Search results for: phase shift
849 Hemispheric Locus and Gender Predict the Delay between the Moment of Stroke and Hospitalization
Authors: D. Anderlini, G. Wallis
Abstract:
Background: The number of people experiencing stroke is steadily increasing due to changes in diet and lifestyle, to longer life expectancy resulting in older population, to higher survival rates as a consequence of improvements during the acute phase. This study considers what risk factors might contribute to delayed entry to hospital for treatment. Methods: We analyzed data from 2472 patients admitted to the Stroke Unit of the Royal Brisbane Women's Hospital, Australia, between 2002 to 2011. Results: Previous studies have reported that factors which can contribute to delay include the patient’s age, the time of day, physical location, visit the GP instead of going to the emergency, means of transport, severity of symptoms and type of stroke. Contrary to findings of other studies, we found a strong correlation between side of lesion and delay in admission: patients with right hemisphere lesions had an average delay of 3.78 days, while patients with left hemisphere lesions had an average delay of 1.49 days. Damage to the right hemisphere generally ends in motor impairment in the non-dominant hand and no speech impediment. In contrast, left hemisphere lesions can result in deficit to; dominant hand function and aphasia which will be noticed even if their impact on performance is relatively minor. A finding which goes against many previous studies, is the fact that women get to the hospital much sooner than men, showing an average delay of 0.92 days in women vs. 3.36 days in men. Conclusion: Acute surgical-pharmacological therapies are most effective if applied immediately after stroke. Hence delays to admission can be crucial to the degree of recovery. The tendency of patients to overlook symptoms of right hemisphere lesion should be the target of information campaigns both for the general public and GPs. Why do men go to hospital so late? We don't know yet! Nevertheless an awareness plan specifically direct to male population should be on the agenda of Health Departments.Keywords: gender, admission delay, stroke location, bioinformatics, biomedicine
Procedia PDF Downloads 231848 A Comparative Study of Regional Climate Models and Global Coupled Models over Uttarakhand
Authors: Sudip Kumar Kundu, Charu Singh
Abstract:
As a great physiographic divide, the Himalayas affecting a large system of water and air circulation which helps to determine the climatic condition in the Indian subcontinent to the south and mid-Asian highlands to the north. It creates obstacles by defending chill continental air from north side into India in winter and also defends rain-bearing southwesterly monsoon to give up maximum precipitation in that area in monsoon season. Nowadays extreme weather conditions such as heavy precipitation, cloudburst, flash flood, landslide and extreme avalanches are the regular happening incidents in the region of North Western Himalayan (NWH). The present study has been planned to investigate the suitable model(s) to find out the rainfall pattern over that region. For this investigation, selected models from Coordinated Regional Climate Downscaling Experiment (CORDEX) and Coupled Model Intercomparison Project Phase 5 (CMIP5) has been utilized in a consistent framework for the period of 1976 to 2000 (historical). The ability of these driving models from CORDEX domain and CMIP5 has been examined according to their capability of the spatial distribution as well as time series plot of rainfall over NWH in the rainy season and compared with the ground-based Indian Meteorological Department (IMD) gridded rainfall data set. It is noted from the analysis that the models like MIROC5 and MPI-ESM-LR from the both CORDEX and CMIP5 provide the best spatial distribution of rainfall over NWH region. But the driving models from CORDEX underestimates the daily rainfall amount as compared to CMIP5 driving models as it is unable to capture daily rainfall data properly when it has been plotted for time series (TS) individually for the state of Uttarakhand (UK) and Himachal Pradesh (HP). So finally it can be said that the driving models from CMIP5 are better than CORDEX domain models to investigate the rainfall pattern over NWH region.Keywords: global warming, rainfall, CMIP5, CORDEX, NWH
Procedia PDF Downloads 169847 An Investigation on the Pulse Electrodeposition of Ni-TiO2/TiO2 Multilayer Structures
Authors: S. Mohajeri
Abstract:
Electrocodeposition of Ni-TiO2 nanocomposite single layers and Ni-TiO2/TiO2 multilayers from Watts bath containing TiO2 sol was carried out on copper substrate. Pulse plating and pulse reverse plating techniques were applied to facilitate higher incorporations of TiO2 nanoparticles in Ni-TiO2 nanocomposite single layers, and the results revealed that by prolongation of the current-off durations and the anodic cycles, deposits containing 11.58 wt.% and 13.16 wt.% TiO2 were produced, respectively. Multilayer coatings which consisted of Ni-TiO2 and TiO2-rich layers were deposited by pulse potential deposition through limiting the nickel deposition by diffusion control mechanism. The TiO2-rich layers thickness and accordingly, the content of TiO2 reinforcement reached 104 nm and 18.47 wt.%, respectively in the optimum condition. The phase structure and surface morphology of the nanocomposite coatings were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The cross sectional morphology and line scans of the layers were studied by field emission scanning electron microscopy (FESEM). It was confirmed that the preferred orientations and the crystallite sizes of nickel matrix were influenced by the deposition technique parameters, and higher contents of codeposited TiO2 nanoparticles refined the microstructure. The corrosion behavior of the coatings in 1M NaCl and 0.5M H2SO4 electrolytes were compared by means of potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. Increase of corrosion resistance and the passivation tendency were favored by TiO2 incorporation, while the degree of passivation declined as embedded particles disturbed the continuity of passive layer. The role of TiO2 incorporation on the improvement of mechanical properties including hardness, elasticity, scratch resistance and friction coefficient was investigated by the means of atomic force microscopy (AFM). Hydrophilicity and wettability of the composite coatings were investigated under UV illumination, and the water contact angle of the multilayer was reduced to 7.23° after 1 hour of UV irradiation.Keywords: electrodeposition, hydrophilicity, multilayer, pulse-plating
Procedia PDF Downloads 252846 Estimating the Traffic Impacts of Green Light Optimal Speed Advisory Systems Using Microsimulation
Authors: C. B. Masera, M. Imprialou, L. Budd, C. Morton
Abstract:
Even though signalised intersections are necessary for urban road traffic management, they can act as bottlenecks and disrupt traffic operations. Interrupted traffic flow causes congestion, delays, stop-and-go conditions (i.e. excessive acceleration/deceleration) and longer journey times. Vehicle and infrastructure connectivity offers the potential to provide improved new services with additional functions of assisting drivers. This paper focuses on one of the applications of vehicle-to-infrastructure communication namely Green Light Optimal Speed Advisory (GLOSA). To assess the effectiveness of GLOSA in the urban road network, an integrated microscopic traffic simulation framework is built into VISSIM software. Vehicle movements and vehicle-infrastructure communications are simulated through the interface of External Driver Model. A control algorithm is developed for recommending an optimal speed that is continuously updated in every time step for all vehicles approaching a signal-controlled point. This algorithm allows vehicles to pass a traffic signal without stopping or to minimise stopping times at a red phase. This study is performed with all connected vehicles at 100% penetration rate. Conventional vehicles are also simulated in the same network as a reference. A straight road segment composed of two opposite directions with two traffic lights per lane is studied. The simulation is implemented under 150 vehicles per hour and 200 per hour traffic volume conditions to identify how different traffic densities influence the benefits of GLOSA. The results indicate that traffic flow is improved by the application of GLOSA. According to this study, vehicles passed through the traffic lights more smoothly, and waiting times were reduced by up to 28 seconds. Average delays decreased for the entire network by 86.46% and 83.84% under traffic densities of 150 vehicles per hour per lane and 200 vehicles per hour per lane, respectively.Keywords: connected vehicles, GLOSA, intelligent transport systems, vehicle-to-infrastructure communication
Procedia PDF Downloads 172845 Entry, Descent and Landing System Design and Analysis of a Small Platform in Mars Environment
Authors: Daniele Calvi, Loris Franchi, Sabrina Corpino
Abstract:
Thanks to the latest Mars mission, the planetary exploration has made enormous strides over the past ten years increasing the interest of the scientific community and beyond. These missions aim to fulfill many complex operations which are of paramount importance to mission success. Among these, a special mention goes to the Entry, Descent and Landing (EDL) functions which require a dedicated system to overcome all the obstacles of these critical phases. The general objective of the system is to safely bring the spacecraft from orbital conditions to rest on the planet surface, following the designed mission profile. For this reason, this work aims to develop a simulation tool integrating the re-entry trajectory algorithm in order to support the EDL design during the preliminary phase of the mission. This tool was used on a reference unmanned mission, whose objective is finding bio-evidence and bio-hazards on Martian (sub)surface in order to support the future manned mission. Regarding the concept of operations (CONOPS) of the mission, it concerns the use of Space Penetrator Systems (SPS) that will descend on Mars surface following a ballistic fall and will penetrate the ground after the impact with the surface (around 50 and 300 cm of depth). Each SPS shall contain all the instrumentation required to sample and make the required analyses. Respecting the low-cost and low-mass requirements, as result of the tool, an Entry Descent and Impact (EDI) system based on inflatable structure has been designed. Hence, a solution could be the one chosen by Finnish Meteorological Institute in the Mars Met-Net mission, using an inflatable Thermal Protection System (TPS) called Inflatable Braking Unit (IBU) and an additional inflatable decelerator. Consequently, there are three configurations during the EDI: at altitude of 125 km the IBU is inflated at speed 5.5 km/s; at altitude of 16 km the IBU is jettisoned and an Additional Inflatable Braking Unit (AIBU) is inflated; Lastly at about 13 km, the SPS is ejected from AIBU and it impacts on the Martian surface. Since all parameters are evaluated, it is possible to confirm that the chosen EDI system and strategy verify the requirements of the mission.Keywords: EDL, Mars, mission, SPS, TPS
Procedia PDF Downloads 169844 Translation and Adaptation of the Assessment Instrument “Kiddycat” for European Portuguese
Authors: Elsa Marta Soares, Ana Rita Valente, Cristiana Rodrigues, Filipa Gonçalves
Abstract:
Background: The assessment of feelings and attitudes of preschool children in relation to stuttering is crucial. Negative experiences can lead to anxiety, worry or frustration. To avoid the worsening of attitudes and feelings related to stuttering, it is important the early detection in order to intervene as soon as possible through an individualized intervention plan. Then it is important to have Portuguese instruments that allow this assessment. Aims: The aim of the present study is to realize the translation and adaptation of the Communication Attitude Test for Children in Preschool Age and Kindergarten (KiddyCat) for EP. Methodology: For the translation and adaptation process, a methodological study was carried out with the following steps: translation, back translation, assessment by a committee of experts and pre-test. This abstract describes the results of the first two phases of this process. The translation was accomplished by two bilingual individuals without experience in health and any knowledge about the instrument. One of them was an English teacher and the other one a Translator. The back-translation was conducted by two Senior Class Teachers that live in United Kingdom without any knowledge in health and about the instrument. Results and Discussion: In translation there were differences in semantic equivalences of various expressions and concepts. A discussion between the two translators, mediated by the researchers, allowed to achieve the consensus version of the translated instrument. Taking into account the original version of KiddyCAT the results demonstrated that back-translation versions were similar to the original version of this assessment instrument. Although the back-translators used different words, they were synonymous, maintaining semantic and idiomatic equivalences of the instrument’s items. Conclusion: This project contributes with an important resource that can be used in the assessment of feelings and attitudes of preschool children who stutter. This was the first phase of the research; expert panel and pretest are being developed. Therefore, it is expected that this instrument contributes to an holistic therapeutic intervention, taking into account the individual characteristics of each child.Keywords: assessment, feelings and attitudes, preschool children, stuttering
Procedia PDF Downloads 152843 Image Based Landing Solutions for Large Passenger Aircraft
Authors: Thierry Sammour Sawaya, Heikki Deschacht
Abstract:
In commercial aircraft operations, almost half of the accidents happen during approach or landing phases. Automatic guidance and automatic landings have proven to bring significant safety value added for this challenging landing phase. This is why Airbus and ScioTeq have decided to work together to explore the capability of image-based landing solutions as additional landing aids to further expand the possibility to perform automatic approach and landing to runways where the current guiding systems are either not fitted or not optimum. Current systems for automated landing often depend on radio signals provided by airport ground infrastructure on the airport or satellite coverage. In addition, these radio signals may not always be available with the integrity and performance required for safe automatic landing. Being independent from these radio signals would widen the operations possibilities and increase the number of automated landings. Airbus and ScioTeq are joining their expertise in the field of Computer Vision in the European Program called Clean Sky 2 Large Passenger Aircraft, in which they are leading the IMBALS (IMage BAsed Landing Solutions) project. The ultimate goal of this project is to demonstrate, develop, validate and verify a certifiable automatic landing system guiding an airplane during the approach and landing phases based on an onboard camera system capturing images, enabling automatic landing independent from radio signals and without precision instrument for landing. In the frame of this project, ScioTeq is responsible for the development of the Image Processing Platform (IPP), while Airbus is responsible for defining the functional and system requirements as well as the testing and integration of the developed equipment in a Large Passenger Aircraft representative environment. The aim of this paper will be to describe the system as well as the associated methods and tools developed for validation and verification.Keywords: aircraft landing system, aircraft safety, autoland, avionic system, computer vision, image processing
Procedia PDF Downloads 101842 Remote Sensing of Aerated Flows at Large Dams: Proof of Concept
Authors: Ahmed El Naggar, Homyan Saleh
Abstract:
Dams are crucial for flood control, water supply, and the creation of hydroelectric power. Every dam has a water conveyance system, such as a spillway, providing the safe discharge of catastrophic floods when necessary. Spillway design has historically been investigated in laboratory research owing to the absence of suitable full-scale flow monitoring equipment and safety problems. Prototype measurements of aerated flows are urgently needed to quantify projected scale effects and provide missing validation data for design guidelines and numerical simulations. In this work, an image-based investigation of free-surface flows on a tiered spillway was undertaken at the laboratory (fixed camera installation) and prototype size (drone video) (drone footage) (drone footage). The drone videos were generated using data from citizen science. Analyses permitted the measurement of the free-surface aeration inception point, air-water surface velocities, fluctuations, and residual energy at the chute's downstream end from a remote site. The prototype observations offered full-scale proof of concept, while laboratory results were efficiently confirmed against invasive phase-detection probe data. This paper stresses the efficacy of image-based analyses at prototype spillways. It highlights how citizen science data may enable academics better understand real-world air-water flow dynamics and offers a framework for a small collection of long-missing prototype data.Keywords: remote sensing, aerated flows, large dams, proof of concept, dam spillways, air-water flows, prototype operation, remote sensing, inception point, optical flow, turbulence, residual energy
Procedia PDF Downloads 93841 Integration of Building Information Modeling Framework for 4D Constructability Review and Clash Detection Management of a Sewage Treatment Plant
Authors: Malla Vijayeta, Y. Vijaya Kumar, N. Ramakrishna Raju, K. Satyanarayana
Abstract:
Global AEC (architecture, engineering, and construction) industry has been coined as one of the most resistive domains in embracing technology. Although this digital era has been inundated with software tools like CAD, STADD, CANDY, Microsoft Project, Primavera etc. the key stakeholders have been working in siloes and processes remain fragmented. Unlike the yesteryears’ simpler project delivery methods, the current projects are of fast-track, complex, risky, multidisciplinary, stakeholder’s influential, statutorily regulative etc. pose extensive bottlenecks in preventing timely completion of projects. At this juncture, a paradigm shift surfaced in construction industry, and Building Information Modeling, aka BIM, has been a panacea to bolster the multidisciplinary teams’ cooperative and collaborative work leading to productive, sustainable and leaner project outcome. Building information modeling has been integrative, stakeholder engaging and centralized approach in providing a common platform of communication. A common misconception that BIM can be used for building/high rise projects in Indian Construction Industry, while this paper discusses of the implementation of BIM processes/methodologies in water and waste water industry. It elucidates about BIM 4D planning and constructability reviews of a Sewage Treatment Plant in India. Conventional construction planning and logistics management involves a blend of experience coupled with imagination. Even though the excerpts or judgments or lessons learnt gained from veterans might be predictive and helpful, but the uncertainty factor persists. This paper shall delve about the case study of real time implementation of BIM 4D planning protocols for one of the Sewage Treatment Plant of Dravyavati River Rejuvenation Project in India and develops a Time Liner to identify logistics planning and clash detection. With this BIM processes, we shall find that there will be significant reduction of duplication of tasks and reworks. Also another benefit achieved will be better visualization and workarounds during conception stage and enables for early involvement of the stakeholders in the Project Life cycle of Sewage Treatment Plant construction. Moreover, we have also taken an opinion poll of the benefits accrued utilizing BIM processes versus traditional paper based communication like 2D and 3D CAD tools. Thus this paper concludes with BIM framework for Sewage Treatment Plant construction which will achieve optimal construction co-ordination advantages like 4D construction sequencing, interference checking, clash detection checking and resolutions by primary engagement of all key stakeholders thereby identifying potential risks and subsequent creation of risk response strategies. However, certain hiccups like hesitancy in adoption of BIM technology by naïve users and availability of proficient BIM trainers in India poses a phenomenal impediment. Hence the nurture of BIM processes from conception, construction and till commissioning, operation and maintenance along with deconstruction of a project’s life cycle is highly essential for Indian Construction Industry in this digital era.Keywords: integrated BIM workflow, 4D planning with BIM, building information modeling, clash detection and visualization, constructability reviews, project life cycle
Procedia PDF Downloads 122840 Similitude for Thermal Scale-up of a Multiphase Thermolysis Reactor in the Cu-Cl Cycle of a Hydrogen Production
Authors: Mohammed W. Abdulrahman
Abstract:
The thermochemical copper-chlorine (Cu-Cl) cycle is considered as a sustainable and efficient technology for a hydrogen production, when linked with clean-energy systems such as nuclear reactors or solar thermal plants. In the Cu-Cl cycle, water is decomposed thermally into hydrogen and oxygen through a series of intermediate reactions. This paper investigates the thermal scale up analysis of the three phase oxygen production reactor in the Cu-Cl cycle, where the reaction is endothermic and the temperature is about 530 oC. The paper focuses on examining the size and number of oxygen reactors required to provide enough heat input for different rates of hydrogen production. The type of the multiphase reactor used in this paper is the continuous stirred tank reactor (CSTR) that is heated by a half pipe jacket. The thermal resistance of each section in the jacketed reactor system is studied to examine its effect on the heat balance of the reactor. It is found that the dominant contribution to the system thermal resistance is from the reactor wall. In the analysis, the Cu-Cl cycle is assumed to be driven by a nuclear reactor where two types of nuclear reactors are examined as the heat source to the oxygen reactor. These types are the CANDU Super Critical Water Reactor (CANDU-SCWR) and High Temperature Gas Reactor (HTGR). It is concluded that a better heat transfer rate has to be provided for CANDU-SCWR by 3-4 times than HTGR. The effect of the reactor aspect ratio is also examined in this paper and is found that increasing the aspect ratio decreases the number of reactors and the rate of decrease in the number of reactors decreases by increasing the aspect ratio. Finally, a comparison between the results of heat balance and existing results of mass balance is performed and is found that the size of the oxygen reactor is dominated by the heat balance rather than the material balance.Keywords: sustainable energy, clean energy, Cu-Cl cycle, heat transfer, hydrogen, oxygen
Procedia PDF Downloads 296839 Battling the Final Stages of Genocide in Bosnia and Herzegovina: Denial and Triumphalism
Authors: Ehlimana Memisevic
Abstract:
Genocide denial is considered the final stage of genocide, which in the words of Gregory H. Stanton, represents "one of the most certain indicators of future genocides”. Genocide denial in Bosnia and Herzegovina started in 1992, almost simultaneously with the genocide itself. Over the course of the three decades, different forms of genocide and war crimes denial have been developed by state officials, politicians, journalists, and civilians, both in Republika Srpska – the Serb-dominated entity within Bosnia and Herzegovina – and Serbia. Moreover, genocide and war crimes are not only denied but also glorified and celebrated, which was described as "triumphalism" by the Australian-Bosnian scholar Hariz Halilovich who suggested it be added as the 11th phase of Gregory Stanton's "10 stages of genocide." Since 2007, there have been a number of attempts to criminalize genocide denial at the state level in Bosnia and Herzegovina. However, all of them were unsuccessful due to the opposition of representatives of Republika Srpska. On July 23, 2021, the High Representative in Bosnia and Herzegovina, Valentin Inzko, used his power as the final authority in overseeing the civil implementation of the Dayton Peace Accords to impose amendments to Bosnia and Herzegovina's criminal code to ban the denial and glorification of genocide, crimes against humanity and war crimes. However, immediately after the OHR's decision was announced, Milorad Dodik, a Serb member of Bosnia's tripartite presidency, held a press conference, publicly denied the genocide, and announced that this law would never be accepted in Republika Srpska. Denial remains explicit and public and is promulgated through official channels in Bosnia and Herzegovina. This paper will analyze the forms of genocide and other war crimes denial and glorification in the period after the amendments to the Criminal Code of Bosnia and Herzegovina were introduced, which include incrimination of public condoning, denial, gross trivialization or justification of a crime of genocide, crimes against humanity or a war crime established by a final adjudication of the international and domestic courts. We aim to determine the effect of the imposed law and the impact of the denial committed by high-ranking public officials on the denial and celebration of genocide and war crimes committed by ordinary citizens.Keywords: genocide, denial, triumphalism, incrimination
Procedia PDF Downloads 77838 Molecular Topology and TLC Retention Behaviour of s-Triazines: QSRR Study
Authors: Lidija R. Jevrić, Sanja O. Podunavac-Kuzmanović, Strahinja Z. Kovačević
Abstract:
Quantitative structure-retention relationship (QSRR) analysis was used to predict the chromatographic behavior of s-triazine derivatives by using theoretical descriptors computed from the chemical structure. Fundamental basis of the reported investigation is to relate molecular topological descriptors with chromatographic behavior of s-triazine derivatives obtained by reversed-phase (RP) thin layer chromatography (TLC) on silica gel impregnated with paraffin oil and applied ethanol-water (φ = 0.5-0.8; v/v). Retention parameter (RM0) of 14 investigated s-triazine derivatives was used as dependent variable while simple connectivity index different orders were used as independent variables. The best QSRR model for predicting RM0 value was obtained with simple third order connectivity index (3χ) in the second-degree polynomial equation. Numerical values of the correlation coefficient (r=0.915), Fisher's value (F=28.34) and root mean square error (RMSE = 0.36) indicate that model is statistically significant. In order to test the predictive power of the QSRR model leave-one-out cross-validation technique has been applied. The parameters of the internal cross-validation analysis (r2CV=0.79, r2adj=0.81, PRESS=1.89) reflect the high predictive ability of the generated model and it confirms that can be used to predict RM0 value. Multivariate classification technique, hierarchical cluster analysis (HCA), has been applied in order to group molecules according to their molecular connectivity indices. HCA is a descriptive statistical method and it is the most frequently used for important area of data processing such is classification. The HCA performed on simple molecular connectivity indices obtained from the 2D structure of investigated s-triazine compounds resulted in two main clusters in which compounds molecules were grouped according to the number of atoms in the molecule. This is in agreement with the fact that these descriptors were calculated on the basis of the number of atoms in the molecule of the investigated s-triazine derivatives.Keywords: s-triazines, QSRR, chemometrics, chromatography, molecular descriptors
