Search results for: module based teaching and learning
28630 Deep Learning based Image Classifiers for Detection of CSSVD in Cacao Plants
Authors: Atuhurra Jesse, N'guessan Yves-Roland Douha, Pabitra Lenka
Abstract:
The detection of diseases within plants has attracted a lot of attention from computer vision enthusiasts. Despite the progress made to detect diseases in many plants, there remains a research gap to train image classifiers to detect the cacao swollen shoot virus disease or CSSVD for short, pertinent to cacao plants. This gap has mainly been due to the unavailability of high quality labeled training data. Moreover, institutions have been hesitant to share their data related to CSSVD. To fill these gaps, image classifiers to detect CSSVD-infected cacao plants are presented in this study. The classifiers are based on VGG16, ResNet50 and Vision Transformer (ViT). The image classifiers are evaluated on a recently released and publicly accessible KaraAgroAI Cocoa dataset. The best performing image classifier, based on ResNet50, achieves 95.39\% precision, 93.75\% recall, 94.34\% F1-score and 94\% accuracy on only 20 epochs. There is a +9.75\% improvement in recall when compared to previous works. These results indicate that the image classifiers learn to identify cacao plants infected with CSSVD.Keywords: CSSVD, image classification, ResNet50, vision transformer, KaraAgroAI cocoa dataset
Procedia PDF Downloads 10828629 Machine Learning Approaches Based on Recency, Frequency, Monetary (RFM) and K-Means for Predicting Electrical Failures and Voltage Reliability in Smart Cities
Authors: Panaya Sudta, Wanchalerm Patanacharoenwong, Prachya Bumrungkun
Abstract:
As With the evolution of smart grids, ensuring the reliability and efficiency of electrical systems in smart cities has become crucial. This paper proposes a distinct approach that combines advanced machine learning techniques to accurately predict electrical failures and address voltage reliability issues. This approach aims to improve the accuracy and efficiency of reliability evaluations in smart cities. The aim of this research is to develop a comprehensive predictive model that accurately predicts electrical failures and voltage reliability in smart cities. This model integrates RFM analysis, K-means clustering, and LSTM networks to achieve this objective. The research utilizes RFM analysis, traditionally used in customer value assessment, to categorize and analyze electrical components based on their failure recency, frequency, and monetary impact. K-means clustering is employed to segment electrical components into distinct groups with similar characteristics and failure patterns. LSTM networks are used to capture the temporal dependencies and patterns in customer data. This integration of RFM, K-means, and LSTM results in a robust predictive tool for electrical failures and voltage reliability. The proposed model has been tested and validated on diverse electrical utility datasets. The results show a significant improvement in prediction accuracy and reliability compared to traditional methods, achieving an accuracy of 92.78% and an F1-score of 0.83. This research contributes to the proactive maintenance and optimization of electrical infrastructures in smart cities. It also enhances overall energy management and sustainability. The integration of advanced machine learning techniques in the predictive model demonstrates the potential for transforming the landscape of electrical system management within smart cities. The research utilizes diverse electrical utility datasets to develop and validate the predictive model. RFM analysis, K-means clustering, and LSTM networks are applied to these datasets to analyze and predict electrical failures and voltage reliability. The research addresses the question of how accurately electrical failures and voltage reliability can be predicted in smart cities. It also investigates the effectiveness of integrating RFM analysis, K-means clustering, and LSTM networks in achieving this goal. The proposed approach presents a distinct, efficient, and effective solution for predicting and mitigating electrical failures and voltage issues in smart cities. It significantly improves prediction accuracy and reliability compared to traditional methods. This advancement contributes to the proactive maintenance and optimization of electrical infrastructures, overall energy management, and sustainability in smart cities.Keywords: electrical state prediction, smart grids, data-driven method, long short-term memory, RFM, k-means, machine learning
Procedia PDF Downloads 6228628 Predictive Machine Learning Model for Assessing the Impact of Untreated Teeth Grinding on Gingival Recession and Jaw Pain
Authors: Joseph Salim
Abstract:
This paper proposes the development of a supervised machine learning system to predict the consequences of untreated bruxism (teeth grinding) on gingival (gum) recession and jaw pain (most often bilateral jaw pain with possible headaches and limited ability to open the mouth). As a general dentist in a multi-specialty practice, the author has encountered many patients suffering from these issues due to uncontrolled bruxism (teeth grinding) at night. The most effective treatment for managing this problem involves wearing a nightguard during sleep and receiving therapeutic Botox injections to relax the muscles (the masseter muscle) responsible for grinding. However, some patients choose to postpone these treatments, leading to potentially irreversible and costlier consequences in the future. The proposed machine learning model aims to track patients who forgo the recommended treatments and assess the percentage of individuals who will experience worsening jaw pain, gingival (gum) recession, or both within a 3-to-5-year timeframe. By accurately predicting these outcomes, the model seeks to motivate patients to address the root cause proactively, ultimately saving time and pain while improving quality of life and avoiding much costlier treatments such as full-mouth rehabilitation to help recover the loss of vertical dimension of occlusion due to shortened clinical crowns because of bruxism, gingival grafts, etc.Keywords: artificial intelligence, machine learning, predictive insights, bruxism, teeth grinding, therapeutic botox, nightguard, gingival recession, gum recession, jaw pain
