Search results for: 99.95% IoT data transmission savings
21979 Determining a Suitable Maintenance Measure for Gentelligent Components Using Case-Based Reasoning
Authors: Maximilian Winkens, Peter Nyhuis
Abstract:
Components with sensory properties such as gentelligent components developed at the Collaborative Research Center 653 offer a new angle on the full utilization of the remaining service life in case of a preventive maintenance. The developed methodology of component status driven maintenance analyses the stress data obtained during the component's useful life and on the basis of this knowledge assesses the type of maintenance called for in this case. The procedure is derived from the case-based reasoning method and will be elucidated in detail. The method's functionality is demonstrated with real-life data obtained during test runs of a racing car prototype.Keywords: gentelligent component, preventive maintenance, case-based reasoning, sensory
Procedia PDF Downloads 36221978 Assessing the Incapacity of Indonesian Aviators Medical Conditions in 2016 – 2017
Authors: Ferdi Afian, Inne Yuliawati
Abstract:
Background: The change in causes of death from infectious diseases to non-communicable diseases also occurs in the aviation community in Indonesia. Non-communicable diseases are influenced by several internal risk factors, such as age, lifestyle changes and the presence of other diseases. These risk factors will increase the incidence of heart diseases resulting in the incapacity of Indonesian aviators which will disrupt flight safety. Method: The study was conducted by collecting secondary data. The retrieval of primary data was obtained from medical records at the Indonesian Aviation Health Center in 2016-2017. The subjects in this study were all cases of incapacity in Indonesian aviators medical conditions. Results: In this study, there were 15 cases of aviators in Indonesia who experienced incapacity of medical conditions related to heart and lung diseases in 2016-2017. Based on the secondary data contained in the flight medical records at the Aviation Health Center Aviation, it was found that several factors related to aviators incapacity causing its inability to carried out flight duties. Conclusion: Incapacity of Indonesian aviators medical conditions are most affected by the high value of Body Mass Index (86%) and less affected by high of Uric Acid in the blood (26%) and Hyperglycemia (26%).Keywords: incapacity, aviators, flight, Indonesia
Procedia PDF Downloads 13421977 Supramolecular Approach towards Novel Applications: Battery, Band Gap and Gas Separation
Authors: Sudhakara Naidu Neppalli, Tejas S. Bhosale
Abstract:
It is well known that the block copolymer (BCP) can form a complex molecule, through non-covalent bonds such as hydrogen bond, ionic bond and co-ordination bond, with low molecular weight compound as well as with macromolecules, which provide vast applications, includes the alteration of morphology and properties of polymers. Hence we covered the research that, the importance of non-covalent bonds in increasing the non-favourable segmental interactions of the blocks was well examined by attaching and detaching the bonds between the BCP and additive. We also monitored the phase transition of block copolymer and effective interaction parameter (χeff) for Li-doped polymers using small angle x-ray scattering and transmission electron microscopy. The effective interaction parameter (χeff) between two block components was evaluated using Leibler theory based on the incompressible random phase approximation (RPA) for ionized BCP in a disordered state. Furthermore, conductivity experiments demonstrate that the ionic conductivity in the samples quenched from the different structures is morphology-independent, while it increases with increasing ion salt concentration. Morphological transitions, interaction parameter, and thermal stability also examined in quarternized block copolymer. D-spacing was used to estimate effective interaction parameter (χeff) of block components in weak and strong segregation regimes of ordered phase. Metal-containing polymer has been the topic of great attention in recent years due to their wide range of potential application. Similarly, metal- ligand complex is used as a supramolecular linker between the polymers giving rise to a ‘Metallo-Supramolecule assembly. More precisely, functionalized polymer end capped with 2, 2’:6’, 2”- terpyridine ligand can be selectively complexed with wide range of transition metal ions and then subsequently attached to other terpyridine terminated polymer block. In compare to other supramolecular assembly, BCP involved metallo-supramolecule assembly offers vast applications such as optical activity, electrical conductivity, luminescence and photo refractivity.Keywords: band gap, block copolymer, conductivity, interaction parameter, phase transition
Procedia PDF Downloads 16921976 Tuberculosis in Humans and Animals in the Eastern Part of the Sudan
Authors: Yassir Adam Shuaib, Stefan Niemann, Eltahir Awad Khalil, Ulrich Schaible, Lothar Heinz Wieler, Mohammed Ahmed Bakhiet, Abbashar Osman Mohammed, Mohamed Abdelsalam Abdalla, Elvira Richter
Abstract:
Tuberculosis (TB) is a chronic bacterial disease of humans and animals and it is characterized by the progressive development of specific granulomatous tubercle lesions in affected tissues. In a six-month study, from June to November 2014, a total of 2,304 carcasses of cattle, camel, sheep, and goats slaughtered at East and West Gaash slaughterhouses, Kassala, were investigated during postmortem, in parallel, 101 sputum samples from TB suspected patients at Kassala and El-Gadarif Teaching Hospitals were collected in order to investigate tuberculosis in animals and humans. Only 0.1% carcasses were found with suspected TB lesions in the liver and lung and peritoneal cavity of two sheep and no tuberculous lesions were found in the carcasses of cattle, goats or camels. All samples, tissue lesions and sputum, were decontaminated by the NALC-NaOH method and cultured for mycobacterial growth at the NRZ for Mycobacteria, Research Center Borstel, Germany. Genotyping and molecular characterization of the grown strains were done by line probe assay (GenoType CM and MTBC) and 16S rDNA, rpoB gene, and ITS sequencing, spoligotyping, MIRU-VNTR typing and next generation sequencing (NGS). Culture of the specimens revealed growth of organisms from 81.6% of all samples. Mycobacterium tuberculosis (76.2%), M. intracellulare (14.2%), mixed infection with M. tuberculosis and M. intracellulare (6.0%) and mixed infection with M. tuberculosis and M. fortuitum and with M. intracellulare and unknown species (1.2%) were detected in the sputum samples and unknown species (1.2%) were detected in the samples of one of the animals tissues. From the 69 M. tuberculosis strains, 25 (36.2%) were showing either mono-drug-resistant or multi-drug-resistant or poly-drug-resistant but none was extensively drug-resistant. In conclusion, the prevalence of TB in animals was very low while in humans M. tuberculosis-Delhi/CAS lineage was responsible for most cases and there was an evidence of MDR transmission and acquisition.Keywords: animal, human, slaughterhouse, Sudan, tuberculosis
