Search results for: temperature
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6880

Search results for: temperature

2050 Olive Leaf Extract as Natural Corrosion Inhibitor for Pure Copper in 0.5 M NaCl Solution: A Study by Voltammetry around OCP

Authors: Chahla Rahal, Philippe Refait

Abstract:

Oleuropein-rich extract from olive leaf and acid hydrolysates, rich in hydroxytyrosol and elenolic acid was prepared under different experimental conditions. These phenolic compounds may be used as a corrosion inhibitor. The inhibitive action of these extracts and its major constituents on the corrosion of copper in 0.5 M NaCl solution has been evaluated by potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and weight loss measurements. The product of extraction was analyzed with high performance liquid chromatography (HPLC), whose analysis shows that olive leaf extract are greatly rich in phenolic compounds, mainly Oleuropeine (OLE), Hydroxytyrosol (HT) and elenolic acid (EA). After the acid hydrolysis and high temperature of extraction, an increase in hydroxytyrosol concentration was detected, coupled with relatively low oleuropeine content and high concentration of elenolic acid. The potentiodynamic measurements have shown that this extract acts as a mixed-type corrosion inhibitor, and good inhibition efficiency is observed with the increase in HT and EA concentration. These results suggest that the inhibitive effect of olive leaf extract might be due to the adsorption of the various phenolic compounds onto the copper surface.

Keywords: Olive leaf extract, Oleuropein, hydroxytyrosol, elenolic acid , Copper, Corrosion, HPLC/DAD, Polarisation, EIS

Procedia PDF Downloads 244
2049 Investigation of Dissolution in Diammonium Hydrogen Phosphate Solutions of Gypsum

Authors: Turan Çalban, Nursel Keskin, Sabri Çolak, Soner Kuşlu

Abstract:

Gypsum (CaSO4.2H2O) is a mineral that is found in large quantities in the Turkey and in the World. The dissolution of this mineral in the diammonium hydrogen phosphate solutions has not been studied so far. Investigation of the dissolution and dissolution kinetics gypsum in diammonium hydrogen phosphate solutions will be useful for evaluating of solid wastes containing gypsum. In this study, parameters such as diammonium hydrogen phosphate concentration, temperature and stirring speed affecting on the dissolution rate of the gypsum in diammonium hydrogen phosphate solutions were investigated. In experimental studies have researched effectiveness of the selected parameters. The dissolution of gypsum were examined in two parts at low and high temperatures. The experimental results were successfully correlated by linear regression using Statistica program. Dissolution curves were evaluated shrinking core models for solid-fluid systems. The activation energy was found to be 34.58 kJ/mol and 44.45 kJ/mol for the low and the high temperatures. The dissolution of gypsum was controlled by chemical reaction both low temperatures and high temperatures. Reaction rate expressions of dissolution of gypsum at the low temperatures and the high temperatures controlled by chemical reaction are as follows, respectively. = k1.e-5159.5/T.t = k2.e-5346.8/T.t Where k1 and k2 are constants depending on the diammonium hydrogen phosphate solution concentration, the solid/liquid ratio, the stirring speed and the particle size.

Keywords: diammonium hydrogen phosphate, dissolution kinetics, gypsum, kinetics.

Procedia PDF Downloads 372
2048 Exergetic and Life Cycle Assessment Analyses of Integrated Biowaste Gasification-Combustion System: A Study Case

Authors: Anabel Fernandez, Leandro Rodriguez-Ortiz, Rosa RodríGuez

Abstract:

Due to the negative impact of fossil fuels, renewable energies are promising sources to limit global temperature rise and damage to the environment. Also, the development of technology is focused on obtaining energetic products from renewable sources. In this study, a thermodynamic model including Exergy balance and a subsequent Life Cycle Assessment (LCA) were carried out for four subsystems of the integrated gasification-combustion of pinewood. Results of exergy analysis and LCA showed the process feasibility in terms of exergy efficiency and global energy efficiency of the life cycle (GEELC). Moreover, the energy return on investment (EROI) index was calculated. The global exergy efficiency resulted in 67 %. For pretreatment, reaction, cleaning, and electric generation subsystems, the results were 85, 59, 87, and 29 %, respectively. Results of LCA indicated that the emissions from the electric generation caused the most damage to the atmosphere, water, and soil. GEELC resulted in 31.09 % for the global process. This result suggested the environmental feasibility of an integrated gasification-combustion system. EROI resulted in 3.15, which determinates the sustainability of the process.

Keywords: exergy analysis, life cycle assessment (LCA), renewability, sustainability

Procedia PDF Downloads 195
2047 Performance of an Improved Fluidized System for Processing Green Tea

Authors: Nickson Kipng’etich Lang’at, Thomas Thoruwa, John Abraham, John Wanyoko

Abstract:

Green tea is made from the top two leaves and buds of a shrub, Camellia sinensis, of the family Theaceae and the order Theales. The green tea leaves are picked and immediately sent to be dried or steamed to prevent fermentation. Fluid bed drying technique is a common drying method used in drying green tea because of its ease in design and construction and fluidization of fine tea particles. Major problems in this method are significant loss of chemical content of the leaf and green appearance of tea, retention of high moisture content in the leaves and bed channeling and defluidization. The energy associated with the drying technology has been shown to be a vital factor in determining the quality of green tea. As part of the implementation, prototype dryer was built that facilitated sequence of operations involving steaming, cooling, pre-drying and final drying. The major findings of the project were in terms of quality characteristics of tea leaves and energy consumption during processing. The optimal design achieved a moisture content of 4.2 ± 0.84%. With the optimum drying temperature of 100 ºC, the specific energy consumption was 1697.8 kj.Kg-1 and evaporation rate of 4.272 x 10-4 Kg.m-2.s-1. The energy consumption in a fluidized system can be further reduced by focusing on energy saving designs.

