human’s hand fingers structure using linkages and direct drive through power screw like transmission. The actuation and transmission mechanism is designed in such a way that it has non-back-drivable capability, which makes the fingers hold their position when even unpowered. The structural elements are optimized for a finest performance in motion and force transmissivity of the gripper fingers. The actuation mechanisms is designed specially to drive each finger and also rotate two of the fingers about the palm to form appropriate configuration to grasp various size and shape objects. The gripper has an automatic tool set fixture incorporated into its palm, which will reduce time wastage and do assembling in one go. It is equipped with camera-in-hand integrated into its palm; subsequently an image based visual-servoing control scheme is employed.Keywords: gripper, intelligent gripper, transmissivity, vision sensor
Procedia PDF Downloads 3582955 Porous Bluff-Body Disc on Improving the Gas-Mixing Efficiency
Authors: Shun-Chang Yen, You-Lun Peng, Kuo-Ching San
Abstract:
A numerical study on a bluff-body structure with multiple holes was conducted using ANSYS Fluent computational fluid dynamics analysis. The effects of the hole number and jet inclination angles were considered under a fixed gas flow rate and nonreactive gas. The bluff body with multiple holes can transform the axial momentum into a radial and tangential momentum as well as increase the swirl number (S). The concentration distribution in the mixing of a central carbon dioxide (CO2) jet and an annular air jet was utilized to analyze the mixing efficiency. Three bluff bodies with differing hole numbers (H = 3, 6, and 12) and three jet inclination angles (θ = 45°, 60°, and 90°) were designed for analysis. The Reynolds normal stress increases with the inclination angle. The Reynolds shear stress, average turbulence intensity, and average swirl number decrease with the inclination angle. For an unsymmetrical hole configuration (i.e., H = 3), the streamline patterns exhibited an unsymmetrical flow field. The highest mixing efficiency (i.e., the lowest integral gas fraction of CO2) occurred at H = 3. Furthermore, the highest swirl number coincided with the strongest effect on the mass fraction of CO2. Therefore, an unsymmetrical hole arrangement induced a high swirl flow behind the porous disc.Keywords: bluff body with multiple holes, computational fluid dynamics, swirl-jet flow, mixing efficiency
Procedia PDF Downloads 3622954 A Quantitative Study on the Structure of Corporate Social Responsibility in India
Authors: Raj C. Aparna
Abstract:
In India, the mandatory clause on Corporate Social Responsibility (CSR) in Companies Act, 2013 has led to varying responses from the companies. From excessive spending to resistance, the private and the public stakeholders have been considering the law from different perspectives. This paper tends to study the characteristics of CSR spending in India with emphasis on the locations to which the funds are routed. This study examines the effects of CSR fund flow on regional development by considering the growth in Gross State Domestic Product (GSDP), agriculture, education and healthcare using panel data for the 29 States in the country. The results confirm that the CSR funds have been instrumental in improving the quality of teaching and healthcare in the areas around the industrial hubs. However, the study shows that the corporates mostly invest in regions which are easily accessible to them, by their physical presence, irrespective of whether the area is developed or not. Such a skewness is visible in the extensive spending in and around the metropolitan cities, the established centers, in the country to which large chunks of CSR funds are channeled. The results show that there is a variation from what the government had proposed while initiating the CSR law to promote social inclusion and equality in the rural and isolated areas in the country. The implication is that even though societal improvement is the aim of CSR, ease of access to the needy is an essential factor in corporate choices. As poverty and lack of facilities are found in the innermost parts, it is vital to have government policies for their aid as corporate help.Keywords: corporate social responsibility, geographic spread, panel data analysis, strategic implementation
Procedia PDF Downloads 1122953 Optimization of Proton Exchange Membrane Fuel Cell Parameters Based on Modified Particle Swarm Algorithms
Authors: M. Dezvarei, S. Morovati
Abstract:
In recent years, increasing usage of electrical energy provides a widespread field for investigating new methods to produce clean electricity with high reliability and cost management. Fuel cells are new clean generations to make electricity and thermal energy together with high performance and no environmental pollution. According to the expansion of fuel cell usage in different industrial networks, the identification and optimization of its parameters is really significant. This paper presents optimization of a proton exchange membrane fuel cell (PEMFC) parameters based on modified particle swarm optimization with real valued mutation (RVM) and clonal algorithms. Mathematical equations of this type of fuel cell are presented as the main model structure in the optimization process. Optimized parameters based on clonal and RVM algorithms are compared with the desired values in the presence and absence of measurement noise. This paper shows that these methods can improve the performance of traditional optimization methods. Simulation results are employed to analyze and compare the performance of these methodologies in order to optimize the proton exchange membrane fuel cell parameters.Keywords: clonal algorithm, proton exchange membrane fuel cell (PEMFC), particle swarm optimization (PSO), real-valued mutation (RVM)
Procedia PDF Downloads 3562952 Evaluation of Dynamic and Vibrational Analysis of the Double Chambered Cylinder along Thermal Interactions
Authors: Mohammadreza Akbari, Leila Abdollahpour, Sara Akbari, Pooya Soleimani
Abstract:
Transferring thermo at the field of solid materials for instance tube-shaped structures, causing dynamical vibration at them. Majority of thermal and fluid processes are done engineering science at solid materials, for example, thermo-transferred pipes, fluids, chemical and nuclear reactors, include thermal processes, so, they need to consider the moment solid-fundamental structural strength unto these thermal interactions. Fluid and thermo retentive materials in front of external force to it like thermodynamical force, hydrodynamical force and static force continuously according to a function of time vibrated, and this action causes relative displacement of the structural materials elements, as a result, the moment resistance analysis preservation materials in thermal processes, the most important parameters for design are discussed. Including structural substrate holder temperature and fluid of the administrative and industrial center, is a cylindrical tube that for vibration analysis of cylindrical cells with heat and fluid transfer requires the use of vibration differential equations governing the structure of a tubular and thermal differential equations as the vibrating motive force at double-glazed cylinders.Keywords: heat transfer, elements in cylindrical coordinates, analytical solving the governing equations, structural vibration
Procedia PDF Downloads 351