Procedia PDF Downloads 36921975 Applying a Noise Reduction Method to Reveal Chaos in the River Flow Time Series
Authors: Mohammad H. Fattahi
Abstract:
Chaotic analysis has been performed on the river flow time series before and after applying the wavelet based de-noising techniques in order to investigate the noise content effects on chaotic nature of flow series. In this study, 38 years of monthly runoff data of three gauging stations were used. Gauging stations were located in Ghar-e-Aghaj river basin, Fars province, Iran. The noise level of time series was estimated with the aid of Gaussian kernel algorithm. This step was found to be crucial in preventing removal of the vital data such as memory, correlation and trend from the time series in addition to the noise during de-noising process.Keywords: chaotic behavior, wavelet, noise reduction, river flow
Procedia PDF Downloads 46821974 An Enhanced MEIT Approach for Itemset Mining Using Levelwise Pruning
Authors: Tanvi P. Patel, Warish D. Patel
Abstract:
Association rule mining forms the core of data mining and it is termed as one of the well-known methodologies of data mining. Objectives of mining is to find interesting correlations, frequent patterns, associations or casual structures among sets of items in the transaction databases or other data repositories. Hence, association rule mining is imperative to mine patterns and then generate rules from these obtained patterns. For efficient targeted query processing, finding frequent patterns and itemset mining, there is an efficient way to generate an itemset tree structure named Memory Efficient Itemset Tree. Memory efficient IT is efficient for storing itemsets, but takes more time as compare to traditional IT. The proposed strategy generates maximal frequent itemsets from memory efficient itemset tree by using levelwise pruning. For that firstly pre-pruning of items based on minimum support count is carried out followed by itemset tree reconstruction. By having maximal frequent itemsets, less number of patterns are generated as well as tree size is also reduced as compared to MEIT. Therefore, an enhanced approach of memory efficient IT proposed here, helps to optimize main memory overhead as well as reduce processing time.Keywords: association rule mining, itemset mining, itemset tree, meit, maximal frequent pattern
Procedia PDF Downloads 37121973 A Hybrid Multi-Criteria Hotel Recommender System Using Explicit and Implicit Feedbacks
Authors: Ashkan Ebadi, Adam Krzyzak
Abstract:
Recommender systems, also known as recommender engines, have become an important research area and are now being applied in various fields. In addition, the techniques behind the recommender systems have been improved over the time. In general, such systems help users to find their required products or services (e.g. books, music) through analyzing and aggregating other users’ activities and behavior, mainly in form of reviews, and making the best recommendations. The recommendations can facilitate user’s decision making process. Despite the wide literature on the topic, using multiple data sources of different types as the input has not been widely studied. Recommender systems can benefit from the high availability of digital data to collect the input data of different types which implicitly or explicitly help the system to improve its accuracy. Moreover, most of the existing research in this area is based on single rating measures in which a single rating is used to link users to items. This paper proposes a highly accurate hotel recommender system, implemented in various layers. Using multi-aspect rating system and benefitting from large-scale data of different types, the recommender system suggests hotels that are personalized and tailored for the given user. The system employs natural language processing and topic modelling techniques to assess the sentiment of the users’ reviews and extract implicit features. The entire recommender engine contains multiple sub-systems, namely users clustering, matrix factorization module, and hybrid recommender system. Each sub-system contributes to the final composite set of recommendations through covering a specific aspect of the problem. The accuracy of the proposed recommender system has been tested intensively where the results confirm the high performance of the system.Keywords: tourism, hotel recommender system, hybrid, implicit features
Procedia PDF Downloads 27221972 Copper Phthalocyanine Nanostructures: A Potential Material for Field Emission Display
Authors: Uttam Kumar Ghorai, Madhupriya Samanta, Subhajit Saha, Swati Das, Nilesh Mazumder, Kalyan Kumar Chattopadhyay
Abstract:
Organic semiconductors have gained potential interest in the last few decades for their significant contributions in the various fields such as solar cell, non-volatile memory devices, field effect transistors and light emitting diodes etc. The most important advantages of using organic materials are mechanically flexible, light weight and low temperature depositing techniques. Recently with the advancement of nanoscience and technology, one dimensional organic and inorganic nanostructures such as nanowires, nanorods, nanotubes have gained tremendous interests due to their very high aspect ratio and large surface area for electron transport etc. Among them, self-assembled organic nanostructures like Copper, Zinc Phthalocyanine have shown good transport property and thermal stability due to their π conjugated bonds and π-π stacking respectively. Field emission properties of inorganic and carbon based nanostructures are reported in literatures mostly. But there are few reports in case of cold cathode emission characteristics of organic semiconductor nanostructures. In this work, the authors report the field emission characteristics of chemically and physically synthesized Copper Phthalocyanine (CuPc) nanostructures such as nanowires, nanotubes and nanotips. The as prepared samples were characterized by X-Ray diffraction (XRD), Ultra Violet Visible Spectrometer (UV-Vis), Fourier Transform Infra-red Spectroscopy (FTIR), and Field Emission Scanning Electron Microscope (FESEM) and Transmission Electron Microscope (TEM). The field emission characteristics were measured in our home designed field emission set up. The registered turn-on field and local field enhancement factor are found to be less than 5 V/μm and greater than 1000 respectively. The field emission behaviour is also stable for 200 minute. The experimental results are further verified by theoretically using by a finite displacement method as implemented in ANSYS Maxwell simulation package. The obtained results strongly indicate CuPc nanostructures to be the potential candidate as an electron emitter for field emission based display device applications.Keywords: organic semiconductor, phthalocyanine, nanowires, nanotubes, field emission