Procedia PDF Downloads 394837 Glenoid Osteotomy with Various Tendon Transfers for Brachial Plexus Birth Palsy: Clinical Outcomes
Authors: Ramin Zargarbashi, Hamid Rabie, Behnam Panjavi, Hooman Kamran, Seyedarad Mosalamiaghili, Zohre Erfani, Seyed Peyman Mirghaderi, Maryam Salimi
Abstract:
Background: Posterior shoulder dislocation is one of the disabling complications of brachial plexus birth injury (BPBI), and various treatment options, including capsule and surrounding muscles release for open reduction, humeral derotational osteotomy, and tendon transfers, have been recommended to manage it. In the present study, we aimed to determine the clinical outcome of open reduction with soft tissue release, tendon transfer, and glenoid osteotomy inpatients with BPBI and posterior shoulder dislocation or subluxation. Methods: From 2018 to 2020, 33 patients that underwent open reduction, glenoid osteotomy, and tendon transfer were included. The glenohumeral deformity was classified according to the Waters radiographic classification. Functional assessment was performed using the Mallet grading system before and at least two years after the surgery. Results: The patients were monitored for 26.88± 5.47 months. Their average age was 27.5±14 months. Significant improvement was seen in the overall Mallet score (from 13.5 to 18.91 points) and its segments, including hand to mouth, hand to the neck, global abduction, global external rotation, abduction degree, and external rotation degree. Hand-to-back score and the presence of trumpet sign were significantly decreased in the post-operation phase (all p values<0.001). The above-mentioned variables significantly changed for both infantile and non-infantile dislocations. Conclusion: Our study demonstrated that open reduction along with glenoid osteotomy improves retroversion, and muscle strengthening with different muscle transfers is an effective technique for BPBI.Keywords: birth injuries, nerve injury, brachial plexus birth palsy, Erb palsy, tendon transfer
Procedia PDF Downloads 99836 The Effect of Increased Tip Area of Suction Caissons on the Penetration Resistance Coefficients
Authors: Ghaem Zamani, Farveh Aghaye Nezhad, Amin Barari
Abstract:
The installation process of caissons has usually been a challenging step in the design phase, especially in the case of suction-assisted installation. The engineering practice for estimating the caisson penetration resistance is primarily controlled by the resistance governed by inner and outer skirt friction and the tip resistance. Different methods have been proposed in the literature to evaluate the above components, while the CPT-based methodology has attained notable popularity among others. In this method, two empirical coefficients are suggested, k𝒻 and kp, which relate the frictional resistance and tip resistance to the cone penetration resistance (q𝒸), respectively. A series of jacking installation and uninstallation experiments for different soil densities were carried out in the offshore geotechnical laboratory of Aalborg University, Denmark. The main goal of these tests was to find appropriate values for empirical coefficients of the CPT-based method for the buckets with large embedment ratio (i.e., d/D=1, where d is the skirt length and D is the diameter) and increased tip area penetrated into dense sand deposits. The friction resistance effects were isolated during the pullout experiments; hence, the k𝒻 was back-measured from the tests in the absence of tip resistance. The actuator force during jacking installation equals the sum of frictional resistance and tip resistance. Therefore, the tip resistance of the bucket is calculated by subtracting the back-measured frictional resistance from penetration resistance; hence the relevant coefficient kp would be achieved. The cone penetration test was operated at different points before and after each installation attempt to measure the cone penetration resistance (q𝒸), and the average value of q𝒸 is used for calculations. The experimental results of the jacking installation tests indicated that a larger friction area considerably increased the penetration resistance; however, this effect was completely diminished when foundation suction-assisted penetration was used. Finally, the values measured for the empirical coefficient of the CPT-based method are compared with the highest expected and most probable values suggested by DNV(1992) for uniform thickness buckets.Keywords: suction caisson, offshore geotechnics, cone penetration test, wind turbine foundation
Procedia PDF Downloads 86835 Blending Effects on Crude Oil Stability: An Experimental Study
Authors: Muheddin Hamza, Entisar Etter
Abstract:
This study is a part of investigating the possibility of blending two crude oils obtained from Libyan oil fields, namely crude oil (A) and crude oil (B) with different ratios, prior to blending the crude oils have to be compatible in order to avoid phase out and precipitation of asphaltene from the bulk of crude. The physical properties of both crudes such as density, viscosity, pour point and sulphur content were measured according to (ASTM) method. To examine the stability of both crudes and their blends, the oil compatibility model using microscopic, colloidal instability index (CII) using SARA analysis and asphaltene stabilization test using Turbiscan tests were conducted in the Libyan Petroleum Institute laboratories. Compatibility tests were carried out with both crude oils, the insolubility number (IN), and the solubility blending number (SBN), for both crude oils and their blends were calculated. The criteria for compatibility of any blend is that the volume average solubility blending number (SBN) is greater than the insolubility number (IN) of any component in the blend, the results indicated that both crudes were compatible. To support the results of compatibility tests the SARA analysis was done for the fractional determination of (saturates, aromatics, resins and asphaltenes) content. From this result, the colloidal Instability index (CII) and resin to asphaltenes ratio (R/A) were calculated for crudes and their blends. The results show that crude oil (B) which has higher (R/A) and lower (CII) is more stable than crude oil (A) and as the ratio of crude (B) increases in the blend the (CII) and (R/A) were improved, and the blends becomes more stable. Asphaltene stabilization test was also conducted for the crudes and their blends using Turbiscan MA200 according to the standard test method ASTM D7061-04, the Turbiscan shows that the crude (B) is more stable than crude (A) which shows a fair tendency. The (CII) and (R/A) were compared with the solubility number (SBN) for each crude and the blends along with Turbiscan results. The solubility blending number (SBN) of the crudes and their blends show that the crudes are compatible, also by comparing (R/A) and (SBN) values of the blends, it can be seen that they are complements of each other. All the experimental results show that the blends of both crudes are more stability.Keywords: asphaltene, crude oil, compatibility, oil blends, resin, SARA
Procedia PDF Downloads 513834 Synthesis and Characterization of Capric-Stearic Acid/ Graphene Oxide-TiO₂ Microcapsules for Solar Energy Storage and Photocatalytic Efficiency
Authors: Ghada Ben Hamad, Zohir Younsi, Hassane Naji, Noureddine Lebaz, Naoual Belouaggadia
Abstract:
This study deals with a bifunctional micro-encapsulated phase change (MCP) material, capric-stearic acid/graphene oxide-TiO2, which has been successfully developed by in situ hydrolysis and polycondensation of tetrabutyl titanate and modification of graphene oxide (GO) on the TiO2 doped shell. The use of graphene and doped TiO2 is a promising approach to provide photocatalytic activity under visible light and improve the microcapsules physicochemical properties. The morphology and chemical structure of the resulting microcapsule samples were determined by using Fourier transform infrared (FT-IR) spectroscopy, scanning electronic microscope (SEM), and X-ray diffractometer (XRD) methods. The ultraviolet, visible spectrophotometer (UV–vis), the differential scanning calorimeter (DSC) and the thermogravimetric analyzer (TGA) were used to investigate the absorption of visible and ultraviolet (UV), the thermal properties, and thermal stabilities of the microcapsules. Note that, the visible light photocatalytic activity was assessed for the toluene and benzene gaseous removal in a suitable test room. The microcapsules exhibit an interesting spherical morphology and an average diameter of 15 to 25 μm. The addition of graphene can enhance the rigidity of the shell and improve the microcapsules thermal reliability. At the same time, the thermal analysis tests showed that the synthesized microcapsules had a high solar thermal energy-storage and better thermal stability. In addition, the capric-stearic acid microcapsules exhibited high solar photocatalytic activity with respect to atmospheric pollutants under natural sunlight. The fatty acid samples obtained with the GO/TiO2 shell showed great potential for applications of solar energy storage, solar photocatalytic degradation of air pollutants and buildings energy conservation.Keywords: thermal energy storage, microencapsulation, titanium dioxide, photocatalysis, graphene oxide