Procedia PDF Downloads 9828627 Effective Verbal Disciplining Strategies to Deal with Classroom Misconduct in Primary Schools
Authors: Charity Okeke, Elizabeth Venter
Abstract:
Verbal discipline is one of the most regularly used disciplinary strategies to deal with classroom misconduct in schools globally. This study provides effective verbal discipline strategies to deal with classroom misconduct in primary schools. The study was qualitative research of ten teachers that took place in two South African primary schools. Data were collected through recorded semi-structured face-to-face interviews. The interview recordings were transcribed and analysed using content analysis. Findings from the study show that talking to learners in a calm and polite manner, raising one’s voice occasionally to show seriousness and disapproval of misconduct, engaging misbehaved learners in private talk to understand the reasons behind their unruly actions, verbal praise and rewards are effective in dealing with classroom misconduct. The study recommends that teachers should avoid shouting at learners and talk to them politely to get them to behave well in class. Teachers should avoid embarrassing misbehaving learners in the classroom but engage them privately to understand the reasons behind their unruly activities. Teachers should also use verbal praise and rewards such as well-done stickers to motivate learners to keep behaving well, as reinforcement is very important in the classroom. The study concludes that the verbal disciplining strategies mentioned above are effective in achieving a conducive teaching and learning atmosphere in the classroom.Keywords: classroom discipline, classroom misconduct, verbal discipline, verbal discipline strategies
Procedia PDF Downloads 19828626 Comparison of Cognitive Load in Virtual Reality and Conventional Simulation-Based Training: A Randomized Controlled Trial
Authors: Michael Wagner, Philipp Steinbauer, Andrea Katharina Lietz, Alexander Hoffelner, Johannes Fessler
Abstract:
Background: Cardiopulmonary resuscitations are stressful situations in which vital decisions must be made within seconds. Lack of routine due to the infrequency of pediatric emergencies can lead to serious medical and communication errors. Virtual reality can fundamentally change the way simulation training is conducted in the future. It appears to be a useful learning tool for technical and non-technical skills. It is important to investigate the use of VR in providing a strong sense of presence within simulations. Methods: In this randomized study, we will enroll doctors and medical students from the Medical University of Vienna, who will receive learning material regarding the resuscitation of a one-year-old child. The study will be conducted in three phases. In the first phase, 20 physicians and 20 medical students from the Medical University of Vienna will be included. They will perform simulation-based training with a standardized scenario of a critically ill child with a hypovolemic shock. The main goal of this phase is to establish a baseline for the following two phases to generate comparative values regarding cognitive load and stress. In phase 2 and 3, the same participants will perform the same scenario in a VR setting. In both settings, on three set points of progression, one of three predefined events is triggered. For each event, three different stress levels (easy, medium, difficult) will be defined. Stress and cognitive load will be analyzed using the NASA Task Load Index, eye-tracking parameters, and heart rate. Subsequently, these values will be compared between VR training and traditional simulation-based training. Hypothesis: We hypothesize that the VR training and the traditional training groups will not differ in physiological response (cognitive load, heart rate, and heart rate variability). We further assume that virtual reality training can be used as cost-efficient additional training. Objectives: The aim of this study is to measure cognitive load and stress level during a real-life simulation training and compare it with VR training in order to show that VR training evokes the same physiological response and cognitive load as real-life simulation training.Keywords: virtual reality, cognitive load, simulation, adaptive virtual reality training
Procedia PDF Downloads 11928625 Cultural Impact on Fairness Perception of Inequality: A Study on People With Chinese Roots Living in Germany
Authors: Yanping He-Ulbricht, Marc Oliver Rieger
Abstract:
Based on survey data collected from people with Chinese roots living in Germany, this paper examines the impact of assimilation degree and language priming (Chinese or German) on individuals’ perceived fairness of economic and social differences and their attitude towards these. The results show that both the language used and the length of time spent in a foreign culture have a significant impact. Subjects who had spent less than 10 years in Germany demonstrated a higher readiness to accept government intervention in markets with price limits than those who had lived there longer. Subjects who were asked and answered in German perceived the current economic situation as less fair and were also less inclined to accept inequality, even when it leads to a Pareto improvement. While the difference in fairness perception of inequality was a cultural effect, the difference in attitudes towards government intervention was rather a result of learning process. The findings imply that both learning processes of individuals and culture play an important role in perception and preferences regarding social and economic differences.Keywords: assimilation, bilingualism, cross-cultural comparison, income inequality, language priming, price fairness
Procedia PDF Downloads 9228624 Is There a Group of "Digital Natives" at Secondary Schools?
