Search results for: scientific data mining
22297 Research on Health Emergency Management Based on the Bibliometrics
Authors: Meng-Na Dai, Bao-Fang Wen, Gao-Pei Zhu, Chen-Xi Zhang, Jing Sun, Chang-Hai Tang, Zhi-Qiang Feng, Wen-Qiang Yin
Abstract:
Based on the analysis of literature in the health emergency management in China with recent 10 years, this paper discusses the Chinese current research hotspots, development trends and shortcomings in this field, and provides references for scholars to conduct follow-up research. CNKI(China National Knowledge Infrastructure), Weipu, and Wanfang were the databases of this literature. The key words during the database search were health, emergency, and management with the time from 2009 to 2018. The duplicate, non-academic, and unrelated documents were excluded. 901 articles were included in the literature review database. The main indicators of abstraction were, the number of articles published every year, authors, institutions, periodicals, etc. There are some research findings through the analysis of the literature. Overall, the number of literature in the health emergency management in China has shown a fluctuating downward trend in recent 10 years. Specifically, there is a lack of close cooperation between authors, which has not constituted the core team among them yet. Meanwhile, in this field, the number of high-level periodicals and quality literature is scarce. In addition, there are a lot of research hotspots, such as emergency management system, mechanism research, capacity evaluation index system research, plans and capacity-building research, etc. In the future, we should increase the scientific research funding of the health emergency management, encourage collaborative innovation among authors in multi-disciplinary fields, and create high-quality and high-impact journals in this field. The states should encourage scholars in this field to carry out more academic cooperation and communication with the whole world and improve the research in breadth and depth. Generally speaking, the research in health emergency management in China is still insufficient and needs to be improved.Keywords: health emergency management, research situation, bibliometrics, literature
Procedia PDF Downloads 14122296 Investigation of Glacier Activity Using Optical and Radar Data in Zardkooh
Authors: Mehrnoosh Ghadimi, Golnoush Ghadimi
Abstract:
Precise monitoring of glacier velocity is critical in determining glacier-related hazards. Zardkooh Mountain was studied in terms of glacial activity rate in Zagros Mountainous region in Iran. In this study, we assessed the ability of optical and radar imagery to derive glacier-surface velocities in mountainous terrain. We processed Landsat 8 for optical data and Sentinel-1a for radar data. We used methods that are commonly used to measure glacier surface movements, such as cross correlation of optical and radar satellite images, SAR tracking techniques, and multiple aperture InSAR (MAI). We also assessed time series glacier surface displacement using our modified method, Enhanced Small Baseline Subset (ESBAS). The ESBAS has been implemented in StaMPS software, with several aspects of the processing chain modified, including filtering prior to phase unwrapping, topographic correction within three-dimensional phase unwrapping, reducing atmospheric noise, and removing the ramp caused by ionosphere turbulence and/or orbit errors. Our findings indicate an average surface velocity rate of 32 mm/yr in the Zardkooh mountainous areas.Keywords: active rock glaciers, landsat 8, sentinel-1a, zagros mountainous region
Procedia PDF Downloads 8122295 Towards Long-Range Pixels Connection for Context-Aware Semantic Segmentation
Authors: Muhammad Zubair Khan, Yugyung Lee
Abstract:
Deep learning has recently achieved enormous response in semantic image segmentation. The previously developed U-Net inspired architectures operate with continuous stride and pooling operations, leading to spatial data loss. Also, the methods lack establishing long-term pixels connection to preserve context knowledge and reduce spatial loss in prediction. This article developed encoder-decoder architecture with bi-directional LSTM embedded in long skip-connections and densely connected convolution blocks. The network non-linearly combines the feature maps across encoder-decoder paths for finding dependency and correlation between image pixels. Additionally, the densely connected convolutional blocks are kept in the final encoding layer to reuse features and prevent redundant data sharing. The method applied batch-normalization for reducing internal covariate shift in data distributions. The empirical evidence shows a promising response to our method compared with other semantic segmentation techniques.Keywords: deep learning, semantic segmentation, image analysis, pixels connection, convolution neural network
Procedia PDF Downloads 10722294 Crop Leaf Area Index (LAI) Inversion and Scale Effect Analysis from Unmanned Aerial Vehicle (UAV)-Based Hyperspectral Data
Authors: Xiaohua Zhu, Lingling Ma, Yongguang Zhao
Abstract:
Leaf Area Index (LAI) is a key structural characteristic of crops and plays a significant role in precision agricultural management and farmland ecosystem modeling. However, LAI retrieved from different resolution data contain a scaling bias due to the spatial heterogeneity and model non-linearity, that is, there is scale effect during multi-scale LAI estimate. In this article, a typical farmland in semi-arid regions of Chinese Inner Mongolia is taken as the study area, based on the combination of PROSPECT model and SAIL model, a multiple dimensional Look-Up-Table (LUT) is generated for multiple crops LAI estimation from unmanned aerial vehicle (UAV) hyperspectral data. Based on Taylor expansion method and computational geometry model, a scale transfer model considering both difference between inter- and intra-class is constructed for scale effect analysis of LAI inversion over inhomogeneous surface. The results indicate that, (1) the LUT method based on classification and parameter sensitive analysis is useful for LAI retrieval of corn, potato, sunflower and melon on the typical farmland, with correlation coefficient R2 of 0.82 and root mean square error RMSE of 0.43m2/m-2. (2) The scale effect of LAI is becoming obvious with the decrease of image resolution, and maximum scale bias is more than 45%. (3) The scale effect of inter-classes is higher than that of intra-class, which can be corrected efficiently by the scale transfer model established based Taylor expansion and Computational geometry. After corrected, the maximum scale bias can be reduced to 1.2%.Keywords: leaf area index (LAI), scale effect, UAV-based hyperspectral data, look-up-table (LUT), remote sensing