Procedia PDF Downloads 50121971 Performance Comparison of Outlier Detection Techniques Based Classification in Wireless Sensor Networks
Authors: Ayadi Aya, Ghorbel Oussama, M. Obeid Abdulfattah, Abid Mohamed
Abstract:
Nowadays, many wireless sensor networks have been distributed in the real world to collect valuable raw sensed data. The challenge is to extract high-level knowledge from this huge amount of data. However, the identification of outliers can lead to the discovery of useful and meaningful knowledge. In the field of wireless sensor networks, an outlier is defined as a measurement that deviates from the normal behavior of sensed data. Many detection techniques of outliers in WSNs have been extensively studied in the past decade and have focused on classic based algorithms. These techniques identify outlier in the real transaction dataset. This survey aims at providing a structured and comprehensive overview of the existing researches on classification based outlier detection techniques as applicable to WSNs. Thus, we have identified key hypotheses, which are used by these approaches to differentiate between normal and outlier behavior. In addition, this paper tries to provide an easier and a succinct understanding of the classification based techniques. Furthermore, we identified the advantages and disadvantages of different classification based techniques and we presented a comparative guide with useful paradigms for promoting outliers detection research in various WSN applications and suggested further opportunities for future research.Keywords: bayesian networks, classification-based approaches, KPCA, neural networks, one-class SVM, outlier detection, wireless sensor networks
Procedia PDF Downloads 49621970 Customer Preference in the Textile Market: Fabric-Based Analysis
Authors: Francisca Margarita Ocran
Abstract:
Underwear, and more particularly bras and panties, are defined as intimate clothing. Strictly speaking, they enhance the place of women in the public or private satchel. Therefore, women's lingerie is a complex garment with a high involvement profile, motivating consumers to buy it not only by its functional utility but also by the multisensory experience it provides them. Customer behavior models are generally based on customer data mining, and each model is designed to answer questions at a specific time. Predicting the customer experience is uncertain and difficult. Thus, knowledge of consumers' tastes in lingerie deserves to be treated as an experiential product, where the dimensions of the experience motivating consumers to buy a lingerie product and to remain faithful to it must be analyzed in detail by the manufacturers and retailers to engage and retain consumers, which is why this research aims to identify the variables that push consumers to choose their lingerie product, based on an in-depth analysis of the types of fabrics used to make lingerie. The data used in this study comes from online purchases. Machine learning approach with the use of Python programming language and Pycaret gives us a precision of 86.34%, 85.98%, and 84.55% for the three algorithms to use concerning the preference of a buyer in front of a range of lingerie. Gradient Boosting, random forest, and K Neighbors were used in this study; they are very promising and rich in the classification of preference in the textile industry.Keywords: consumer behavior, data mining, lingerie, machine learning, preference
Procedia PDF Downloads 9021969 Prospective Teachers’ Metacognitive Awareness and Goal Orientation as Predictors of Academic Success
Authors: Gidado Lawal Likko
Abstract:
The study examined the relationship of achievement goals, metacognitive awareness and academic success among students of colleges of education in North Western Nigeria. The study was guided by three objectives. The first two were to find out whether students’ achievement goals and metacognitive awareness correlate with their academic success. 358 students comprising 242 males (67.6%) and 116 females (32.4%) were studied. Correlation survey was employed in the conduct of the study. The instruments used to collect data were students’ bio data form, achievement goals inventory (Roedel, Schraw and Plake, 1994), metacognitive awareness inventory (Schraw & Dennison, 1994) and students’ CGPA (NCCE minimum standard, 2013) was used as the index of academic success. Pearson Product Moment and regression analysis were the statistical techniques used to analyze the data. Results of the analysis indicated that students’ achievement goals (r=0.554, p=0.004) and metacognitive awareness (r= 0.67, p=0.001) positively correlated with their academic success. Similarly, significant relationship exists between achievement goals and metacognitive awareness (r=0.77, p=0.000). Part of the recommendations is the need for the management of all colleges of education to have educational interventions aimed at developing students’ metacognitive awareness which will foster purposeful self-regulation of their learning. This could be achieved by periodic assessment of students’ metacognitive awareness which will serve as feedback as they move from one educational level to another.Keywords: academic success, goal orientation, metacognitive awareness, prospective teachers
Procedia PDF Downloads 23021968 The Role of Transport Investment and Enhanced Railway Accessibility in Regional Efficiency Improvement in Saudi Arabia: Data Envelopment Analysis
Authors: Saleh Alotaibi, Mohammed Quddus, Craig Morton, Jobair Bin Alam
Abstract:
This paper explores the role of large-scale investment in transport sectors and the impact of increased railway accessibility on the efficiency of the regional economic productivity in the Kingdom of Saudi Arabia (KSA). There are considerable differences among the KSA regions in terms of their levels of investment and productivity due to their geographical scale and location, which in turn greatly affect their relative efficiency. The study used a non-parametric linear programming technique - Data Envelopment Analysis (DEA) - to measure the regional efficiency change over time and determine the drivers of inefficiency and their scope of improvement. In addition, Window DEA analysis is carried out to compare the efficiency performance change for various time periods. Malmquist index (MI) is also analyzed to identify the sources of productivity change between two subsequent years. The analysis involves spatial and temporal panel data collected from 1999 to 2018 for the 13 regions of the country. Outcomes reveal that transport investment and improved railway accessibility, in general, have significantly contributed to regional economic development. Moreover, the endowment of the new railway stations has spill-over effects. The DEA Window analysis confirmed the dynamic improvement in the average regional efficiency over the study periods. MI showed that the technical efficiency change was the main source of regional productivity improvement. However, there is evidence of investment allocation discrepancy among regions which could limit the achievement of development goals in the long term. These relevant findings will assist the Saudi government in developing better strategic decisions for future transport investments and their allocation at the regional level.Keywords: data envelopment analysis, transport investment, railway accessibility, efficiency
Procedia PDF Downloads 14921967 Performance Study of ZigBee-Based Wireless Sensor Networks
Authors: Afif Saleh Abugharsa
Abstract:
The IEEE 802.15.4 standard is designed for low-rate wireless personal area networks (LR-WPAN) with focus on enabling wireless sensor networks. It aims to give a low data rate, low power consumption, and low cost wireless networking on the device-level communication. The objective of this study is to investigate the performance of IEEE 802.15.4 based networks using simulation tool. In this project the network simulator 2 NS2 was used to several performance measures of wireless sensor networks. Three scenarios were considered, multi hop network with a single coordinator, star topology, and an ad hoc on demand distance vector AODV. Results such as packet delivery ratio, hop delay, and number of collisions are obtained from these scenarios.Keywords: ZigBee, wireless sensor networks, IEEE 802.15.4, low power, low data rate
Procedia PDF Downloads 43321966 Arteriosclerosis and Periodontitis: Correlation Expressed in the Amount of Fibrinogen in Blood
Authors: Nevila Alliu, Saimir Heta, Ilma Robo, Vera Ostreni
Abstract:
Periodontitis as an oral pathology caused by specific bacterial flora functions as a focal infection for the onset and aggravation of arteriosclerosis. These two distant pathologies, since they affect organs at a distance from each other, communicate with each other with correlation at the level of markers of inflammation in the blood. Fluctuations in the level of fibrinogen in the blood, depending on the active or passive phase of the existing periodontitis, affect the promotion of arteriosclerosis. The study is of the review type to analyze the effect of non-surgical periodontal treatment on fluctuations in the level of fibrinogen in the blood. The reduction of fibrinogen levels in the blood after non-surgical periodontal treatment of periodontitis in the patient's cavity is visible data and supported by literature sources. Also, the influence of a high amount of fibrinogen in the blood on the occurrence of arteriosclerosis is also another important data that again relies on many sources of literature. Conclusions: Thromboembolism and arteriosclerosis, as risk factors expressed in clinical data, have temporary bacteremia in the blood, which can occur significantly and often between phases of non-surgical periodontal treatment of periodontitis, treatments performed with treatment phases and protocols of predetermined treatment. Arterial thromboembolism has a significant factor, such as high levels of fibrinogen in the blood, which are significantly reduced during the period of non-surgical periodontal treatment.Keywords: fibrinogen, refractory periodontitis, atherosclerosis, non-surgical, periodontal treatment
Procedia PDF Downloads 10821965 Patterns and Effects of International Trade in Technology: Firm-Level Evidence
Authors: Heeyong Noh, Seongryong Kang, Sungjoo Lee
Abstract:
As the world becomes increasingly interconnected, firms have tried to explore market opportunities not only in the domestic market but also abroad. In particular, transactions of intangible assets in the global market now take on great importance. Accordingly, technology transfer activities such as patent licensing, copyright transfer, or workforce trainings which are considered significant to leverage an organization’s internal capabilities, are occurring more frequently and briskly across the world than ever before. Though a number of studies have addressed the issues regarding technology transfer, most of them have focused on university-industry technology transfer. Of course, some have investigated international technology transfer phenomenon but used patent citations data as a proxy. In order to understand the phenomena more clearly, it would be necessary to collect and analyze data that can measure technology transfer activities between firms more directly. Therefore, this study aims to examine the patterns of international trade in technology by employing data about international technology in-licensing activities in Korean firms. We also investigate the effect of international technology in-licensing strategy on a firm’s innovation performance. The research findings are expected to help R&D managers understand how firms have absorbed technological knowledge from foreign firms in the form of licensing and further develop effective international collaboration strategies. In addition, significant implications can be offered for political decision-making regarding technology trade within increasing international interconnections.Keywords: international technology trade, technology trade effect, technology transfer, R&D managers
Procedia PDF Downloads 37821964 De-Novo Structural Elucidation from Mass/NMR Spectra
Authors: Ismael Zamora, Elisabeth Ortega, Tatiana Radchenko, Guillem Plasencia
Abstract:
The structure elucidation based on Mass Spectra (MS) data of unknown substances is an unresolved problem that affects many different fields of application. The recent overview of software available for structure elucidation of small molecules has shown the demand for efficient computational tool that will be able to perform structure elucidation of unknown small molecules and peptides. We developed an algorithm for De-Novo fragment analysis based on MS data that proposes a set of scored and ranked structures that are compatible with the MS and MSMS spectra. Several different algorithms were developed depending on the initial set of fragments and the structure building processes. Also, in all cases, several scores for the final molecule ranking were computed. They were validated with small and middle databases (DB) with the eleven test set compounds. Similar results were obtained from any of the databases that contained the fragments of the expected compound. We presented an algorithm. Or De-Novo fragment analysis based on only mass spectrometry (MS) data only that proposed a set of scored/ranked structures that was validated on different types of databases and showed good results as proof of concept. Moreover, the solutions proposed by Mass Spectrometry were submitted to the prediction of NMR spectra in order to elucidate which of the proposed structures was compatible with the NMR spectra collected.Keywords: De Novo, structure elucidation, mass spectrometry, NMR
Procedia PDF Downloads 29521963 Emerging Research Trends in Routing Protocol for Wireless Sensor Network
Authors: Subhra Prosun Paul, Shruti Aggarwal
Abstract:
Now a days Routing Protocol in Wireless Sensor Network has become a promising technique in the different fields of the latest computer technology. Routing in Wireless Sensor Network is a demanding task due to the different design issues of all sensor nodes. Network architecture, no of nodes, traffic of routing, the capacity of each sensor node, network consistency, service value are the important factor for the design and analysis of Routing Protocol in Wireless Sensor Network. Additionally, internal energy, the distance between nodes, the load of sensor nodes play a significant role in the efficient routing protocol. In this paper, our intention is to analyze the research trends in different routing protocols of Wireless Sensor Network in terms of different parameters. In order to explain the research trends on Routing Protocol in Wireless Sensor Network, different data related to this research topic are analyzed with the help of Web of Science and Scopus databases. The data analysis is performed from global perspective-taking different parameters like author, source, document, country, organization, keyword, year, and a number of the publication. Different types of experiments are also performed, which help us to evaluate the recent research tendency in the Routing Protocol of Wireless Sensor Network. In order to do this, we have used Web of Science and Scopus databases separately for data analysis. We have observed that there has been a tremendous development of research on this topic in the last few years as it has become a very popular topic day by day.Keywords: analysis, routing protocol, research trends, wireless sensor network
Procedia PDF Downloads 21521962 Treatment of Municipal Wastewater by Means of Uv-Assisted Irradiation Technologies: Fouling Studies and Optimization of Operational Parameters
Authors: Tooba Aslam, Efthalia Chatzisymeon
Abstract:
UV-assisted irradiation technologies are well-established for water and wastewater treatment. UVC treatments are widely used at large-scale, while UVA irradiation has more often been applied in combination with a catalyst (e.g. TiO₂ or FeSO₄) in smaller-scale systems. A technical issue of these systems is the formation of fouling on the quartz sleeves that houses the lamps. This fouling can prevent complete irradiation, therefore reducing the efficiency of the process. This paper investigates the effects of operational parameters, such as the type of wastewater, irradiation source, H₂O₂ addition, and water pH on fouling formation and, ultimately, the treatment of municipal wastewater. Batch experiments have been performed at lab-scale while monitoring water quality parameters including: COD, TS, TSS, TDS, temperature, pH, hardness, alkalinity, turbidity, TOC, UV transmission, UV₂₅₄ absorbance, and metal concentrations. The residence time of the wastewater in the reactor was 5 days in order to observe any fouling formation on the quartz surface. Over this period, it was observed that chemical oxygen demand (COD) decreased by 30% and 59% during photolysis (Ultraviolet A) and photo-catalysis (UVA/Fe/H₂O₂), respectively. Higher fouling formation was observed with iron-rich and phosphorous-rich wastewater. The highest rate of fouling was developed with phosphorous-rich wastewater, followed by the iron-rich wastewater. Photo-catalysis (UVA/Fe/H₂O₂) had better removal efficiency than photolysis (UVA). This was attributed to the Photo-Fenton reaction, which was initiated under these operational conditions. Scanning electron microscope (SEM) measurements of fouling formed on the quartz sleeves showed that particles vary in size, shape, and structure; some have more distinct structures and are generally larger and have less compact structure than the others. Energy-dispersive X-ray spectroscopy (EDX) results showed that the major metals present in the fouling cake were iron, phosphorous, and calcium. In conclusion, iron-rich wastewaters are more suitable for UV-assisted treatment since fouling formation on quartz sleeves can be minimized by the formation of oxidizing agents during treatment, such as hydroxyl radicals.Keywords: advanced oxidation processes, photo-fenton treatment, photo-catalysis, wastewater treatment
Procedia PDF Downloads 7721961 Mulberry Leave: An Efficient and Economical Adsorbent for Remediation of Arsenic (V) and Arsenic (III) Contaminated Water
Authors: Saima Q. Memon, Mazhar I. Khaskheli
Abstract:
The aim of present study was to investigate the efficiency of mulberry leaves for the removal of both arsenic (III) and arsenic (V) from aqueous medium. Batch equilibrium studies were carried out to optimize various parameters such as pH of metal ion solution, volume of sorbate, sorbent doze, and agitation speed and agitation time. Maximum sorption efficiency of mulberry leaves for As (III) and As (V) at optimum conditions were 2818 μg.g-1 and 4930 μg.g-1, respectively. The experimental data was a good fit to Freundlich and D-R adsorption isotherm. Energy of adsorption was found to be in the range of 3-6 KJ/mole suggesting the physical nature of process. Kinetic data followed the first order rate, Morris-Weber equations. Developed method was applied to remove arsenic from real water samples.Keywords: arsenic removal, mulberry, adsorption isotherms, kinetics of adsorption