Keywords: evaporation rate, fluid bed dryer, maceration, specific energy consumption

Procedia PDF Downloads 292
2046 Effects of Process Parameter Variation on the Surface Roughness of Rapid Prototyped Samples Using Design of Experiments

Authors: R. Noorani, K. Peerless, J. Mandrell, A. Lopez, R. Dalberto, M. Alzebaq

Abstract:

Rapid prototyping (RP) is an additive manufacturing technology used in industry that works by systematically depositing layers of working material to construct larger, computer-modeled parts. A key challenge associated with this technology is that RP parts often feature undesirable levels of surface roughness for certain applications. To combat this phenomenon, an experimental technique called Design of Experiments (DOE) can be employed during the growth procedure to statistically analyze which RP growth parameters are most influential to part surface roughness. Utilizing DOE to identify such factors is important because it is a technique that can be used to optimize a manufacturing process, which saves time, money, and increases product quality. In this study, a four-factor/two level DOE experiment was performed to investigate the effect of temperature, layer thickness, infill percentage, and infill speed on the surface roughness of RP prototypes. Samples were grown using the sixteen different possible growth combinations associated with a four-factor/two level study, and then the surface roughness data was gathered for each set of factors. After applying DOE statistical analysis to these data, it was determined that layer thickness played the most significant role in the prototype surface roughness.

Keywords: rapid prototyping, surface roughness, design of experiments, statistical analysis, factors and levels

Procedia PDF Downloads 250
2045 E-Tongue Based on Metallo-Porphyrins for Histamine Evaluation

Authors: A. M. Iordache, S. M. Iordache, V. Barna, M. Elisa, I. C. Vasiliu, C. R. Stefan, I. Chilibon, I. Stamatin, S. Caramizoiu, C. E. A. Grigorescu

Abstract:

The general objective of the presentation is the development of an e-tongue like sensor based on modified screen printed electrode (SPE) structures with a receptor part made of porphyrins/metalloporphyrins chemically bound to graphene (the sensitive assembly) to act as antennas and “capture” the histamine molecules. Using a single, ultra-sensitive electrochemical sensor, we measured the concentration of histamine, a compound which is strongly connected to the level of freshness in foods (the caution level of histamine is 50 ppm, whereas the maximum accepted levels range from 200 ppm to 500 ppm). Our approach for the chemical immobilization of the porphyrins onto the surface of the graphenes was via substitution reaction: a solution of graphene in SOCl2 was heated to 800C for 6 hours. Upon cooling, the metallo-porphyrins were added and ultrasonicated for 4 hours. The solution was then allowed to cool to room temperature and then centrifuged in order to separate the deposit. The sensitive assembly was drop casted onto the carbon SPE and cyclic voltammetry was performed in the presence of histamine. The reaction is quasi-reversible and the sensor showed an oxidation potential for histamine at 600 mV. The results indicate a linear dependence of concentration of histamine as function of intensity. The results are reproducible; however the chemical stability of the sensitive assembly is low.

Keywords: histamine, cyclic voltammetry, metallo-porphyrin, food freshness

Procedia PDF Downloads 129
2044 UF as Pretreatment of RO for Tertiary Treatment of Biologically Treated Distillery Spentwash

Authors: Pinki Sharma, Himanshu Joshi

Abstract:

Distillery spentwash contains high chemical oxygen demand (COD), biological oxygen demand (BOD), color, total dissolved solids (TDS) and other contaminants even after biological treatment. The effluent can’t be discharged as such in the surface water bodies or land without further treatment. Reverse osmosis (RO) treatment plants have been installed in many of the distilleries at tertiary level. But at most of the places these plants are not properly working due to high concentration of organic matter and other contaminants in biologically treated spentwash. To make the membrane treatment proven and reliable technology, proper pre-treatment is mandatory. In the present study, ultra-filtration (UF) as pre-treatment of RO at tertiary stage was performed. Operating parameters namely initial pH (pHo: 2–10), trans-membrane pressure (TMP: 4-20 bars) and temperature (T: 15- 43°C) used for conducting experiments with UF system. Experiments were optimized at different operating parameters in terms of COD, color, TDS and TOC removal by using response surface methodology (RSM) with central composite design. The results showed that removal of COD, color and TDS by 62%, 93.5% and 75.5%, with UF, respectively at optimized conditions with increased permeate flux from 17.5 l/m2/h (RO) to 38 l/m2/h (UF-RO). The performance of the RO system was greatly improved both in term of pollutant removal as well as water recovery.

Keywords: bio-digested distillery spentwash, reverse osmosis, response surface methodology, ultra-filtration

Procedia PDF Downloads 333
2043 Same-Day Detection Method of Salmonella Spp., Shigella Spp. and Listeria Monocytogenes with Fluorescence-Based Triplex Real-Time PCR

Authors: Ergun Sakalar, Kubra Bilgic

Abstract:

Faster detection and characterization of pathogens are the basis of the evoid from foodborne pathogens. Salmonella spp., Shigella spp. and Listeria monocytogenes are common foodborne bacteria that are among the most life-threatining. It is important to rapid and accurate detection of these pathogens to prevent food poisoning and outbreaks or to manage food chains. The present work promise to develop a sensitive, species specific and reliable PCR based detection system for simultaneous detection of Salmonella spp., Shigella spp. and Listeria monocytogenes. For this purpose, three genes were picked out, ompC for Salmonella spp., ipaH for Shigella spp. and hlyA for L. monocytogenes. After short pre-enrichment of milk was passed through a vacuum filter and bacterial DNA was exracted using commercially available kit GIDAGEN®(Turkey, İstanbul). Detection of amplicons was verified by examination of the melting temperature (Tm) that are 72° C, 78° C, 82° C for Salmonella spp., Shigella spp. and L. monocytogenes, respectively. The method specificity was checked against a group of bacteria strains, and also carried out sensitivity test resulting in under 10² CFU mL⁻¹ of milk for each bacteria strain. Our results show that the flourescence based triplex qPCR method can be used routinely to detect Salmonella spp., Shigella spp. and L. monocytogenes during the milk processing procedures in order to reduce cost, time of analysis and the risk of foodborne disease outbreaks.