Procedia PDF Downloads 44222293 Road Traffic Noise Mapping for Riyadh City Using GIS and Lima
Authors: Khalid A. Alsaif, Mosaad A. Foda
Abstract:
The primary objective of this study is to develop the first round of road traffic noise maps for Riyadh City using Geographical Information Systems (GIS) and software LimA 7810 predictor. The road traffic data were measured or estimated as accurate as possible in order to obtain reliable noise maps. Meanwhile, the attributes of the roads and buildings are automatically exported from GIS. The simulation results at some chosen locations are validated by actual field measurements, which are obtained by a system that consists of a sound level meter, a GPS receiver and a database to manage the measured data. The results show that the average error between the predicted and measured noise levels is below 3.0 dB.Keywords: noise pollution, road traffic noise, LimA predictor, GIS
Procedia PDF Downloads 40922292 Detecting Potential Geothermal Sites by Using Well Logging, Geophysical and Remote Sensing Data at Siwa Oasis, Western Desert, Egypt
Authors: Amr S. Fahil, Eman Ghoneim
Abstract:
Egypt made significant efforts during the past few years to discover significant renewable energy sources. Regions in Egypt that have been identified for geothermal potential investigation include the Gulf of Suez and the Western Desert. One of the most promising sites for the development of Egypt's Northern Western Desert is Siwa Oasis. The geological setting of the oasis, a tectonically generated depression situated in the northernmost region of the Western desert, supports the potential for substantial geothermal resources. Field data obtained from 27 deep oil wells along the Western Desert included bottom-hole temperature (BHT) depth to basement measurements, and geological maps; data were utilized in this study. The major lithological units, elevation, surface gradient, lineaments density, and remote sensing multispectral and topographic were mapped together to generate the related physiographic variables. Eleven thematic layers were integrated in a geographic information system (GIS) to create geothermal maps to aid in the detection of significant potential geothermal spots along the Siwa Oasis and its vicinity. The contribution of total magnetic intensity data with reduction to the pole (RTP) to the first investigation of the geothermal potential in Siwa Oasis is applied in this work. The integration of geospatial data with magnetic field measurements showed a clear correlation between areas of high heat flow and magnetic anomalies. Such anomalies can be interpreted as related to the existence of high geothermal energy and dense rock, which also have high magnetic susceptibility. The outcomes indicated that the study area has a geothermal gradient ranging from 18 to 42 °C/km, a heat flow ranging from 24.7 to 111.3 m.W. k−1, a thermal conductivity of 1.3–2.65 W.m−1.k−1 and a measured amplitude temperature maximum of 100.7 °C. The southeastern part of the Siwa Oasis, and some sporadic locations on the eastern section of the oasis were found to have significant geothermal potential; consequently, this location is suitable for future geothermal investigation. The adopted method might be applied to identify significant prospective geothermal energy locations in other regions of Egypt and East Africa.Keywords: magnetic data, SRTM, depth to basement, remote sensing, GIS, geothermal gradient, heat flow, thermal conductivity
Procedia PDF Downloads 12422291 Dynamics of Marital Status and Information Search through Consumer Generated Media: An Exploratory Study
Authors: Shivkumar Krishnamurti, Ruchi Agarwal
Abstract:
The study examines the influence of marital status on consumers of products and services using blogs as a source of information. A pre-designed questionnaire was used to collect the primary data from the respondents (experiences). Data were collected from one hundred and eighty seven respondents residing in and around the Emirates of Sharjah and Dubai of the United Arab Emirates. The collected data was analyzed with the help of statistical tools such as averages, percentages, factor analysis, student’s t-test and structural equation modeling technique. Objectives of the study are to know the reasons how married and unmarried or single consumers of products and services are motivated to use blogs as a source of information, to know whether the consumers of products and services irrespective of their marital status share their views and experiences with other bloggers and to know the respondents’ future intentions towards blogging. The study revealed the following: Majority of the respondents have the motivation to blog because they are willing to receive comments on what they post about services, convenience of blogs to search for information about services and products, by blogging respondents share information on the symptoms of a disease/ disorder that may be experienced by someone, helps to share information about ready to cook mix products and are keen to spend more time blogging in the future.Keywords: blog, consumer, information, marital status
Procedia PDF Downloads 38922290 Cancer Burden and Policy Needs in the Democratic Republic of the Congo: A Descriptive Study
Authors: Jean Paul Muambangu Milambo, Peter Nyasulu, John Akudugu, Leonidas Ndayisaba, Joyce Tsoka-Gwegweni, Lebwaze Massamba Bienvenu, Mitshindo Mwambangu Chiro
Abstract:
In 2018, non-communicable diseases (NCDs) were responsible for 48% of deaths in the Democratic Republic of Congo (DRC), with cancer contributing to 5% of these deaths. There is a notable absence of cancer registries, capacity-building activities, budgets, and treatment roadmaps in the DRC. Current cancer estimates are primarily based on mathematical modeling with limited data from neighboring countries. This study aimed to assess cancer subtype prevalence in Kinshasa hospitals and compare these findings with WHO model estimates. Methods: A retrospective observational study was conducted from 2018 to 2020 at HJ Hospitals in Kinshasa. Data were collected using American Cancer Society (ACS) questionnaires and physician logs. Descriptive analysis was performed using STATA version 16 to estimate cancer burden and provide evidence-based recommendations. Results: The results from the chart review at HJ Hospitals in Kinshasa (2018-2020) indicate that out of 6,852 samples, approximately 11.16% were diagnosed with cancer. The distribution of cancer subtypes in this cohort was as follows: breast cancer (33.6%), prostate cancer (21.8%), colorectal cancer (9.6%), lymphoma (4.6%), and cervical cancer (4.4%). These figures are