Procedia PDF Downloads 27521960 Using RASCAL Code to Analyze the Postulated UF6 Fire Accident
Authors: J. R. Wang, Y. Chiang, W. S. Hsu, S. H. Chen, J. H. Yang, S. W. Chen, C. Shih, Y. F. Chang, Y. H. Huang, B. R. Shen
Abstract:
In this research, the RASCAL code was used to simulate and analyze the postulated UF6 fire accident which may occur in the Institute of Nuclear Energy Research (INER). There are four main steps in this research. In the first step, the UF6 data of INER were collected. In the second step, the RASCAL analysis methodology and model was established by using these data. Third, this RASCAL model was used to perform the simulation and analysis of the postulated UF6 fire accident. Three cases were simulated and analyzed in this step. Finally, the analysis results of RASCAL were compared with the hazardous levels of the chemicals. According to the compared results of three cases, Case 3 has the maximum danger in human health.Keywords: RASCAL, UF₆, safety, hydrogen fluoride
Procedia PDF Downloads 22221959 Financial Fraud Prediction for Russian Non-Public Firms Using Relational Data
Authors: Natalia Feruleva
Abstract:
The goal of this paper is to develop the fraud risk assessment model basing on both relational and financial data and test the impact of the relationships between Russian non-public companies on the likelihood of financial fraud commitment. Relationships mean various linkages between companies such as parent-subsidiary relationship and person-related relationships. These linkages may provide additional opportunities for committing fraud. Person-related relationships appear when firms share a director, or the director owns another firm. The number of companies belongs to CEO and managed by CEO, the number of subsidiaries was calculated to measure the relationships. Moreover, the dummy variable describing the existence of parent company was also included in model. Control variables such as financial leverage and return on assets were also implemented because they describe the motivating factors of fraud. To check the hypotheses about the influence of the chosen parameters on the likelihood of financial fraud, information about person-related relationships between companies, existence of parent company and subsidiaries, profitability and the level of debt was collected. The resulting sample consists of 160 Russian non-public firms. The sample includes 80 fraudsters and 80 non-fraudsters operating in 2006-2017. The dependent variable is dichotomous, and it takes the value 1 if the firm is engaged in financial crime, otherwise 0. Employing probit model, it was revealed that the number of companies which belong to CEO of the firm or managed by CEO has significant impact on the likelihood of financial fraud. The results obtained indicate that the more companies are affiliated with the CEO, the higher the likelihood that the company will be involved in financial crime. The forecast accuracy of the model is about is 80%. Thus, the model basing on both relational and financial data gives high level of forecast accuracy.Keywords: financial fraud, fraud prediction, non-public companies, regression analysis, relational data
Procedia PDF Downloads 11921958 Design and Development of an Algorithm to Predict Fluctuations of Currency Rates
Authors: Nuwan Kuruwitaarachchi, M. K. M. Peiris, C. N. Madawala, K. M. A. R. Perera, V. U. N Perera
Abstract:
Dealing with businesses with the foreign market always took a special place in a country’s economy. Political and social factors came into play making currency rate changes fluctuate rapidly. Currency rate prediction has become an important factor for larger international businesses since large amounts of money exchanged between countries. This research focuses on comparing the accuracy of mainly three models; Autoregressive Integrated Moving Average (ARIMA), Artificial Neural Networks(ANN) and Support Vector Machines(SVM). series of data import, export, USD currency exchange rate respect to LKR has been selected for training using above mentioned algorithms. After training the data set and comparing each algorithm, it was able to see that prediction in SVM performed better than other models. It was improved more by combining SVM and SVR models together.Keywords: ARIMA, ANN, FFNN, RMSE, SVM, SVR
Procedia PDF Downloads 21221957 Predicting Match Outcomes in Team Sport via Machine Learning: Evidence from National Basketball Association
Authors: Jacky Liu
Abstract:
This paper develops a team sports outcome prediction system with potential for wide-ranging applications across various disciplines. Despite significant advancements in predictive analytics, existing studies in sports outcome predictions possess considerable limitations, including insufficient feature engineering and underutilization of advanced machine learning techniques, among others. To address these issues, we extend the Sports Cross Industry Standard Process for Data Mining (SRP-CRISP-DM) framework and propose a unique, comprehensive predictive system, using National Basketball Association (NBA) data as an example to test this extended framework. Our approach follows a holistic methodology in feature engineering, employing both Time Series and Non-Time Series Data, as well as conducting Explanatory Data Analysis and Feature Selection. Furthermore, we contribute to the discourse on target variable choice in team sports outcome prediction, asserting that point spread prediction yields higher profits as opposed to game-winner predictions. Using machine learning algorithms, particularly XGBoost, results in a significant improvement in predictive accuracy of team sports outcomes. Applied to point spread betting strategies, it offers an astounding annual return of approximately 900% on an initial investment of $100. Our findings not only contribute to academic literature, but have critical practical implications for sports betting. Our study advances the understanding of team sports outcome prediction a burgeoning are in complex system predictions and pave the way for potential profitability and more informed decision making in sports betting markets.Keywords: machine learning, team sports, game outcome prediction, sports betting, profits simulation
Procedia PDF Downloads 10221956 Optoelectronic Hardware Architecture for Recurrent Learning Algorithm in Image Processing