Keywords: evagreen, food-born bacteria, pathogen detection, real-time pcr

Procedia PDF Downloads 229
2042 Advanced Nanostructured Materials and Their Application for Solar Fuel

Authors: A. Hegazy, Ahmed Elsayed, Essam El Shenawy, N. Allam, Hala Handal, K. R. Mahmoud

Abstract:

Highly crystalline, TiO₂ pristine sub-10 nm anatase nanocrystals were fabricated at low temperatures by post hydrothermal treatment of the as-prepared TiO₂ nanoparticles. This treatment resulted in bandgap narrowing and increased photocurrent density value (3.8 mA/cm²) when this material was employed in water splitting systems. The achieved photocurrent values are among the highest reported ones so far for the fabricated nanoparticles at this low temperature. This might be explained by the increased surface defects of the prepared nanoparticles. It resulted in bandgap narrowing that was further investigated using positron annihilation experiments by measuring positron lifetime and Doppler broadening. Besides, homogeneous spherical TiO₂ nanoparticles were synthesized in large diameter and high surface area and the high percentage of (001) facet by sol-gel method using potassium persulfate (K₂S₂O₈) as an oxidizing agent. The fabricated particles exhibited high exposed surface area, high photoactivity and reduced band gap. Enhanced performance for water splitting applications was displayed by formed TiO₂ nanoparticles. Their morphological and structural properties were studied to optimize their synthesis parameters in an attempt to construct more applicable fuel cells in the industry for hydrogen fuel production.

Keywords: positron annihilation, solar energy, TiO2 nanoparticles, water splitting

Procedia PDF Downloads 122
2041 Effect of Ultrasound on Carotenoids Extraction from Pepper and Process Optimization Using Response Surface Methodology (RSM)

Authors: Elham Mahdian, Reza Karazhian, Rahele Dehghan Tanha

Abstract:

Pepper (Capsicum annum L.) which belong to the family Solananceae, are known for their versatility as a vegetable crop and are consumed both as fresh vegetables or dehydrated for spices. Pepper is considered an excellent source of bioactive nutrients. Ascorbic acid, carotenoids and phenolic compounds are its main antioxidant constituents. Ultrasound assisted extraction is an inexpensive, simple and efficient alternative to conventional extraction techniques. The mechanism of action for ultrasound-assisted extraction are attributed to cavitations, mechanical forces and thermal impact, which result in disruption of cells walls, reduce particle size, and enhance mass transfer across cell membranes. In this study, response surface methodology was used to optimize experimental conditions for ultrasonic assisted extraction of carotenoid compounds from Chili peppers. Variables were included extraction temperatures at 3 levels (30, 40 and 50 °C), extraction times at 3 levels (10, 25 and 40 minutes) and power at 3 levels (30, 60 and 90 %). It was observed that ultrasound waves applied at temperature of 49°C, time of 10 minutes and power 89 % resulted to the highest carotenoids contents (lycopene and β-carotene), while the lowest value was recorded in the control. Thus, results showed that ultrasound waves have strong impact on extraction of carotenoids from pepper.

Keywords: carotenoids, optimization, pepper, response surface methodology

Procedia PDF Downloads 453
2040 Effect of Pressure and Dissolved Oxygen on Stress Corrosion Cracking Susceptibility of Inconel 617 in Steam and Supercritical Water

Authors: Hasan Izhar Khan, Naiqiang Zhang, Hong Xu, Zhongliang Zhu, Dongfang Jiang

Abstract:

Inconel 617, a nickel-based alloy designed for high-temperature applications, got an excellent amalgamation of strength and oxidation resistance at high temperatures. For a better understanding of its suitability to be used in superheater and reheater tubes in ultra-supercritical power plants, stress corrosion cracking (SCC) susceptibility must be evaluated. In the present study, the effect of medium environment on SCC behavior of Inconel 617, in the form of a round bar tensile specimen, was tested via slow strain rate tensile tests in steam and supercritical water (SCW) at 650 °C. The results showed that SCC susceptibility has a linear relationship with exposed pressure and increases monotonically with an increase in pressure. A severe SCC susceptibility was observed in SCW followed by that in a steam environment. Fracture and gage surface showed apparent characteristics of brittle fracture. Intergranular cracks initiated from the edge region and propagated into the matrix through cross section until ductile rupture. When dissolved oxygen contents were decreased in SCW environment, it showed no noticeable effect on mechanical properties but SCC susceptibility slightly decreased. The research revealed the influence of environment on SCC susceptibility of Inconel 617 in steam and SCW.

Keywords: Inconel 617, steam, supercritical water, stress corrosion cracking

Procedia PDF Downloads 138
2039 Development of Cathode for Hybrid Zinc Ion Supercapacitor Using Secondary Marigold Floral Waste for Green Energy Application

Authors: Syali Pradhan, Neetu Jha

Abstract:

The Marigold flower is used in religious places for offering and decoration purpose every day. The flowers are discarded near trees or in aquatic bodies. This floral waste can be used for extracting dyes or oils. Still the secondary waste remains after processing which need to be addressed. This research aims to provide green and clean power using secondary floral waste available after processing. The carbonization of floral waste produce carbon material with high surface area and enhance active site for more reaction. The Hybrid supercapacitors are more stable, offer improved operating temperature and use less toxic material compared to battery. They provide enhanced energy density compared to supercapacitors. Hence, hybrid supercapacitor designed using waste material would be more practicable for future energy application. Here, we present the utilization of carbonized floral waste as supercapacitor electrode material. This material after carbonization gets graphitized and shows high surface area, optimum porosity along with high conductivity. Hence, this material has been tested as cathode electrode material for high performance zinc storage hybrid supercapacitor. High energy storage along with high stability has been obtained using this cathodic waste material as electrode.