based on histopathological confirmation at the facility and may not fully represent the broader population due to potential selection biases related to geographic and financial accessibility to the hospital. In contrast, the World Health Organization (WHO) model estimates for cancer prevalence in the DRC show different proportions. According to WHO data, the distribution of cancer types is as follows: cervical cancer (15.9%), prostate cancer (15.3%), breast cancer (14.9%), liver cancer (6.8%), colorectal cancer (5.9%), and other cancers (41.2%) (WHO, 2020). Conclusion: The data indicate a rising cancer prevalence in DRC but highlight significant gaps in clinical, biomedical, and genetic cancer data. The establishment of a population-based cancer registry (PBCR) and a defined cancer management pathway is crucial. The current estimates are limited due to data scarcity and inconsistencies in clinical practices. There is an urgent need for multidisciplinary cancer management, integration of palliative care, and improvement in care quality based on evidence-based measures.Keywords: cancer, risk factors, DRC, gene-environment interactions, survivors
Procedia PDF Downloads 2522289 Design of a Real Time Heart Sounds Recognition System
Authors: Omer Abdalla Ishag, Magdi Baker Amien
Abstract:
Physicians used the stethoscope for listening patient heart sounds in order to make a diagnosis. However, the determination of heart conditions by acoustic stethoscope is a difficult task so it requires special training of medical staff. This study developed an accurate model for analyzing the phonocardiograph signal based on PC and DSP processor. The system has been realized into two phases; offline and real time phase. In offline phase, 30 cases of heart sounds files were collected from medical students and doctor's world website. For experimental phase (real time), an electronic stethoscope has been designed, implemented and recorded signals from 30 volunteers, 17 were normal cases and 13 were various pathologies cases, these acquired 30 signals were preprocessed using an adaptive filter to remove lung sounds. The background noise has been removed from both offline and real data, using wavelet transform, then graphical and statistics features vector elements were extracted, finally a look-up table was used for classification heart sounds cases. The obtained results of the implemented system showed accuracy of 90%, 80% and sensitivity of 87.5%, 82.4% for offline data, and real data respectively. The whole system has been designed on TMS320VC5509a DSP Platform.Keywords: code composer studio, heart sounds, phonocardiograph, wavelet transform
Procedia PDF Downloads 45322288 An Exploration of Promoting EFL Students’ Language Learning Autonomy Using Multimodal Teaching - A Case Study of an Art University in Western China
Authors: Dian Guan
Abstract:
With the wide application of multimedia and the Internet, the development of teaching theories, and the implementation of teaching reforms, many different university English classroom teaching modes have emerged. The university English teaching mode is changing from the traditional teaching mode based on conversation and text to the multimodal English teaching mode containing discussion, pictures, audio, film, etc. Applying university English teaching models is conducive to cultivating lifelong learning skills. In addition, lifelong learning skills can also be called learners' autonomous learning skills. Learners' independent learning ability has a significant impact on English learning. However, many university students, especially art and design students, don't know how to learn individually. When they become university students, their English foundation is a relative deficiency because they always remember the language in a traditional way, which, to a certain extent, neglects the cultivation of English learners' independent ability. As a result, the autonomous learning ability of most university students is not satisfactory. The participants in this study were 60 students and one teacher in their first year at a university in western China. Two observations and interviews were conducted inside and outside the classroom to understand the impact of a multimodal teaching model of university English on students' autonomous learning ability. The results were analyzed, and it was found that the multimodal teaching model of university English significantly affected learners' autonomy. Incorporating classroom presentations and poster exhibitions into multimodal teaching can increase learners' interest in learning and enhance their learning ability outside the classroom. However, further exploration is needed to develop multimodal teaching materials and evaluate multimodal teaching outcomes. Despite the limitations of this study, the study adopts a scientific research method to analyze the impact of the multimodal teaching mode of university English on students' independent learning ability. It puts forward a different outlook for further research on this topic.Keywords: art university, EFL education, learner autonomy, multimodal pedagogy
Procedia PDF Downloads 10722287 Tagging a corpus of Media Interviews with Diplomats: Challenges and Solutions
Authors: Roberta Facchinetti, Sara Corrizzato, Silvia Cavalieri
Abstract:
Increasing interconnection between data digitalization and linguistic investigation has given rise to unprecedented potentialities and challenges for corpus linguists, who need to master IT tools for data analysis and text processing, as well as to develop techniques for efficient and reliable annotation in specific mark-up languages that encode documents in a format that is both human and machine-readable. In the present paper, the challenges emerging from the compilation of a linguistic corpus will be taken into consideration, focusing on the English language in particular. To do so, the case study of the InterDiplo corpus will be illustrated. The corpus, currently under development at the University of Verona (Italy), represents a novelty in terms both of the data included and of the tag set used for its annotation. The corpus covers media interviews and debates with diplomats and international operators conversing in English with journalists who do not share the same lingua-cultural background as their interviewees. To date, this appears to be the first tagged corpus of international institutional spoken discourse and will be an important database not only for linguists interested in corpus analysis but also for experts operating in international relations. In the present paper, special attention will be dedicated to the structural mark-up, parts of speech annotation, and tagging of discursive traits, that are