Procedia PDF Downloads 131833 Thermodynamic Analysis and Experimental Study of Agricultural Waste Plasma Processing
Authors: V. E. Messerle, A. B. Ustimenko, O. A. Lavrichshev
Abstract:
A large amount of manure and its irrational use negatively affect the environment. As compared with biomass fermentation, plasma processing of manure enhances makes it possible to intensify the process of obtaining fuel gas, which consists mainly of synthesis gas (CO + H₂), and increase plant productivity by 150–200 times. This is achieved due to the high temperature in the plasma reactor and a multiple reduction in waste processing time. This paper examines the plasma processing of biomass using the example of dried mixed animal manure (dung with a moisture content of 30%). Characteristic composition of dung, wt.%: Н₂О – 30, С – 29.07, Н – 4.06, О – 32.08, S – 0.26, N – 1.22, P₂O₅ – 0.61, K₂O – 1.47, СаО – 0.86, MgO – 0.37. The thermodynamic code TERRA was used to numerically analyze dung plasma gasification and pyrolysis. Plasma gasification and pyrolysis of dung were analyzed in the temperature range 300–3,000 K and pressure 0.1 MPa for the following thermodynamic systems: 100% dung + 25% air (plasma gasification) and 100% dung + 25% nitrogen (plasma pyrolysis). Calculations were conducted to determine the composition of the gas phase, the degree of carbon gasification, and the specific energy consumption of the processes. At an optimum temperature of 1,500 K, which provides both complete gasification of dung carbon and the maximum yield of combustible components (99.4 vol.% during dung gasification and 99.5 vol.% during pyrolysis), and decomposition of toxic compounds of furan, dioxin, and benz(a)pyrene, the following composition of combustible gas was obtained, vol.%: СО – 29.6, Н₂ – 35.6, СО₂ – 5.7, N₂ – 10.6, H₂O – 17.9 (gasification) and СО – 30.2, Н₂ – 38.3, СО₂ – 4.1, N₂ – 13.3, H₂O – 13.6 (pyrolysis). The specific energy consumption of gasification and pyrolysis of dung at 1,500 K is 1.28 and 1.33 kWh/kg, respectively. An installation with a DC plasma torch with a rated power of 100 kW and a plasma reactor with a dung capacity of 50 kg/h was used for dung processing experiments. The dung was gasified in an air (or nitrogen during pyrolysis) plasma jet, which provided a mass-average temperature in the reactor volume of at least 1,600 K. The organic part of the dung was gasified, and the inorganic part of the waste was melted. For pyrolysis and gasification of dung, the specific energy consumption was 1.5 kWh/kg and 1.4 kWh/kg, respectively. The maximum temperature in the reactor reached 1,887 K. At the outlet of the reactor, a gas of the following composition was obtained, vol.%: СO – 25.9, H₂ – 32.9, СO₂ – 3.5, N₂ – 37.3 (pyrolysis in nitrogen plasma); СO – 32.6, H₂ – 24.1, СO₂ – 5.7, N₂ – 35.8 (air plasma gasification). The specific heat of combustion of the combustible gas formed during pyrolysis and plasma-air gasification of agricultural waste is 10,500 and 10,340 kJ/kg, respectively. Comparison of the integral indicators of dung plasma processing showed satisfactory agreement between the calculation and experiment.Keywords: agricultural waste, experiment, plasma gasification, thermodynamic calculation
Procedia PDF Downloads 42832 Chatbots vs. Websites: A Comparative Analysis Measuring User Experience and Emotions in Mobile Commerce
Authors: Stephan Boehm, Julia Engel, Judith Eisser
Abstract:
During the last decade communication in the Internet transformed from a broadcast to a conversational model by supporting more interactive features, enabling user generated content and introducing social media networks. Another important trend with a significant impact on electronic commerce is a massive usage shift from desktop to mobile devices. However, a presentation of product- or service-related information accumulated on websites, micro pages or portals often remains the pivot and focal point of a customer journey. A more recent change of user behavior –especially in younger user groups and in Asia– is going along with the increasing adoption of messaging applications supporting almost real-time but asynchronous communication on mobile devices. Mobile apps of this type cannot only provide an alternative for traditional one-to-one communication on mobile devices like voice calls or short messaging service. Moreover, they can be used in mobile commerce as a new marketing and sales channel, e.g., for product promotions and direct marketing activities. This requires a new way of customer interaction compared to traditional mobile commerce activities and functionalities provided based on mobile web-sites. One option better aligned to the customer interaction in mes-saging apps are so-called chatbots. Chatbots are conversational programs or dialog systems simulating a text or voice based human interaction. They can be introduced in mobile messaging and social media apps by using rule- or artificial intelligence-based imple-mentations. In this context, a comparative analysis is conducted to examine the impact of using traditional websites or chatbots for promoting a product in an impulse purchase situation. The aim of this study is to measure the impact on the customers’ user experi-ence and emotions. The study is based on a random sample of about 60 smartphone users in the group of 20 to 30-year-olds. Participants are randomly assigned into two groups and participate in a traditional website or innovative chatbot based mobile com-merce scenario. The chatbot-based scenario is implemented by using a Wizard-of-Oz experimental approach for reasons of sim-plicity and to allow for more flexibility when simulating simple rule-based and more advanced artificial intelligence-based chatbot setups. A specific set of metrics is defined to measure and com-pare the user experience in both scenarios. It can be assumed, that users get more emotionally involved when interacting with a system simulating human communication behavior instead of browsing a mobile commerce website. For this reason, innovative face-tracking and analysis technology is used to derive feedback on the emotional status of the study participants while interacting with the website or the chatbot. This study is a work in progress. The results will provide first insights on the effects of chatbot usage on user experiences and emotions in mobile commerce environments. Based on the study findings basic requirements for a user-centered design and implementation of chatbot solutions for mobile com-merce can be derived. Moreover, first indications on situations where chatbots might be favorable in comparison to the usage of traditional website based mobile commerce can be identified.Keywords: chatbots, emotions, mobile commerce, user experience, Wizard-of-Oz prototyping
Procedia PDF Downloads 459831 Physiological Effects during Aerobatic Flights on Science Astronaut Candidates
Authors: Pedro Llanos, Diego García
Abstract:
Spaceflight is considered the last frontier in terms of science, technology, and engineering. But it is also the next frontier in terms of human physiology and performance. After more than 200,000 years humans have evolved under earth’s gravity and atmospheric conditions, spaceflight poses environmental stresses for which human physiology is not adapted. Hypoxia, accelerations, and radiation are among such stressors, our research involves suborbital flights aiming to develop effective countermeasures in order to assure sustainable human space presence. The physiologic baseline of spaceflight participants is subject to great variability driven by age, gender, fitness, and metabolic reserve. The objective of the present study is to characterize different physiologic variables in a population of STEM practitioners during an aerobatic flight. Cardiovascular and pulmonary responses were determined in Science Astronaut Candidates (SACs) during unusual attitude aerobatic flight indoctrination. Physiologic data recordings from 20 subjects participating in high-G flight training were analyzed. These recordings were registered by wearable sensor-vest that monitored electrocardiographic tracings (ECGs), signs of dysrhythmias or other electric disturbances during all the flight. The same cardiovascular parameters were also collected approximately 10 min pre-flight, during each high-G/unusual attitude maneuver and 10 min after the flights. The ratio (pre-flight/in-flight/post-flight) of the cardiovascular responses was calculated for comparison of inter-individual differences. The resulting tracings depicting the cardiovascular responses of the subjects were compared against the G-loads (Gs) during the aerobatic flights to analyze cardiovascular variability aspects and fluid/pressure shifts due to the high Gs. In-flight ECG revealed cardiac variability patterns associated with rapid Gs onset in terms of reduced heart rate (HR) and some scattered dysrhythmic patterns (15% premature ventricular contractions-type) that were considered as triggered physiological responses to high-G/unusual