Keywords: marigold, flower waste, energy storage, cathode, supercapacitor

Procedia PDF Downloads 58
2038 Metazoan Meiofauna and Their Abundance in Relation to Environmental Variables in the Northern Red Sea

Authors: Hamed A. El-Serehy, Khaled A. Al-Rasheid, Fahad A. Al-Misned

Abstract:

The composition and distribution of the benthic meiofauna assemblages of the Egyptian coasts along the Red Sea are described in relation to abiotic variables. Sediment samples were collected seasonally from twelve stations chosen along the northern part of the Red Sea to observe the meiofaunal community structure, its temporal distribution and horizontal fluctuation in relation to environmental conditions of the Red Sea marine ecosystem. The meiofaunal assemblage in the area of study was well diversified including 140 taxa. The temperature, salinity, pH, dissolved oxygen, and redox potential were measured at the time of collection. The water content of the sediments, total organic matters and chlorophyll a values were determined, and sediment samples were subjected to granulometric analysis. A total of 10 meiofauna taxa were identified, with the meiofauna being primarily represented by nematodes (on annual average from 42% to 84%), harpacticoids, polycheates and ostracodes; and the meiofauna abundances ranging from 41- to 167 ind. / 10 cm2. The meiofaunal population density fluctuated seasonally with a peak of 192.52 ind. / 10 cm2 during summer at station II. The vertical zonation in the distribution of meiofaunal community was significantly correlated with interstitial water, chlorophyll a and total organic matter values. The present study indicates that the existing of well diversified meiofaunal group which can serve as food for higher trophic levels in the Red Sea interstitial environment.

Keywords: benthos, diversity, meiofauna, Red Sea

Procedia PDF Downloads 369
2037 Assisted Supercritical Carbon Dioxide Extraction of Tocotrienols from Palm Fatty Acid Distillate

Authors: Najwa Othman, Norhidayah Suleiman, Gun Hean Chong

Abstract:

Palm fatty acid distillate (PFAD) is a by-product of palm oil refineries which contains valuable compounds such as phytosterols, squalene, polycosanol, co-enzyme Q10 and vitamin E (tocopherols and tocotrienols). Approximately 0.7-1.0% of vitamin E accumulates in PFAD, and it functions as antioxidants and anti-inflammatory. The objective of this research is to evaluate the effect of manipulated variables in supercritical carbon dioxide towards the recovery of tocotrienols in PFAD. The vitamin E concentrate isolated varies depending on the pre-treatment of sample and extraction techniques. In this research, tocotrienols in PFAD was concentrated by removing the extraneous matters, especially free fatty acid (FFA) and acylglycerols. Pre-treatment method such as enzymatic hydrolysis by using lipase from Candida rugosa as an enzyme was used to remove FFA and improve recovery of vitamin E. After that, treated PFAD was extracted by using supercritical fluid extraction in co-current glass beads packed column (22 cm x 75 cm i.d) at different temperatures (40-60°C) and pressures (100-300 bar) for 5 hours. After the extraction, the sample was analyzed by using high-pressure liquid chromatography (HPLC) system to quantify the tocotrienols. The results indicated that a combined pressure (200 bar) and temperature (60°C) was predicted to provide highest tocotrienols yield and the extraction yield obtained was 106.45%.

Keywords: enzymatic hydrolysis, palm fatty acid distillate, supercritical fluid extraction, tocotrienols

Procedia PDF Downloads 120
2036 The Effects of Electron Trapping by Electron-Ecoustic Waves Excited with Electron Beam

Authors: Abid Ali Abid

Abstract:

One-dimensional (1-D) particle-in-cell (PIC) electrostatic simulations are carried out to investigate the electrostatic waves, whose constituents are hot, cold and beam electrons in the background of motionless positive ions. In fact, the electrostatic modes excited are electron acoustic waves, beam driven waves as well as Langmuir waves. It is assessed that the relevant plasma parameters, for example, hot electron temperature, beam electron drift speed, and the electron beam density significantly modify the electrostatics wave's profiles. In the nonlinear stage, the wave-particle interaction becomes more evident and the waves have obtained its saturation level. Consequently, electrons become trapped in the waves and trapping vortices are clearly formed. Because of this trapping vortices and mixing of the electrons in phase space, finally, lead to electrons thermalization. It is observed that for the high-density value of the beam-electron, the solitary waves having a bipolar form of the electric field. These solitons are the nonlinear Brenstein-Greene and Kruskal wave mode that attributes the trapping of electrons potential well of phase-space hole. These examinations revealed that electrostatic waves have been exited in beam-plasma model and producing waves having broad-frequency ranges, which may clarify the broadband electrostatic noise (BEN) spectrum studied in the auroral zone.

Keywords: electron acoustic waves, trapping of cold electron, Langmuir waves, particle-in cell simulation

Procedia PDF Downloads 188
2035 Treatment and Characterization of Cadmium Metal From Textile Factory Wastewater by Electrochemical Process Using Aluminum Plate Electrode

Authors: Dessie Tibebe, Yeshifana Ayenew, Marye Mulugeta, Yezbie Kassa, Zerubabel Moges, Dereje Yenealem, Tarekegn Fentie, Agmas Amare, Hailu Sheferaw Ayele

Abstract:

Electrochemical treatment technology is a technique used for wastewater treatment due to its ability to eliminate impurities that are not easily removed by chemical processes. The objective of the study is the treatment and characterization of textile wastewater by an electrochemical process. The results obtained at various operational parameters indicated that at 20 minutes of electrochemical process at ( pH =7), initial concentration 10 mg/L, current density 37.5 mA/cm², voltage 9 v and temperature 25⁰C the highest removal efficiency was achieved. The kinetics of removal of selected metal by electrochemical treatment has been successfully described by the first-order rate equation. The results of microscopic techniques using SEM for the scarified electrode before treatment were uniform and smooth, but after the electrochemical process, the morphology was completely changed. This is due to the detection of the adsorbed aluminum hydroxide coming from adsorption of the conducting electrolyte, chemicals used in the experiments, alloying and the scrap impurities of the anode and cathode. The FTIR spectroscopic analysis broad bands at 3450 cm-¹ representing O-H functional groups, while the presence of H-O-H and Al-H groups are indicated by the bands at 2850-2750 cm-¹ and 1099 representing C-H functional groups.