the innovational parts of the project being the result of a thorough study to find the best solution to suit the analytical needs of the data. Several aspects will be addressed, with special attention to the tagging of the speakers’ identity, the communicative events, and anthropophagic. Prominence will be given to the annotation of question/answer exchanges to investigate the interlocutors’ choices and how such choices impact communication. Indeed, the automated identification of questions, in relation to the expected answers, is functional to understand how interviewers elicit information as well as how interviewees provide their answers to fulfill their respective communicative aims. A detailed description of the aforementioned elements will be given using the InterDiplo-Covid19 pilot corpus. The data yielded by our preliminary analysis of the data will highlight the viable solutions found in the construction of the corpus in terms of XML conversion, metadata definition, tagging system, and discursive-pragmatic annotation to be included via Oxygen.Keywords: spoken corpus, diplomats’ interviews, tagging system, discursive-pragmatic annotation, english linguistics
Procedia PDF Downloads 18922286 The Importance of including All Data in a Linear Model for the Analysis of RNAseq Data
Authors: Roxane A. Legaie, Kjiana E. Schwab, Caroline E. Gargett
Abstract:
Studies looking at the changes in gene expression from RNAseq data often make use of linear models. It is also common practice to focus on a subset of data for a comparison of interest, leaving aside the samples not involved in this particular comparison. This work shows the importance of including all observations in the modeling process to better estimate variance parameters, even when the samples included are not directly used in the comparison under test. The human endometrium is a dynamic tissue, which undergoes cycles of growth and regression with each menstrual cycle. The mesenchymal stem cells (MSCs) present in the endometrium are likely responsible for this remarkable regenerative capacity. However recent studies suggest that MSCs also plays a role in the pathogenesis of endometriosis, one of the most common medical conditions affecting the lower abdomen in women in which the endometrial tissue grows outside the womb. In this study we compared gene expression profiles between MSCs and non-stem cell counterparts (‘non-MSC’) obtained from women with (‘E’) or without (‘noE’) endometriosis from RNAseq. Raw read counts were used for differential expression analysis using a linear model with the limma-voom R package, including either all samples in the study or only the samples belonging to the subset of interest (e.g. for the comparison ‘E vs noE in MSC cells’, including only MSC samples from E and noE patients but not the non-MSC ones). Using the full dataset we identified about 100 differentially expressed (DE) genes between E and noE samples in MSC samples (adj.p-val < 0.05 and |logFC|>1) while only 9 DE genes were identified when using only the subset of data (MSC samples only). Important genes known to be involved in endometriosis such as KLF9 and RND3 were missed in the latter case. When looking at the MSC vs non-MSC cells comparison, the linear model including all samples identified 260 genes for noE samples (including the stem cell marker SUSD2) while the subset analysis did not identify any DE genes. When looking at E samples, 12 genes were identified with the first approach and only 1 with the subset approach. Although the stem cell marker RGS5 was found in both cases, the subset test missed important genes involved in stem cell differentiation such as NOTCH3 and other potentially related genes to be used for further investigation and pathway analysis.Keywords: differential expression, endometriosis, linear model, RNAseq
Procedia PDF Downloads 43422285 Thermodynamic Behaviour of Binary Mixtures of 1, 2-Dichloroethane with Some Cyclic Ethers: Experimental Results and Modelling
Authors: Fouzia Amireche-Ziar, Ilham Mokbel, Jacques Jose
Abstract:
The vapour pressures of the three binary mixtures: 1, 2- dichloroethane + 1,3-dioxolane, + 1,4-dioxane or + tetrahydropyrane, are carried out at ten temperatures ranging from 273 to 353.15 K. An accurate static device was employed for these measurements. The VLE data were reduced using the Redlich-Kister equation by taking into consideration the vapour pressure non-ideality in terms of the second molar virial coefficient. The experimental data were compared to the results predicted with the DISQUAC and Dortmund UNIFAC group contribution models for the total pressures P and the excess molar Gibbs energies GE.Keywords: disquac model, dortmund UNIFAC model, excess molar Gibbs energies GE, VLE
Procedia PDF Downloads 26222284 Chemometric-Based Voltammetric Method for Analysis of Vitamins and Heavy Metals in Honey Samples
Authors: Marwa A. A. Ragab, Amira F. El-Yazbi, Amr El-Hawiet
Abstract:
The analysis of heavy metals in honey samples is crucial. When found in honey, they denote environmental pollution. Some of these heavy metals as lead either present at low or high concentrations are considered to be toxic. Other heavy metals, for example, copper and zinc, if present at low concentrations, they considered safe even vital minerals. On the contrary, if they present at high concentrations, they are toxic. Their voltammetric determination in honey represents a challenge due to the presence of other electro-active components as vitamins, which may overlap with the peaks of the metal, hindering their accurate and precise determination. The simultaneous analysis of some vitamins: nicotinic acid (B3) and riboflavin (B2), and heavy metals: lead, cadmium, and zinc, in honey samples, was addressed. The analysis was done in 0.1 M Potassium Chloride (KCl) using a hanging mercury drop electrode (HMDE), followed by chemometric manipulation of the voltammetric data using the derivative method. Then the derivative data were convoluted using discrete Fourier functions. The proposed method allowed the simultaneous analysis of vitamins and metals though their varied responses and sensitivities. Although their peaks were overlapped, the proposed chemometric method allowed their accurate and precise analysis. After the chemometric treatment of the data, metals were successfully quantified at low levels in the presence of vitamins (1: 2000). The heavy metals limit of detection (LOD) values after the chemometric treatment of data decreased by more than 60% than those obtained from the direct voltammetric method. The method applicability was tested by analyzing the selected metals and vitamins in real honey samples obtained from different botanical origins.Keywords: chemometrics, overlapped voltammetric peaks, derivative and convoluted derivative methods, metals and vitamins