Authors: L. Janská, J. Kubrický
Abstract:
The article describes a research focused on the influence of the information and communication technology (ICT) on the pupils' learning. The investigation deals with the influences that distinguish between the group of pupils influenced by ICT and the group of pupils not influenced by ICT. The group influenced by ICT should evince a different approach in number of areas (in managing of two and more activities at once, in a quick orientation and searching for information on the Internet, in an ability to quickly and effectively assess the data sources, in the assessment of attitudes and opinions of the other users of the network, in critical thinking, in the preference to work in teams, in the sharing of information and personal data via the virtual social networking, in insisting on the immediate reaction on their every action etc.).Keywords: ICT influence, digital natives, pupil´s learning
Procedia PDF Downloads 29528623 Examining How Teachers’ Backgrounds and Perceptions for Technology Use Influence on Students’ Achievements
Authors: Zhidong Zhang, Amanda Resendez
Abstract:
This study is to examine how teachers’ perspective on education technology use in their class influence their students’ achievement. The authors hypothesized that teachers’ perspective can directly or indirectly influence students’ learning, performance, and achievements. In this study, a questionnaire entitled, Teacher’s Perspective on Educational Technology, was delivered to 63 teachers and 1268 students’ mathematics and reading achievement records were collected. The questionnaire consists of four parts: a) demographic variables, b) attitudes on technology integration, c) outside factor affecting technology integration, and d) technology use in the classroom. Kruskal-Wallis and hierarchical regression analysis techniques were used to examine: 1) the relationship between the demographic variables and teachers’ perspectives on educational technology, and 2) how the demographic variables were causally related to students’ mathematics and reading achievements. The study found that teacher demographics were significantly related to the teachers’ perspective on educational technology with p < 0.05 and p < 0.01 separately. These teacher demographical variables included the school district, age, gender, the grade currently teach, teaching experience, and proficiency using new technology. Further, these variables significantly predicted students’ mathematics and reading achievements with p < 0.05 and p < 0.01 separately. The variations of R² are between 0.176 and 0.467. That means 46.7% of the variance of a given analysis can be explained by the model.Keywords: teacher's perception of technology use, mathematics achievement, reading achievement, Kruskal-Wallis test, hierarchical regression analysis
Procedia PDF Downloads 13728622 Online Authenticity Verification of a Biometric Signature Using Dynamic Time Warping Method and Neural Networks
Authors: Gałka Aleksandra, Jelińska Justyna, Masiak Albert, Walentukiewicz Krzysztof
Abstract:
An offline signature is well-known however not the safest way to verify identity. Nowadays, to ensure proper authentication, i.e. in banking systems, multimodal verification is more widely used. In this paper the online signature analysis based on dynamic time warping (DTW) coupled with machine learning approaches has been presented. In our research signatures made with biometric pens were gathered. Signature features as well as their forgeries have been described. For verification of authenticity various methods were used including convolutional neural networks using DTW matrix and multilayer perceptron using sums of DTW matrix paths. System efficiency has been evaluated on signatures and signature forgeries collected on the same day. Results are presented and discussed in this paper.Keywords: dynamic time warping, handwritten signature verification, feature-based recognition, online signature
Procedia PDF Downloads 18128621 Arduino Robot Car Controlled via Android
Authors: Touil Issam, Bouraghda Skander
Abstract:
This paper elaborates on the comprehensive design, development, and evaluation of an Arduino-powered robot car operated through an Android-based application. The system is built upon an Arduino UNO microcontroller, leveraging Bluetooth technology to facilitate seamless communication between the robot and the Android control interface. The primary objective of the project is to provide users with an intuitive and interactive means to control autonomous systems while ensuring simplicity, cost-efficiency, and reliability. The architecture of the system encompasses hardware and software integration, where the microcontroller acts as the central processing unit, handling signals received via Bluetooth and translating them into precise motor commands. The Android application serves as a user-friendly interface, enabling real-time control of the robot's movement and functionality. This paper delves into the technical aspects of system architecture, including the hardware components, wiring schematics, and Bluetooth module integration. Additionally, it highlights the software development process, emphasizing the programming logic, algorithm design, and debugging techniques employed. Testing and validation phases are thoroughly documented, showcasing the system's performance under various conditions, including speed, maneuverability, and Bluetooth signal range. The results confirm the project's success in achieving its goals, offering a robust and accessible solution for educational and practical applications in robotics.Keywords: Arduino Robot, car, microcontroller, Bluetooth communication
Procedia PDF Downloads 1728620 Judicial Independence in Uzbekistan and the United States of America: Comparative-Legal Analysis
Authors: Botirjon Kosimov
Abstract:
This work sheds light on the reforms towards the independence of the judiciary in Uzbekistan, as well as issues of further ensuring judicial independence in the country based on international values, particularly the legal practice of the United States. In every democratic state infringed human rights are reinstated and violated laws are protected by the help of justice based on the strict principle of judicial independence. The realization of this principle in Uzbekistan has been paid much attention since the proclamation of its independence. In the country, a series of reforms have been implemented in the field of the judiciary in order to actualize the principle of judicial independence. Uzbekistan has been reforming the judiciary considering both international and national values and practice of foreign countries. While forming a democratic state based on civil society, Uzbekistan shares practice with the most developed countries in the world. The United States of America can be a clear example which is worth learning how to establish and ensure an independent judiciary. It seems that although Uzbekistan has reformed the judiciary efficiently, it should further reform considering the legal practice of the United States.Keywords: dependent judges, independent judges, judicial independence, judicial reforms, judicial life tenure, obstacles to judicial independence
Procedia PDF Downloads 26928619 Spoken Subcorpus of the Kazakh Language: History, Content, Methodology
Authors: Kuralay Bimoldaevna Kuderinova, Beisenkhan Samal
Abstract:
The history of creating a linguistic corpus in Kazakh linguistics begins only in 2016. Though within this short period of time, the linguistic corpus has become a national corpus and its several subcorpora, namely historical, cultural, spoken, dialectological, writers’ subcorpus, proverbs subcorpus and poetic texts subcorpus, have appeared and are working effectively. Among them, the spoken corpus has its own characteristics. The Kazakh language is one of the languages belonging to the Kypchak-Nogai group of Turkic peoples. The Kazakh language is a language that, as a part of the former Soviet Union, was directly influenced by the Russian language and underwent major changes in its spoken and written forms. After the Republic of Kazakhstan gained independence, the Kazakh language received the status of the state language in 1991. However, today, the prestige of the Russian language is still higher than that of the Kazakh language. Therefore, the direct influence of the Russian language on the structure, style, and vocabulary of the Kazakh language continues. In particular, it can be said that the national practice of the spoken language is disappearing, as the spoken form of Kazakh is not used in official gatherings and events of state importance. In this regard, it is very important to collect and preserve examples of spoken language. Recording exemplary spoken texts, converting them into written form, and providing their audio along with orphoepic explanations will serve as a valuable tool for teaching and learning the Kazakh language. Therefore, the report will cover interesting aspects and scientific foundations related to the creation, content, and methodology of the oral subcorpus of the Kazakh language.Keywords: spoken corpus, Kazakh language, orthoepic norm, LLM
Procedia PDF Downloads 1928618 Laban Movement Analysis Using Kinect
Authors: Bernstein Ran, Shafir Tal, Tsachor Rachelle, Studd Karen, Schuster Assaf
Abstract:
Laban Movement Analysis (LMA), developed in the dance community over the past seventy years, is an effective method for observing, describing, notating, and interpreting human movement to enhance communication and expression in everyday and professional life. Many applications that use motion capture data might be significantly leveraged if the Laban qualities will be recognized automatically. This paper presents an automated recognition method of Laban qualities from motion capture skeletal recordings and it is demonstrated on the output of Microsoft’s Kinect V2 sensor.Keywords: Laban movement analysis, multitask learning, Kinect sensor, machine learning
Procedia PDF Downloads 34528617 Saudi Teachers’ Perceptions of Rough and Tumble Play in Early Learning
Authors: Rana Alghamdi
Abstract:
This study explored teachers’ perceptions of rough-and-tumble (R&T) play in early childhood education in Saudi Arabia. The literature on rough-and-tumble play in Saudi Arabia is limited in scope, and more research is needed to explore teachers’ perceptions on this type of play for early learners. The pertinent literature reveals that R&T play, which includes running, jumping, fighting, wrestling, chasing, pulling, pushing, and climbing, among other rough playful activities, can positively impact learning and development across psychosocial, emotional, and cognitive domains. Teachers’ understanding of R & T play is key, and the attitudes of Saudi early childhood teachers who are responsible for implementing curriculum-based play have not been fully researched. Four early childhood teachers from an urban Saudi preschool participated in the study. The data collected in this study were interpreted through a sociocultural lens. Data sources included in-depth interviews, photo-elicitation interviews, and participant-generated drawings. Three overarching themes emerged: teachers’ concerns about rough-and-tumble play, teachers’ perceptions about the benefits of rough-and-tumble play, and teachers’ expression of gender roles in R & T play as contextualized within Saudi culture. Saudi teachers’ perceptions are discussed in detail, and implications of the findings and recommendations for future research are put forth.Keywords: rough and tumble play, gender, culture, early childhood, Saudi Arabia
Procedia PDF Downloads 13828616 On the Influence of Sleep Habits for Predicting Preterm Births: A Machine Learning Approach
Authors: C. Fernandez-Plaza, I. Abad, E. Diaz, I. Diaz
Abstract:
Births occurring before the 37th week of gestation are considered preterm births. A threat of preterm is defined as the beginning of regular uterine contractions, dilation and cervical effacement between 23 and 36 gestation weeks. To author's best knowledge, the factors that determine the beginning of the birth are not completely defined yet. In particular, the incidence of sleep habits on preterm births is weekly studied. The aim of this study is to develop a model to predict the factors affecting premature delivery on pregnancy, based on the above potential risk factors, including those derived from sleep habits and light exposure at night (introduced as 12 variables obtained by a telephone survey using two questionnaires previously used by other authors). Thus, three groups of variables were included in the study (maternal, fetal and sleep habits). The study was approved by Research Ethics Committee of the Principado of Asturias (Spain). An observational, retrospective and descriptive study was performed with 481 births between January 1, 2015 and May 10, 2016 in the University Central Hospital of Asturias (Spain). A statistical analysis using SPSS was carried out to compare qualitative and quantitative variables between preterm and term delivery. Chi-square test qualitative variable and t-test for quantitative variables were applied. Statistically significant differences (p < 0.05) between preterm vs. term births were found for primiparity, multi-parity, kind of conception, place of residence or premature rupture of membranes and interruption during nights. In addition to the statistical analysis, machine learning methods to look for a prediction model were tested. In particular, tree based models were applied as the trade-off between performance and interpretability is especially suitable for this study. C5.0, recursive partitioning, random forest and tree bag models were analysed using caret R-package. Cross validation with 10-folds and parameter tuning to optimize the methods were applied. In addition, different noise reduction methods were applied to the initial data using NoiseFiltersR package. The best performance was obtained by C5.0 method with Accuracy 0.91, Sensitivity 0.93, Specificity 0.89 and Precision 0.91. Some well known preterm birth factors were identified: Cervix Dilation, maternal BMI, Premature rupture of membranes or nuchal translucency analysis in the first trimester. The model also identifies other new factors related to sleep habits such as light through window, bedtime on working days, usage of electronic devices before sleeping from Mondays to Fridays or change of sleeping habits reflected in the number of hours, in the depth of sleep or in the lighting of the room. IF dilation < = 2.95 AND usage of electronic devices before sleeping from Mondays to Friday = YES and change of sleeping habits = YES, then preterm is one of the predicting rules obtained by C5.0. In this work a model for predicting preterm births is developed. It is based on machine learning together with noise reduction techniques. The method maximizing the performance is the one selected. This model shows the influence of variables related to sleep habits in preterm prediction.Keywords: machine learning, noise reduction, preterm birth, sleep habit