Keywords: electrochemical, treatment, textile wastewater, kinetics, removal efficiency

Procedia PDF Downloads 74
2034 Effect of Corrosion on the Shear Buckling Strength

Authors: Myoung-Jin Lee, Sung-Jin Lee, Young-Kon Park, Jin-Wook Kim, Bo-Kyoung Kim, Song-Hun Chong, Sun-Ii Kim

Abstract:

The ability to resist the shear strength arises mainly from the web panel of steel girders and as such, the shear buckling strength of these girders has been extensively investigated. For example, Blaser’s reported that when buckling occurs, the tension field has an effect after the buckling strength of the steel is reached. The findings of these studies have been applied by AASHTO, AISC, and to the European Code that provides guidelines for designs aimed at preventing shear buckling. Steel girders are susceptible to corrosion resulting from exposure to natural elements such as rainfall, humidity, and temperature. This corrosion leads to a reduction in the size of the web panel section, thereby resulting in a decrease in the shear strength. The decrease in the panel section has a significant effect on the maintenance section of the bridge. However, in most conventional designs, the influence of corrosion is overlooked during the calculation of the shear buckling strength and hence over-design is common. Therefore, in this study, a steel girder with an A/D of 1:1, as well as a 6-mm-, 16-mm-, and 12-mm-thick web panel, flange, and intermediate reinforcing material, respectively, were used. The total length was set to that (3200 mm) of the default model. The effect of corrosion shear buckling was investigated by determining the volume amount of corrosion, shape of the erosion patterns, and the angular change in the tensile field of the shear buckling strength. This study provides the basic data that will enable designs that incorporate values closer (than those used in most conventional designs) to the actual shear buckling strength.

Keywords: corrosion, shear buckling strength, steel girder, shear strength

Procedia PDF Downloads 355
2033 Adsorption of Peppermint Essential Oil by Polypropylene Nanofiber

Authors: Duduku Krishnaiah, S. M. Anisuzzaman, Kumaran Govindaraj, Chiam Chel Ken, Zykamilia Kamin

Abstract:

Pure essential oil is highly demanded in the market since most of the so-called pure essential oils in the market contains alcohol. This is because of the usage of alcohol in separating oil and water mixture. Removal of pure essential oil from water without using any chemical solvent has become a challenging issue. Adsorbents generally have the properties of separating hydrophobic oil from hydrophilic mixture. Polypropylen nanofiber is a thermoplastic polymer which is produced from propylene. It was used as an adsorbent in this study. Based on the research, it was found that the polypropylene nanofiber was able to adsorb peppermint oil from the aqueous solution over a wide range of concentration. Based on scanning electron microscope (SEM), nanofiber has very small nano diameter fiber size in average before the adsorption and larger scaled average diameter of fibers after adsorption which indicates that smaller diameter of nanofiber enhances the adsorption process. The adsorption capacity of peppermint oil increases as the initial concentration of peppermint oil and amount of polypropylene nanofiber used increases. The maximum adsorption capacity of polypropylene nanofiber was found to be 689.5 mg/g at (T= 30°C). Moreover, the adsorption capacity of peppermint oil decreases as the temperature of solution increases. The equilibrium data of polypropylene nanofiber is best represented by Freundlich isotherm with the maximum adsorption capacity of 689.5 mg/g. The adsorption kinetics of polypropylene nanofiber was best represented by pseudo-second order model.

Keywords: nanofiber, adsorption, peppermint essential oil, isotherms, adsorption kinetics

Procedia PDF Downloads 139
2032 Characterization of Penicillin V Acid and Its Related Compounds by HPLC

Authors: Bahdja Guerfi, N. Hadhoum, I. Azouz, M. Bendoumia, S. Bouafia, F. Z. Hadjadj Aoul

Abstract:

Background: 'Penicillin V' is a narrow, bactericidal antibiotic of the beta-lactam family of the naturally occurring penicillin group. It is limited to infections due to the germs defined as sensitive. The objective of this work was to identify and to characterize Penicillin V acid and its related compounds by High-performance liquid chromatography (HPLC). Methods: Firstly phenoxymethylpenicillin was identified by an infrared absorption. The organoleptic characteristics, pH, and determination of water content were also studied. The dosage of Penicillin V acid active substance and the determination of its related compounds were carried on waters HPLC, equipped with a UV detector at 254 nm and Discovery HS C18 column (250 mm X 4.6 mm X 5 µm) which is maintained at room temperature. The flow rate was about 1 ml per min. A mixture of water, acetonitrile and acetic acid (65:35:01) was used as mobile phase for phenoxyacetic acid ‘impurity B' and a mixture of water, acetonitrile and acetic acid (650:150:5.75) for the assay and 4-hydroxypenicillin V 'impurity D'. Results: The identification of Penicillin V acid active substance and the evaluation of its chemical quality showed conformity with USP 35th edition. The Penicillin V acid content in the raw material is equal to 1692.22 UI/mg. The percentage content of phenoxyacetic acid and 4-hydroxypenicillin V was respectively: 0.035% and 0.323%. Conclusion: Through these results, we can conclude that the Penicillin V acid active substance tested is of good physicochemical quality.