Procedia PDF Downloads 15422283 Human-Centric Sensor Networks for Comfort and Productivity in Offices: Integrating Environmental, Body Area Network, and Participatory Sensing
Authors: Chenlu Zhang, Wanni Zhang, Florian Schaule
Abstract:
Indoor environment in office buildings directly affects comfort, productivity, health, and well-being of building occupants. Wireless environmental sensor networks have been deployed in many modern offices to monitor and control the indoor environments. However, indoor environmental variables are not strong enough predictors of comfort and productivity levels of every occupant due to personal differences, both physiologically and psychologically. This study proposes human-centric sensor networks that integrate wireless environmental sensors, body area network sensors and participatory sensing technologies to collect data from both environment and human and support building operations. The sensor networks have been tested in one small-size and one medium-size office rooms with 22 participants for five months. Indoor environmental data (e.g., air temperature and relative humidity), physiological data (e.g., skin temperature and Galvani skin response), and physiological responses (e.g., comfort and self-reported productivity levels) were obtained from each participant and his/her workplace. The data results show that: (1) participants have different physiological and physiological responses in the same environmental conditions; (2) physiological variables are more effective predictors of comfort and productivity levels than environmental variables. These results indicate that the human-centric sensor networks can support human-centric building control and improve comfort and productivity in offices.Keywords: body area network, comfort and productivity, human-centric sensors, internet of things, participatory sensing
Procedia PDF Downloads 14422282 Self-Supervised Attributed Graph Clustering with Dual Contrastive Loss Constraints
Authors: Lijuan Zhou, Mengqi Wu, Changyong Niu
Abstract:
Attributed graph clustering can utilize the graph topology and node attributes to uncover hidden community structures and patterns in complex networks, aiding in the understanding and analysis of complex systems. Utilizing contrastive learning for attributed graph clustering can effectively exploit meaningful implicit relationships between data. However, existing attributed graph clustering methods based on contrastive learning suffer from the following drawbacks: 1) Complex data augmentation increases computational cost, and inappropriate data augmentation may lead to semantic drift. 2) The selection of positive and negative samples neglects the intrinsic cluster structure learned from graph topology and node attributes. Therefore, this paper proposes a method called self-supervised Attributed Graph Clustering with Dual Contrastive Loss constraints (AGC-DCL). Firstly, Siamese Multilayer Perceptron (MLP) encoders are employed to generate two views separately to avoid complex data augmentation. Secondly, the neighborhood contrastive loss is introduced to constrain node representation using local topological structure while effectively embedding attribute information through attribute reconstruction. Additionally, clustering-oriented contrastive loss is applied to fully utilize clustering information in global semantics for discriminative node representations, regarding the cluster centers from two views as negative samples to fully leverage effective clustering information from different views. Comparative clustering results with existing attributed graph clustering algorithms on six datasets demonstrate the superiority of the proposed method.Keywords: attributed graph clustering, contrastive learning, clustering-oriented, self-supervised learning
Procedia PDF Downloads 6322281 An Analysis of the Temporal Aspects of Visual Attention Processing Using Rapid Series Visual Processing (RSVP) Data
Authors: Shreya Borthakur, Aastha Vartak
Abstract:
This Electroencephalogram (EEG) project on Rapid Visual Serial Processing (RSVP) paradigm explores the temporal dynamics of visual attention processing in response to rapidly presented visual stimuli. The study builds upon previous research that used real-world images in RSVP tasks to understand the emergence of object representations in the human brain. The objectives of the research include investigating the differences in accuracy and reaction times between 5 Hz and 20 Hz presentation rates, as well as examining the prominent brain waves, particularly alpha and beta waves, associated with the attention task. The pre-processing and data analysis involves filtering EEG data, creating epochs for target stimuli, and conducting statistical tests using MATLAB, EEGLAB, Chronux toolboxes, and R. The results support the hypotheses, revealing higher accuracy at a slower presentation rate, faster reaction times for less complex targets, and the involvement of alpha and beta waves in attention and cognitive processing. This research sheds light on how short-term memory and cognitive control affect visual processing and could have practical implications in fields like education.Keywords: RSVP, attention, visual processing, attentional blink, EEG
Procedia PDF Downloads 7522280 Optimization of Feeder Bus Routes at Urban Rail Transit Stations Based on Link Growth Probability
Authors: Yu Song, Yuefei Jin
Abstract:
Urban public transportation can be integrated when there is an efficient connection between urban rail lines, however, there are currently no effective or quick solutions being investigated for this connection. This paper analyzes the space-time distribution and travel demand of passenger connection travel based on taxi track data and data from the road network, excavates potential bus connection stations based on potential connection demand data, and introduces the link growth probability model in the complex network to solve the basic connection bus lines in order to ascertain the direction of the bus lines that are the most connected given the demand characteristics. Then, a tree view exhaustive approach based on constraints is suggested based on graph theory, which can hasten the convergence of findings while doing chain calculations. This study uses WEI QU NAN Station, the Xi'an Metro Line 2 terminal station in Shaanxi Province, as an illustration, to evaluate the model's and the solution method's efficacy. According to the findings, 153 prospective stations have been dug up in total, the feeder bus network for the entire line has been laid out, and the best route adjustment strategy has been found.Keywords: feeder bus, route optimization, link growth probability, the graph theory