Procedia PDF Downloads 15328615 Comparison of Existing Predictor and Development of Computational Method for S- Palmitoylation Site Identification in Arabidopsis Thaliana
Authors: Ayesha Sanjana Kawser Parsha
Abstract:
S-acylation is an irreversible bond in which cysteine residues are linked to fatty acids palmitate (74%) or stearate (22%), either at the COOH or NH2 terminal, via a thioester linkage. There are several experimental methods that can be used to identify the S-palmitoylation site; however, since they require a lot of time, computational methods are becoming increasingly necessary. There aren't many predictors, however, that can locate S- palmitoylation sites in Arabidopsis Thaliana with sufficient accuracy. This research is based on the importance of building a better prediction tool. To identify the type of machine learning algorithm that predicts this site more accurately for the experimental dataset, several prediction tools were examined in this research, including the GPS PALM 6.0, pCysMod, GPS LIPID 1.0, CSS PALM 4.0, and NBA PALM. These analyses were conducted by constructing the receiver operating characteristics plot and the area under the curve score. An AI-driven deep learning-based prediction tool has been developed utilizing the analysis and three sequence-based input data, such as the amino acid composition, binary encoding profile, and autocorrelation features. The model was developed using five layers, two activation functions, associated parameters, and hyperparameters. The model was built using various combinations of features, and after training and validation, it performed better when all the features were present while using the experimental dataset for 8 and 10-fold cross-validations. While testing the model with unseen and new data, such as the GPS PALM 6.0 plant and pCysMod mouse, the model performed better, and the area under the curve score was near 1. It can be demonstrated that this model outperforms the prior tools in predicting the S- palmitoylation site in the experimental data set by comparing the area under curve score of 10-fold cross-validation of the new model with the established tools' area under curve score with their respective training sets. The objective of this study is to develop a prediction tool for Arabidopsis Thaliana that is more accurate than current tools, as measured by the area under the curve score. Plant food production and immunological treatment targets can both be managed by utilizing this method to forecast S- palmitoylation sites.Keywords: S- palmitoylation, ROC PLOT, area under the curve, cross- validation score
Procedia PDF Downloads 8528614 Value-Based Management Education Need of the Hour
Authors: Surendar Vaddepalli
Abstract:
Management education plays a crucial role to enable industry to cope with emerging challenges. It has spread in the last fifteen-twenty years in India and gained popularity as it was aimed at imbibing versatility and multi-tasking abilities in student community. Several management institutions started looking at upgrading their competencies in terms of faculty, research and industry interaction. The competitive business environment has been one of the drivers that paved the way for growing demand for management graduates in the employment market. Industry expects their executives to be engaged in a constant learning process. The ever-increasing demand for managers has led to establish more management institutions; however, the growth was not in line with the expectations from the industry. While top Business Schools are continuously changing the contents and delivery methodologies, academic standards of most of the other Business Schools are not up to the mark and quality of service provided by these institutes has opened various issues for discussion. On this back ground it is important to address the concerns of Indian management education experiencing with time and we have to rethink about the management education and efforts should be made to create a dynamic environment. This paper ties to study the current trends and tries to find out need for value based management education in India to rejuvenate it.Keywords: management education, management, value based management education, business school, India
Procedia PDF Downloads 38128613 Influence of Emotional Intelligence on Educational Supervision and Leadership Style in Saudi Arabia
Authors: Jawaher Bakheet Almudarra
Abstract:
An Educational Supervisor assists teachers to develop their competence and skills in teaching, solving educational problems, and to improve the teaching methods to suit the educational process. They evaluate their teachers and write reports based on their assessments. In 1957, the Saudi Ministry of Education instituted Educational Supervision to facilitate effective management of schools, however, there have been concerns that the Educational Supervision has not been effective in executing its mandate. Studies depicted that Educational supervision has not been effective because it has been marred by poor and autocratic leadership practices such as stringent inspection, commanding and judging. Therefore, there is need to consider some of the ways in which school outcomes can be enhanced through the improvement of Educational supervision practices. Emotional intelligence is a relatively new concept that can be integrated into the Saudi education system that is yet to be examined in-depth and embraced particularly in the realm of educational leadership. Its recognition and adoption may improve leadership practices among Educational supervisors. This study employed a qualitative interpretive approach that will focus on decoding, describing and interpreting the connection between emotional intelligence and leadership. The study also took into account the social constructions that include consciousness, language and shared meanings. The data collection took place in the Office of Educational Supervisors in Riyadh and involved 4 Educational supervisors and 20 teachers from both genders- male and female. The data collection process encompasses three methods namely; qualitative emotional intelligence self-assessment questionnaires, reflective semi-structured interviews, and open workshops. The questionnaires would explore whether the Educational supervisors understand the meaning of emotional intelligence and its significance in enhancing the quality of education system in Saudi Arabia. Subsequently, reflective semi-structured interviews were carried out with the Educational supervisors to explore the connection between their leadership styles and the way they conceptualise their emotionality. The open workshops will include discussions on emotional aspects of Educational supervisors’ practices and how Educational supervisors make use of the emotional intelligence discourse in their leadership and supervisory relationships.Keywords: directors of educational supervision, emotional intelligence, educational leadership, education management
Procedia PDF Downloads 43528612 Review of Studies on Agility in Knowledge Management
Authors: Ferdi Sönmez, Başak Buluz
Abstract:
Agility in Knowledge Management (AKM) tries to capture agility requirements and their respective answers within the framework of knowledge and learning for organizations. Since it is rather a new construct, it is difficult to claim that it has been sufficiently discussed and analyzed in practical and theoretical realms. Like the term ‘agile learning’, it is also commonly addressed in the software development and information technology fields and across the related areas where those technologies can be applied. The organizational perspective towards AKM, seems to need some more time to become scholarly mature. Nevertheless, in the literature one can come across some implicit usages of this term occasionally. This research is aimed to explore the conceptual background of agility in KM, re-conceptualize it and extend it to business applications with a special focus on e-business.Keywords: knowledge management, agility requirements, agility, knowledge
Procedia PDF Downloads 27028611 Data Mining in Medicine Domain Using Decision Trees and Vector Support Machine
Authors: Djamila Benhaddouche, Abdelkader Benyettou
Abstract:
In this paper, we used data mining to extract biomedical knowledge. In general, complex biomedical data collected in studies of populations are treated by statistical methods, although they are robust, they are not sufficient in themselves to harness the potential wealth of data. For that you used in step two learning algorithms: the Decision Trees and Support Vector Machine (SVM). These supervised classification methods are used to make the diagnosis of thyroid disease. In this context, we propose to promote the study and use of symbolic data mining techniques.Keywords: biomedical data, learning, classifier, algorithms decision tree, knowledge extraction
Procedia PDF Downloads 56428610 Automatic Calibration of Agent-Based Models Using Deep Neural Networks
Authors: Sima Najafzadehkhoei, George Vega Yon
Abstract:
This paper presents an approach for calibrating Agent-Based Models (ABMs) efficiently, utilizing Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks. These machine learning techniques are applied to Susceptible-Infected-Recovered (SIR) models, which are a core framework in the study of epidemiology. Our method replicates parameter values from observed trajectory curves, enhancing the accuracy of predictions when compared to traditional calibration techniques. Through the use of simulated data, we train the models to predict epidemiological parameters more accurately. Two primary approaches were explored: one where the number of susceptible, infected, and recovered individuals is fully known, and another using only the number of infected individuals. Our method shows promise for application in other ABMs where calibration is computationally intensive and expensive.Keywords: ABM, calibration, CNN, LSTM, epidemiology
Procedia PDF Downloads 3228609 Artificial Intelligence in Management Simulators
Authors: Nuno Biga
Abstract:
Artificial Intelligence (AI) has the potential to transform management into several impactful ways. It allows machines to interpret information to find patterns in big data and learn from context analysis, optimize operations, make predictions sensitive to each specific situation and support data-driven decision making. The introduction of an 'artificial brain' in organization also enables learning through complex information and data provided by those who train it, namely its users. The "Assisted-BIGAMES" version of the Accident & Emergency (A&E) simulator introduces the concept of a "Virtual Assistant" (VA) sensitive to context, that provides users useful suggestions to pursue the following operations such as: a) to relocate workstations in order to shorten travelled distances and minimize the stress of those involved; b) to identify in real time existing bottleneck(s) in the operations system so that it is possible to quickly act upon them; c) to identify resources that should be polyvalent so that the system can be more efficient; d) to identify in which specific processes it may be advantageous to establish partnership with other teams; and e) to assess possible solutions based on the suggested KPIs allowing action monitoring to guide the (re)definition of future strategies. This paper is built on the BIGAMES© simulator and presents the conceptual AI model developed and demonstrated through a pilot project (BIG-AI). Each Virtual Assisted BIGAME is a management simulator developed by the author that guides operational and strategic decision making, providing users with useful information in the form of management recommendations that make it possible to predict the actual outcome of different alternative management strategic actions. The pilot project developed incorporates results from 12 editions of the BIGAME A&E that took place between 2017 and 2022 at AESE Business School, based on the compilation of data that allows establishing causal relationships between decisions taken and results obtained. The systemic analysis and interpretation of data is powered in the Assisted-BIGAMES through a computer application called "BIGAMES Virtual Assistant" (VA) that players can use during the Game. Each participant in the VA permanently asks himself about the decisions he should make during the game to win the competition. To this end, the role of the VA of each team consists in guiding the players to be more effective in their decision making, through presenting recommendations based on AI methods. It is important to note that the VA's suggestions for action can be accepted or rejected by the managers of each team, as they gain a better understanding of the issues along time, reflect on good practice and rely on their own experience, capability and knowledge to support their own decisions. Preliminary results show that the introduction of the VA provides a faster learning of the decision-making process. The facilitator designated as “Serious Game Controller” (SGC) is responsible for supporting the players with further analysis. The recommended actions by the SGC may differ or be similar to the ones previously provided by the VA, ensuring a higher degree of robustness in decision-making. Additionally, all the information should be jointly analyzed and assessed by each player, who are expected to add “Emotional Intelligence”, an essential component absent from the machine learning process.Keywords: artificial intelligence, gamification, key performance indicators, machine learning, management simulators, serious games, virtual assistant
Procedia PDF Downloads 10828608 Debriefing Practices and Models: An Integrative Review
Authors: Judson P. LaGrone
Abstract:
Simulation-based education in curricula was once a luxurious component of nursing programs but now serves as a vital element of an individual’s learning experience. A debriefing occurs after the simulation scenario or clinical experience is completed to allow the instructor(s) or trained professional(s) to act as a debriefer to guide a reflection with a purpose of acknowledging, assessing, and synthesizing the thought process, decision-making process, and actions/behaviors performed during the scenario or clinical experience. Debriefing is a vital component of the simulation process and educational experience to allow the learner(s) to progressively build upon past experiences and current scenarios within a safe and welcoming environment with a guided dialog to enhance future practice. The aim of this integrative review was to assess current practices of debriefing models in simulation-based education for health care professionals and students. The following databases were utilized for the search: CINAHL Plus, Cochrane Database of Systemic Reviews, EBSCO (ERIC), PsycINFO (Ovid), and Google Scholar. The advanced search option was useful to narrow down the search of articles (full text, Boolean operators, English language, peer-reviewed, published in the past