Keywords: characterization, HPLC, Penicillin V acid, related substances

Procedia PDF Downloads 266
2031 Removal of Basic Yellow 28 Dye from Aqueous Solutions Using Plastic Wastes

Authors: Nadjib Dahdouh, Samira Amokrane, Elhadj Mekatel, Djamel Nibou

Abstract:

The removal of Basic Yellow 28 (BY28) from aqueous solutions by plastic wastes PMMA was investigated. The characteristics of plastic wastes PMMA were determined by SEM, FTIR and chemical composition analysis. The effects of solution pH, initial Basic Yellow 28 (BY28) concentration C, solid/liquid ratio R, and temperature T were studied in batch experiments. The Freundlich and the Langmuir models have been applied to the adsorption process, and it was found that the equilibrium followed well Langmuir adsorption isotherm. A comparison of kinetic models applied to the adsorption of BY28 on the PMMA was evaluated for the pseudo-first-order and the pseudo-second-order kinetic models. It was found that used models were correlated with the experimental data. Intraparticle diffusion model was also used in these experiments. The thermodynamic parameters namely the enthalpy ∆H°, entropy ∆S° and free energy ∆G° of adsorption of BY28 on PMMA were determined. From the obtained results, the negative values of Gibbs free energy ∆G° indicated the spontaneity of the adsorption of BY28 by PMMA. The negative values of ∆H° revealed the exothermic nature of the process and the negative values of ∆S° suggest the stability of BY28 on the surface of SW PMMA.

Keywords: removal, Waste PMMA, BY28 dye, equilibrium, kinetic study, thermodynamic study

Procedia PDF Downloads 134
2030 Using Shape Memory Alloys for Structural Engineering Applications

Authors: Donatello Cardone

Abstract:

Shape memory alloys (SMAs) have great potential for use in the field of civil engineering. The author of this manuscript has been involved, since 1996, in several experimental and theoretical studies on the application of SMAs in structural engineering, within national and international research projects. This paper provides an overview of the main results achieved, including the conceptual design, implementation, and testing of different SMA-based devices, namely: (i) energy-dissipating braces for RC buildings, (ii) seismic isolation devices for buildings and bridges, (iii) smart tie-rods for arches and vaults and (iv) seismic restrainers for bridges. The main advantages of using SMA-based devices in the seismic protection of structures derive from the double-flag shape of their hysteresis loops, which implies three favourable features, i.e., self-centering capability, good energy dissipation capability, and high stiffness for small displacements. The main advantages of SMA-based units for steel tie-rods are associated with the thermal behaviour of superelastic SMAs, which is antagonistic compared to that of steel. This implies a strong reduction of force changes due to air temperature variations. Finally, SMA-based seismic restrainers proved to be effective in preventing bridge deck unseating and pounding.

Keywords: seismic protection of structures, shape memory alloys, structural engineering, steel tie-rods, seismic restrainers for bridges

Procedia PDF Downloads 87
2029 Study of Petroleum Hydrocarbons Biodegradation and the Role of Biosurfactants Produced by Bacteria Isolated from the Lagoon of Mar Chica in This Process

Authors: Ikram Kamal, Mohamed Blaghen

Abstract:

Petroleum hydrocarbons are serious problems and global pollutants in the environment due to their toxicity, carcinogenicity and persistent organic pollutant properties. One of the approaches to enhance biodegradation of petroleum hydrocarbons is to use biosurfactant. Biosurfactants are amphiphilic biomolecules produced as metabolic by-products from microorganisms they received considerable attention in the field of environmental remediation processes such as bioremediation. Biosurfactants have been considered as a desirable alternative to synthetic surfactants in various applications particularly in the environmental field. In comparison with their synthetic counterparts, biosurfactants have been reported to be less toxic, biodegradable and persistent. In this study we have investigated the potential of bacterial strains collected aseptically from the lagoon Marchika (water and soil) in Nador, Morocco; for the production of biosurfactants. This study also aimed to optimize the biosurfactant production process by changing the variables that influence the type and amount of biosurfactant produced by these microorganisms such as: carbon sources and also other physical and chemical parameters such as temperature and pH. Emulsification index, methylene blue test and thin layer chromatography (TLC) revealed the ability of strains used in this study to produce compounds that could emulsify gasoline. In addition, a HPLC/MS was used to separate and identify different biosurfactants purified.

Keywords: petroleum hydrocarbons, biosurfactants, biodegradation, lagoon marchika, emulsification index

Procedia PDF Downloads 245
2028 Green Catalytic Conversion of Some Aromatic Alcohols to Acids by NiO₂ Nanoparticles ‎‎(NPNPs) in Water

Authors: Abdel Ghany F. Shoair, Mai M. A. H. Shanab

Abstract:

The basic aqueous systems NiSO4.6H₂O / K₂S₂O₈ (PH= 14) or NiSO₄.6H₂O / KBrO₃ (PH = 11.5) were ‎investigated ‎for the ‎catalytic conversion benzyl alcohol and ‎some para-substituted benzyl ‎alcohols to their ‎corresponding ‎acids in 75-97 % yield at room ‎temperature. The active species ‎was isolated and characterized by scanning ‎electron ‎microscopy (SEM), ‎‎transmission electron microscopy (TEM), X-ray ‎powder diffraction, EDX and ‎‎FT-IR ‎techniques and identified as NiO₂ nanoparticles (NPNPs). The SEM and ‎TEM images of nickel peroxide samples show a fine spherical-like ‎aggregation of ‎NiO₂ molecules with a nearly homogeneous partial size and confirm the ‎aggregation's size ‎to ‎be in the range of 2-3 nm. The yields, turnover (TO) and turn ‎over frequencies (TOF) were calculated. ‎It was noticed ‎that the aromatic alcohols ‎containing para-substituted electron donation groups gave better ‎‎yields than ‎those having electron-withdrawing groups. The optimum conditions for this ‎‎catalytic reaction ‎were studied using benzyl alcohol as a model. The mechanism ‎of the ‎catalytic conversion reaction was ‎suggested, in which the produced ‎(NPNPs) convert alcohols ‎to acids in two steps through the formation of the ‎‎corresponding aldehyde. The produced ‎NiO, because of this conversion, is ‎converted again to (NPNPs) by ‎an excess of K₂S₂O₈ or KBrO₃. This ‎catalytic cycle continues ‎until all the substrate is oxidized.