Procedia PDF Downloads 8122279 The Role of Technology in Transforming the Finance, Banking, and Insurance Sectors
Authors: Farid Fahami
Abstract:
This article explores the transformative role of technology in the finance, banking, and insurance sectors. It examines key technological trends such as AI, blockchain, data analytics, and digital platforms and their impact on operations, customer experiences, and business models. The article highlights the benefits of technology adoption, including improved efficiency, cost reduction, enhanced customer experiences, and expanded financial inclusion. It also addresses challenges like cybersecurity, data privacy, and the need for upskilling. Real-world case studies demonstrate successful technology integration, and recommendations for stakeholders emphasize embracing innovation and collaboration. The article concludes by emphasizing the importance of technology in shaping the future of these sectors.Keywords: banking, finance, insurance, technology
Procedia PDF Downloads 7522278 Empirical Study of Health Behaviors of Employees in Information Technology and Business Process Outsourcing
Authors: Yogesh Pawar
Abstract:
The purpose of this paper is to investigate the behaviors of information technology (IT) and business process outsourcing (BPO) employees in relation to diet, exercise, sleep, stress, and social habits. This was a qualitative research study, using in-depth,semi-structured interviews. Descriptive data were collected from a two-stage purposive sample of 28 IT-BPO employees from two IT companies and one BPOs in Pune. The majority of interviewees reported having an unhealthy diet and/or sedentary lifestyle. Lack of time due to demanding work schedules was the largest barrier to diet and exercise. Given the qualitative study design and limited sampling frame, results may not be generalizable. However, the qualitative data suggests that Pune’s young IT-BPO employees may be at greater risk of lifestyle-related diseases than the general population. The data also suggests that interventions incorporating social influence may be a promising solution, particularly at international call centers. The results from this study provide qualitative insight on the motives for health behaviors of IT-BPO employees, as well as the barriers and facilitators for leading a healthy lifestyle in this industry. The findings provide the framework for future workplace wellness interventions.Keywords: exercise, information technology, qualitative research, wellness
Procedia PDF Downloads 33822277 Energy Efficiency Factors in Toll Plazas
Authors: S. Balubaid, M. Z. Abd Majid, R. Zakaria
Abstract:
Energy efficiency is one of the most important issues for green buildings and their sustainability. This is not only due to the environmental impacts, but also because of significantly high energy cost. The aim of this study is to identify the potential actions required for toll plaza that lead to energy reduction. The data were obtained through set of questionnaire and interviewing targeted respondents, including the employees at toll plaza, and architects and engineers who are directly involved in design of highway projects. The data was analyzed using descriptive statistics analysis method. The findings of this study are the critical elements that influence the energy usage and factors that lead to energy wastage. Finally, potential actions are recommended to reduce energy consumption in toll plazas.Keywords: energy efficiency, toll plaza, energy consumption
Procedia PDF Downloads 55222276 Strategies to Promote Entrepreneurship Among University Students: A Case Study from Al Akhawayn University
Authors: Sara atibi, Azzeddine Atibi, Salim Ahmed, Khadija El Kababi
Abstract:
The emergence of an entrepreneurial culture within academic institutions is increasingly seen as essential for preparing students for contemporary economic challenges. This study examines the effectiveness of educational programs and interventions aimed at promoting entrepreneurial spirit at Al Akhawayn University. The central issue explores the types of programs most efficient in instilling the necessary entrepreneurial skills and attitudes in students. The primary question about the ‘types of educational programs and interventions that are most effective in cultivating and reinforcing the entrepreneurial spirit among students at Al Akhawayn University' is broken down into sub-questions detailing the characteristics of current programs, factors influencing their success, the evolution of students' entrepreneurial skills, the role of teachers and mentors, best practices from other institutions, and the long-term impacts on graduates' entrepreneurial careers. To address this question, a mixed-methods approach, combining quantitative and qualitative methods, was adopted. Quantitative data collection includes questionnaires and surveys designed to evaluate students' attitudes, skills, and perceptions before and after participating in entrepreneurship programs. Simultaneously, semi-structured interviews, focus groups, and participant observations provide in-depth qualitative data on the experiences of students, teachers, and administrators. Quantitative data analysis employs descriptive and inferential statistical techniques, while qualitative analysis uses a thematic approach to identify key perceptions and experiences. This triangulation of data ensures robust and comprehensive results.Keywords: student entrepreneurship, pedagogical interventions, Al Akhawayn university, entrepreneurial culture, entrepreneurial skills
Procedia PDF Downloads 3722275 The Carbon Footprint Model as a Plea for Cities towards Energy Transition: The Case of Algiers Algeria
Authors: Hachaichi Mohamed Nour El-Islem, Baouni Tahar
Abstract:
Environmental sustainability rather than a trans-disciplinary and a scientific issue, is the main problem that characterizes all modern cities nowadays. In developing countries, this concern is expressed in a plethora of critical urban ills: traffic congestion, air pollution, noise, urban decay, increase in energy consumption and CO2 emissions which blemish cities’ landscape and might threaten citizens’ health and welfare. As in the same manner as developing world cities, the rapid growth of Algiers’ human population and increasing in city scale phenomena lead eventually to increase in daily trips, energy consumption and CO2 emissions. In addition, the lack of proper and sustainable planning of the city’s infrastructure is one of the most relevant issues from which Algiers suffers. The aim of this contribution is to estimate the carbon deficit of the City of Algiers, Algeria, using the Ecological Footprint Model (carbon footprint). In order to achieve this goal, the amount of CO2 from fuel combustion has been calculated and aggregated into five sectors (agriculture, industry, residential, tertiary and transportation); as well, Algiers’ biocapacity (CO2 uptake land) has been calculated to determine the ecological overshoot. This study shows that Algiers’ transport system is not sustainable and is generating more than 50% of Algiers total carbon footprint which cannot be sequestered by the local forest land. The aim of this research is to show that the Carbon Footprint Assessment might be a relevant indicator to design sustainable strategies/policies striving to reduce CO2 by setting in motion the energy consumption in the transportation sector and reducing the use of fossil fuels as the main energy input.Keywords: biocapacity, carbon footprint, ecological footprint assessment, energy consumption
Procedia PDF Downloads 15122274 Energy Justice and Economic Growth
Authors: Marinko Skare, Malgorzata Porada Rochon
Abstract:
This paper study the link between energy justice and economic growth. The link between energy justice and growth has not been extensively studied. Here we study the impact and importance of energy justice, as a part of the energy transition process, on economic growth. Our study shows energy justice growth is an important determinant of economic growth and development that should be addressed at the industry and economic levels. We use panel data modeling and causality testing to research the empirical link between energy justice and economic growth. Industry and economy-level policies designed to support energy justice initiatives are beneficial to economic growth. Energy justice is a necessary condition for green growth and sustainability targets.Keywords: energy justice, economic growth, panel data, energy transition
Procedia PDF Downloads 11722273 Developing Primal Teachers beyond the Classroom: The Quadrant Intelligence (Q-I) Model
Authors: Alexander K. Edwards
Abstract:
Introduction: The moral dimension of teacher education globally has assumed a new paradigm of thinking based on the public gain (return-on-investments), value-creation (quality), professionalism (practice), and business strategies (innovations). Abundant literature reveals an interesting revolutionary trend in complimenting the raising of teachers and academic performances. Because of the global competition in the knowledge-creation and service areas, the C21st teacher at all levels is expected to be resourceful, strategic thinker, socially intelligent, relationship aptitude, and entrepreneur astute. This study is a significant contribution to practice and innovations to raise exemplary or primal teachers. In this study, the qualities needed were considered as ‘Quadrant Intelligence (Q-i)’ model for a primal teacher leadership beyond the classroom. The researcher started by examining the issue of the majority of teachers in Ghana Education Services (GES) in need of this Q-i to be effective and efficient. The conceptual framing became determinants of such Q-i. This is significant for global employability and versatility in teacher education to create premium and primal teacher leadership, which are again gaining high attention in scholarship due to failing schools. The moral aspect of teachers failing learners is a highly important discussion. In GES, some schools score zero percent at the basic education certificate examination (BECE). The question is what will make any professional teacher highly productive, marketable, and an entrepreneur? What will give teachers the moral consciousness of doing the best to succeed? Method: This study set out to develop a model for primal teachers in GES as an innovative way to highlight a premium development for the C21st business-education acumen through desk reviews. The study is conceptually framed by examining certain skill sets such as strategic thinking, social intelligence, relational and emotional intelligence and entrepreneurship to answer three main burning questions and other hypotheses. Then the study applied the causal comparative methodology with a purposive sampling technique (N=500) from CoE, GES, NTVI, and other teachers associations. Participants responded to a 30-items, researcher-developed questionnaire. Data is analyzed on the quadrant constructs and reported as ex post facto analyses of multi-variances and regressions. Multiple associations were established for statistical significance (p=0.05). Causes and effects are postulated for scientific discussions. Findings: It was found out that these quadrants are very significant in teacher development. There were significant variations in the demographic groups. However, most teachers lack considerable skills in entrepreneurship, leadership in teaching and learning, and business thinking strategies. These have significant effect on practices and outcomes. Conclusion and Recommendations: It is quite conclusive therefore that in GES teachers may need further instructions in innovations and creativity to transform knowledge-creation into business venture. In service training (INSET) has to be comprehensive. Teacher education curricula at Colleges may have to be re-visited. Teachers have the potential to raise their social capital, to be entrepreneur, and to exhibit professionalism beyond their community services. Their primal leadership focus will benefit many clienteles including students and social circles. Recommendations examined the policy implications for curriculum design, practice, innovations and educational leadership.Keywords: emotional intelligence, entrepreneurship, leadership, quadrant intelligence (q-i), primal teacher leadership, strategic thinking, social intelligence
Procedia PDF Downloads 31622272 IoT and Advanced Analytics Integration in Biogas Modelling
Authors: Rakesh Choudhary, Ajay Kumar, Deepak Sharma
Abstract:
The main goal of this paper is to investigate the challenges and benefits of IoT integration in biogas production. This overview explains how the inclusion of IoT can enhance biogas production efficiency. Therefore, such collected data can be explored by advanced analytics, including Artificial intelligence (AI) and Machine Learning (ML) algorithms, consequently improving bio-energy processes. To boost biogas generation efficiency, this report examines the use of IoT devices for real-time data collection on key parameters, e.g., pH, temperature, gas composition, and microbial growth. Real-time monitoring through big data has made it possible to detect diverse, complex trends in the process of producing biogas. The Informed by advanced analytics can also help in improving bio-energy production as well as optimizing operational conditions. Moreover, IoT allows remote observation, control and management, which decreases manual intervention needed whilst increasing process effectiveness. Such a paradigm shift in the incorporation of IoT technologies into biogas production systems helps to achieve higher productivity levels as well as more practical biomass quality biomethane through real-time monitoring-based proactive decision-making, thus driving continuous performance improvement.Keywords: internet of things, biogas, renewable energy, sustainability, anaerobic digestion, real-time monitoring, optimization