Authors: Abdullah Bal, Sevdenur Bal
Abstract:
This paper purposes a new type of hardware application for training of cellular neural networks (CNN) using optical joint transform correlation (JTC) architecture for image feature extraction. CNNs require much more computation during the training stage compare to test process. Since optoelectronic hardware applications offer possibility of parallel high speed processing capability for 2D data processing applications, CNN training algorithm can be realized using Fourier optics technique. JTC employs lens and CCD cameras with laser beam that realize 2D matrix multiplication and summation in the light speed. Therefore, in the each iteration of training, JTC carries more computation burden inherently and the rest of mathematical computation realized digitally. The bipolar data is encoded by phase and summation of correlation operations is realized using multi-object input joint images. Overlapping properties of JTC are then utilized for summation of two cross-correlations which provide less computation possibility for training stage. Phase-only JTC does not require data rearrangement, electronic pre-calculation and strict system alignment. The proposed system can be incorporated simultaneously with various optical image processing or optical pattern recognition techniques just in the same optical system.Keywords: CNN training, image processing, joint transform correlation, optoelectronic hardware
Procedia PDF Downloads 50621955 Preservation Model to Process 'La Bomba Del Chota' as a Living Cultural Heritage
Authors: Lucia Carrion Gordon, Maria Gabriela Lopez Yanez
Abstract:
This project focuses on heritage concepts and their importance in every evolving and changing Digital Era where system solutions have to be sustainable, efficient and suitable to the basic needs. The prototype has to cover the principal requirements for the case studies. How to preserve the sociological ideas of dances in Ecuador like ‘La Bomba’ is the best example and challenge to preserve the intangible data. The same idea is applicable with books and music. The History and how to keep it, is the principal mission of Heritage Preservation. The dance of La Bomba is rooted on a specific movement system whose main part is the sideward hip movement. La Bomba´s movement system is the surface manifestation of a whole system of knowledge whose principal characteristics are the historical relation of Chote˜nos with their land and their families.Keywords: digital preservation, heritage, IT management, data, metadata, ontology, serendipity
Procedia PDF Downloads 38621954 Exploring Teachers’ Beliefs about Diagnostic Language Assessment Practices in a Large-Scale Assessment Program
Authors: Oluwaseun Ijiwade, Chris Davison, Kelvin Gregory
Abstract:
In Australia, like other parts of the world, the debate on how to enhance teachers using assessment data to inform teaching and learning of English as an Additional Language (EAL, Australia) or English as a Foreign Language (EFL, United States) have occupied the centre of academic scholarship. Traditionally, this approach was conceptualised as ‘Formative Assessment’ and, in recent times, ‘Assessment for Learning (AfL)’. The central problem is that teacher-made tests are limited in providing data that can inform teaching and learning due to variability of classroom assessments, which are hindered by teachers’ characteristics and assessment literacy. To address this concern, scholars in language education and testing have proposed a uniformed large-scale computer-based assessment program to meet the needs of teachers and promote AfL in language education. In Australia, for instance, the Victoria state government commissioned a large-scale project called 'Tools to Enhance Assessment Literacy (TEAL) for Teachers of English as an additional language'. As part of the TEAL project, a tool called ‘Reading and Vocabulary assessment for English as an Additional Language (RVEAL)’, as a diagnostic language assessment (DLA), was developed by language experts at the University of New South Wales for teachers in Victorian schools to guide EAL pedagogy in the classroom. Therefore, this study aims to provide qualitative evidence for understanding beliefs about the diagnostic language assessment (DLA) among EAL teachers in primary and secondary schools in Victoria, Australia. To realize this goal, this study raises the following questions: (a) How do teachers use large-scale assessment data for diagnostic purposes? (b) What skills do language teachers think are necessary for using assessment data for instruction in the classroom? and (c) What factors, if any, contribute to teachers’ beliefs about diagnostic assessment in a large-scale assessment? Semi-structured interview method was used to collect data from at least 15 professional teachers who were selected through a purposeful sampling. The findings from the resulting data analysis (thematic analysis) provide an understanding of teachers’ beliefs about DLA in a classroom context and identify how these beliefs are crystallised in language teachers. The discussion shows how the findings can be used to inform professional development processes for language teachers as well as informing important factor of teacher cognition in the pedagogic processes of language assessment. This, hopefully, will help test developers and testing organisations to align the outcome of this study with their test development processes to design assessment that can enhance AfL in language education.Keywords: beliefs, diagnostic language assessment, English as an additional language, teacher cognition
Procedia PDF Downloads 19921953 Low-Surface Roughness and High Optical Quality CdS Thin Film Deposited on Heated Substrate Using Room-Temperature Chemical Solution
Authors: A. Elsayed, M. H. Dewaidar, M. Ghali, M. Elkemary
Abstract:
The high production cost of the conventional solar cells requires the search for economic methods suitable for solar energy conversion. Cadmium Sulfide (CdS) is one of the most important semiconductors used in photovoltaics, especially in large area solar cells; and can be prepared in a thin film form by a wide variety of deposition techniques. The preparation techniques include vacuum evaporation, sputtering and molecular beam epitaxy. Other techniques, based on chemical solutions, are also used for depositing CdS films with dramatically low-cost compared to other vacuum-based methods. Although this technique is widely used during the last decades, due to simplicity and low-deposition temperature (~100°C), there is still a strong need for more information on the growth process and its relation with the quality of the deposited films. Here, we report on deposition of high-quality CdS thin films; with low-surface roughness ( < 3.0 nm) and sharp optical absorption edge; on low-temperature glass substrates (70°C) using a new method based on the room-temperature chemical solution. In this method, a mixture solution of cadmium acetate and thiourea at room temperature was used under special growth conditions for deposition of CdS films. X-ray diffraction (XRD) measurements were used to examine the crystal structure properties of the deposited CdS films. In addition, UV-VIS transmittance and low-temperature (4K) photoluminescence (PL) measurements were performed for quantifying optical properties of the deposited films. The deposited films show high optical quality as confirmed by observation of both, sharp edge in the transmittance spectra and strong PL intensity at room temperature. Furthermore, we found a strong effect of the growth conditions on the optical band gap of the deposited films; where remarkable red-shift in the absorption edge with temperature is clearly seen in both transmission and PL spectra. Such tuning of both optical band gap of the deposited CdS films can be utilized for tuning the electronic bands' alignments between CdS and other light-harvesting materials, like CuInGaSe or CdTe, for potential improvement in the efficiency of solar cells devices based on these heterostructures.Keywords: chemical deposition, CdS, optical properties, surface, thin film
Procedia PDF Downloads 16221952 Impact of Urbanization Growth on Disease Spread and Outbreak Response: Exploring Strategies for Enhancing Resilience
Authors: Raquel Vianna Duarte Cardoso, Eduarda Lobato Faria, José Jorge Boueri
Abstract:
Rapid urbanization has transformed the global landscape, presenting significant challenges to public health. This article delves into the impact of urbanization on the spread of infectious diseases in cities and identifies crucial strategies to enhance urban community resilience. Massive urbanization over recent decades has created conducive environments for the rapid spread of diseases due to population density, mobility, and unequal living conditions. Urbanization has been observed to increase exposure to pathogens and foster conditions conducive to disease outbreaks, including seasonal flu, vector-borne diseases, and respiratory infections. In order to tackle these issues, a range of cross-disciplinary approaches are suggested. These encompass the enhancement of urban healthcare infrastructure, emphasizing the need for robust investments in hospitals, clinics, and healthcare systems to keep pace with the burgeoning healthcare requirements in urban environments. Moreover, the establishment of disease monitoring and surveillance mechanisms is indispensable, as it allows for the timely detection of outbreaks, enabling swift responses. Additionally, community engagement and education play a pivotal role in advocating for personal hygiene, vaccination, and preventive measures, thus playing a pivotal role in diminishing disease transmission. Lastly, the promotion of sustainable urban planning, which includes the creation of cities with green spaces, access to clean water, and proper sanitation, can significantly mitigate the risks associated with waterborne and vector-borne diseases. The article is based on a review of scientific literature, and it offers a comprehensive insight into the complexities of the relationship between urbanization and health. It places a strong emphasis on the urgent need for integrated approaches to improve urban resilience in the face of health challenges.Keywords: infectious diseases dissemination, public health, urbanization impacts, urban resilience
Procedia PDF Downloads 7721951 Evaluating Models Through Feature Selection Methods Using Data Driven Approach
Authors: Shital Patil, Surendra Bhosale
Abstract:
Cardiac diseases are the leading causes of mortality and morbidity in the world, from recent few decades accounting for a large number of deaths have emerged as the most life-threatening disorder globally. Machine learning and Artificial intelligence have been playing key role in predicting the heart diseases. A relevant set of feature can be very helpful in predicting the disease accurately. In this study, we proposed a comparative analysis of 4 different features selection methods and evaluated their performance with both raw (Unbalanced dataset) and sampled (Balanced) dataset. The publicly available Z-Alizadeh Sani dataset have been used for this study. Four feature selection methods: Data Analysis, minimum Redundancy maximum Relevance (mRMR), Recursive Feature Elimination (RFE), Chi-squared are used in this study. These methods are tested with 8 different classification models to get the best accuracy possible. Using balanced and unbalanced dataset, the study shows promising results in terms of various performance metrics in accurately predicting heart disease. Experimental results obtained by the proposed method with the raw data obtains maximum AUC of 100%, maximum F1 score of 94%, maximum Recall of 98%, maximum Precision of 93%. While with the balanced dataset obtained results are, maximum AUC of 100%, F1-score 95%, maximum Recall of 95%, maximum Precision of 97%.Keywords: cardio vascular diseases, machine learning, feature selection, SMOTE
Procedia PDF Downloads 11821950 Device to Alert and Fire Prevention through Temperature Monitoring and Gas Detection
Authors: Dêivisson Alves Anjos, Blenda Fonseca Aires Teles, Queitiane Castro Costa
Abstract:
Fire is one of the biggest dangers for factories, warehouses, mills, among other places, causing unimaginable damage, because besides the material damage also directly affects the lives of workers who are likely to suffer death or very serious consequences. This protection of the lives of these people should be taken seriously, always seeking safety. Thus investment in security and monitoring equipment must be high, so you can prevent or reduce the impacts of a possible fire. Our device, made in PIC micro controller monitors the temperature and the presence of gas in the environment, it sends the data via Bluetooth device to a developed in LabVIEW interface saves these data continuously and alert if the temperature exceeds the allowed or some gas is detected. Currently the device is in operation and can perform several tests, as well as use in different areas for which you need anti-fire protection.Keywords: pic, bluetooth, fire, temperature, gas, LabVIEW
Procedia PDF Downloads 532