Keywords: Nickel, oxidation, catalysts, benzyl alcohol

Procedia PDF Downloads 61
2027 Generation of Catalytic Films of Zeolite Y and ZSM-5 on FeCrAlloy Metal

Authors: Rana Th. A. Al-Rubaye, Arthur A. Garforth

Abstract:

This work details the generation of thin films of structured zeolite catalysts (ZSM–5 and Y) onto the surface of a metal substrate (FeCrAlloy) using in-situ hydrothermal synthesis. In addition, the zeolite Y is post-synthetically modified by acidified ammonium ion exchange to generate US-Y. Finally the catalytic activity of the structured ZSM-5 catalyst films (Si/Al = 11, thickness 146 µm) and structured US–Y catalyst film (Si/Al = 8, thickness 23µm) were compared with the pelleted powder form of ZSM–5 and USY catalysts of similar Si/Al ratios. The structured catalyst films have been characterised using a range of techniques, including X-ray diffraction (XRD), Electron microscopy (SEM), Energy Dispersive X–ray analysis (EDX) and Thermogravimetric Analysis (TGA). The transition from oxide-on-alloy wires to hydrothermally synthesised uniformly zeolite coated surfaces was followed using SEM and XRD. In addition, the robustness of the prepared coating was confirmed by subjecting these to thermal cycling (ambient to 550°C). The cracking of n–heptane over the pellets and structured catalysts for both ZSM–5 and Y zeolite showed very similar product selectivities for similar amounts of catalyst with an apparent activation energy of around 60 kJ mol-1. This paper demonstrates that structured catalysts can be manufactured with excellent zeolite adherence and when suitably activated/modified give comparable cracking results to the pelleted powder forms. These structured catalysts will improve temperature distribution in highly exothermic and endothermic catalysed processes.

Keywords: FeCrAlloy, structured catalyst, zeolite Y, zeolite ZSM-5

Procedia PDF Downloads 365
2026 Multivariate Analytical Insights into Spatial and Temporal Variation in Water Quality of a Major Drinking Water Reservoir

Authors: Azadeh Golshan, Craig Evans, Phillip Geary, Abigail Morrow, Zoe Rogers, Marcel Maeder

Abstract:

22 physicochemical variables have been determined in water samples collected weekly from January to December in 2013 from three sampling stations located within a major drinking water reservoir. Classical Multivariate Curve Resolution Alternating Least Squares (MCR-ALS) analysis was used to investigate the environmental factors associated with the physico-chemical variability of the water samples at each of the sampling stations. Matrix augmentation MCR-ALS (MA-MCR-ALS) was also applied, and the two sets of results were compared for interpretative clarity. Links between these factors, reservoir inflows and catchment land-uses were investigated and interpreted in relation to chemical composition of the water and their resolved geographical distribution profiles. The results suggested that the major factors affecting reservoir water quality were those associated with agricultural runoff, with evidence of influence on algal photosynthesis within the water column. Water quality variability within the reservoir was also found to be strongly linked to physical parameters such as water temperature and the occurrence of thermal stratification. The two methods applied (MCR-ALS and MA-MCR-ALS) led to similar conclusions; however, MA-MCR-ALS appeared to provide results more amenable to interpretation of temporal and geological variation than those obtained through classical MCR-ALS.

Keywords: drinking water reservoir, multivariate analysis, physico-chemical parameters, water quality

Procedia PDF Downloads 269
2025 Copper Sulphate Effect on Cyprinus Carpio Common Fish Parasites

Authors: Jawdhari Abdulhusein, Dan Mihăilescu, Cristian-Emilian Pop, Nicolai Crăciun

Abstract:

Cyprinus Carpio adult specimens were captured from a single spot location from the Danube River and transported to the Laboratory of Faculty of Biology, University of Bucharest. The specimens were measured, weighed and randomly divided in five groups for later Copper Sulphate (CuSO4) exposure, as well as one control group. From the control group, 3 specimens were immediately sacrificed and microscopically inspected for parasite’s presence in the gills. During the histological inspection of the control group specimens, Ichthyophthiriusmultifiliis, Gyrodactylu ssp., MyxobolusOviforis, and Trichodinacottidarumwere abundantly identified in the gills. The exposure to a single dose of CuSO4 per group took place for 7 days under controlled conditions: water alkalinity ≈ 100 mg/L, temperature 23–24 °C, oxygenation 7.40–7.80 mg/L, and pH 6.10–6.40, the parameters were monitored on an hourly basis and adjusted when needed. After the exposure, all specimens were sacrificed, and the gill tissues were inspected. It was found that concentrations of 0.10, 0.25 and 0.30 ppm of CuSO4 did not affect the presence of parasites, as for 0.40 ppm of CuSO4 it significantly affected onlyIchthyophthiriusmultifiliisandMyxobolusOviforis, while concentration 0.50 ppm of CuSO4 (≈0.20 ppm of Cu2+) eliminated all 4 parasites species previously present in the fish gills, also, there were some histopathological changes to the gills tissue. These findings suggest that low concentrations of CuSO4 treatment for fish parasites are a safe and economical option if used correctly for a brief length of time.