Procedia PDF Downloads 2522271 Internet of Things Based Patient Health Monitoring System
Authors: G. Yoga Sairam Teja, K. Harsha Vardhan, A. Vinay Kumar, K. Nithish Kumar, Ch. Shanthi Priyag
Abstract:
The emergence of the Internet of Things (IoT) has facilitated better device control and monitoring in the modern world. The constant monitoring of a patient would be drastically altered by the usage of IoT in healthcare. As we've seen in the case of the COVID-19 pandemic, it's important to keep oneself untouched while continuously checking on the patient's heart rate and temperature. Additionally, patients with paralysis should be closely watched, especially if they are elderly and in need of special care. Our "IoT BASED PATIENT HEALTH MONITORING SYSTEM" project uses IoT to track patient health conditions in an effort to address these issues. In this project, the main board is an 8051 microcontroller that connects a number of sensors, including a heart rate sensor, a temperature sensor (LM-35), and a saline water measuring circuit. These sensors are connected via an ESP832 (WiFi) module, which enables the sending of recorded data directly to the cloud so that the patient's health status can be regularly monitored. An LCD is used to monitor the data in offline mode, and a buzzer will sound if any variation from the regular readings occurs. The data in the cloud may be viewed as a graph, making it simple for a user to spot any unusual conditions.Keywords: IoT, ESP8266, 8051 microcontrollers, sensors
Procedia PDF Downloads 9222270 Readiness of Thai Restaurant in Bangkok in Applying for Certification of Halal Food Services Standard for Tourism
Authors: Pongsiri Kingkan
Abstract:
This research aims to study the Readiness of Thai Restaurant in Bangkok in Applying for Certification of Halal Food Services Standard for Tourism. This research was conduct by using mix methodology; both quantitative and qualitative data were used. 420 questionnaires were used as tools to collected data from the samples, the restaurant employees. The results were divided into two parts, the demographic data and the Readiness of Thai Restaurant in Bangkok in Applying for Certification of Halal Food Services Standard for Tourism. The majority of samples are single female age between 18–30 years old, who earn about 282.40 US dollars a month. The result of Thai restaurant readiness study demonstrated that readiness in foods and restaurant operating processes were scored at the lowest level. Readiness in social responsibility, food contact persons and food materials were rated at the low level. The readiness of utensils and kitchen tools, waste management, environmental management, and the availability of space to implement the establishment of halal food were scored at the average level. Location readiness, foods service safety and the relationship with the local community were rated at high level. But interestingly there is none of them rated at the highest level.Keywords: availability, Bangkok, halal, Thai restaurant, readiness
Procedia PDF Downloads 31822269 Designing an Editorialization Environment for Repeatable Self-Correcting Exercises
Authors: M. Kobylanski, D. Buskulic, P.-H. Duron, D. Revuz, F. Ruggieri, E. Sandier, C. Tijus
Abstract:
In order to design a cooperative e-learning platform, we observed teams of Teacher [T], Computer Scientist [CS] and exerciser's programmer-designer [ED] cooperating for the conception of a self-correcting exercise, but without the use of such a device in order to catch the kind of interactions a useful platform might provide. To do so, we first run a task analysis on how T, CS and ED should be cooperating in order to achieve, at best, the task of creating and implementing self-directed, self-paced, repeatable self-correcting exercises (RSE) in the context of open educational resources. The formalization of the whole process was based on the “objectives, activities and evaluations” theory of educational task analysis. Second, using the resulting frame as a “how-to-do it” guide, we run a series of three contrasted Hackathon of RSE-production to collect data about the cooperative process that could be later used to design the collaborative e-learning platform. Third, we used two complementary methods to collect, to code and to analyze the adequate survey data: the directional flow of interaction among T-CS-ED experts holding a functional role, and the Means-End Problem Solving analysis. Fourth, we listed the set of derived recommendations useful for the design of the exerciser as a cooperative e-learning platform. Final recommendations underline the necessity of building (i) an ecosystem that allows to sustain teams of T-CS-ED experts, (ii) a data safety platform although offering accessibility and open discussion about the production of exercises with their resources and (iii) a good architecture allowing the inheritance of parts of the coding of any exercise already in the data base as well as fast implementation of new kinds of exercises along with their associated learning activities.Keywords: editorialization, open educational resources, pedagogical alignment, produsage, repeatable self-correcting exercises, team roles
Procedia PDF Downloads 12622268 Unsupervised Learning of Spatiotemporally Coherent Metrics
Authors: Ross Goroshin, Joan Bruna, Jonathan Tompson, David Eigen, Yann LeCun
Abstract:
Current state-of-the-art classification and detection algorithms rely on supervised training. In this work we study unsupervised feature learning in the context of temporally coherent video data. We focus on feature learning from unlabeled video data, using the assumption that adjacent video frames contain semantically similar information. This assumption is exploited to train a convolutional pooling auto-encoder regularized by slowness and sparsity. We establish a connection between slow feature learning to metric learning and show that the trained encoder can be used to define a more temporally and semantically coherent metric.Keywords: machine learning, pattern clustering, pooling, classification
Procedia PDF Downloads 459