five years). Key terms included debrief, debriefing, debriefing model, debriefing intervention, psychological debriefing, simulation, simulation-based education, simulation pedagogy, health care professional, nursing student, and learning process. Included studies focus on debriefing after clinical scenarios of nursing students, medical students, and interprofessional teams conducted between 2015 and 2020. Common themes were identified after the analysis of articles matching the search criteria. Several debriefing models are addressed in the literature with similarities of effectiveness for participants in clinical simulation-based pedagogy. Themes identified included (a) importance of debriefing in simulation-based pedagogy, (b) environment for which debriefing takes place is an important consideration, (c) individuals who should conduct the debrief, (d) length of debrief, and (e) methodology of the debrief. Debriefing models supported by theoretical frameworks and facilitated by trained staff are vital for a successful debriefing experience. Models differed from self-debriefing, facilitator-led debriefing, video-assisted debriefing, rapid cycle deliberate practice, and reflective debriefing. A reoccurring finding was centered around the emphasis of continued research for systematic tool development and analysis of the validity and effectiveness of current debriefing practices. There is a lack of consistency of debriefing models among nursing curriculum with an increasing rate of ill-prepared faculty to facilitate the debriefing phase of the simulation.Keywords: debriefing model, debriefing intervention, health care professional, simulation-based education
Procedia PDF Downloads 14628607 The Power of Story in Demonstrating the Story of Power
Authors: Marianne Vardalos
Abstract:
Many students are returning to school after years of rich, lived experiences as parents, employees, volunteers, and in various other roles outside the university. While in the workforce or at home raising a family, they have gained authentic, personal observations of the power dynamics referred to as racism, classism, sexism, heteronormativity, and ableism. Encouraging your students to apply their own realities to course material that interrogates power structures and privilege not only facilitates student learning and understanding but also reveals that you, as a teacher, respect the experiences of your students as valuable and valid teaching tools. Though there is general recognition of the pedagogical value of having students share their experiences, facilitating such discussion can be a harrowing challenge for faculty. Additionally, for some students, the classroom can be very strange and too intimidating to share personal stories of injustice or inequality. In larger classroom settings, an attempt to integrate story-telling can turn into a cacophony of emotional testimonials. Not wanting to lose control of the class and feeling unqualified to respond to students' emotional confessions from their past, educators are often tempted to minimize the personal comments of students and avoid altogether an impromptu free-for-all. Knowing how and when to draw on the personal experience of your students involves a systematic plan for eliciting the most useful information at the right time. The trick is to design methods that induce student self-reflection in a way that is relevant to the course material and to then effectively incorporate these methods into lesson plans.Keywords: pedagogy, story-telling, power and inequality, hierarchies of power
Procedia PDF Downloads 9528606 Teachers' Design and Implementation of Collaborative Learning Tasks in Higher Education
Authors: Bing Xu, Kerry Lee, Jason M. Stephen
Abstract:
Collaborative learning (CL) has been regarded as a way to facilitate students to gain knowledge and improve social skills. In China, lecturers in higher education institutions have commonly adopted CL in their daily practice. However, such a strategy could not be effective when it is designed and applied in an inappropriate way. Previous research hardly focused on how CL was applied in Chinese universities. This present study aims to gain a deep understanding of how Chinese lecturers design and implement CL tasks. The researchers interviewed ten lecturers from different faculties in various universities in China and usedGroup Learning Activity Instructional Design (GLAID) framework to analyse the data. We found that not all lecturers pay enough attention to eight essential components (proposed by GLAID) when they designed CL tasks, especially the components of Structure and Guidance. Meanwhile, only a small part of lecturers made formative assessment to help students improve learning. We also discuss the strengths and limitations and CL design and further provide suggestions to the lecturers who intend to use CL in class. Research Objectives: The aims of the present research are threefold. We intend to 1) gain a deep understanding of how Chinese lecturers design and implement collaborative learning (CL) tasks, 2) find strengths and limitations of CL design in higher education, and 3) give suggestions about how to improve the design and implement. Research Methods: This research adopted qualitative methods. We applied the semi-structured interview method to interview ten Chinese lecturers about how they designed and implemented CL tasks in their courses. There were 9 questions in the interview protocol focusing on eight components of GLAID. Then, underpinning the GLAID framework, we utilized the coding reliability thematic analysis method to analyse the research data. The coding work was done by two PhD students whose research fields are CL, and the Cohen’s Kappa was 0.772 showing the inter-coder reliability was good. Contribution: Though CL has been commonly adopted in China, few studies have paid attention to the details about how lecturers designed and implemented CL tasks in practice. This research addressed such a gap and found not lecturers were aware of how to design CL and felt it difficult to structure the task and guide the students on collaboration, and further ensure student engagement in CL. In summary, this research advocates for teacher training; otherwise, students may not gain the expected learning outcomes.Keywords: collaborative learning, higher education, task design, GLAID framework
Procedia PDF Downloads 10228605 Attributes That Influence Respondents When Choosing a Mate in Internet Dating Sites: An Innovative Matching Algorithm
Authors: Moti Zwilling, Srečko Natek
Abstract:
This paper aims to present an innovative predictive analytics analysis in order to find the best combination between two consumers who strive to find their partner or in internet sites. The methodology shown in this paper is based on analysis of consumer preferences and involves data mining and machine learning search techniques. The study is composed of two parts: The first part examines by means of descriptive statistics the correlations between a set of parameters that are taken between man and women where they intent to meet each other through the social media, usually the internet. In this part several hypotheses were examined and statistical analysis were taken place. Results show that there is a strong correlation between the affiliated attributes of man and woman as long as concerned to how they present themselves in a social media such as "Facebook". One interesting issue is the strong desire to develop a serious relationship between most of the respondents. In the second part, the authors used common data mining algorithms to search and classify the most important and effective attributes that affect the response rate of the other side. Results exhibit that personal presentation and education background are found as most affective to achieve a positive attitude to one's profile from the other mate.Keywords: dating sites, social networks, machine learning, decision trees, data mining