Keywords: copper sulphate, cyprinus carpio, parasites, danube river

Procedia PDF Downloads 127
2024 Effect of Oil Shale Alkylresorcinols on Physico-Chemical and Thermal Properties of Polycondensation Resins

Authors: Ana Jurkeviciute, Larisa Grigorieva, Ksenia Moskvinа

Abstract:

Oil shale alkylresorcinols are formed as a by-product in oil shale processing. They are unique raw material for chemical industry. Polycondensation resins obtaining is one of the worthwhile directions of oil shale alkylresorcinols use. These resins are widely applied in many branches of industry such as wood-working, metallurgic, tire, rubber products, construction etc. Possibility of resins obtaining using overall alkylresorcinols will allow to cheapen finished products on their base and to widen the range of resins offered on the market. Synthesis of polycondensation resins on the basis of alkylresorcinols was conducted by several methods in the process of investigations. In the formulations a part of resorcinol was replaced by fractions of oil shale alkylresorcinols containing different amount of 5-methylresorcinol (40-80 mass %). Some resins were modified by aromatic alkene at the stage of synthesis. Thermal stability and degradation behavior of resins were investigated by thermogravimetric analysis (TGA) method both in an inert nitrogen environment and in an oxidative environment of air. TGA integral curves were obtained and processed in dynamic mode for interval of temperatures from 25 to 830 °C. Rate of temperature rise was 5°C/min, gas flow rate - 50 ml/min. Resins power for carbonization was evaluated by carbon residue. Physical-chemical parameters of the resins were determined. Content of resorcinol and 5-methylresorcinol not reacted in the process of synthesis were determined by gas chromatography method.

Keywords: resorcinol, oil shale alkylresorcinols, aromatic alkene, polycondensation resins, modified resins

Procedia PDF Downloads 179
2023 Effect of Maize Straw-Derived Biochar on Imidacloprid Adsorption onto Soils Prior to No-Tillage and Rotary Tillage Practices

Authors: Jean Yves Uwamungu, Fiston Bizimana, Chunsheng Hu

Abstract:

Although pesticides are used in crop productivity, their use is highly harming the soil environment, and measures must be taken in the future to eradicate soil and groundwater pollution. The primary aim was to determine the effect of biochar addition on the imidacloprid adsorption on soil prior to no-tillage (NT) and rotational tillage (RT) conditions. In the laboratory, batch tests were conducted to determine the imidacloprid adsorption on soil using equilibrium and kinetic modelling with the addition of biochar. The clay level of the soil was found to be more significant when no-tillage was applied (22.42) than when rotational tillage was applied (14.27). The imidacloprid adsorption equilibrium was significantly shortened to 25 min after biochar addition. The isotherms and kinetic findings confirmed that the adsorption occurred according to Freundlich and pseudo-second-order kinetic models, respectively. The adsorption capacity of imidacloprid (40<35<25 °C) increased with decreasing temperature, indicating an exothermic adsorption behaviour, whereas negative Gibbs free energy (G) values of -6980.5 and 5983.93 Jmol-1, respectively, for soil prior to NT and RT at 25 °C, asserted spontaneous adsorption. The negative values of entropy (ΔS); -22.83 and -38.15 Jmol-1K-1, prior to NT and RT applications, respectively, described a lowered randomness process. The enthalpy was greater when RT was applied (-17533 J mol-1) than when NT was applied (-450 J mol-1). Lastly, it was shown that NTtreatment enhanced imidacloprid adsorption capacity more than RT treatment and that biochar addition enhanced pesticide adsorption in both treatments.

Keywords: adsorption, biochar, imidacloprid, soil, tillage

Procedia PDF Downloads 130
2022 Novel Adaptive Radial Basis Function Neural Networks Based Approach for Short-Term Load Forecasting of Jordanian Power Grid

Authors: Eyad Almaita

Abstract:

In this paper, a novel adaptive Radial Basis Function Neural Networks (RBFNN) algorithm is used to forecast the hour by hour electrical load demand in Jordan. A small and effective RBFNN model is used to forecast the hourly total load demand based on a small number of features. These features are; the load in the previous day, the load in the same day in the previous week, the temperature in the same hour, the hour number, the day number, and the day type. The proposed adaptive RBFNN model can enhance the reliability of the conventional RBFNN after embedding the network in the system. This is achieved by introducing an adaptive algorithm that allows the change of the weights of the RBFNN after the training process is completed, which will eliminates the need to retrain the RBFNN model again. The data used in this paper is real data measured by National Electrical Power co. (Jordan). The data for the period Jan./2012-April/2013 is used train the RBFNN models and the data for the period May/2013- Sep. /2013 is used to validate the models effectiveness.

Keywords: load forecasting, adaptive neural network, radial basis function, short-term, electricity consumption

Procedia PDF Downloads 328
2021 Production, Quality Control, and Biodistribution Studies of 141ce-Edtmp as a Potential Bone Pain Palliation Agent

Authors: Fatemeh Soltani, Simindokht Shirvani Arani, Ali Bahrami Samani, Mahdi Sadeghi, Kamal Yavari

Abstract:

Cerium-141 [T1/2 = 32.501 days, Eβ (max) = 0.580 (29.8%) and 0.435(70.2%) MeV, Eγ=145.44 (48.2%) keV] possesses radionuclidic properties suitable for use in palliative therapy of bone metastases. 141Ce also has gamma energy of 145.44 keV, which resembles that of 99mTc. Therefore, the energy window is adjustable on the Tc-99m energy because of imaging studies. 141Ce can be produced through a relatively easy route that involves thermal neutron bombardment on natural CeO2 in medium flux research reactors (4–5×1013 neutrons/cm2•s). The requirement for an enriched target does not arise. Ethylenediamine tetramethylene phosphonic acid (EDTMP) was synthesized and radiolabeled with 141Ce. Complexation parameters were optimized to achieve maximum yields (>99%). The radiochemical purity of 141Ce-EDTMP was evaluated by radio-thin layer chromatography. The stability of the prepared formulation was monitored for one week at room temperature, and results showed that the preparation was stable during this period (>99%). Biodistribution studies of the complexes carried out in wild-type rats exhibited significant bone uptake with rapid clearance from blood. The properties of produced 141Ce-EDTMP suggest applying a new efficient bone pain palliative therapeutic agent to overcome metastatic bone pains.

Keywords: bone pain palliative, cerium-141, EDTMP, radiopharmaceutical

Procedia PDF Downloads 483