attitude training and some were considered as instrument artifact. Variation events were observed in subjects during the +Gz and –Gz maneuvers and these may be due to preload and afterload, sudden shift. Our data reveal that aerobatic flight influenced the breathing rate of the subject, due in part by the various levels of energy expenditure due to the increased use of muscle work during these aerobatic maneuvers. Noteworthy was the high heterogeneity in the different physiological responses among a relatively small group of SACs exposed to similar aerobatic flights with similar Gs exposures. The cardiovascular responses clearly demonstrated that SACs were subjected to significant flight stress. Routine ECG monitoring during high-G/unusual attitude flight training is recommended to capture pathology underlying dangerous dysrhythmias in suborbital flight safety. More research is currently being conducted to further facilitate the development of robust medical screening, medical risk assessment approaches, and suborbital flight training in the context of the evolving commercial human suborbital spaceflight industry. A more mature and integrative medical assessment method is required to understand the physiology state and response variability among highly diverse populations of prospective suborbital flight participants.Keywords: g force, aerobatic maneuvers, suborbital flight, hypoxia, commercial astronauts
Procedia PDF Downloads 132830 Data Protection and Regulation Compliance on Handling Physical Child Abuse Scenarios- A Scoping Review
Authors: Ana Mafalda Silva, Rebeca Fontes, Ana Paula Vaz, Carla Carreira, Ana Corte-Real
Abstract:
Decades of research on the topic of interpersonal violence against minors highlight five main conclusions: 1) it causes harmful effects on children's development and health; 2) it is prevalent; 3) it violates children's rights; 4) it can be prevented and 5) parents are the main aggressors. The child abuse scenario is identified through clinical observation, administrative data and self-reports. The most used instruments are self-reports; however, there are no valid and reliable self-report instruments for minors, which consist of a retrospective interpretation of the situation by the victim already in her adult phase and/or by her parents. Clinical observation and collection of information, namely from the orofacial region, are essential in the early identification of these situations. The management of medical data, such as personal data, must comply with the General Data Protection Regulation (GDPR), in Europe, and with the General Law of Data Protection (LGPD), in Brazil. This review aims to answer the question: In a situation of medical assistance to minors, in the suspicion of interpersonal violence, due to mistreatment, is it necessary for the guardians to provide consent in the registration and sharing of personal data, namely medical ones. A scoping review was carried out based on a search by the Web of Science and Pubmed search engines. Four papers and two documents from the grey literature were selected. As found, the process of identifying and signaling child abuse by the health professional, and the necessary early intervention in defense of the minor as a victim of abuse, comply with the guidelines expressed in the GDPR and LGPD. This way, the notification in maltreatment scenarios by health professionals should be a priority and there shouldn’t be the fear or anxiety of legal repercussions that stands in the way of collecting and treating the data necessary for the signaling procedure that safeguards and promotes the welfare of children living with abuse.Keywords: child abuse, disease notifications, ethics, healthcare assistance
Procedia PDF Downloads 96829 3d Property Modelling of the Lower Acacus Reservoir, Ghadames Basin, Libya
Authors: Aimen Saleh
Abstract:
The Silurian Lower Acacus sandstone is one of the main reservoirs in North West Libya. Our aim in this study is to grasp a robust understanding of the hydrocarbon potential and distribution in the area. To date, the depositional environment of the Lower Acacus reservoir still open to discussion and contradiction. Henceforth, building three dimensional (3D) property modelling is one way to support the analysis and description of the reservoir, its properties and characterizations, so this will be of great value in this project. The 3D model integrates different data set, these incorporates well logs data, petrophysical reservoir properties and seismic data as well. The finalized depositional environment model of the Lower Acacus concludes that the area is located in a deltaic transitional depositional setting, which ranges from a wave dominated delta into tide dominated delta type. This interpretation carried out through a series of steps of model generation, core description and Formation Microresistivity Image tool (FMI) interpretation. After the analysis of the core data, the Lower Acacus layers shows a strong effect of tidal energy. Whereas these traces found imprinted in different types of sedimentary structures, for examples; presence of some crossbedding, such as herringbones structures, wavy and flaser cross beddings. In spite of recognition of some minor marine transgression events in the area, on the contrary, the coarsening upward cycles of sand and shale layers in the Lower Acacus demonstrate presence of a major regressive phase of the sea level. However, consequently, we produced a final package of this model in a complemented set of facies distribution, porosity and oil presence. And also it shows the record of the petroleum system, and the procedure of Hydrocarbon migration and accumulation. Finally, this model suggests that the area can be outlined into three main segments of hydrocarbon potential, which can be a textbook guide for future exploration and production strategies in the area.Keywords: Acacus, Ghadames , Libya, Silurian
Procedia PDF Downloads 143828 Verification and Validation of Simulated Process Models of KALBR-SIM Training Simulator
Authors: T. Jayanthi, K. Velusamy, H. Seetha, S. A. V. Satya Murty
Abstract:
Verification and Validation of Simulated Process Model is the most important phase of the simulator life cycle. Evaluation of simulated process models based on Verification and Validation techniques checks the closeness of each component model (in a simulated network) with the real system/process with respect to dynamic behaviour under steady state and transient conditions. The process of Verification and validation helps in qualifying the process simulator for the intended purpose whether it is for providing comprehensive training or design verification. In general, model verification is carried out by comparison of simulated component characteristics with the original requirement to ensure that each step in the model development process completely incorporates all the design requirements. Validation testing is performed by comparing the simulated process parameters to the actual plant process parameters either in standalone mode or integrated mode. A Full Scope Replica Operator Training Simulator for PFBR - Prototype Fast Breeder Reactor has been developed at IGCAR, Kalpakkam, INDIA named KALBR-SIM (Kalpakkam Breeder Reactor Simulator) wherein the main participants are engineers/experts belonging to Modeling Team, Process Design and Instrumentation and Control design team. This paper discusses the Verification and Validation process in general, the evaluation procedure adopted for PFBR operator training Simulator, the methodology followed for verifying the models, the reference documents and standards used etc. It details out the importance of internal validation by design experts, subsequent validation by external agency consisting of experts from various fields, model improvement by tuning based on expert’s comments, final qualification of the simulator for the intended purpose and the difficulties faced while co-coordinating various activities.Keywords: Verification and Validation (V&V), Prototype Fast Breeder Reactor (PFBR), Kalpakkam Breeder Reactor Simulator (KALBR-SIM), steady state, transient state
Procedia PDF Downloads 266827 Introduction, Establishment, and Transformation: An Initial Exploration of the Cultural Shifts and Influence of Fa Yi Chong De, Yi-Kuan-Tao in Malaysian Chinese Community
Authors: Lim Pey Huan
Abstract:
Yi-Kuan-Tao has been developing in Malaysia for nearly 60 years. It was initially introduced from mainland China and later from Taiwan starting from the 1970s. Yi-Kuan-Tao was considered a 'new religion' for the local Chinese community in Malaysia in its early stages, as Chinese immigrants primarily practiced Taoism, Buddhism, Christianity, or Catholicism upon settling in the region. The overseas propagation and development of Yi-Kuan-Tao today primarily occur through Taiwanese temples, which began spreading abroad as early as 1949. Particularly since the 1970s, with the rapid economic growth of Taiwan, various branches of Taiwanese Yi-Kuan-Tao have gained economic strength to propagate abroad, further expanding the influence of Yi-Kuan-Tao overseas. Southeast Asia is the region out from Taiwan where the propagation and development of Yi-Kuan-Tao are fastest and most concentrated. With approximately over 6 million Chinese inhabitants, Malaysia's pursuit of traditional Chinese culture has led to a flourishing interest in Yi-Kuan-Tao, particularly its advocacy of the unity of Confucianism, Buddhism, and Taoism, with an emphasis on promoting Confucian thought. Moreover, Taiwan's rapid economic development since the 1970s has enabled Yi-Kuan-Tao to allocate significant human and financial resources for external propagation efforts. Additionally, Malaysia's government has adopted a relatively tolerant policy towards religion since that time, further fostering the flourishing development of Yi-Kuan-Tao in Malaysia. Furthermore, this thesis aims to strengthen the lineage and continuity of the Yi-Kuan-Tao tradition, particularly the branch of Fa Yi Chong De, through the perspective of Heavenly Mandate (天命). By examining the different origins and ethnic backgrounds, it investigates how the Malaysian Chinese community has experienced different changes through the cultural baptism of religion, thus delving into the religious influence of Yi-Kuan-Tao. Given that the Fa Yi Chong De Academy in Taiwan is currently in an active development and construction phase, academic works related to Yi-Kuan-Tao will lay a more solid academic foundation for the future establishment of the academy.Keywords: initial exploration, cultural shifts, Yi-Kuan-Tao, Malaysian Chinese community
Procedia PDF Downloads 82826 Improving Performance of K₂CO₃ Sorbent Using Core/Shell Alumina-Based Supports in a Multicycle CO₂ Capture Process
Authors: S. Toufigh Bararpour, Amir H. Soleimanisalim, Davood Karami, Nader Mahinpey
Abstract:
The continued increase in the atmospheric concentration of CO2 is expected to have great impacts on the climate. In order to reduce CO2 emission to the atmosphere, an efficient and cost-effective technique is required. Using regenerable solid sorbents, especially K2CO3 is a promising method for low-temperature CO2 capture. Pure K2CO3 is a delinquent substance that requires modifications before it can be used for cyclic operations. For this purpose, various types of additives and supports have been used to improve the structure of K2CO3. However, hydrophilicity and reactivity of the support materials with K2CO3 have a negative effect on the CO2 capture capacity of the sorbents. In this research, two kinds of alumina supports (γ-Alumina and Boehmite) were used. In order to decrease the supports' hydrophilicity and reactivity with K2CO3, nonreactive additives such as Titania, Zirconia and Silisium were incorporated into their structures. These materials provide a shell around the alumina to protect it from undesirable reactions and improve its properties. K2CO3-based core/shell-supported sorbents were fabricated using two preparation steps. The sol-gel method was applied for shelling the supports. Then the shelled supports were impregnated on K2CO3. The physicochemical properties of the sorbents were determined using SEM and BET analyses, and their CO2 capture capacity was quantified using a thermogravimetric analyzer. It was shown that type of the shell's material had an important effect on the water adsorption capacity of the sorbents. Supported K2CO3 modified by Titania shell showed the lowest hydrophilicity among the prepared samples. Based on the obtained results, incorporating nonreactive additives in Boehmite had an outstanding impact on the CO2 capture performance of the sorbent. Incorporation of Titania into the Boehmite-supported K2CO3 enhanced its CO2 capture capacity significantly. Therefore, further study of this novel fabrication technique is highly recommended. In the second phase of this research project, the CO2 capture performance of the sorbents in fixed and fluidized bed reactors will be investigated.Keywords: CO₂ capture, core/shell support, K₂CO₃, post-combustion
Procedia PDF Downloads 150825 2D Ferromagnetism in Van der Waals Bonded Fe₃GeTe₂
Authors: Ankita Tiwari, Jyoti Saini, Subhasis Ghosh
Abstract:
For many years, researchers have been fascinated by the subject of how properties evolve as dimensionality is lowered. Early on, it was shown that the presence of a significant magnetic anisotropy might compensate for the lack of long-range (LR) magnetic order in a low-dimensional system (d < 3) with continuous symmetry, as proposed by Hohenberg-Mermin and Wagner (HMW). Strong magnetic anisotropy allows an LR magnetic order to stabilize in two dimensions (2D) even in the presence of stronger thermal fluctuations which is responsible for the absence of Heisenberg ferromagnetism in 2D. Van der Waals (vdW) ferromagnets, including CrI₃, CrTe₂, Cr₂X₂Te₆ (X = Si and Ge) and Fe₃GeTe₂, offer a nearly ideal platform for studying ferromagnetism in 2D. Fe₃GeTe₂ is the subject of extensive investigation due to its tunable magnetic properties, high Curie temperature (Tc ~ 220K), and perpendicular magnetic anisotropy. Many applications in the field of spintronics device development have been quite active due to these appealing features of Fe₃GeTe₂. Although it is known that LR-driven ferromagnetism is necessary to get around the HMW theorem in 2D experimental realization, Heisenberg 2D ferromagnetism remains elusive in condensed matter systems. Here, we show that Fe₃GeTe₂ hosts both localized and delocalized spins, resulting in itinerant and local-moment ferromagnetism. The presence of LR itinerant interaction facilitates to stabilize Heisenberg ferromagnet in 2D. With the help of Rhodes-Wohlfarth (RW) and generalized RW-based analysis, Fe₃GeTe₂ has been shown to be a 2D ferromagnet with itinerant magnetism that can be modulated by an external magnetic field. Hence, the presence of both local moment and itinerant magnetism has made this system interesting in terms of research in low dimensions. We have also rigorously performed critical analysis using an improvised method. We show that the variable critical exponents are typical signatures of 2D ferromagnetism in Fe₃GeTe₂. The spontaneous magnetization exponent β changes the universality class from mean-field to 2D Heisenberg with field. We have also confirmed the range of interaction via the renormalization group (RG) theory. According to RG theory, Fe₃GeTe₂ is a 2D ferromagnet with LR interactions.Keywords: Van der Waal ferromagnet, 2D ferromagnetism, phase transition, itinerant ferromagnetism, long range order
Procedia PDF Downloads 72824 Development of an Experiment for Impedance Measurement of Structured Sandwich Sheet Metals by Using a Full Factorial Multi-Stage Approach
Authors: Florian Vincent Haase, Adrian Dierl, Anna Henke, Ralf Woll, Ennes Sarradj
Abstract:
Structured sheet metals and structured sandwich sheet metals are three-dimensional, lightweight structures with increased stiffness which are used in the automotive industry. The impedance, a figure of resistance of a structure to vibrations, will be determined regarding plain sheets, structured sheets, and structured sandwich sheets. The aim of this paper is generating an experimental design in order to minimize costs and duration of experiments. The design of experiments will be used to reduce the large number of single tests required for the determination of correlation between the impedance and its influencing factors. Full and fractional factorials are applied in order to systematize and plan the experiments. Their major advantages are high quality results given the relatively small number of trials and their ability to determine the most important influencing factors including their specific interactions. The developed full factorial experimental design for the study of plain sheets includes three factor levels. In contrast to the study of plain sheets, the respective impedance analysis used on structured sheets and structured sandwich sheets should be split into three phases. The first phase consists of preliminary tests which identify relevant factor levels. These factor levels are subsequently employed in main tests, which have the objective of identifying complex relationships between the parameters and the reference variable. Possible post-tests can follow up in case additional study of factor levels or other factors are necessary. By using full and fractional factorial experimental designs, the required number of tests is reduced by half. In the context of this paper, the benefits from the application of design for experiments are presented. Furthermore, a multistage approach is shown to take into account unrealizable factor combinations and minimize experiments.Keywords: structured sheet metals, structured sandwich sheet metals, impedance measurement, design of experiment
Procedia PDF Downloads 375823 Artificial Intelligence Impact on Strategic Stability
Authors: Darius Jakimavicius
Abstract:
Artificial intelligence is the subject of intense debate in the international arena, identified both as a technological breakthrough and as a component of the strategic stability effect. Both the kinetic and non-kinetic development of AI and its application in the national strategies of the great powers may trigger a change in the security situation. Artificial intelligence is generally faster, more capable and more efficient than humans, and there is a temptation to transfer decision-making and control responsibilities to artificial intelligence. Artificial intelligence, which, once activated, can select and act on targets without further intervention by a human operator, blurs the boundary between human or robot (machine) warfare, or perhaps human and robot together. Artificial intelligence acts as a force multiplier that speeds up decision-making and reaction times on the battlefield. The role of humans is increasingly moving away from direct decision-making and away from command and control processes involving the use of force. It is worth noting that the autonomy and precision of AI systems make the process of strategic stability more complex. Deterrence theory is currently in a phase of development in which deterrence is undergoing further strain and crisis due to the complexity of the evolving models enabled by artificial intelligence. Based on the concept of strategic stability and deterrence theory, it is appropriate to develop further research on the development and impact of AI in order to assess AI from both a scientific and technical perspective: to capture a new niche in the scientific literature and academic terminology, to clarify the conditions for deterrence, and to identify the potential uses, impacts and possibly quantities of AI. The research problem is the impact of artificial intelligence developed by great powers on strategic stability. This thesis seeks to assess the impact of AI on strategic stability and deterrence principles, with human exclusion from the decision-making and control loop as a key axis. The interaction between AI and human actions and interests can determine fundamental changes in great powers' defense and deterrence, and the development and application of AI-based great powers strategies can lead to a change in strategic stability.Keywords: artificial inteligence, strategic stability, deterrence theory, decision making loop
Procedia PDF Downloads 43822 Exploring Type V Hydrogen Storage Tanks: Shape Analysis and Material Evaluation for Enhanced Safety and Efficiency Focusing on Drop Test Performance
Authors: Mariam Jaber, Abdullah Yahya, Mohammad Alkhedher
Abstract:
The shift toward sustainable energy solutions increasingly focuses on hydrogen, recognized for its potential as a clean energy carrier. Despite its benefits, hydrogen storage poses significant challenges, primarily due to its low energy density and high volatility. Among the various solutions, pressure vessels designed for hydrogen storage range from Type I to Type V, each tailored for specific needs and benefits. Notably, Type V vessels, with their all-composite, liner-less design, significantly reduce weight and costs while optimizing space and decreasing maintenance demands. This study focuses on optimizing Type V hydrogen storage tanks by examining how different shapes affect performance in drop tests—a crucial aspect of achieving ISO 15869 certification. This certification ensures that if a tank is dropped, it will fail in a controlled manner, ideally by leaking before bursting. While cylindrical vessels are predominant in mobile applications due to their manufacturability and efficient use of space, spherical vessels offer superior stress distribution and require significantly less material thickness for the same pressure tolerance, making them advantageous for high-pressure scenarios. However, spherical tanks are less efficient in terms of packing and more complex to manufacture. Additionally, this study introduces toroidal vessels to assess their performance relative to the more traditional shapes, noting that the toroidal shape offers a more space-efficient option. The research evaluates how different shapes—spherical, cylindrical, and toroidal—affect drop test outcomes when combined with various composite materials and layup configurations. The ultimate goal is to identify optimal vessel geometries that enhance the safety and efficiency of hydrogen storage systems. For our materials, we selected high-performance composites such as Carbon T-700/Epoxy, Kevlar/Epoxy, E-Glass Fiber/Epoxy, and Basalt/Epoxy, configured in various orientations like [0,90]s, [45,-45]s, and [54,-54]. Our tests involved dropping tanks from different angles—horizontal, vertical, and 45 degrees—with an internal pressure of 35 MPa to replicate real-world scenarios as closely as possible. We used finite element analysis and first-order shear deformation theory, conducting tests with the Abaqus Explicit Dynamics software, which is ideal for handling the quick, intense stresses of an impact. The results from these simulations will provide valuable insights into how different designs and materials can enhance the durability and safety of hydrogen storage tanks. Our findings aim to guide future designs, making them more effective at withstanding impacts and safer overall. Ultimately, this research will contribute to the broader field of lightweight composite materials and polymers, advancing more innovative and practical approaches to hydrogen storage. By refining how we design these tanks, we are moving toward more reliable and economically feasible hydrogen storage solutions, further emphasizing hydrogen's role in the landscape of sustainable energy carriers.Keywords: hydrogen storage, drop test, composite materials, type V tanks, finite element analysis
Procedia PDF Downloads 48821 Factors Affecting Visual Environment in Mine Lighting
Authors: N. Lakshmipathy, Ch. S. N. Murthy, M. Aruna
Abstract:
The design of lighting systems for surface mines is not an easy task because of the unique environment and work procedures encountered in the mines. The primary objective of this paper is to identify the major problems encountered in mine lighting application and to provide guidance in the solution of these problems. In the surface mining reflectance of surrounding surfaces is one of the important factors, which improve the vision, in the night hours. But due to typical working nature in the mines it is very difficult to fulfill these requirements, and also the orientation of the light at work site is a challenging task. Due to this reason machine operator and other workers in a mine need to be able to orient themselves in a difficult visual environment. The haul roads always keep on changing to tune with the mining activity. Other critical area such as dumpyards, stackyards etc. also change their phase with time, and it is difficult to illuminate such areas. Mining is a hazardous occupation, with workers exposed to adverse conditions; apart from the need for hard physical labor, there is exposure to stress and environmental pollutants like dust, noise, heat, vibration, poor illumination, radiation, etc. Visibility is restricted when operating load haul dumper and Heavy Earth Moving Machinery (HEMM) vehicles resulting in a number of serious accidents. one of the leading causes of these accidents is the inability of the equipment operator to see clearly people, objects or hazards around the machine. Results indicate blind spots are caused primarily by posts, the back of the operator's cab, and by lights and light brackets. The careful designed and implemented, lighting systems provide mine workers improved visibility and contribute to improved safety, productivity and morale. Properly designed lighting systems can improve visibility and safety during working in the opencast mines.Keywords: contrast, efficacy, illuminance, illumination, light, luminaire, luminance, reflectance, visibility
Procedia PDF Downloads 360820 Effect of Phthalates on Male Infertility: Myth or Truth?
Authors: Rashmi Tomar, A. Srinivasan, Nayan K. Mohanty, Arun K. Jain
Abstract:
Phthalates have been used as additives in industrial products since the 1930s, and are universally considered to be ubiquitous environmental contaminants. The general population is exposed to phthalates through consumer products, as well as diet and medical treatments. Animal studies showing the existence of an association between some phthalates and testicular toxicity have generated public and scientific concern about the potential adverse effects of environmental changes on male reproductive health. Unprecedented declines in fertility rates and semen quality have been reported during the last half of the 20th century in developed countries and increasing interest exists on the potential relationship between exposure to environmental contaminants, including phthalates, and human male reproductive health Studies. Phthalates may be associated with altered endocrine function and adverse effects on male reproductive development and function, but human studies are limited. The aim of the present study was detection of phthalate compounds, estimation of their metabolites in infertile & fertile male. Blood and urine samples were collected from 150 infertile patients & 75 fertile volunteers recruited through Department of Urology, Safdarjung Hospital, New Delhi. Blood have been collected in separate glass tubes from the antecubital vein of the patients, serum have been separate and estimate the phthalate level in serum samples by Gas Chromatography / Mass Spectrometry using NIOSH / OSHA detailed protocol. Urine of Infertile & Fertile Subjects was collected & extracted using solid phase extraction method, analysis by HPLC. In conclusion, to the best of our knowledge the present study based on human is first to show the presence of phthalate in human serum samples and their metabolites in urine samples. Significant differences were observed between several phthalates in infertile and fertile healthy individuals.Keywords: Gas Chromatography, HPLC, male infertility, phthalates, serum, toxicity, urine
Procedia PDF Downloads 366