Procedia PDF Downloads 29928604 An AI-generated Semantic Communication Platform in HCI Course
Authors: Yi Yang, Jiasong Sun
Abstract:
Almost every aspect of our daily lives is now intertwined with some degree of human-computer interaction (HCI). HCI courses draw on knowledge from disciplines as diverse as computer science, psychology, design principles, anthropology, and more. Our HCI courses, named the Media and Cognition course, are constantly updated to reflect state-of-the-art technological advancements such as virtual reality, augmented reality, and artificial intelligence-based interactions. For more than a decade, our course has used an interest-based approach to teaching, in which students proactively propose some research-based questions and collaborate with teachers, using course knowledge to explore potential solutions. Semantic communication plays a key role in facilitating understanding and interaction between users and computer systems, ultimately enhancing system usability and user experience. The advancements in AI-generated technology, which have gained significant attention from both academia and industry in recent years, are exemplified by language models like GPT-3 that generate human-like dialogues from given prompts. Our latest version of the Human-Computer Interaction course practices a semantic communication platform based on AI-generated techniques. The purpose of this semantic communication is twofold: to extract and transmit task-specific information while ensuring efficient end-to-end communication with minimal latency. An AI-generated semantic communication platform evaluates the retention of signal sources and converts low-retain ability visual signals into textual prompts. These data are transmitted through AI-generated techniques and reconstructed at the receiving end; on the other hand, visual signals with a high retain ability rate are compressed and transmitted according to their respective regions. The platform and associated research are a testament to our students' growing ability to independently investigate state-of-the-art technologies.Keywords: human-computer interaction, media and cognition course, semantic communication, retainability, prompts
Procedia PDF Downloads 12528603 Model of Optimal Centroids Approach for Multivariate Data Classification
Authors: Pham Van Nha, Le Cam Binh
Abstract:
Particle swarm optimization (PSO) is a population-based stochastic optimization algorithm. PSO was inspired by the natural behavior of birds and fish in migration and foraging for food. PSO is considered as a multidisciplinary optimization model that can be applied in various optimization problems. PSO’s ideas are simple and easy to understand but PSO is only applied in simple model problems. We think that in order to expand the applicability of PSO in complex problems, PSO should be described more explicitly in the form of a mathematical model. In this paper, we represent PSO in a mathematical model and apply in the multivariate data classification. First, PSOs general mathematical model (MPSO) is analyzed as a universal optimization model. Then, Model of Optimal Centroids (MOC) is proposed for the multivariate data classification. Experiments were conducted on some benchmark data sets to prove the effectiveness of MOC compared with several proposed schemes.Keywords: analysis of optimization, artificial intelligence based optimization, optimization for learning and data analysis, global optimization
Procedia PDF Downloads 21328602 Students’ Level of Knowledge Construction and Pattern of Social Interaction in an Online Forum
Authors: K. Durairaj, I. N. Umar
Abstract:
The asynchronous discussion forum is one of the most widely used activities in learning management system environment. Online forum allows participants to interact, construct knowledge, and can be used to complement face to face sessions in blended learning courses. However, to what extent do the students perceive the benefits or advantages of forum remain to be seen. Through content and social network analyses, instructors will be able to gauge the students’ engagement and knowledge construction level. Thus, this study aims to analyze the students’ level of knowledge construction and their participation level that occur through online discussion. It also attempts to investigate the relationship between the level of knowledge construction and their social interaction patterns. The sample involves 23 students undertaking a master course in one public university in Malaysia. The asynchronous discussion forum was conducted for three weeks as part of the course requirement. The finding indicates that the level of knowledge construction is quite low. Also, the density value of 0.11 indicating that the overall communication among the participants in the forum is low. This study reveals that strong and significant correlations between SNA measures (in-degree centrality, out-degree centrality) and level of knowledge construction. Thus, allocating these active students in a different groups aids the interactive discussion takes place. Finally, based upon the findings, some recommendations to increase students’ level of knowledge construction and also for further research are proposed.Keywords: asynchronous discussion forums, content analysis, knowledge construction, social network analysis
Procedia PDF Downloads 37828601 Factors Influencing Soil Organic Carbon Storage Estimation in Agricultural Soils: A Machine Learning Approach Using Remote Sensing Data Integration
Authors: O. Sunantha, S. Zhenfeng, S. Phattraporn, A. Zeeshan
Abstract:
The decline of soil organic carbon (SOC) in global agriculture is a critical issue requiring rapid and accurate estimation for informed policymaking. While it is recognized that SOC predictors vary significantly when derived from remote sensing data and environmental variables, identifying the specific parameters most suitable for accurately estimating SOC in diverse agricultural areas remains a challenge. This study utilizes remote sensing data to precisely estimate SOC and identify influential factors in diverse agricultural areas, such as paddy, corn, sugarcane, cassava, and perennial crops. Extreme gradient boosting (XGBoost), random forest (RF), and support vector regression (SVR) models are employed to analyze these factors' impact on SOC estimation. The results show key factors influencing SOC estimation include slope, vegetation indices (EVI), spectral reflectance indices (red index, red edge2), temperature, land use, and surface soil moisture, as indicated by their averaged importance scores across XGBoost, RF, and SVR models. Therefore, using different machine learning algorithms for SOC estimation reveals varying influential factors from remote sensing data and environmental variables. This approach emphasizes feature selection, as different machine learning algorithms identify various key factors from remote sensing data and environmental variables for accurate SOC estimation.Keywords: factors influencing SOC estimation, remote sensing data, environmental variables, machine learning
Procedia PDF Downloads 43